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Abstract
Service robots with social interactive features are developed to cater to the demand
in various application domains. These robots often need to approach toward users
to accomplish typical day-to-day services. Thereby, the approaching behavior of a
service robot is a crucial factor in developing social interactivity between users and
the robot. In this regard, a robot should be capable of maintaining proper proxemics at
the termination position of an approach that improves the comfort of users. Proxemics
preferences of humans depend on physical user behavior as well as personal factors.
Therefore, this paper proposes a novel method to adapt the termination position of an
approach based on physical user behavior and user feedback. Physical behavior of a
user is perceived by the robot through analyzing skeletal joint movements of the user.
These parameters are taken as inputs for a fuzzy neural network that determines the
appropriate interpersonal distance. The preference of a user is learnt by modifying the
internal parameters of the fuzzy neural network based on user feedback. A user study
has been conducted to compare and contrast behavior of the proposed system over the
existing approaches. The outcomes of the user study confirma significant improvement
in user satisfaction due to the adaptation toward users based on feedback.

Keywords Proxemics · Robot learning · Human–robot interaction · Human-friendly
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1 Introduction

A service robot with social interactive features is an autonomous robot that interacts
and communicates with humans by following social behaviors and norms expected
by their users (Bartneck and Forlizzi 2004). This kind of robots are developed for
application domains such as health care (Edwards et al. 2018), education (Belpaeme
et al. 2018), entertainment (Pérula-Martínez et al. 2017), and caretaking (Moyle et al.
2018). Most users in these application domains prefer human-like interaction abilities
in human–robot interaction since it provides a seamless bond between robots and them
(Tapus et al. 2007; Yuan and Li 2017).

Service robots used in domestic applications often need to navigate toward users
when executing services requested by the users. Thereby, approaching behavior of a
social robot toward users is a crucial factor that determines the quality of interactions
between the robot and its users (Gómez et al. 2013; De Graaf and Allouch 2013). To
have a friendly interaction with users during an approach, a robot should be capable
of upholding proper proxemics at the termination position of an approach since the
comfort of users depends on the proper use of space during interactions (Rossi et al.
2017; Ruijten and Cuijpers 2017).

1.1 Factors influencing human–robot proxemics

Psychologists, sociologists, and anthropologists have studied about proxemics behav-
ior of humans and animals since early nineteen hundred (Bocardus 1925; Firestone
1977; Kaplan et al. 1983; Hall 1966). According to these studies, proxemics during
an interaction with peers depend on their current behavior and the context of the inter-
action. However, the outcomes of these studies are limited to conceptual modeling of
proxemics, and the results of these studies have solely been applied in psychological
and sociological domains. On the other hand, many user studies have been conducted
to identify proxemics preferences of humans during a robot’s approach toward users
(Ruijten and Cuijpers 2017; Rossi et al. 2017; Karreman et al. 2014; Ball et al. 2014).
These studies reveal preferences of human–robot approaching proxemics based on a
variety of factors such as robot’s behavior, user personality, and context. However,
the robots used in the above-cited human–robot interaction studies were not capable
of autonomously determining the appropriate proxemics. Moreover, the robots were
manually operated to collect data for the analysis.

1.2 Human–robot approaching proxemics models non-adaptable to user activity
or behavior

A human-friendly approaching mechanism that is capable of navigating toward a
couple of users during an ongoing conversation has been proposed in Samarakoon
et al. (2018a). However, the termination distance between the robot and a user is
fixed. The papers Satake et al. (2009) and Kanda et al. (2009) attempted to improve
human–robot interaction by deploying approaching mechanisms that are capable of
predicting the walking behavior of customers in shopping malls. However, the work
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attempted to improve human–robot interaction by an effective attraction of attention
of the people, and less focus is paid on adapting approaching proxemics. Usage of
this sort of non-adaptive termination distances for approaches is not effective for a
domestic service robot which interacts with users in different contexts.

In Mead and Matarić (2016), authors have developed a proxemics behavior model
for a robot that could improve the sensory experience of users. The method mainly
focuses on enhancing the human–robot interaction by perceiving user instructions such
as gestures and voice more accurately. The same authors extended this model to adapt
approaching proxemics of a service robot to improve the communication of social
signals such as gesture and speech in the work (Mead and Matarić 2017). However,
the proxemics solely depends on the characteristic of communicationmodules, such as
microphones, vision sensors, and speakers, and cannot be adapted based on physical
user behavior or feedback. The work proposed in Henkel et al. (2014) introduced a
proxemics scaling function for robots. Gao et al. (2018) compared the performance of
different deep learning models in predicting the comfortable human–robot proxemics.
Authors showed that the long short-term memory-based model can predict better
comfortable human–robot proxemics. The examined models are capable of adapting
the proxemics per the personal factors such as gender, age, and pet ownership of users.
However, themethodsHenkel et al. (2014) andGao et al. (2018) do not consider human
physical behavior to adapt proxemics. When users are engaged in different domestic
activities such as reading and dancing their postural arrangements are continuously
varying with time. Therefore, the use of such proxemics models that do not consider
user behavior is controversial for determining appropriate proxemics with a user who
would probably engage in diverse domestic activities from time to time.

1.3 Adapting human–robot approaching proxemics based on user activity or
behavior

Much work has been conducted in the area of human activity and behavior recognition
(Gaglio et al. 2015; Jalal et al. 2015; Wu et al. 2014; Attal et al. 2015). However, the
scope of the cited studies is limited to activity and behavior recognition, and human–
robot proxemics are out of the scope. In this regard, a method has been introduced for
approaching robots toward a person considering the current activity of a user(Vitiello
et al. 2017). The proposed method is capable of adapting the termination distance
with a person of interest and the robot based on the current activity of the person. A
wearable device is used to classify user activities. In here, a set of predefined posture
categories (i.e., sitting, laying, walking, and standing) are considered as user activities.
Moreover, the system is capable of determining a specific distancing for each of the
defined posture categories. Nevertheless, assigning a fixed termination distance for a
posture category is not effective since there can be diverse variations within the same
posture. For example, two different scenarios of a standing person can be considered.
In the first scenario, the person is in a standing posturewhile fully swing his/her arms in
a fast manner. In the second scenario, the person is standing in the same posture while
the arm extension is little and does not swing. The system proposed in Vitiello et al.
(2017) would determine the same termination proxemics in the two occasions since
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the posture category is the same. In contrast, the proxemics in these two occasions
must be different. Furthermore, assigning termination distances for a large number of
posture categories to cover all of the domestic activities is a very challenging task.
Therefore, a robot should be capable of determining the termination distance based
on the physical parameters of a user instead of the posture category. In addition to
that, the usage of wearable devices might not be convenient for users and retracts form
typical day-to-day situations.

An approaching mechanism that can overcome the above-mentioned concerns has
been proposed in Samarakoon et al. (2018b). The proposed approaching method is
capable of determining the termination distance of a robot based on physical behavior
of a user. The robot perceives skeletal parameters of a user retrieved from the RGB-D
sensor attached to it for analyzing user behavior. Notably, the human–robot proxemics
preferences vary from person to person depending on personal factors such as person-
ality (Rossi et al. 2017) and cultural backgrounds (Khaliq et al. 2018; Shen et al. 2018).
This sort of proxemics variation could be realized if the system was also capable of
adapting for each user. However, the method proposed in Samarakoon et al. (2018b)
lacks a way of adapting proxemics toward a user.

1.4 Adapting human–robot approaching proxemics based on feedback

On the other hand, the work Patompak et al. (2020) proposed a reinforcement learning
approach that can adapt the boundary of the privacy area of a human where the robot
should not interfere with this area during the navigation. This privacy space is adapted
based on the feedback received while the robot navigating in an environment. How-
ever, the learnt privacy area for a human is fixed and the proxemics is not adapted per
the physical user behavior such as the activity. Furthermore, the context of proxemic
determination is not for approaching proxemics and the work mainly considers nav-
igating a robot in human-populated environments while minimizing the discomfort
due to interferences. Mitsunaga et al. (2008) proposed a method to learn proxemics
based on subconscious body signals. The comfortable distances for Hall’s Hall (1966)
proxemics zones (i.e., intimate, personal, and social zones) are learned by the system.
The users were asked to move toward the robot for different interaction zones and
those were utilized for learning. However, the proxemics distances for an interaction
category (i.e., intimate, personal, and social) are fixed after the learning. Furthermore,
the system is not developed to perceive user behavior through sensors and to use the
sensory information in the proxemics model. In contrast, our work proposes a method
to adapt proxemics based on physical user behavior perceived through skeletal infor-
mation while learning the user preference to further adapt the proxemics. Similarly,
the model proposed in Bhavnani and Rolf (2020) for a robot on a tabletop can learn
the comfortable proxemics based on explicit vocal feedback. This model is also not
capable of adapting the proxemics based on any other factor after the end of learning.
Moreover, the proxemics distance for an individual user is fixed during the opera-
tion. According to the work Vitiello et al. (2017); Rossi et al. (2017), the proxemics
should be adapted with different contexts such as interaction type, posture category,
and activity for user comfort. Therefore, the models cited above (which can solely
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adapt proxemics based on feedback) are not convenient for a service robot that would
like to interact with users in different contexts.

1.5 Limitations of the state of the art and the contributions

The state-of-the-art proxemics evaluation models are not capable of adapting prox-
emics based on both physical user behavior while learning the user preference through
feedback. The existing methods that can adapt proxemics solely based on user behav-
ior lack the ability to adapt the perception toward users (see Sect. 1.3). Adapting the
proxemics toward a user is essential for improving satisfaction since human prox-
emics preferences depend on personal factors (Rossi et al. 2017; Khaliq et al. 2018;
Shen et al. 2018). On the other hand, the methods that can solely adapt proxemics
based on feedback are only capable of adapting toward user preference and lack the
ability to adapt the proxemics based on physical user behavior (see Sect. 1.4). The
ability to adapt the proxemics based on user behavior is crucial for improving user
comfort (Vitiello et al. 2017; Rossi et al. 2017). Moreover, adapting proxemics based
on user behavior and feedback is equally essential for a service robot to improve user
satisfaction. Therefore, a method that can adapt proxemics based on physical user
behavior while learning user expectations would be a perfect solution for improving
user satisfaction of human–robot proxemics.

This paper proposes a novel method that is capable of adapting the approaching
proxemics based on current physical user behavior and the user preference expressed
through feedback. The major improvement of the proposed method over the existing
systems is that the proposed system is capable of determining approaching proxemics
in accordance with current dynamic physical user behavior while learning the prefer-
ence of a user through feedback. An outline of the proposed mechanism is given in
Sect. 2. Section 3 explains the proposed approaching mechanism. Particulars on the
experimental validation are given in Sect. 4. Section 5 provides concluding remarks.

2 Functional overview

An outline of the proposedmechanism is depicted in Fig. 1. The system considers both
physical user behavior and previous experience of interactions with a user to determine
most appropriate termination position, PT.Moreover, the robotic system can decide dT
(i.e., interpersonal distance at PT) and φ (i.e., direction of PT with respect to the user)
basedon jointmovements of the user and experience acquired fromuser feedbackgiven
through vocal cues. A user is perceived by the robot as skeletal information retrieved
from Kinect sensor. The Skeletal Information Extraction Unit (SIEU) evaluates 3D
coordinates of the skeletal joints of the user as feature points (With the support of
Kinect SDK) based on knowledge of the Skeletal Information database. The SIEU
observes a user for a Tob time period. Tob was experimentally set to 10 s by observing
the behavior of SIEU. After the completion of the analysis, key information is fed into
the Fuzzy Proxemic Evaluation Model (FPEM). The FPEM is implemented with a
fuzzy neural network. It considers parameters related to movements and positioning
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Fig. 1 System overview

of body joints of a user as inputs to determine the output. The output of this module
is the interpersonal distance at the termination position (i.e., dT) and the direction of
termination position with respect to the user (i.e., φ). After determining dT and φ, the
Action Manager (AM) coordinates with the Navigation Controller (NC) to move the
robot toward a required termination position (i.e., PT).

The NC oversees the primitive navigation functionalities of the robot such as local-
ization and collision free path planning within a navigation map stored in the robot’s
memory. After completion of an approach toward a user, the user may give voice feed-
back about the interpersonal distance at the termination position (i.e, dT) determined
by the robot. The feedback given as a vocal cue is parsed by the Voice Recognition
and Understanding module with the aid of the Language Memory. If valid feedback
is given, then AM redirects it to the Proxemic Modifier (PM). The PM modifies the
parameters of the FPEM accordingly. This facilitates the learning of the fuzzy neural
network of the FPEM based on user feedback.

3 Approachingmechanism

3.1 Evaluation of physical user behavior

Physical user behavior is perceived by the robot similar to the approach used in Sama-
rakoon et al. (2018b). The physical user behavior is perceived by considering the
maximum displacement of the body joints from the center of a user and the maximum
speed of the body joints can be considered the representative parameters The motiva-
tion behind using maximum deflection of body joints from the central plane and the
maximum joint velocity as representative parameters of physical user behavior can
be explained with the aid of example scenarios depicted in Fig. 2. In the case of the
user extending his/her body joints in a wider manner (as in Fig. 2a), the robot should
maintain a higher termination distance with the user to avoid the invasion of space
compared to a situation where the extension of the body joints is lesser (as in Fig. 2b).

123



Adapting approaching proxemics of a service robot based on… 201

(a) (b)

Fig. 2 The motivation behind the selection of representative parameters to adapt the termination distance
according to physical user behavior. a Large termination distance is required to avoid the invasion of the
space, b small termination distance is sufficient to avoid the invasion of the space

Furthermore, when the joints are moving fast, humans feel more comfortable when
the surrounding is free. In other words, the termination proxemics should depend on
the moving speed of the body joints.

The coordinates of the body joints perceived from the skeletal information retrieved
through Kinect sensor are used to perceive physical behavior of a user. The SIEU
analyzes trajectories of the set of skeletal joints annotated in Fig. 3. The distance to j th
joint at time t from the vertical plane that passes through the spine base joint is defined
as Dj (t) where j ∈{head, spine_base, shoulder_right, shoulder_left, elbow_right,
elbow_left, wrist_right, wrist_left, knee_right, knee_left, foot_right, foot_left}.

Themovement speed of j th joint at time t , θ̇ j (t) is obtained as in (1) where�t is the
time step of the SIEU. Themaximum joint speed θ̇ is obtained from (2). Sufficient time
duration for reliable and stable perceiving of physical user behavior was considered
as the criterion for experimentally configuring duration Tob. The time step, �T was
determined experimentally, considering a sufficient time step for observing the velocity
of body joints in typical activities.

θ̇ j (t) = Dj (t) − Dj (t − �t)

�t
(1)

θ̇ = max{θ̇ j (t) | ∀ j; ∀ t = 0 : �t : Tob} (2)

The distance to the farthest joint from this vertical plane that passes through the
spine_base joint is obtained by (3).

D = max{Dj (t) | ∀ j; ∀ t = 0 : �t : Tob} (3)

The parameters D and θ̇ are fed to the FPEM as inputs that adapt the interpersonal
distance at the termination position of an approach toward a user.
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Fig. 3 The joints used to
perceive user behavior by the
robot are annotated here with red
dots. Dj is explained with the
aid of elbow joint. Delbow is the
distance between elbow joint
and the vertical plane. It should
be noted that both left and right
joints are considered by the
system

3.2 Determination of termination position

The process of determining the proxemics based on physical user behavior and user
feedback cannot be mathematically modeled. On the other hand, fuzzy logic has the
ability to model a process without the knowledge of exact underlying dynamics (Ma
et al. 2020; Samarakoon et al. 2021; Ibarra and Webb 2016). The required behavior of
the proxemics evaluation criteria could be expressed through linguistic rules based on
expert knowledge. Fuzzy logic allows the modeling of any complex process through
the use of linguistic rules (Nguyen et al. 2018; Zadeh 2008). Furthermore, the sensor
information perceived for evaluating physical user behavior is imprecise and fuzzy
logic has the ability to cope with imprecise sensory information during decision mak-
ing (Phan et al. 2020; Ibarra and Webb 2016). In addition, fuzzy logic is often used in
human-centric fields due to its high power of cointensive precisiation (Zadeh 2008).
Thus, exploitation of these abilities of fuzzy logic could often be seen in the literature
on the development of proxemics models (Vitiello et al. 2017; Kosiński et al. 2016).
Nevertheless, fuzzy logic does not possess the learning ability. A fuzzy neural network
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is a hybrid technique with the features of fuzzy logic discussed earlier and the learning
ability. This learning ability could facilitate the online learning of the robot through
user feedback without requiring an explicit data set. This sort of online learning abil-
ity is crucial for a robot that learns while performing the services. A fuzzy neural
network creates an explainable model, and the parameters could easily be pruned to
ensure essential requirements such as safety. For example, the universe of discourse
of the inputs and outputs could be manually configured to avoid safety concerns such
as dangers closing the robot to users since the robot is operated in human-populated
environments. Therefore, a fuzzy neural network has been proposed to evaluate the
proxemics based on physical user behavior while learning the user preference through
feedback.

The Fuzzy Proxemic Evaluation Model (FPEM) is used to determine the inter-
personal distance (i.e, dT) and direction (i.e., φ) at the termination position of an
approach toward a user. The direction of an approach is determined as similar to that
of the method proposed in Samarakoon et al. (2018b). The fuzzy neural network eval-
uates user behavior through joint displacements and movement speeds to determine a
comfortable termination distance. At the same time, it can learn the preference of users
by means of user feedback. The architecture of the proposed fuzzy neural network is
depicted in Fig. 4.

The input layer is labeled as layer I. The inputs, the distance to the farthest joint (i.e.,
D) and the maximum joint speed (i.e., θ̇ ) are acquired by the two nodes in this layer.
These inputs are used to perceive physical behavior of a user who is supposed to be
approached by the robot as similar to the proxemics determination method proposed
in Samarakoon et al. (2018b). The acquired inputs are transferred to the fuzzification
layer labeled as layer II. Fuzzy sets used to fuzzify the inputs are represented by the
nodes in here. Moreover, these nodes denote the antecedents of the fuzzy rules repre-
sented in the fuzzy rule layer (labeled as layer III). Each fuzzy rule of the inferencing
system is represented by a single neuron. The algebraic product T-norm fuzzy oper-
ator is used to evaluate the output based on the incoming signals from antecedents
of the corresponding fuzzy rule. Layer IV represents the output fuzzy sets used in
consequents of the fuzzy rules. A neuron in this layer combines its inputs considering
the fuzzy union operator as T-conorm. Triangular membership functions with center
aiε[(ai )L , (ai )U ] and width biε[(bi )L , (bi )U ] are represented by any node Cd

i in this
layer.

Layer V is the defuzzification layer. The sum-product composition method (Jang
et al. 1997) is used to obtain the defuzzified output. Therefore, the output, dT (i.e., the
interpersonal distance at the termination position) can be obtained from (4), where μi

is the firing strength of the i th output fuzzy set.

dT =
∑5

i=1 aibiμi
∑5

i=1 biμi
(4)

Initial membership functions of the fuzzy neural network have been defined
similarly to the membership functions of the fuzzy inference system proposed in
Samarakoon et al. (2018b) for determining the interpersonal distance at the termina-
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Fig. 4 Architecture of the fuzzy neural network used in the FPEM. It has five layers. The distance to the
farthest joint from the vertical plane that passes through the spine base (i.e., D) and maximum joint speed
(i.e., θ̇) are the inputs of the network. The output is the interpersonal distance at the termination position of
an approach, dT

tion position based on physical user behavior. The initial membership functions of the
inputs and the output are shown in Fig. 5.

Initial connection weights of layer V are decided by the corresponding initial fuzzy
sets of the output membership function. The connection weights are adapted to learn
user preferences in relation to interpersonal distances at the termination positions
of approaches. The backpropagation algorithm is used for adapting the connection
weights in this regard. The error between the interpersonal distance determined by
the robot and the preference of the user at a particulate instance (i.e., defined as e) is
identifer based onuser feedback,whichwill be given just after robot approaches toward
the user. A user can give the vocal feedback, “too close”, if the robot moved closer to
the user than his/her preference or “too far”, if the stopping distance is far away from
the preference to adapt the robot proxemics determination. Then, the modifications of
the parameters of the output fuzzy sets for a particular instance n are given by (5) and
(6), where n+1 is the next instance. Here η is the learning rate, and scalar constants δa
and δb are used to maintain the variations of the parameters within the desirable ranges
during the learning. A higher learning ratemakes the learningmodel unstable since the
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(a)

(b)

(c)

Fig. 5 a shows the input membership functions for the maximum joint displacement (i.e., D). It has three
fuzzy sets labeled as CD

1 , CD
2 and CD

3 . b shows the input membership functions for the maximum joint

speed (i.e., θ̇ ). It has three fuzzy sets labeled as C θ̇
1 , C

θ̇
2 and C θ̇

3 . c shows the initial membership functions
for the output, dT. The ranges of initial membership functions are defined similar to that of the system
proposed in Samarakoon et al. (2018b) based on heuristic knowledge

adaptation is too aggressive. If the learning rate was too small, the system would take
a long time for the adaptation (higher number of feedback). The learning rate (i.e., η)
was chosen trial and error by observing the variation of the learning parameters of the
fuzzy neural network (i.e., ai and bi ). For example, if the learning parameters of the
fuzzy neural network reach to its lower or upper bound merely from a few feedback,
the learning ratewas reduced. Reasonable values for δa and δb were determined similar
to the determination of η. Here, the center of a fuzzy set (i.e., ai ) can make a higher
impact in an adaptation step than that of the width of the corresponding fuzzy set (bi ).
Therefore, a slightly higher value is preferred for δa than δb. The selection of these
parameters was done before the experimental evaluation (during the development and
pre-testing).

ai (n + 1) =
{
ai (n) + ηδaeμi if ai (n + 1)ε[(ai )L , (ai )U ]
ai (n) otherwise

(5)

bi (n + 1) =
{
bi (n) + ηδbeμi if bi (n + 1)ε[(bi )L , (bi )U ]
bi (n) otherwise

(6)

The lower and upper bounds of the centers ((ai )L , (ai )U ) and widths ((bi )L , (bi )U )
of the output membership functions are defined as in (7), (8), (9) and (10) respectively
to preserve the meaning of the inference rules of the system proposed in Samarakoon
et al. (2018b).
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(ai )L =
{
0 if i = 1

ai−1(0) otherwise
(7)

(ai )U =
{
ai+1(0) if i = 1, 2, 3, 4

180 otherwise
(8)

(bi )L = bi (0)

2
(9)

(bi )U = 3bi (0)

2
(10)

The error between the interpersonal distance determined by the robot and preferred
by a user (i.e., e) is evaluated based on user feedback given just after robot approaches
toward the user. However, user feedback is given as a vocal cue. Moreover, the user
feedback is often given qualitatively and not in numerically. The error given as a
linguistic term is converted to a numerical value by the Proxemic Modifier (PM).
It is assumed that the numerical meaning of a feedback linguistic term depends on
the current observation of the user. Therefore, the interpersonal distance between the
robot and the user when feedback is given (i.e., dT(n)) is used to determine the error
indicated from user feedback. Two feedback vocal cues are considered for indicating
the intention of the user to correct the robot. “too close” is used to indicate a positive
error (user expect a larger interpersonal distance than this) and “too far” is used to
indicate a negative error (user expect a smaller interpersonal distance than this) for
dT(n) determined by the robot. The assumed distance errors for the valid user feedback
are given in (11), where δe is an experimentally decided scalar constant such that
δe ∈ [0, 1]. If no feedback is explicitly given it is considered as “ok”.

e =

⎧
⎪⎨

⎪⎩

+δedT (n) if user feedback = “too close”

−δedT (n) if user feedback = “too far”

0 otherwise

(11)

4 Experimental validation

4.1 Experiment design

Experiments have been conducted using MIRob (Muthugala and Jayasekara 2016)
by a way of a user study to evaluate the value addition of the adaptation of a robot’s
approaching proxemics toward users. Moreover, the conducted experiments compare
and contrast the performance of the learning mechanism over a similar system with no
learning ability [i.e., the system proposed in Samarakoon et al. (2018b)]. The param-
eters related to the perceiving of user behavior and learning have been heuristically
chosen as Tob = 10 s, �t = 1 s, δe = 0.33, η = 0.1, δa = 5, and δb = 3.

User satisfaction, a parameter that has been used in Muthugala and Jayasekara
(2017) to evaluate the performance of robots based on a series of user feedback for
the actions of the robot, is used to evaluate the performance of the proposed system.
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Fig. 6 MIRob during experiments is shown here

User satisfaction (USNS ) can be computed as in (12), where NOK is the number of
feedback received as “OK” within NS number of previous steps considered.

USNS = NOK

NS
(12)

MIRob during a few experimental scenarios is shown in Fig. 6. The suggestions
given in Bethel and Murphy (2010) for conducting user trials to assess human–robot
interaction have been followed to curtail the subjectivity of the outcomes. Specifically,
the following suggestions were considered; counterbalancing to avoid the ordering
effects, determination of a good sample size through power analysis, Selection of sub-
jects for the user study and way of reporting their details, and identification of required
statistical tests for generalization and avoiding the subjectivity of the outcomes. 18
subjects, whose ages were between 24 and 52 (M = 30.4, SD = 7.3), participated in
the experiment. The participants were either students or staff of the university. All the
participants were in healthy conditions and had South Asian cultural backgrounds.
Four frequently used domestic activity types were selected for the experiment and
the selected activity types were reading a book, making a phone call, exercising, and
working on a laptop. The selected four activities have heterogeneous characteristics
such as different postures and speeds, and the activities represent frequent contexts
where a service robot could often be utilized for service tasks such as delivering some-
thing. In addition to that, the selected activities can be performed in many ways. For
example, exercise can be done arm or limb, standing, and sitting. Thus, the chosen
four activities cover a vast range of characteristics found in typical indoor activities.
For each activity type, the subjects were requested to perform the activity at their own
way. An environment representing a domestic setting was used for the environment.
The following specific instructions were given for each activity type.

Working on a laptop:Acombination of a table and a chair placed in the environment
was used here. The laptop was placed on the table, and a participant was asked to
use the laptop. As the work to be done on the laptop, the participant was asked to
type a few sentences on word-processing software about a movie or a novel that
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the participant had recently read or watched. Assigning this sort of work makes
the subject’s concentration on the work and would help to maintain naturality.
Reading a book: A participant was given a short storybook and asked to read a
short story while sitting on a chair placed in the environment. The short stories
in the books were brief enough to read within a short time where the participant
could read a complete story. This consideration would help in maintaining the
concentration of a participant on the activity.
Exercise: A participant was asked to go to a free area within the environment and
perform a short exercise. The participant was given the freedom to perform any
exercise in his/her own way. However, the participant was asked to bound within
a marked area while performing the exercise.
Making a phone: The participant was given a mobile phone and asked to make a
phone call to a given number. From the other end of the phone call, the participant
was questioned about hobbies to concentrate on the phone call.

The participants were informed that during the task, the robot approached them
to request a service task. The participants were requested to give their feedback on
the termination distance determined by the robot for the approach. Furthermore, the
participants were instructed to give their feedback verbally as “too far”, “ok”, and “too
close”.

The subjects were equally divided into two groups and the experiment was con-
ducted in four phases. In the first phase, the system proposed in this paper was
implemented on the robot (i.e., the system with learning ability). Each subject of
the first group was invited individually for the first phase of the experiment and asked
to perform a randomly assigned activity per instance. A random number generator
was used to select the activity type randomly. The subject was given the freedom to
do the activity in his/her own way. Then, the robot was triggered to approach toward
the subject based on the termination distance (i.e., dT) determined by the FPEM. The
subject was asked to give feedback after each approaching instance. Then the activity
was switched to a new randomly selected activity type. Likewise, the process was
repeated 20 instances for a single subject by switching each activity type randomly. In
the second phase, the subjects of the second group were invited to the experiment. The
ability of the robot in learning the user preference (i.e., the ability tomodify the internal
parameters of the FPEM based on user feedback) was disabled in the second phase.
Here, the robot is fixed to the initial parameters of fuzzy membership functions (i.e., ai
and bi at n = 0) since the robot cannot adjust the parameters based on feedback. This
fixed fuzzy network is similar to the fuzzy logic model proposed in Samarakoon et al.
(2018b) that can adapt proxemics solelywith physical user behavior. Thus, the abilities
of the robot with learning ability and the robot with no learning ability were the same
except for the availability of the feedback-based user preference learning ability. In the
third phase, the subjects of the first group were invited for the experiment. The robot
with no learning ability was used in the third phase. In the fourth phase, the subjects
of the second group were invited for the experiment while the learning ability was
enabled in the robot. The order of conducting the experiment by subdividing into four
phases with the two groups of subjects is depicted in the schema given in Fig. 7. This
kind of strategy was chosen to minimize the subjectivity aroused due to the familiarity
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Fig. 7 The order of conducting the experiment subdividing into four phases is explained here

with the robot since human–robot proxemic preferencesmay depend on the familiarity
with the robot. Moreover, this counterbalancing controls order effects in the within
subject experiment conducted for the validation. Furthermore, it was ensured that the
subjects were not aware of the system with which they were interacting (whether with
learning ability or with no learning ability) during the experiment.

In addition to the evaluation through user satisfaction during the experimental runs,
a questionnaire was given to each subject after the completion of a phase of the
experiment. The questionnaire was composed with four question statements where
the participants can give ratings in 5-point Likert scales. The set of question state-
ments in the questionnaire can be found in Table 2.. This questionnaire was mainly
directed toward assessing overall performance and behavior of the proposed method
in determining approaching proxemics of a robot. This sort of a secondary evaluation
criterion was used to increase the reliability of the validation.

4.2 Results

The parameters related to the FPEM for approaching instances of a randomly selected
subject when interacting with the system proposed in this paper are given in Table 1.
In here, the initial parameters of the system are given in the raw, n = 0. In the first
instance, the parameters related to user physical behavior; D and θ̇ were 38cm and
21cms-1 respectively. Based on the parameters of the FPEM and the input parameters
related to physical user behavior, the output FEFM (i.e., dT) was 55cm. Then, the
robot approached to the user keeping a distance of 55cm. However, the termination
distance decided by the robot was more than the proxemics preferred by the user, and
the user gave the feedback “too far” suggesting a correction. When the robot receives
such corrective feedback, the AM redirects it to the Proxemic Modifier (PM). Then,
the PM determined the quantitative error value for this instance (i.e., e) as −18cm.
Subsequently, the parameters of the FPEM were modified (ai and bi ) as shown in the
rest of the columns.

In the next instance (i.e., n = 2), the user was asked to do a different activity and the
robot was commanded to approach to the user. The user behavior perceived by robots
as D and θ̇ were 57cm and 65cms-1 respectively. dT determined by the FPEM was
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Fig. 8 The variation of mean user satisfaction with number of approaching instances is shown here for both
systems. Error bars are drawn to represent the standard error of the mean

95cm (based on currentai and bi , and inputs D and θ̇ ). Therefore, the robot approached
the user by maintaining termination distance of 95cm. The user was satisfied with
the termination proxemic decided by the robot. Hence, a corrective feedback is not
given, and the internal parameters of the FPEM (ai and bi ) were not adapted in the
2nd instance (i.e., n = 2). Similarly, 20 approaching instances were conducted for
this subject. The User Satisfaction (US) was computed by considering previous 10
instances (i.e., NS = 10). Therefore, US10 is computed 10th instance onward. The
variation of the internal parameters of the FPEM verifies that the system proposed
in this paper can adapt the proxemics based on user preferences conveyed through
feedback. In contrast, the system with no learning ability is not capable of modifying
the internal parameters of the system based on user feedback. Moreover, proxemics
determined by the existing methods cannot be altered from corrective feedback of a
user.

Similarly, the experiment was conducted for all the subjects with both systems
(i.e., with learning ability and with no learning ability). The mean values of US10
for all the subjects were calculated for each instance (n = 10 upward) for both sys-
tems. The variation of mean values of US10 with the number of instances for both
systems is plotted in Fig. 8 along with error bars. In the 10th instance, US10 of the
system proposed in this work is 0.394 and US10 of the system with disabled learn-
ing functionality is 0.400. In this stage, the mean user satisfaction is low for both
systems. Furthermore, the difference is not statistically significant (t(17) = −0.160,
p = 0.877). This phenomenon could be observed until 14th instance; when n = 11:
t(17) = 0.49, p = 0.631; when n = 12: t(17) = 1.49, p = 0.146; when n = 13:
t(17) = 1.53, p = 0.136. This verifies that there was no initial bias in user satisfaction
for either system. It can be observed that the mean of US10 gradually increased with
the number of instances in the system proposed in this paper. In the 20th instance,
US10 was 0.71. In contrast, the mean of US10 of the system with no leaning ability has
not increased compared to the system proposed in this paper. The difference between
the mean user satisfaction of the two systems is statistically significant from 14th
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instance onward; when n = 14: t(17) = 2.55, p = 0.016; when n = 15: t(17) = 3.86,
p = 0.001; when n = 16: t(17) = 3.27, p = 0.003; when n = 17: t(17) = 5.03,
p = 0.000; when n = 18: t(17) = 5.57, p = 0.000; when n = 19: t(17) = 5.07,
p = 0.000; when n = 20: t(17) = 11.85, p = 0.000. Furthermore, the difference
is large according to effect size calculated based on Cohen’s d (Cohen’s d = 0.85,
1.29, 1.09, 1.68, 1.86, 1.69, and 3.95 for n = 14–20 respectively). Therefore, these
statistical outcomes confirm that the system proposed in this paper notably improves
the user satisfaction of approaching proxemics determined by a robot compared to
the system with no learning ability. Moreover, the capability to adapt the termination
distance of approaches based on previous experience with a user increases a robot’s
ability in determining proper proxemics that improves user satisfaction.

The ratings received for the questionnaire for both systems are given inTable 2 along
with the set of question statements. It was found out that the internal consistency
of the questionnaire was acceptable for the evaluation since Cronbach’s alpha was
greater than 0.7 (for the system with the proposed learning ability = 0.847 and for
the system with no learning ability = 0.704). Here the response for the questionnaire
is taken on 5-point Likert scales. Non-parametric statistical tests are preferred for
analyzing the results received as Likert data (Kaptein et al. 2010). Therefore, the
Wilcoxon test, a non-parametric statistical test, has been used in this regard. In non-
parametric statistical analysis, groupmedians are preferred instead of the groupmeans
for the comparison. Therefore, group medians are considered for the comparison.
Even though the question statements are directed to measure a single objective (with
a reliable internal consistency), each question statement provides different insights
about the system helpful in evaluating behavior and performance. Therefore, separate
explanations for each question would be useful for providing more insights on the
performance and behavior of the proposed system.

The first question statement of the questionnaire (i.e., Q1) examines whether the
proxemics determined by the robot is varied with the activity type being performed by
a user. Median ratings for the system with learning ability (5.0) and the system with
no learning ability (4.5) are not statistically significantly different, p = 0.580 (based
on Wilcoxon test, W = 351). According to the received ratings, the subjects agreed
that the robot proxemics varies with the activity type for both systems. Therefore, this
validates that both systems are capable of altering a robot’s approaching proxemics
based on the activity type performed by a user.

The second question statement (i.e., Q2) enquires about the variation of proxemics
determined by the robot within an activity type based on the way of the activity
being performed by a user. For example, it queries whether the systems can determine
different proxemics for an exercise done for a different amount of stretch or moving
speeds or body joints. According to the received ratings, the subjects agreed that both
systems can adapt proxemics in accordance to behavior of activity in regardless of the
activity type (median ratings for the system with learning ability = 5.0) and the system
with no learning ability = 4.0). Furthermore, the ratings do not reflect favoritism for any
system in this particular behavior (the difference in median ratings is not statistically
significant according to Wilcoxon statistic, W = 379, p = 0.146). This validates that
users can observe that both systems are capable of altering the proxemics based on
behavior of an activity instead of depending merely on the activity type.
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The third question statement (i.e., Q3) enquires whether the subjects could observe
any effect in proxemics determinedby the robot in accordancewith user feedbackgiven
by them during prior interactions. Moreover, this examines whether the interpersonal
distance decided by the systems are noticeably adapted from user feedback. According
to the results, the subjects agreed that the system proposed in this paper (i.e., the
system with learning ability based on user feedback) can noticeably adapt proxemics
based on user feedback given in prior interactions. In contrast, the subjects disagreed
with the same claim for the system with no learning ability. Median ratings for the
system with learning ability (5.0) and the system with no learning ability (2.0) are
significantly different (W = 495, p =0.00). Therefore, this validates that the proposed
system is capable of adapting the proxemics perception of a service robot through
user feedback with respect to a system with no such learning ability. Moreover, user
feedback has a noticeable effect on adapting the interpersonal distance determined by
the proposed system in this paper.

The fourth question statement (i.e., Q4) examines whether the subjects could sense
improvement of the proxemics determined by the robot with time. Moreover, this
evaluates whether the proxemics determination of the robot was noticeably improved
with the experience of the robot. According to the results, the subjects noticed an
improvement of the robot in deciding the proxemics with time for the system with
adapting ability toward users (i.e., the system proposed in this paper). Nevertheless,
the subjects could not notice an improvement in proxemics determination with time
for the system with no adaptation ability toward users (i.e., with no learning ability).
Median ratings for the system with learning ability (5.0) and the system with no
learning ability (2.0) are significantly different (W = 495, p =0.00). This implies
that the system proposed in this paper is capable of improving the determination of
approaching proxemics by a service robot with experience with respect to a system
with no such learning ability.

The following salient features of the proposed system can be discussed based on the
overall behavior and the performances identified during the experimental evaluation.

In the work proposed in Vitiello et al. (2017), termination distance of a robot is
adjusted for a posture category defined for different activity type such as standing,
sitting and lying. In this work, a Neuro-Fuzzy-Bayesian network is trained to assign
different proxemics for each of the defined set of activity types classified by analyzing
a user. Therefore, the work proposed in Vitiello et al. (2017), is capable of adapting the
proxemics based on the activity type. Nevertheless, the cited work is not capable of
adapting the proxemics within the same activity in accordance with dynamic aspects
of the particular activity such as speeds and amount of joint movements. The method
proposed in this paper is cable of adapting approaching proxemics of a service robot
based on physical behavior of a user such as movement speeds and joint positionings
instead of merely adapting proxemics for a set of defined activity types as done in
Vitiello et al. (2017). Furthermore, the system proposed in this paper can handle many
of the typical activities without limiting for a set of defined activity type since the
system proposed in this paper considers current physical behavior of a user without
classifying it for different activities. Therefore, the method proposed in this paper
would complement a system that can only adapt proxemics merely based on activity
type instead of behavior of activity.

123



Adapting approaching proxemics of a service robot based on… 215

Themethod proposed in Samarakoon et al. (2018b) is capable of adapting approach-
ing proxemics in accordance with physical behavior of a user perceived by analyzing
joints locations and movement speeds. Therefore, the cited work can adaptively deter-
mine approaching proxemics for many of typical activity types without limiting for a
set of activities. According to Shen et al. (2018); Rossi et al. (2017), proxemics pref-
erences of humans depend on person to person based on factors. However, the work
proposed in Samarakoon et al. (2018b) is not capable of adapting approaching prox-
emics for different users based on their preferences. Therefore, the system proposed in
Samarakoon et al. (2018b) lacks in the ability to adapt toward a user and cannot match
approaching proxemics to preferences of the user even though the system has received
feedback from user. This is the major drawback that degrades user satisfaction of a
systemwhich cannot adapt proxemics toward a user. The system proposed in this paper
is capable of adapting proxemics based on physical user behavior while learning user
preference. The learning of user preference through the experience of prior interaction
facilitates the adaptation of proxemics toward a user. Therefore, the method proposed
in this paper can improve user satisfaction of approaching proxemics determined by a
service robot with compared to a system that is not capable of learning user preference
(experimental results confirm this).

Furthermore, according to Syrdal et al. (2008) and Walters (2008), human–robot
proxemics preferences depend on physical attributes of a service robot such as type
and height. User preference can be varied from person to person. This problem can be
deduced to the problem of having different proxemics preference of users discussed
earlier. Therefore, if a robot can adapt its approaching proxemics to meet user prefer-
ence, such a system can cope with the problem of human–robot proxemics preferences
reliant on attributes of a service robot.Moreover, a service robotwould adapt approach-
ing proxemics to improve user satisfaction by learning user preference of proxemics
for its attributes. This yields to diminish the requirement of manually tuning of prox-
emics for different robots that have different physical attributes since learning of user
preference facilitates the self-adaptation. Therefore, the system proposed in this paper
is capable of coping with the problem of variation of human–robot proxemics due to
physical attributes of a service to a certain level. However, it should be noted that an
experimental validation in this regard has not been conducted using different service
robots within the scope of the work presented in this paper, and this has been deduced
from facts.

4.3 Discussion

The user study for evaluating the system has been carried out with 18 participants, and
the sample size has been decided based on the prior literature. Similar studies have
been carried out in prior work with similar sample sizes (e.g., Mitsunaga et al. 2008:
15 participants, Walters et al. 2011: 7 participants, Mead et al. 2013: 18 participants,
Bhavnani and Rolf 2020: 15 participants, and Patompak et al. 2020: 5 participants).
In addition to that, we have conducted a power analysis to check the validity of the
sample size in our specific case. The power values greater than 0.8 could be observed
(According to Cohen’s four-to-one weighting of beta-to-alpha risk criterion, power
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value greater than or equal to 0.8 can be considered as good (Ellis 2010)). Therefore, the
number of participants is sufficient for demonstrating generalizability and reliability.

There is a possibility of causing an order effect by the given questionnaire since the
questionnaire was given in between the phases of the experiments, and the participants
could focus on the aspects in the questionnaire during their second phase. Therefore,
the variation of user satisfaction of group 1 and group 2 during the systemwith learning
ability and the system with no learning ability was individually compared to check
whether there is an ordering effect. However, a significant difference between the two
groups could not be found, suggesting any significant ordering effect. Furthermore,
the participants were divided into two groups to counterbalance the ordering effect.
Therefore, the questionnaire has not made biased for the overall subjective evaluation
of the participants. The experimental designproviding a sufficient timegapbetween the
interaction that could fade the focus of a participant in the experiment andquestionnaire
might have helped overcome this possible bias.

The proposed system adapts its proxemics based on physical user behavior and
user feedback. The approaching proxemics determined by the system is not fixed for
a particular activity category since the system considers dynamic parameters of body
joints such as locations and speed instated of the activity category. Therefore, the
proxemics for a particular activity like reading a book depends on the behavior of
the user’s body joints, such as movement and extensions. For example, at n = 1, the
system determined DT as 55 cm, which was rated as “too far” by the user. At n = 11,
the user rated DT of 56cm as “too close”. However, in the latter instance, the body
joints of the user extended considerably than the earlier instance (D = 54 at n = 11
and D = 38 at n = 1). This higher extension of the body joint from the center of
the user might have made the user feel that the robot came too closer even though the
proxemics distance was higher than that of n = 1. For example, at n = 11, the user
may have extended his legs from the chair while sitting in a leaning posture where the
robot came too close to the extended leg. Please note that DT is measured from the
center of a user and not from extended body parts. Therefore, this sort of feedback
variation can be expected.

Furthermore, feedback given for a particular activity is not localized for that spe-
cific activity, and all the triggered fuzzy sets of the fuzzy neural network are modified.
These modifications can result in adapting the proxemics related to any other activity
where the inputs (i.e., D and theta) are within more or less the same ranges. In addi-
tion to that, the same activity could be performed in widely varied ways. Therefore, if
the system had been developed to stop the adaptation after receiving an ‘ok’ once, the
systemwould not have been appropriately adapted. Moreover, feedback reinforces the
adaptation where the adaptation relies on multiple feedback on heterogenous physi-
cal user behavior. The proxemics adaptation might be jeopardized due to inconsistent
feedback where the model would not be converged and would require a substantial
number of interactions for the convergence. As future work, it is expected to explore
methods to identify inconsistent user feedback to resolve the issues arising from incon-
sistent user feedback. For example, developing a method that requests confirmation
from a user in an instance of unreliable feedback would be an interesting potential
future work. In addition, the current system considers explicit vocal cues as feedback.
Nevertheless, the requirement of explicit voice feedback causes overhead for users.
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In the future, it is expected to extend the system to use sub-conscious body signals of
users, such as facial expression changes, as feedback instead of explicit vocal cues.

The inability to accurately perceive a user by Kinect sensor in cases of occultation
is another limitation of the proposed system. Inaccurate perceiving of a user might
lead to the determination of incorrect proxemics and the reference user location. By
incorporating a sensor fusion method to perceive users would be helpful in resolving
this issue. Furthermore, users might experience uncomfortable proxemics during the
learning process (until the robot adapts its proxemics based on feedback received in
interactions). The learningprocess basedon feedback is used tofine-tune theproxemics
per user. Therefore, the proxemics determined by the robot in the initial stage would
not cause much distress to users. Ways for enhancing the method for improving the
learning rate should be explored to minimize this discomfort.

5 Conclusions

Anovelmethodhas beenproposed to adapt the interpersonal distance at the termination
position of an approach toward a user based on current physical user behavior and user
feedback. The major improvement of the proposed work over the current state of the
art is that the system can determine the approaching proxemics based on dynamic
body movements while learning from the corrective user feedback.

The Fuzzy Proxemics Evaluation Module (FPEM) has been implemented with a
fuzzy neural network that is capable of learning preferences of users based on user
feedback for prior approaches. The fuzzy neural network perceives user behavior by
means of dynamic parameters of skeletal joints to determine the appropriate termina-
tion position of an approach. This determination can be adapted toward the preferences
of a user by modifying the internal parameters of the neural network based on user
feedback.

Experiments have been conducted to compare and contrast the performance of the
proposed system over a system that is not capable of adapting the proxemics based
on prior experience. According to the outcomes of the experiments, the system that is
capable of learning preferences of users improves the satisfaction of users regarding
proxemics evaluation.
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