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Abstract Distance-based methods have been a

valuable tool for ecologists for decades. Indirectly,

distance-based ordination and cluster analysis, in

particular, have been widely practiced as they allow

the visualization of a multivariate data set in a few

dimensions. The explicitly distance-based Mantel test

and multiple regression on distance matrices (MRM)

add hypothesis testing to the toolbox. One concern

for ecologists wishing to use these methods lies in

deciding whether to combine data vectors into a

compound multivariate dissimilarity to analyze them

individually. For Euclidean distances on scaled data,

the correlation of a pair of multivariate distance

matrices can be calculated from the correlations

between the two sets of individual distance matrices

if one set is orthogonal, demonstrating a clear link

between individual and compound distances. The

choice between Mantel and MRM should be driven

by ecological hypotheses rather than mathematical

concerns. The relationship between individual and

compound distance matrices also provides a means

for calculating the maximum possible value of the

Mantel statistic, which can be considerably less than

1 for a given analysis. These relationships are

demonstrated with simulated data. Although these

mathematical relationships are only strictly true for

Euclidean distances when one set of variables is

orthogonal, simulations show that they are approxi-

mately true for weakly correlated variables and Bray–

Curtis dissimilarities.
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Introduction

Distance-based methods are widely used in ecology,

and have proven their worth for many purposes, most

notably as employed in ordination or cluster analysis

for arranging sites according to similarity in species

composition (Legendre and Legendre 1998). These

applications calculate the dissimilarity metric across a

number of descriptors of the same type and measured

on the same scale (commonly species presence or

abundance data) and use it to either group sites or

arrange them in a lower-dimension ordination space.

Other distance-based methods treat a group of

conceptually related indicators as one entity. For

example, several measures of soil properties may be

used to calculate a compound dissimilarity metric that

describes overall soil properties. The Mantel test

assesses the significance of the relationship between

two or more distance matrices (Mantel 1967; McCune

and Grace 2002). Distance-based methods are partic-

ularly valuable in ecology because they allow explicit

incorporation of geographic distances into analyses.

Dissimilarity metrics exist for both quantitative and
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qualitative data types, allowing the analysis of many

types of information. Significance testing for dissim-

ilarity methods is usually done with permutation tests,

so these methods make no assumptions about under-

lying distributions.

There are three major explicitly distance-based

methods (Table 1). The simple Mantel test tests the

association between two simple or compound dis-

tance matrices, while the partial Mantel test controls

for one or more additional dissimilarities, analogous

to a partial correlation. Multiple regression on

distance matrices (MRM) incorporates each individ-

ual data vector as a separate individual distance

matrix. Although MRM is sometimes described as

being comparable to partial Mantel tests, the simi-

larity is only superficial, due to the inclusion of more

than two distance matrices, and the hypotheses tested

are quite different. Instead, simple Mantel tests and

MRM are analogous. For the former, all the depen-

dent variables are included in one compound distance

matrix, while in the latter, each is converted to a

distance matrix separately. In all the three cases, the

user must be careful to state hypotheses and conclu-

sions in terms of distances rather than raw data.

Two major questions have been raised about the

explicitly distance-based approach. The first question

concerns the relationship between correlations (or

other analyses) on raw data and those on dissimilar-

ities. The Mantel rM statistic, a correlation on

dissimilarity matrices, is frequently much lower than

a correlation coefficient on raw data, and is often

significant even at values \0.10 (Dutilleul et al.

2000; Legendre 2000). This poses problems of

interpretation, since ecologists naturally assume that

rM scales from 0 to 1 identically to a correlation

coefficient calculated from raw data. The second

question concerns the difference between including

all the related variables in one dissimilarity matrix, as

is done in ordination, clustering, and some Mantel

testing, or using each variable to construct a separate

dissimilarity matrix, as is done in MRM and some

Mantel testing (Legendre et al. 1994; Urban et al.

2002; Goslee and Urban 2007; Lichstein 2007).

There is very little guidance available on when to

combine several explanatory variables into a com-

pound distance matrix or when to leave them as

separate variables.

The frequent and successful use of ordination

methods and cluster analysis demonstrates that dis-

tance matrices do retain considerable information

about their component variables. Here, the simulated

data are used to explore the relationship between

correlation on dissimilarity matrices and correlation

on raw data, and to examine the effects of combining

variables into a compound dissimilarity matrix (simple

Mantel test) or using them separately (MRM).

Methods

Although a large number of dissimilarity metrics

have been described (reviewed in Legendre and

Legendre (1998) and elsewhere), analyses here will

focus on the commonly used Euclidean distance.

Euclidean distance is the most conceptually and

computationally straightforward, since it is analogous

to simple geographic distance between two points on

a map (Eq. 1).

EDpq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

i¼1

ðpi � qiÞ2
s

ð1Þ

where pi and qi are the ith elements of the data

vectors p and q. The Euclidean distance is metric,

Table 1 Hypotheses of three common statistical tests on distance matrices

Test Formula Hypothesis Components

Simple Mantel test y * x Elements of x that are farther apart

are also farther apart in y
x, y are individual or compound

distance matrices

Partial Mantel test y * x | Z Relationship among distances on y
and x once Z is taken into

account

x, y as above; Z is one or more

individual or compound distance

matrices

Multiple regression on distance matrices y * X Explanatory power of each

member of X on y
y is an individual distance matrix;

X represents one or more

individual distance matrices
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part of a subset of the group of dissimilarity

coefficients that satisfy the triangle inequality and

thus can be represented exactly in n-dimensional

space (Legendre and Legendre 1998). The Bray–

Curtis dissimilarity coefficient is commonly used by

ecologists, but is non-metric (and thus a dissimilarity

rather than a distance; Eq. 2).

BCpq ¼
Pn

i¼1 jpi � qij
Pn

i¼1ðpi þ qiÞ
ð2Þ

The analyses here are primarily concerned with

correlations between raw data vectors (rraw) and

between dissimilarity matrices (Mantel statistic rM),

calculated using the Pearson correlation coefficient r

(Eq. 3).

rpq ¼
Pn

i¼1ðpi � �pÞðqi � �qÞ
ðn� 1Þspsq

ð3Þ

where pi and qi are the ith elements of the data vector

p with mean �p and standard deviation sp and the data

vector q with mean �q and standard deviation sq. For

clarity, the correlation coefficient calculated on raw

data will be denoted rraw, and on dissimilarities rdist

(= Mantel statistic rM).

When two or more variables are combined into a

compound dissimilarity matrix, the relative magni-

tudes of the individual variables can have a large

effect on the values of the dissimilarities (Legendre

and Legendre 1998). Prior to calculating Euclidean

distances, standardization to z-scores with mean = 0

and standard deviation = 1 is recommended. The

correlation of compound dissimilarities is affected by

choice of scaling, but the correlation of the raw data

is not. Bray–Curtis dissimilarity cannot be calculated

for z-scores because it assumes that all data values are

non-negative. If used with negative data, the Bray–

Curtis dissimilarity calculation can give negative

values, and negative distances are not readily inter-

pretable. Instead, data should be relativized to have a

constant maximum, either using the maximum

observed value or the maximum theoretical value

(e.g., percentages).

The simplest case for distance-based analysis, both

conceptually and mathematically, involves two sets

of data, the dependent variables y, and the indepen-

dent (explanatory) variables x. If the x variables are

orthogonal, as for example geographic coordinates,

then the system has a geometric analog with the x

variables forming the coordinate system (Fig. 1). The

length of the yj vector represents its total correlation

with x, and the correlation of each y variable with

each x variable is the projection of yj on xi. Each yj

vector must fall on the unit circle, or within it if

rxy \ 1.

Simulation methods

All the analyses were done using the statistical

software R (version 2.7.1, R Development Core

Team (2008)). Source code and functions are avail-

able from the author.

For comparing correlations for raw data and

distances,corgen() from the ecodist package (Goslee

and Urban 2007) was used to simulate two vectors of

length 1,000 with a random correlation between -1

and 1. Each vector was converted to Euclidean

distances, and the correlation calculated. The simu-

lation was repeated with artificial data drawn from

normal, uniform, Poisson, and gamma distributions.

A similar procedure was used to generate multi-

variate normal data for use in comparing compound

and individual distances. For non-orthogonal sets of

variables x or y,rcorrmatrix() from the clusterGen-

eration package (Qiu and Joe 2007) was used to

generate a positive definite correlation matrix, and

Fig. 1 Two dependent y variables plotted against two

orthogonal x variables, providing a geometric analog of

correlation analysis on the raw data. The vector y1 represents

the magnitude and direction of the correlation of y1 with all x
variables. The projection of y1 on the x1 axis represents the

correlation rx_1y1 between x1 and y1
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themvrnrom() function from the MASS package

(Venables and Ripley 2002) was used to simulate

multivariate normal random data with that correlation

structure. Simulations were conducted for all the

combinations of 1–5 for the number of x and y

variables, and for both orthogonal and correlated x

variables. Correlation structure within the y variables

and between x and y variables was always random.

Variable length was 1,000, and 500 repetitions of

each simulation were used unless otherwise specified.

Results

Correlations on raw data and distances

For pairs of individual normal variables, the corre-

lation between Euclidean distances on scaled data is

linearly related to the squared correlation on raw data

(rraw
2 = rdist, Fig. 2). Dutilleul et al. (2000) discuss

this relationship for data drawn from a normal

distribution. The relationship is approximately true

for other distributions (r = 0.999 for normal; r

= 0.997 for uniform; r = 0.999 for Poisson; r

= 0.997 for gamma; 1,000 simulations for each).

Although only applicable to distance vectors calcu-

lated from a single variable, this relationship provides

a way to consider correlations between multivariate

dissimilarities as well.

Orthogonal axes

The particular case where one of the raw data

matrices consists of m orthogonal variables (the x

variables, for example, geographic coordinates) is

geometrically interesting, as described above, and

shows some intriguing statistical properties. The

second data matrix contains n variables of interest

(y variables, such as species abundances) that may or

may not be correlated. Given the m by n matrix of all

the individual pairwise distances (equivalent to

squared correlations on the raw data), the total

rraw
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Fig. 2 Correlation

coefficients on raw data

(rraw and rraw
2 ) and on scaled

Euclidean distances (rdist)

for 1,000 pairs of randomly

generated vectors of length

1,000 with correlation

coefficients from -1 to 1
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relationship of each individual yj variables together

with all the geographic variables x can be calculated

as

Yj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

m

i¼1

ðrxiyj
Þ2

s

ð4Þ

The predicted correlation between distance matrices

is then

rdistpred ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð
Pn

j¼1 YjÞ2

mn

s

ð5Þ

In other words, the correlation between two com-

pound distance matrices can be calculated from the

correlations among the two sets of individual single-

variable distance matrices. The Mantel rM statistic

relating a compound Euclidean distance matrix

calculated from a set of scaled orthogonal x variables

and the compound distance matrix calculated from a

set of scaled y variables is a function of the individual

correlations of the separate Euclidean distance matri-

ces calculated for each xi and yj. Each individual

variable makes a predictable contribution to the

overall distance matrix.

Even if each of the y variables has a correlation of

1 with the x variables, the maximum rM may be less

than 1. The total possible sum of Yj = the minimum of

m and n (when each y variable is perfectly correlated

with one of the x variables), and the maximum

correlation of distances is

rdistmax ¼
ffiffiffiffi

n

m

r

ð6Þ

if n\ m. If n [ m, then the model is overdetermined

and the maximum rM = 1. This upper bound compli-

cates the interpretation of the Mantel rM statistic, and

contributes to the generally low values of rM noted

earlier. Referring to Fig. 1 helps to clarify the

importance of the orthogonal and non-orthogonal

systems. The length of each Yj vector in m-space (the

correlation of yj with all X) is determined by the

correlation of yj with all the individual xi variables

because the x variables describe the axes of a

Euclidean space. The total compound correlation is

a function of all the individual correlations. Moving

from raw data to distances, the maximum correlation

is no longer 1, but a function of the number of x and y

variables involved, and n and m additionally require a

square-root transformation.

Three simple examples will demonstrate the

concepts and calculations involved. Both examples

use m = 2 and n = 3, that is, two orthogonal x

variables and three possibly correlated y variables. In

the first example, the y variables are each perfectly

correlated with one of the x variables (2). The total

relationship of each Yj variable with all x is the square

root of the sum of squares of the values in that

column of the table, and the predicted Mantel rM is

calculated as in Eq. 5, from the sum of the Yj

variables squared. The maximum Mantel rM is
ffiffiffiffiffiffiffiffi

2=3
p

for 2a. Note that even with a ‘‘perfect’’ correlation

among the x and y variables, the maximum Mantel rM

is less than 1. The second example (Table 2) is

worked similarly. This example has a more complex

correlation structure, and a lower total Mantel rM,

although the predicted Mantel rM is the same because

n and m have not changed.

Simulated data with n and m both varying from 1

to 5 were used to empirically assess the relationship

between the actual and predicted rdist values. Each of

the x and y data vectors were of length 1,000 and had

a randomly generated joint correlation structure. The

simulation was repeated 500 times for each combi-

nation of m and n. The overall relationship between

actual and predicted for all sets of m, n is shown in

Table 2 Worked examples

with m = 2 (orthogonal x
variable) and n = 3

(dependent y variables).

Actual Mantel rM is from

simulated data of length

1,000 with the given

correlation structure

Example a Example b

y1 y2 y3 y1 y2 y3

x1 1 0 0 x1 0.04 0.13 0.08

x2 0 1 0 x2 0.01 0.01 0.03

Yj (Eq. 4) 1 1 0 Yj 0.04 0.13 0.24

Predicted Mantel rM (Eq. 5) 0.82 Predicted Mantel rM 0.10

Actual Mantel rM 0.82 Actual Mantel rM 0.10

Maximum Mantel rMð
ffiffi

2
3

q

Þ 0.82 Maximum Mantel rM 0.82
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Table 3. The actual Mantel rM may be somewhat

different from the calculated rM due to the numerical

properties of themvrnorm() algorithm and the impre-

cision and rounding error inherent in computer

simulations.

Multiple regression methods on dissimilarity

matrices have been suggested as alternatives to the

Mantel test approach, with the advantage that they do

not require groups of variables to be combined into a

compound dissimilarity matrix (Legendre et al. 1994;

Lichstein 2007). MRM can provide any of the

multiple regression coefficients, but only one, the

coefficient of multiple correlation R, is examined

here. For the particular class of data analyzed here,

rdist
2 (squared simple Mantel coefficient) and R from

MRM are closely related (Table 4; linear regression

for all simulations: adjusted r2 = 0.759, P \ 0.001).

Ecologists frequently use dissimilarities other than

Euclidean distance. For the simulated data used here,

Bray–Curtis dissimilarity on relativized data gives

very similar results to Euclidean distance for simple

Mantel tests (linear regression with intercept = 0 for

all simulations: adjusted r2 = 0.996, P \ 0.001), and

for MRM (linear regression with intercept = 0 for all

simulations: adjusted r2 = 0.994, P \ 0.001). Using

individual component dissimilarities to predict cor-

relations with a compound dissimilarity was also

moderately successful (linear regression for all the

simulations: adjusted r2 = 0.751, P \ 0.001).

Correlated axes

The relationships derived above are only mathemat-

ically correct for orthogonal x variables, but are

approximately correct for moderate degrees of col-

linearity among x. Ecologists rarely deal with

orthogonal variables. The more highly correlated

the x variables, the greater the maximum value of rdist

(Fig. 3). When the independent x variables are

correlated, the calculation of maximum rdist becomes

progressively less accurate, as does the relationship

between a compound distance matrix and its compo-

nent individual distance matrices. Referring back to

Fig. 1, if x1 and x2 are not orthogonal, y1 is no longer

constrained to fall within the unit circle, and so the

actual correlation can exceed the predicted correla-

tion. While geographic coordinates are by definition

uncorrelated, ecologists often wish to compare two

sets of variables in which the members are collinear to

some extent, such as soil data and plant species com-

position. In these cases, the greatest interpretability is

Table 3 Correlations between actual and predicted values of

rdist for varying levels of m (number of orthogonal x variables)

and n (number of dependent y variables) on 500 simulated data

vectors of length 1,000 and random correlation structure for y

n = 1 n = 2 n = 3 n = 4 n = 5

m = 1 1.000 0.984 0.984 0.983 0.988

m = 2 0.967 0.960 0.951 0.963 0.962

m = 3 0.946 0.944 0.936 0.934 0.942

m = 4 0.934 0.923 0.915 0.922 0.929

m = 5 0.921 0.909 0.906 0.916 0.904

Table 4 Correlation between R2 from multiple regression on

distance matrices and the Mantel rdist
2 for varying levels of m

(number of orthogonal x variables) and n (number of dependent

y variables) on 500 simulated data vectors of length 1,000 and

random correlation structure for y

n = 1 n = 2 n = 3 n = 4 n = 5

m = 1 1.000 0.962 0.961 0.959 0.962

m = 2 1.000 0.931 0.920 0.939 0.946

m = 3 1.000 0.923 0.920 0.917 0.929

m = 4 1.000 0.900 0.895 0.906 0.917

m = 5 1.000 0.884 0.891 0.901 0.892
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Fig. 3 Response of rdist between y and x12 to varying degrees
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obtained by dropping one member of each highly

correlated pair (rraw [ 0.70) as appropriate. If it is

important to understand the contribution of each x

variable, ordination methods could be used to create a

system of orthogonal �x variables from the original set.

In practice, when correlations among the x vari-

ables are allowed to vary randomly, the accuracy of

prediction of compound rdist from its component

distances is still very high (r = 0.923 for m and n

from 1 to 5), and the relationship between Mantel and

MRM results is correspondingly good (r = 0.913 for

m and n from 1 to 5). These mathematical relation-

ships are inaccurate when strong correlations exist

among the x variables (Fig. 3), making it impossible

to predict maximum rdist or relate individual and

compound distance matrices, so removing highly

correlated variables is recommended.

As for the uncorrelated data, when using x data with

random correlation structure, the Bray–Curtis dissim-

ilarity on relativized data gives very similar results to

Euclidean distance for simple Mantel tests (linear

regression with intercept = 0 for all simulations:

adjusted r2 = 0.977, P\ 0.001), and for MRM (linear

regression with intercept = 0 for all simulations:

adjusted r2 = 0.919, P \ 0.001). Using individual

component dissimilarities to predict correlations with

a compound dissimilarity was also successful (linear

regression for all simulations: adjusted r2 = 0.882,

P\ 0.001).

Discussion

For Mantel tests, when one set of variables is

orthogonal (or only weakly correlated), the correla-

tion with a second set of variables follows a

mathematically predictable relationship that can be

derived from the correlations of the individual

distance matrices between the two sets. Moreover,

for scaled data, there is a direct relationship between

the correlation of raw data vectors and the correlation

of distance matrices. These relationships demonstrate

that the Mantel test approach can provide interpret-

able results when used with multivariate distance

matrices, and that the low values often seen in Mantel

testing is in fact due to the statistical method itself.

These results demonstrate that multiple regression

on individual distance matrices is mathematically

similar to Mantel testing with compound distance

matrices, at least for a particular combination of

particular distance and data scaling. The choice of

Mantel or MRM testing should thus be driven by

ecological hypotheses rather than by concerns about

the mathematical suitability of a particular test. If the

overall relationship of dissimilarities is of interest,

then Mantel testing is appropriate, while if the

contributions of distances within individual variables

are of interest, then MRM should be used. In either

case, the hypotheses must be framed in terms of

distances rather than raw data.

The relationships described here are strictly true

only for a very limited category of data. Orthogonal-

ity is perhaps the strictest limit, but variable selection

or ordination procedures provide a way to reduce or

eliminate collinearity in one set of variables. Euclid-

ean distance is the most mathematically tractable

because of its metric nature and close relationship to

the correlation coefficient. Preliminary results sug-

gest that the Bray–Curtis dissimilarity coefficient

often used in vegetation studies follows the same

relationship between univariate and multivariate

dissimilarities. The simulated data used in this study

do not contain frequent zero values, and thus do not

necessarily resemble the kinds of data for which

ecologists use Bray–Curtis dissimilarities.

Scaling the data is very important for all the

dissimilarity-based methods because it provides a

consistent frame of reference for the coefficients.

While correlation on raw data is unchanged by any

linear scaling method, if the variables that make up a

multivariate dissimilarity coefficient are on different

scales, then the resulting multivariate coefficient can

vary widely. Scaling or other standardization should

be employed for all the analyses unless an a priori

justification exists for using the raw data.

For certain cases (Euclidean distances on scaled

data), the many-to-one relationship from a set of

variables to a compound dissimilarity matrix is both

straightforward and mathematically tractable. Infor-

mation obtained from this special case can provide

insight into other types of dissimilarity-based analyses

as well. An understanding of the relationship between

correlations on raw data and correlations on dissimi-

larity matrices also explains the distribution of the

Mantel rM values and how to determine the maximum

obtainable rM for a particular set of data. This

maximum value aids in interpretation of the low but

significant Mantel rM values often seen in the literature.
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