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Abstract
Every year millions of people, from all walks of life, spend months training to run a 
traditional marathon. For some it is about becoming fit enough to complete the gru-
elling 26.2 mile (42.2 km) distance. For others, it is about improving their fitness, to 
achieve a new personal-best finish-time. In this paper, we argue that the complexi-
ties of training for a marathon, combined with the availability of real-time activ-
ity data, provide a unique and worthwhile opportunity for machine learning and for 
recommender systems techniques to support runners as they train, race, and recover. 
We present a number of case studies—a mix of original research plus some recent 
results—to highlight what can be achieved using the type of activity data that is rou-
tinely collected by the current generation of mobile fitness apps, smart watches, and 
wearable sensors.
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1  Introduction

Recommender systems influence our media consumption (books, movies, music, 
news), shopping habits (online and real-world), and even the people we interact with 
every day (Ricci et al. 2015; Bridge et al. 2005; Smyth 2007; Burke 2002). Their 
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success has not been without its challenges, especially as we have come to under-
stand the associated privacy and ethical issues that arise as a result of their wide-
spread application and adoption (Lam et al. 2006; Rooksby et al. 2014; Knijnenburg 
and Kobsa 2013). If we can address these challenges, then there is the potential for 
recommendation technologies to bring valuable insights to bear on many aspects of 
our lives (Kelly et al. 2013) and to the societies we live in, by helping to nudge us in 
the direction of a healthier, happier, and more sustainable way of living.

This is especially true in the area of personal health (Mayer-Schönberger and 
Cukier 2013), and over the past decade, mobile devices and wearable sensors have 
proven to be important enablers when it comes to supporting people in their efforts 
to adopt healthier, and more active lifestyles (Mulas et al. 2011; Pilloni et al. 2013; 
Mulas et  al. 2013; Dunne et  al. 2008, 2007; Dunne and Smyth 2007). For exam-
ple, mobile apps like couch-to-5k1 have helped to encourage millions of people to 
begin their fitness journey, while the likes of TrainingPeaks2, Strava3 and RunK-
eeper4 have helped millions more to stay motivated, remain active, and become even 
fitter (Schoeppe et al. 2016; Lister et al. 2014; King et al. 2013; Sundar et al. 2012; 
Vickey et  al. 2012; Sullivan and Lachman 2017; Hosseinpour and Terlutter 2019; 
Pilloni et al. 2018; Boratto et al. 2017; Direito et al. 2017; Zhao et al. 2016; Vande-
lanotte et al. 2016). In the main, these apps are focused on helping users to record 
and review their exercise habits. They track steps, distance, and speed, and provide 
insights into progress and goals. They even help to connect friends and like-minded 
individuals into supportive social networks that can help people to stay motivated 
and engaged.

We believe that activity data have the potential to tell us not just about how we 
have been exercising, but also how we should be exercising, to get the most from 
the activities we engage in. With this in mind, in this work we focus on bringing 
recommendation techniques to recreational endurance athletes—marathon runners 
in particular—to help them to train, compete, and recover more effectively and more 
safely; see also (Cheung et al. 2019). To achieve this, in Fig. 1 we present a particu-
lar vision for the role of recommender systems in helping people as they prepare 
for, participate in, and recover from, marathon races; although this provides a mara-
thon specific perspective, it should be easily adapted for a wide range of structured, 
endurance activities. At the heart of this vision are the activity sessions that runners 
engage in as they train, typically for at least 3–4 months before race-day. Different 
training periods focus on different types of physiological adaptations, such as build-
ing an initial base of fitness, improving strength, increasing speed, and finally, taper-
ing to recover before race-day. All of this training must be carefully coordinated so 
that a runner achieves peak fitness just before race-day while minimising their risk 
of injury.

1  https://​apps.​apple.​com/​ie/​app/​couch-​to-​5k-​runner.
2  https://​www.​train​ingpe​aks.​com.
3  https://​www.​strava.​com.
4  https://​www.​runke​eper.​com.

https://apps.apple.com/ie/app/couch-to-5k-runner
https://www.trainingpeaks.com
https://www.strava.com
https://www.runkeeper.com
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This vision helps to clarify two ways in which recommender systems can play an 
important role when it comes to supporting the many and varied needs of marathon 
runners as they train. First and foremost, and the main focus of the technical work 
presented in this paper, are the primary recommendation tasks that are designed 
to help runners with their training, from recommending personalised training pro-
grammes all the way to helping runners to plan their race by recommending suit-
able pacing strategies and achievable finish-times. In Fig. 1 a number of these tasks 
are highlighted because they will form the basis of a series of four case studies in 
Sects. 4–7 of this paper. Two of these case studies—fitness estimation (Sect. 4) and 
predicting injury risk (Sect. 6), cover original research that has not been previously 
published. The other two case studies, training plan recommendation (Sect. 5 and 
Feely et al. 2020b, a) and finish-time prediction (Sect. 7 and Smyth and Cunningham 
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Fig. 1   A vision for supporting runners using recommendation techniques as they train for endurance 
events such as the marathon. A typical runner will engage in at least 4 months of training activity as 
they move through specific training periods such as building a suitable fitness base (approximately 4–6 
weeks), strength/endurance training (1–2 months), speed training (1–2 months), and finally a period of 
more gentle training (the so-called taper) in the final 1–3 weeks before race-day; generally speaking, 
the periods associated with developing strength and speed may overlap, at least in part. This generates 
dozens of individual training sessions with different physiological objectives depending on the training 
period. Alongside this training, there are many training-specific (primary) and secondary recommenda-
tion opportunities as shown; those marked with an ‘*’ are the subject of case studies in Sects. 4–7
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2017b, 2018b, 2017a, 2018a), have been published previously, but are reproduced 
here in summary form in order to provide end-to-end examples of some of the ways 
that machine learning and recommender systems can support runners, at different 
stages during their physical training, from the moment they begin their marathon 
journey through to race-day itself. The hope is that this broader set of case studies 
will serve as a useful catalyst for similar lines of work in the future.

In addition to these primary recommendation opportunities, Fig. 1 highlights a 
number of secondary recommendation opportunities, many of which share a close 
affinity with more conventional e-commerce tasks (e.g. equipment/gear or event 
recommendations) or media-related recommendation tasks (e.g. suggesting relevant 
articles, videos about training objectives or recommending motivational podcasts to 
take on a run), or even social recommendation tasks (such as, recommending like-
minded, training partners with similar ability levels). These secondary tasks serve 
to further highlight the scope of recommendation opportunities that exists in this 
domain.

The remainder of this paper is organised as follows. In the next section, we pre-
sent a comprehensive account of the marathon as a novel recommendation domain, 
explaining why we believe this to be the case and summarising the many and varied 
recommendation and machine learning opportunities that are highlighted in Fig. 1, 
along with relevant existing research. Following this we present an overview of the 
case studies that are included in this work, focusing on the main research questions 
they are designed to answer, and summarising the datasets used. After this, we pre-
sent the four individual case studies, presenting their main objectives, the approach 
taken, and their key results, as well as a discussion of their main limitations. Finally, 
we conclude by summarising the main results and offering opportunities for future 
research.

2 � The marathon as a novel recommender systems domain

Marathons make for an interesting domain for recommender systems and machine 
learning research for several different reasons (Smyth 2019): 

1.	 There exists a large community of highly motivated, yet often inexperienced 
users, who are actively seeking out advice and guidance on a variety of topics, 
from training and injury prevention, to equipment recommendations and race 
planning. For example, a significant proportion of marathon runners (perhaps 
30–50% depending on race) are first-timers and as such are among the most needy 
when it comes to training advice, and the most at risk when it comes to training-
related injuries. They are an ideal target audience for recommender systems, but 
so too are experienced runners, whether they want to improve their finish-times, 
extend their running-life by training more carefully as they age, or simply want 
to find new challenges and friends to share them with.

2.	 Runners generate a plentiful supply of detailed activity data—from fine-grained 
training activities (distance, pacing, heart-rate, etc.), to rest/recovery data, race 
results and time-trials, even nutrition—which can be harnessed to better under-
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stand their abilities, preferences, and goals. These days most people training for 
a marathon will use an app like Strava or Runkeeper perhaps in conjunction with 
a fitness-related smartwatch or other sensors to measure heartrate, power, run-
ning economy, etc. That being said, the sheer quantity of data, and the level of 
detail and precision available, makes it challenging to deal with. These data are 
far from perfect, because of issues such as GPS errors, the varying accuracy of 
off-the-shelf heartrate sensors, etc., which introduces some challenging feature 
extraction issues.

3.	 As mentioned in the previous section, training for, competing in, and recovering 
from, the marathon, encompasses a wide variety of recommendation tasks and 
opportunities, some familiar, some less so. All of these opportunities can benefit 
from a novel approach to user profiling, which relies on a mixture of activity 
and physiological data, as well as more conventional ratings and preferences. 
Moreover, the ubiquity of mobile devices means that there are new opportunities 
for delivering real-time, multi-modal (visual, audio, haptic) interventions to help 
runners cope with the challenges they face.

In what follows we will summarise these opportunities in more detail by review-
ing related research according to the framing of our vision in Fig.  1. This is not 
intended to provide a complete systematic review of the literature, which is beyond 
the scope of this paper, but rather to bring together key ideas and results from rele-
vant research as it relates to the recommendation opportunities highlighted in Fig. 1. 
We will do this by first discussing the primary recommendation opportunities that 
are related to the physical aspects of marathon training, followed by a review of the 
secondary recommendation opportunities, which may be more familiar to many in 
the recommender systems community.

2.1 � Primary recommendation opportunities

In this section, we will review several open challenges in the exercise physiology 
and sports science communities (Fawcett 2015; Millington 2014; Panjan et al. 2010; 
Cornforth et al. 2015; Maier et al. 2018; Akay et al. 2017; Zhang 2019; Taha et al. 
2018; Yingying et  al. 2010; Whiteside et  al. 2017; Abt and Lovell 2009; Jelinek 
et al. 2014). While previous efforts have largely focused on physiological modelling, 
laboratory protocols, and elite athletes, our main focus will be to highlight how to 
help recreational runners by applying machine learning and recommender systems 
techniques to the type of activity data that is routinely generated when we train.

2.1.1 � Fitness estimation and training effects

Sports scientists use a variety of important laboratory metrics to estimate the fitness 
levels of individuals and how they change under different training conditions. The 
well-known VO2max score (Noakes 2003; Daniels 2013; Billat et al. 1994) measures 
the maximum rate of oxygen consumption during exercise. It reflects the cardiores-
piratory fitness of an individual and is an important determinant of their endurance 
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capacity during prolonged exercise. It is usually measured in a laboratory setting 
and, as such, is not routinely accessible by recreational athletes.

With the advent of smartwatches and wearable sensors, however, it is now pos-
sible to estimate VO2max based on training effort under specific conditions. For 
instance, there are a number of examples of recent research on the use of machine 
learning for VO2max prediction (Akay et al. 2011; Abut et al. 2016) but many chal-
lenges remain to improve prediction accuracy under real-world, recreational training 
conditions. These have the potential to provide accurate VO2max estimates without 
the need for expensive laboratory support; see also (Webb et al. 2014; De Braban-
dere et al. 2018; Akay et al. 2013, 2009). Similar approaches can to be applied to 
predict other key performance metrics, such as a runner’s lactate threshold5, or 
the training effect of a specific session, which can be used as a measure of fitness 
improvement.

All of these estimation problems can be readily framed as classical supervised 
learning tasks. The resulting models have the potential to transform the effectiveness 
of training programmes by accommodating the provision of core, targeted, personal-
ised advice and tailored recommendations to an athlete on any given day. In particu-
lar, the availability of such fitness-related features will help recommender systems 
to deliver more relevant recommendations and more accurate suggestions when it 
comes to recommending appropriate training sessions or challenging but achievable 
target race-times, and in Sect. 4 we discuss our own attempts to generate accurate 
fitness estimates using the type of activity data routinely collected by runners as they 
train.

2.1.2 � Training session classification

When it comes to training, runners and cyclists talk in terms of intervals, hill-
repeats, tempo sessions, threshold training, fartleks, easy-days, progressions, lad-
ders, speed-work, yasso-800s, etc. These are all different types of training sessions, 
designed to promote specific training effects. For example, running interval ses-
sions, where the runner alternates between periods of fast running (for 400 m, 800 
m or 1500 m distances) and recovery, can improve aerobic and anaerobic endurance, 
increase VO2max , and improve overall performance, while the increased ‘after-
burn’—referring to post-exercise calorie consumption—can aid in weight-loss.

While training programmes prescribe a variety of different session-types, current 
apps do little when it comes to monitoring or assessing an athlete’s adherence to 
specific training sessions, and they are far from being able to recommend specific 
sessions in all but the most limited of contexts. Most apps simply do not have any 
understanding of the nature or purpose of such sessions. They record GPS, pac-
ing, and heartrate traces without encoding any of the key features that distinguish 

5  Lactate threshold refers to the pace at which the body can no longer effectively clear lactic acid from 
the muscles, which is produced as a by-product of exercise; see (Billat et  al. 2003; Faude et  al. 2009; 
Poole et al. 2008). For an athlete, this means a significant increase in discomfort and it will quickly lead 
to the need to slow-down significantly.
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different sessions. This makes for a significant opportunity to draw on recent work 
about detecting structures and motifs in time-series (Senin et al. 2018; Berlin and 
Laerhoven 2012; Cheng 2013) in order to: (a) automatically classify training ses-
sions to better assess a runner’s performance or fitness level and, in due course, to 
adapt their training programme appropriately; and (b) to dynamically assess how 
well an individual is adhering to a particular training session, to provide in-session 
feedback (increase/decrease interval pace, reduce/extend interval duration, adjust 
recovery period, etc.) and guide the individual to a better session outcome.

The ability to classify a training session, combined with accurate models of fit-
ness and training effort, will make it possible to provide an individual with more tar-
geted advice about the effectiveness of their training as well as pinpointing areas for 
improvement. This will help a runner understand whether they have pushed them-
selves too hard, or not hard enough, for instance, and can provide the basis for adap-
tations to a training programme to better balance activity and recovery.

2.1.3 � Injury prediction and training load estimation

Indeed, recovery is a critical, but all too often overlooked part of any training pro-
gramme. Recovery days allow the body to adapt to training and to replenish vital 
resources (Noakes 2000). Insufficient recovery can lead to missing out on fitness 
gains, and keeping track of recovery levels can reveal when a hard training period is 
likely to be beneficial or injurious to an athlete. An important opportunity exists to 
estimate recovery needs, based on an athlete’s current fitness levels, recent training 
effort, and key physiological indicators such as resting heartrate. While some fit-
ness devices do include some recovery estimation features, they tend to be simplistic 
and offer considerable room for improvement (Pulkkinen and Saarikoski 2010). In 
the future, athletes will benefit from more insightful and actionable recovery recom-
mendations, not only about how long they should recover for, but also about how 
they should recover and the type of activities they should and should not engage in 
Glaros et al. (2003).

A related matter is training load, which provides a big-picture estimate of an ath-
lete’s current training effort, and can be an important indicator of common prob-
lems such as over-training (Thornton et  al. 2017; Malisoux et  al. 2015; Lazarus 
et al. 2017; Barros et al. 2017; Bowen et al. 2019); although it is not without a level 
of controversy, see, for example, (Bornn et al. 2019). Activity data provide a rich 
source of training data for machine learning, by integrating fitness and physiology 
data with training volumes, and user-provided training assessments, e.g. by logging 
effort perceptions, documenting injury and illness. In due course, it may be pos-
sible to identify novel patterns linking fitness, training, recovery and injury and so 
develop effective early warning systems for athletes, to alert them to changes in their 
performance, which may be a precursor to the onset of illness or injury (Gabbett 
2016; López-Valenciano et  al. 2018; Claudino et  al. 2019). Accurately predicting 
whether a runner will become injured, or is at greater risk of injury, is an extremely 
challenging task (Carey et  al. 2017; Kampakis 2016; Rossi et  al. 2018), and we 
describe some early efforts in this regard in Sect. 6.
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2.1.4 � Personalised training programmes

Perhaps the holy grail for recreational endurance athletes is the ability to benefit 
from personalised training programmes tailored to the precise needs and prefer-
ences of an individual; their preferred training load, types of sessions, duration, etc. 
Most recreational athletes train using some form of training programme, usually one 
that they have found online, or one that they have adapted to their own needs over 
the years. These programmes will typically break a 12–16 week training period into 
a number of 3–4 week blocks, with each block made up of a number of specific 
training sessions in order to produce a given training effect (e.g. strength, endurance, 
etc.); see Fig. 1 and (Fry et al. 1992a, b). Programmes may also include specific rest, 
recovery and dietary components.

In the first instance, it can be challenging for an individual to find a training pro-
gramme that suits their particular personal circumstances and goals, and many are 
left struggling to follow a mismatched, one-size-fits-all programme. Recently the 
concept of a virtual coach, capable of offering more personalised training advice, 
has been proposed in the literature (Fister et al. 2015; Rauter 2018) for resistance 
training and mountain biking; see also (Loepp and Ziegler 2018; Ni et  al. 2019). 
Similar ideas may be suitable to develop personalised programmes for other endur-
ance athletes, by harnessing accurate, real-time, personal measures of an individu-
al’s fitness, physiological well-being, training load, etc.

The challenge in creating appropriate training programmes, which are fine-tuned 
to an individual’s needs, is that it requires a deep understanding of human physiol-
ogy and the specific demands of the marathon as it relates to training. Thus, pro-
ducing a multi-session, multi-week plan that suits a given runner is a significant 
planning and recommendation challenge, compared to the more typical item-based 
recommendations. In principle, personalised training plans can be generated by 
matching particular training needs with specific training sessions to provide the indi-
vidual with specific guidance about how to conduct these sessions in terms of pace 
and intensity. Of course how an individual responds to a given session, or training 
block, can be used to fine-tune future sessions or re-plan as needed. Later in Sect. 5 
we discuss an example of this in the form of a case-based reasoning (CBR) approach 
to personalised training, based on the work of Feely et al. (2020b, 2020a), but other 
approaches may also be relevant including ideas from more traditional planning and 
plan adaptation research (Munoz-Avila and Cox 2008; Hanks and Weld 1994).

Personalised training recommendations can, and should, also be augmented with 
supporting explanations so that the athlete can better understand the reason why a 
specific session is being recommended, how they should approach it, and how they 
should recover afterwards to gain maximum benefit. There is a growing body of 
research on the topic of explainable AI which has the potential to play an important 
role in this regard; see, for example, (Shin 2021).

2.1.5 � Goal‑time prediction and pacing

So far we have discussed supporting individuals during training, but of course all 
of this training will be in the service of a specific event, or set of events, such as an 
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upcoming marathon or triathlon. As an event approaches, an individual will start to 
plan their goal-time and race strategy. In endurance events, such as the marathon or 
triathlon, it is not enough to aim for a specific goal-time, it is just as important for 
participants to plan how to pace their race on the day, including their in-race nutri-
tion to fuel their efforts (Jeukendrup 2011), strategies to avoid hitting the wall, etc. 
(Buman et al. 2008; Smyth 2018; Ely et al. 2008; Doherty et al. 2020).

When it comes to goal-time prediction, there is a body of work that uses linear 
models to predict future race-times based on previous race-times, e.g. (Bartolucci 
and Murphy 2015; Schmid et al. 2012). What is less well developed, however, is the 
translation of a goal-time into a specific race strategy, and a concrete set of pacing 
recommendations. We have recently addressed this dual problem of goal-time pre-
diction and pacing recommendation for marathons (Smyth and Cunningham 2017b, 
2018b, a); we summarise these efforts in Sect. 7. Briefly, the goal-time and pacing 
plan for a target runner is adapted from the race-times and pacing profiles of runners 
with similar race histories. Recent research (Smyth and Cunningham 2018a) has 
considered different representations to encode the marathon history of runners and 
their impact on goal-time prediction accuracy and pacing-plan quality, demonstrat-
ing that accurate predictions, and high-quality pacing-plans, can be generated for all 
levels of runner ability; we will return to this topic in more detail in our final case-
study later in this paper. Similar approaches can also readily adapted for other forms 
of endurance sport (McConnell and Smyth 2019; Smyth and Willemsen 2020), and 
these methods have the potential to offer valuable pre-race advice and even in-race 
guidance (Berndsen et al. 2019) to individuals.

2.2 � Secondary recommendation opportunities

As mentioned already, there are many other interesting recommendation and 
machine learning opportunities aside from those directly connected to the physical 
aspects of training and competing. In particular, helping to maintain a runner’s inter-
est during the long weeks of training is a major motivational challenge that existing 
recommendation techniques may be well suited to support, for example, by helping 
to motivate a runner by suggesting relevant media (online articles, training videos, 
etc.), or by making training a more social activity by suggesting suitable training 
partners, or by proposing new routes to explore, all of which are familiar recommen-
dation tasks. But there are more unusual and more speculative open recommenda-
tion opportunities too, such as how recommender systems might be able to help run-
ners to rest and recover more effectively by suggesting suitable recovery activities or 
by suggesting healthier sleep habits.

2.2.1 � Event recommendation

Recommending events (marathon-distance or other distance running events) to a 
runner during their training, by considering the target event they are training for, 
where they are in their training programme (fitness and training load), the location 
of the event, course terrain and other conditions, etc., can be an important way to 
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supplement their training. There are many examples of event recommendation tech-
niques in the literature for various event types and they could be readily adapted for 
marathon runners (Macedo et al. 2015; Minkov et al. 2010; Qiao et al. 2014). By 
selecting the right event at the right time a recommender system can add significant 
value to a runner’s training—pushing the runner to achieve new performance and 
fitness goals—as well as populating long training programmes with interesting and 
enjoyable intermediate events. Indeed, recommending a race event may also encour-
age a runner to test their current fitness level, by running at close to their maximum 
ability, which in turn may help produce the type of data that is needed for more 
accurate fitness assessments.

2.2.2 � Recommending routes and training partners

In the past recommender systems have been used in route planning (McGinty and 
Smyth 2001; Chakraborty 2012), particularly in tourism applications (Gavalas et al. 
2014; Borràs et al. 2014; Werthner and Ricci 2004; Ricci 2002) to recommend inter-
esting routes for users to follow as they explore a new location. Similar ideas may be 
useful when it comes suggesting training routes to runners, especially if they have to 
travel to a new location during training. And by extracting useful information about 
a runner’s preferred home routes (e.g. terrain, elevation, distance, difficulty, distance 
from home, etc.), it may be possible to use content-based recommendation tech-
niques to identify routes with similar characteristics to a travelling runner. Indeed, 
such a task may also be amenable to more conventional recommendation techniques 
in the form of “runners like you have also run the following routes ...”, based on 
features that describe types of runners (age, ability, training frequency, training dis-
tances, etc.).

Moreover, since running can be a social activity it can be useful to recommend 
running partners, perhaps based on availability, ability, or the target training ses-
sion, but perhaps also based on broader interests so that the conversation flows dur-
ing longer, easy runs; see, for example, related ideas in Goyal et al. (2018), Kurade 
(2014), O’Donovan et  al. (2008), O’Donovan et  al. (2009), Tang et  al. (2013). 
Indeed, this speaks to an obvious connection with so-called reciprocal recommender 
systems (RRS). A reciprocal recommender is a type of recommender system that 
can be distinguished for tasks in which people are both the subjects and objects of 
recommendation (Li and Li 2012); for example, in a job recommendation setting, 
jobs may be recommended to people (people are the recommendation subjects) 
or people may be recommended for jobs (people are the objects of recommenda-
tion) (Hong et al. 2013; Ding et al. 2016; Li and Li 2012). Other examples of RRS 
include matching students with shared interests (Prabhakar et al. 2017) and online 
dating (Pizzato et al. 2010b, a; Akehurstet al. 2011). And ideas from the RRS litera-
ture provide a useful perspective when it comes to suggesting well-matched train-
ing partners, In particular, reciprocal recommender systems explicitly consider the 
importance of matching reciprocity (a successful match depends on a mutual, two-
sided preference) as well as the availability of users, and the passiveness of users, 
all of which play an important role in the overall quality and health of a reciprocal 
network; see (Li and Li 2012) for further discussion.
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2.2.3 � Gear and equipment recommendation

Although running places a relatively low equipment burden on a runner—most 
require little more than shoes, shorts, and a top—pairing the right equipment with 
the right runner is extremely important, especially when it comes to footwear. Quite 
simply, the wrong running shoes can sabotage a runner’s training by increasing the 
likelihood of injury (Ryan et al. 2011). Of course recommender systems have a long 
history when it comes to suggesting clothing to users and by incorporating infor-
mation about a runner’s physical characteristics (sex, weight, age, gait) and their 
training (weekly volume, pace, terrain, etc.), it should be possible to make highly 
targeted and appropriate footwear recommendations to optimise training and racing, 
and reduce the risk of injury or discomfort; see, for example, (Marks 2017; Zren-
ner et al. 2018; Frejlichowski et al. 2016; Wakita et al. 2015; Hwangbo et al. 2018). 
Beyond footwear recommendation, similar opportunities exist when it comes to sug-
gesting other forms of equipment, such as clothing that is well suited to climate and 
distance, for example.

2.2.4 � Nutritional support

Training for a marathon is not just about mastering the miles, it is also about fuelling 
the miles, and all too many runners make their training harder than it should be by 
ignoring the nutritional aspects of training. The same is even more true on race-day: 
getting your in-race nutrition wrong can be the difference between the elation of a 
new personal-best and the agony of hitting the wall. Thus, there is a need to sup-
port runners with targeted advice about their nutritional needs, preferably by pay-
ing attention to their food preferences and current diet. Recommender systems have 
form when it comes to providing this type of advice (Mika 2011). For example, the 
works of Ge et al. (2015), Ribeiro et al. (2017), Khan et al. (2021) have used ideas 
from recommender systems research to guide people towards more healthy eating 
habits by recommending more balanced and healthy meal-plans. Similar ideas could 
be adapted for marathon runners by including information about current and future 
training needs.

2.2.5 � Motivational advice

While it might appear from the outside that runners are a motivated bunch of indi-
viduals, getting up at the crack of dawn to hammer out the miles, motivation is 
always a challenge, especially as training takes its toll on tired bodies or during the 
dark days of winter for those training for a spring marathon (Masters et  al. 1993; 
Donohue et  al. 2006; Krouse et  al. 2011; Hammer and Podlog 2016). As such it 
is interesting to consider how technology might help to motivate runners for their 
next training session; see (Pilloni et al. 2017). One option is to take advantage of 
the long history of recommender systems in media, by recommending motivational 
articles, videos, or podcasts to a runner prior to their training session (Scott et al. 
2010). And by incorporating information about the runner’s recent training into the 
recommendation process, these recommendations can be made even more precise. 
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For example, a new runner might benefit from articles about how to deal with the 
early base-building stages of marathon training when the miles seem especially long 
and hard (Han and Xu 2016). A more experienced runner facing into a hard speed-
session might benefit from listening to a podcast on the benefits of tempo sessions. 
Generating an interesting playlist of music and podcasts that is tailored for the dura-
tion of a long run might be another useful approach (Álvarez et al. 2019, 2020; Vall 
et al. 2019; Chen et al. 2020).

2.2.6 � Active recovery and rehabilitation

Completing a successful cycle of marathon training is about getting the right mix of 
training, recovery, and rest (Nicolas et al. 2011; Rolf 1995; Bassler 1979). It is all 
too easy for athletes to focus too much on the training, and in particular the running. 
Supplementing training runs with active recovery sessions—non-running, exercise 
sessions designed for recovery—can not only help a runner to recover more effec-
tively but can actually help to make them a better runner. For example, runners who 
incorporate regular stretching and mobility sessions into their training may do better 
than those who do not, especially from an injury perspective, but also in terms of 
race performance.

In the unfortunate event that a runner becomes injured during training, then their 
rehabilitation will need to not only help them to recover from the injury in ques-
tion, but also help them to retain their fitness so that they can rejoin their training 
programme when they recover. All of this requires a careful balance of rehabilita-
tion and recovery effort, for the therapist guiding recovery and the runner anxious 
to return to normal training. This suggests a role for recommender systems, by sup-
porting the design of a suitable programme of therapy, in response to injury and 
training needs, and by helping the runner to adhere to this programme; see related 
work by Fitzgerald et  al. (2010), Fitzgerald et  al. (2008), Caulfield et  al. (2011), 
O’Huiginn et al. (2009)

2.2.7 � Exercise and sleep

In addition to their physical training plan and nutrition, marathon runners must 
pay close attention to their sleep habits. Sleep plays a critical role in recovery from 
intense exercise, and the quality and duration of sleep have a large effect on the 
body’s ability to perform at its peak. Many studies have identified the severe effect 
of even partial sleep deprivation on recovery from intense exercise. For instance, 
a recent study of cyclists (Rae et al. 2017) looked at the effect of a single night of 
disturbed sleep on recovery from an intense exercise session. All of the participants 
experienced a significant reduction in performance and reported feeling sleepier and 
less motivated to train.

Further research is required to better understand the complex interactions between 
sleep, recovery and performance (Fullagar et  al. 2015), but most runners training 
for a race understand that good sleep is an essential component of training. This 
is an area where recommender systems can also make a contribution. Many activ-
ity tracking devices also monitor sleep patterns, and using this information to make 
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recommendations for healthier sleep habits is an active research area (Daskalova 
et al. 2018, 2016; Bauer et al. 2012). There is a clear opportunity here to connect 
sleep recommendations with richer information about the user’s exercise routine and 
dietary habits as they prepare for a race.

2.3 � On the implications for profiling, personalisation, and recommendation

The aim of this section has been to explore several novel recommendation opportu-
nities that exist in the life of a recreational marathon runner; of course, many of the 
same opportunities exist for other endurance athletes too. Some of these opportuni-
ties should feel familiar to recommender systems researchers, because they bear a 
strong resemblance to many conventional personalisation and recommendation set-
tings (e.g. recommending routes or partners or media, based on a user’s preferences 
and interests), but others will be less familiar because they deviate from the prefer-
ence/ratings-based world of recommendation (e.g. recommending complex training 
programmes, race planning, fitness estimation).

From a research perspective, these unusual recommendation settings are inter-
esting precisely because they are unusual. Instead of, or in addition to, traditional 
ratings and preference data, these settings utilise time series data in the form of real-
time activities. Such time series can be noisy and unreliable. A runner might stop 
due to traffic, or forget to start/finish their tracking at the beginning or end of a ses-
sion, or GPS errors may complicate the extraction of reliable pacing features. At the 
same time, these data can also provide new types of profiling data. For example, the 
timing of sessions can provide useful insights into a runner’s preferred schedule: 
if they usually do their long runs early on a Sunday morning then why not recom-
mend a new video on how to optimise long-runs on Saturday evening? If a runner’s 
GPS data suggest a proclivity for off-road sessions, then why not recommend the 
latest trail shoes from their preferred brand, or suggest an upcoming off-road race 
in their area? If a runner rarely engages in speed sessions during their training, then 
speed sessions can be suggested and motivated by a relevant blog-post discussing 
their benefits.

Thus, activity data can serve as a useful source of preferences with which to 
enrich classical user profiles, to guide personalisation and recommendation. Indeed, 
this perspective suggests a useful conceptual model of needs, patterns, and prefer-
ences for running recommendations6. The training needs of a runner, in terms of the 
fitness requirements of the marathon and a runner’s goal-time expectations, can be 
tracked by extracting fitness and ability features (e.g. VO2max or critical speed from 
raw activity data over time (see Sect. 4), for example. Periodic training patterns can 
be identified from the timing, duration, and intensity of activities on a weekly basis 
and used to estimate important features such as training load for use in injury pre-
diction or to generate new training recommendations (see Sects. 5 and 6). And the 
preferences of runners, such as the types of workouts they prefer or the terrain they 

6  Special thanks are due to the anonymous reviewer who suggested this particular perspective
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usually train on, can provide additional scope for recommending routes and training 
partners.

3 � Case studies, research questions and data sources

In the following sections of this paper, we describe four separate case studies to fur-
ther elaborate on the opportunity for machine learning and recommendation tech-
niques to play a role in the life of a marathon runner. The chosen case studies target 
several of the primary recommendation tasks outlined in Fig. 1 and as such focus 
on various aspects of physical training and racing. As mentioned previously, two of 
the case studies (Sects. 4 and 6) correspond to original work that has not been previ-
ously published, while another two case studies (Sects. 5 and 7) summarise previ-
ously published work. The decision to include these previously published works as 
case studies was made in order to provide a more comprehensive account of how 
recommender systems could play a vital role in many aspects of training.

3.1 � Research questions

The following case studies aim to explore a different aspect of marathon training and 
how it can be supported by the use of recommendation techniques. The following 
high-level research questions are targeted by these case studies: 

1.	 RQ 1—Can we use raw training data to estimate personalised fitness measures 
during training, without the need for expensive and time-consuming laboratory 
tests?

2.	 RQ 2—How can we profile a runner’s recent training efforts and use this to rec-
ommend modified training sessions as runners adjust their training goals?

3.	 RQ 3—Can we use training disruptions as a proxy for injury and predict the likeli-
hood that a runner will become injured based on their recent training load?

4.	 RQ 4—Can we use prior marathon times to predict challenging but achievable 
finish-times for an upcoming marathon and recommend a pacing plan to help the 
runner achieve this time?

3.2 � Data sources

All four case studies rely on large-scale datasets which we will summarise here. 
There are two sources of data used—(1) individual activity sessions from Strava and 
(2) marathon race records from big-city marathons—each of which is used in differ-
ent case studies as discussed.

3.2.1 � The Strava training dataset

Strava is a popular exercise app used by millions of runners and cyclists around 
the world to track and share their activities. As part of an ongoing data-sharing 
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agreement with the authors, Strava has made available a large subset of anonymised 
running data for the purpose of research; unfortunately the data sharing agreement 
does not allow for the sharing or publication of the raw data.

This dataset is used in three of the case studies that follow (Sects. 4–6). In this 
dataset, each runner r is represented as a sequence of time-ordered training activities 
(Eq. 1).

Each activity Ai(r) is associated with raw distance and timing data, but depending 
on the device used for tracking, the sampling frequency can vary. In order to nor-
malise and smooth the data, we convert these distances and times into 100m inter-
vals. In other words, each activity is represented as a sequence of time and distance 
values at 100m intervals as shown in Eq. 2; thus, a 10km activity is made up of 100 
timing values corresponding to the time for each 100 m interval. From these we can 
compute 100m pacing data using Eq. 3. The sex of each runner is also available in 
this dataset, with age and weight information available for some runners.

3.2.2 � The marathon race dataset

The final case-study (Sect. 7) uses a marathon dataset collected from the public race 
records made available from big-city marathons around the world (Smyth and Cun-
ningham 2017b, 2018b; Smyth 2018). Each race record corresponds to an individual 
runner r and a marathon m and contains timing information at 5 km intervals and 
a final finish-time. The dataset also includes the sex of the runner (male or female) 
and their age group. Since these data are official timing data, it is generally accurate 
and requires a minimum of processing; interval times are converted into per-kilome-
tre pacing (mins/km) for each 5km interval and the final 2.195 km interval (from the 
40 km mark to the finish-line). Thus, each race record is associated with nine sepa-
rate pacing values for each of the race intervals as in Eq. 4 in addition to sex, age, 
city, and year information.

Although these data are public data, available from marathon web-sites, the authors 
do not have permission to redistribute it. In the case of the data used in Sect.  7, 
for the London marathon, it is available from the London marathon website7, and 

(1)A(r) =
{

Ai(r)
}n

i=1

(2)Ai(r) =
{

tj, dj
}m=len(Ai(r))

j=1

(3)paces(Ai(r)) =
{

tj∕dj
}m

j=1

(4)c(r,m) = {p5k, p10k, ..., p40k, p42.2k}

7  https://​www.​virgi​nmone​ylond​onmar​athon.​com/​resul​ts/​race-​resul​ts

https://www.virginmoneylondonmarathon.com/results/race-results
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an extended list of marathon repositories used to produce this larger marathon race 
dataset can be found in Smyth (2018).

4 � Case‑study 1—estimating personalised fitness models

Fitness and performance depend on a variety of physiological factors including: 
how efficiently a runner can consume oxygen (maximum oxygen uptake or VO2max ) 
(Noakes 2003; Daniels 2013), the ability of a runner to clear lactate, and other waste 
products, from their blood during intense exercise8 (Billat et al. 2003), and their run-
ning economy (Anderson 1996). Determining these factors usually requires runners 
to perform time-consuming and expensive laboratory evaluations, but in this work 
we attempt to estimate these factors using the type of raw activity/training data—a 
time-series of incremental distances, speed, or pace—routinely collected by most 
fitness apps. If we can infer such fitness indicators from raw training data, then it 
may provide recreational runners with access to reliable indicators of fitness that 
would otherwise be out of reach. And such fitness indicators have the potential to 
play a critical role in other aspects of their training including the fine-tuning of their 
training programmes, improved models of training load, or better race-day predic-
tions; see also recent work by Emig and Peltonen (2020).

4.1 � Mining fitness models from training data

In the Strava dataset, each runner r is represented as a set of training activities 
and each activity corresponds to a time-series of pacing values at 100m intervals 
(Eqs. 1–3). The key research question here is whether it is possible to infer common 
fitness models directly from these data and without the need for the type of carefully 
controlled and supervised maximal effort tests (Billat et al. 1996) that are normally 
required. To do this we need to estimate comparable maximal effort paces from raw 
training data, which requires three steps: 

1.	 First, we convert the distance and time data in each activity into corresponding 
pacing data (mins/km) as in Eq. 3.

2.	 Second, for each activity we determine the fastest paces over all possible distance 
intervals, as shown in Eq. 5.

3.	 Third, for a given activity Ai(r) , we compute the cumulative fastest paces, for 
all possible (100m) distance intervals, so far seen in r’s training (for activities 
A1(r), ...,Ai(r) ) as in Eq. 6. For example, the cumulative fastest 5k pace associated 
with Ai(r) is the fastest 5k pace ( m = 50 ) seen so far in A1(r), ...,Ai(r).

In what follows, we will describe how these paces can be used as the basis for a 
series of different fitness estimation models by using them to estimate a number of 

8  The pace at which a runner can no longer clear lactate is their so-called lactate threshold.
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common fitness features. Each model can be used to make a fitness prediction for a 
given week of training (w) based on the fitness features calculated from the pacing 
data available up to that week.

4.1.1 � Fastest‑pace (FP) model

We can use these cumulative fastest paces directly as an initial baseline fitness model 
by focusing on certain distances, for which we can expect runners to have engaged 
in maximal effort sessions during their training. For example, many marathon run-
ners will benchmark their training progress by competing in other (shorter distance) 
races during training, with 5 km and 10 km races being the most popular distances. 
Thus, for each runner, and a given week of training w, this fastest-pace (FP) model 
uses the three features shown in Table 1.

While this is a simple model, it provides a useful benchmark against which to 
evaluate the more physiologically sophisticated models to come. It is important to 
note that this model is based on the fastest paces that runners have happened to run 
during training. While some of these may naturally occur as a result of races or pro-
gramme-prescribed time-trials, it is not necessary for the runner to complete specific 
(maximal-effort) time trials over prescribed distances.

4.1.2 � Functional threshold pace (FTP) model

An athlete’s functional threshold pace (FTP) is the fastest pace that can be sustained 
over a 45–60-min period, and this is an important fitness metric used by the popu-
lar TrainingPeaks9 service. FTP is related to the concept of lactate threshold (Billat 
et  al. 2003; Faude et  al. 2009; Poole et  al. 2008) which is a measure of intensity 
often used in laboratory-based fitness evaluations. We can calculate a runner’s FTP, 

(5)fastest
(

Ai(r)
)

= min
w=1...m

rolling
(

paces
(

Ai(r)
)

,w
)

(6)cumfastest
(

Ai(r)
)

= min
k=1...i

fastest
(

Ai(r)
)

Table 1   The features used in the FP model for a given week of training (w); that is, these features are 
computed based on training up to an including week w 

Feature Description

1 Fastest-pace-1500 m(w) The runner’s fastest 1500 m pace so far up to week w
2 Fastest-pace-5 k(w) The runner’s fastest 5 km pace so far up to week w
3 Fastest-pace-10 k(w) The runner’s fastest 10 km pace so far up to week w

9  www.​train​ingpe​aks.​com

http://www.trainingpeaks.com
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at different points in their training programme by computing FTP for specific time 
durations, so that FTP

(

Ai(r), t
)

 is the fastest pace that r has run for t minutes dur-
ing training, up to and including activity, Ai(r) . We compute four FTP values cor-
responding to 45-, 50-, 55-, and 60-min durations leading to the four features shown 
in Table 2.

In this way the FTP status of a runner during training is represented by a 
sequence of these FTP values, which can be expected to change (improve) as train-
ing progresses, all going well. As with the fastest-pace models, these fastest paces 
over given times are assumed to have occurred naturally during a runner’s training, 
although training programmes often include time-trials that will match some or all 
of the above durations.

4.1.3 � VO
2
max model

As mentioned previously, VO2max is another common fitness metric. It measures 
the maximal rate of oxygen consumption during incremental exercise (Noakes 2003; 
Daniels 2013; Billat et al. 1994). VO2max is usually determined in a laboratory set-
ting, as part of an incremental treadmill test, using oxygen mask to measure oxy-
gen uptake volume (Billat et al. 1994), but it can also be estimated using a recent 
maximal effort pace by the Daniels and Gilbert formula (Daniels 2013) shown in 
Eqs. 7–9; t is time in minutes and v is velocity in metres per minute.

We can use this to estimate the VO2max of a runner based on their fastest pace (con-
verted to velocity) for distances in the range 1500 m to 30k m (in 100 m intervals), 
and from these we compute mean and standard deviation values to use as the run-
ner’s current VO2max estimate. In other words, this model uses the two features 
shown in Table 3.

(7)
max(t) = 0.8 + 0.1894393 ⋅ e−0.012778⋅t

+ 0.2989558 ⋅ e−0.1932605⋅t

(8)
VO2(v) = − 4.6 + 0.182258 ∙ v

+ 0.000104 ∙ v2

(9)VO2 max(t, v) =
VO2(v)

max(t)

Table 2   The features used in the FTP model for a given week of training (w); that is, these features are 
computed based on training up to an including week w 

Feature Description

1 Ftp-45(w) The runner’s fastest pace for 45 min so far, up to week w
2 Ftp-50(w) The runner’s fastest pace for 50 min so far, up to week w
3 Ftp-55(w) The runner’s fastest pace for 55 min so far, up to week w
4 Ftp-60(w) The runner’s fastest pace for 60 min so far, up to week w
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4.2 � Critical velocity (CV) model

The connection between fatigue and exercise performance is linked to the concept 
of critical power (CP) or critical velocity (CV), which describes the tolerable dura-
tion of intense exercise. In running, the relationship between speed (S) and time to 
exhaustion, Tlim , is hyperbolic over different time periods (Muniz-Pumares et  al. 
2019). The asymptote of the hyperbola is known as critical speed (CS) and the cur-
vature constant (D’) represents the finite amount of exercise that can be performed 
faster than CS. Most athletes can run at their CS for approximately 20–45 min, and 
CS and D’ have been used as predictors of fitness (Florence and Weir 1997); see 
also (Emig and Peltonen 2020) for related ideas.

Briefly, CS and D’ can be derived directly from the slope and y-intercept of a linear 
regression line fit between D and Tlim as in Eq. 10. Then, by using the cumulative 
fastest paces over various distances (1500 m–30 km), at a given point in training, 
we can estimate Tlim for each of these distances. For example, if the fastest pace 
for a runner over 3 km is 4 min/km, then their Tlim for 3 km is 12 min (or 720 s). 
Obviously this is a Tlim estimate only and is all but guaranteed to be an overesti-
mate, since it was likely drawn from an activity where the runner did not run 3 km 
to exhaustion. Nevertheless, if we utilise our fastest paces in this way, then we can 
use a linear regression to estimate CS and D’ at different points in training; see also 
recent work by Smyth and Muniz-Pumares (2020) albeit using a more limited set of 

(10)D = D� + CS ⋅ Tlim

Table 3   The features used in 
the VO

2
max model for a given 

week of training (w), based on 
the fastest paces over distances 
between 1500 m–30 km; that 
is, these features are computed 
based on training up to an 
including week w 

Feature Description

1 Mean VO
2
max(w) The run-

ner’s mean 
VO

2
max , 

so far, up to 
week w

2 STD VO
2
max(w) The runner’s 

standard 
deviation of 
VO

2
max

Table 4   The features used in the 
CV model for a given week of 
training (w), based on the fastest 
paces up to an including week w 

Feature Description

1. CS(w) The runner’s CS, 
based on fastest 
paces up to week w.

2. D’(w) The corresponding 
D’ value, based on 
fastest paces up to 
week w.
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distances during the estimation of Tlim . Thus, for a given week w, the CV model uses 
two features as shown in Table 4.

4.3 � Evaluation

We evaluate these four models based on their ability to predict marathon perfor-
mance, which is a common approach for evaluating other types of fitness estimates 
(Florence and Weir 1997).

4.3.1 � Methods

The Strava dataset is used for this evaluation. We select 1,857,698 training (and 
race) activities logged by 31,221 runners (74% male, 26% female) who competed 
in Dublin, London, and New York Marathons during the period 2014–2017. The 
dataset includes all of the training activities associated with these runners for the 16 
weeks prior to each race. As mentioned in Sect. 3.2, each activity comprises a list of 
timing and pacing data at 100m intervals.

For each training week, we compute our four fitness models using the cumulative 
fastest paces observed up until that point in training. We convert their fitness esti-
mates into weekly representations (one for each of the four fitness models) cover-
ing the training period from 11 weeks prior to race-day up until race-day. We focus 
on this 11 week period because most runners have begun their training in earnest 
11 weeks from race-day, and because it also means that we should have reasonably 
stable fastest-pace estimates by week 11, based on up to the previous 5 weeks of 
training. Each runner is associated with four separate instance representations—one 
for each of the fitness models, FP, FTP, VO2max , and CV—with each representation 
comprising a set of weekly fitness features plus a runner’s age, sex, and marathon 
finish-time. We also produce a fifth representation (CB) based on the combination of 
the four separate representations by concatenating their weekly fitness features.

To predict a runner’s marathon time, we test Bayesian ridge (BR), decision trees 
(DT), elastic nets (EN), gradient boosting (GB), linear regression (LR), and random 
forests (RF) methods, using the standard SciKitLearn10 implementations of these 
machine learning approaches. For this experiment we did not engage in extensive 
hyper-parameter tuning and the following default configurations were used: BR with 
max iterations = 300 ; DT with mean squared error used to measure the quality of 
the splits; EN with � = 1 and L1 ratio = 0.5 ; GB using least squared regression loss 
function, a learning rate of 0.1, and 100 boosting stages; RF with n = 100 estima-
tors and with mean squared error used to measure the quality of the splits.

A standard tenfold cross-validation approach is used to evaluate the prediction 
error: 10% of training instances are used as a test set with their fitness features (plus 
age and sex) used to predict marathon time, using a model trained on the remaining 
90% of instances, and being careful to ensure that the test runner has none of their 

10  https://​scikit-​learn.​org

https://scikit-learn.org
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own instances in the training set. Then, we compare the predicted finish-time to the 
actual marathon time of the test runner to calculate the prediction error from the 
mean absolute difference between the predicted and actual finish-times; these errors 
are averaged across the tenfolds for each algorithm and representation.

4.3.2 � Results

Table 5 shows the mean prediction error for each combination of representation and 
algorithm, averaged over all training weeks. Briefly, the combined CB representa-
tion offers the lowest prediction error ( �R = 16.19 mins), averaged across individual 
algorithms, while the GB algorithm offers the lowest prediction error ( �A = 15.17 
mins), averaged for representations. The differences between all of these mean pre-
diction errors are statistically significant ( p < 0.01 ) based on a one-tailed ANOVA 
and Tukey’s range test. Notably, the best prediction error for any given representa-
tion is always associated with the GB algorithm; once again these individual differ-
ences in prediction error for GB are all statistically significant at p < 0.01 , in com-
parison with all other combinations of algorithm and representation.

The single best performing predictor (GB-CB) is capable of estimating marathon 
times that are within 14.34 mins ( < 6% ) of actual race-times. As a baseline refer-
ence, this compares favourably with state-of-the-art marathon predictors (Keogh 
et al. 2019), which are associated with an average error of 14.35 mins, based on a 
set of 19 different prediction formulas, many of which require costly, laboratory-
based measures of fitness and ability. That our approach achieved similar prediction 
performance without the need for laboratory testing speaks to the potential of the 
proposed approach, and it provides a significant benefit for recreational runners by 
using their raw training data without the need for laboratory controlled testing. As 

Table 5   The average absolute 
prediction error (in minutes) 
based on prediction algorithm 
(rows) and fitness model 
representations (columns)

The prediction algorithms are: Bayesian ridge (BR), decision trees 
(DT), elastic nets (EN), gradient boosting (GB), linear regression 
(LR), and random forests (RF). The fitness model representations 
are: the combined representation (CB), the critical velocity model 
(CV), the fastest pace model (FP), the functional threshold pace 
model (FTP), and the VO

2
max model (VO2). The mean predic-

tion error by algorithm and representation are shown as �
A
 and �

R
 , 

respectively
The italics indicate the means of the errors when aggregated by rep-
resentation or algorithm

CB CV FP FTP VO2 �
A

BR 15.24 21.01 16.20 16.83 30.97 20.05
DT 20.92 21.70 23.01 23.32 21.14 22.02
EN 16.06 25.11 17.39 17.59 31.88 21.60
GB 14.34 14.89 15.79 16.17 14.65 15.17
LR 15.24 21.01 16.20 16.83 30.97 20.05
RF 15.35 16.23 17.14 17.20 15.86 16.35
�
R

16.19 19.99 17.62 17.99 24.24 19.21
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another useful benchmark, in a related study by Berndsen et al. (2017), the average 
error for the classic Riegel race prediction formula (Riegel 1981), which is often 
used by recreational runners, was approximately 10% (>23 min) across a similar 
range of finish-times to those used here.

In Fig.  2 we plot prediction error by week of training using GB with each of 
the fitness representations. Errors steadily reduce as training progresses, suggesting 
more and more accurate estimates of runner fitness, at least in terms of their ability 
to complete the marathon. Note how 10 weeks before the race, the GB-CB model 
is able to predict marathon finish-times with an error of about 15 minutes. CV and 
VO2max achieve this level of accuracy 3 weeks later. The FP representation achieves 
it another 3 weeks after that while the FTP representation never achieves this accu-
racy level at all. These differences are important. The benefit of an accurate early 
fitness estimate is that it provides the basis for a more optimal training plan that is 
tuned to the ability of an individual runner. It helps a runner to determine how they 
should train, and early and accurate fitness estimates are key to this, so that there is 
enough time to take advantage of this training. In other words, the ability to produce 
an accurate fitness model early in training can provide an important foundation for a 
whole host of future recommendations, from the fine-tuning of training to goal-time 
prediction and pace planning.

4.4 � Discussion and limitations

This work demonstrates how raw activity data can be used to directly estimate sev-
eral common fitness models. The resulting models offer reasonably accurate esti-
mates of fitness, even though there are no guarantees that runners in our data have 
performed suitable time trials or similar maximal effort tests during normal training. 
Of course, it will be important to conduct live-user trials to compare these estimates 
to laboratory measures and such a live-subject trial is currently underway.

In relation to the race-time predictions, it is worth noting that more accurate pre-
dictions can be achieved by incorporating a greater range of features during predic-
tion; the aim in this case-study was to provide evidence to support the effectiveness 

Fig. 2   The absolute prediction error (minutes) by weeks before race-day using the GB algorithm and for 
different fitness models, including the combined (CB) fitness model
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of fitness model prediction more than it was to develop a best-in-class race-time 
prediction tool. For example, recent work by Smyth and Cunningham (2018a) and 
Emig and Peltonen (2020) has demonstrated superior race-prediction error rates 
in the 2-3% range, while incorporating training features into a similar approach 
reduced error rates to approximately 5% (Berndsen et al. 2020d). The point is that 
the ability to estimate physiological models of fitness can be expected to drive such 
prediction improvements, in concert with other predictive features.

An important limitation is that these techniques rely on pacing data only—and 
relatively coarse-grained (100m) pacing data at that—and there is further room for 
improvement by leveraging additional types of activity data, such as heart-rate data, 
with the potential to significantly improve the accuracy of models such as VO2max 
and CV in particular.

5 � Case‑study 2—recommending personalised training sessions

One of the most challenging aspects of training for a marathon, especially for nov-
ices, is knowing how to train: knowing how often to run, how far to run, and how 
fast to run. Training programmes usually involve a complicated mix of short/long 
and slow/fast sessions and most runners will select one based on their goal-time. 
While it would be wrong to view these as unsophisticated training plans—after all 
they are usually designed by experienced coaches and as such bring a wealth of 
coaching experience and a knowledge of human physiology to the task—they are 
nevertheless fairly blunt instruments because they typically target a wide range of 
finish-times (e.g. 4–5 h) and are rarely tailored to the individual runner. It is not 
surprising then, that the idea of a personalised training plan, one that is tailored to a 
specific runner and that adapts to their training progress, has long been an ideal for 
many marathoners. But without a coach, such personalised plans are likely out of 
reach for most runners. And automatically generating such plans is far from trivial, 
because it requires a deep domain model combining human physiology with knowl-
edge of the particular requirements of the marathon distance.

We discuss one attempt at generating personalised training plans in this case-
study, by reusing the training of similar runners. Unlike the previous case-study, 
which represents original, as yet unpublished research, this case-study summarises 
recently published work (Feely et al. 2020b, a), which is included here because it 
adds another dimension to our vision of how recommender systems can be used to 
support marathon runners.

5.1 � A case‑based reasoning approach to training recommendation

Case-based reasoning solves new problems by retrieving and reusing the solutions 
to similar problems that occurred in the past, and CBR approaches have proven to 
be especially useful in domains, and for tasks, which lack a strong, complete domain 
model, but where an abundance of past cases can be found. This is true for marathon 
running. The recorded activities of runners, aggregated by week or month, constitute 
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an abundance of training cases, which can be reused to support the training of simi-
lar runners in the future.

5.1.1 � From training sessions to training cases

To test this hypothesis, we have developed a CBR system for finish-time prediction 
and training recommendation based on cases composed of a runner’s weekly train-
ing activities and using the key features shown in Table 6

These features were used because they are commonly associated with aspects of 
marathon training (Doherty et al. 2019). For example, the duration of long-runs is 
often cited as an important success criteria, while long-distance pacing typically 
correlates with marathon times. In addition to these features, which represent the 
current week of training, we also calculate the corresponding features for the train-
ing period up to and including the current week (e.g. longest run distance to date). 
Thus, for each runner r, we can generate a feature-based description for training 
week w, F(r, w) as shown in Fig. 3 for a runner in week 12 of their training.

Next, we generate a case, C(r,  w), representing r’s training during week w, by 
associating F(r, w) with their marathon time, MT(r), and also a pointer to their next 
week of training, C(r,w − 1) ; see Eq. 11. These cases can be used in two ways: (a) 
to predict a runner’s marathon time at week w, using the MT components of similar 
cases; and (b) to recommend next week’s training schedule, using the C(r,w − 1) 
component of similar cases for a revised goal-time ( MT ± �).

(11)C(r,w) =
{

F(r,w),MT(r),C(r,w − 1)
}

Table 6   The features used in training cases for the prediction of marathon time and for recommending 
tailored training plans

Feature Description

1 Sex The runner’s sex (male or female)
2 Num sessions The number of sessions in the current week
3 Total distance Total distance in kms for the current week
4 Mean pace Mean pace for the week in mins/km
5 Longest run distance Longest run distance in the current week
6-8 Fastest 1 km/5 km/10 km Fastest 1/5/10 k paces for the current week
9-11 Slowest 1 km/5 km/10 km Slowest 1/5/10 k paces for the current week
12 Longest run distance to date Longest distance so far in training
13-15 Fastest 1 km/5 km/10 km to date Fastest 1/5/10 k paces so far
16-18 Slowest 1 km/5 km/10 km to date Slowest 1/5/10 k paces so far
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5.1.2 � Generating training recommendations

In this case-study, we focus on the recommendation task (R) rather than the pre-
diction (P) task; see (Feely et al. 2020b) for further information. Consider a run-
ner r in week w of a training programme targeting a finish-time of t minutes. If 
r wishes to continue to target this finish-time, then they can continue to follow 
their existing training programme, but what if they decide to target a more ambi-
tious (or less ambitious) time, t ± � ? How should r adjust their training for the 
coming week(s)? Our solution is to use their training case for week w, C(r, w), 
as a query into a case base of other cases for week w, to retrieve the most similar 
case for another runner who achieved a t ± � finish-time in their target marathon.

To do this we identify a subset of week w cases (based on runner sex) with 
finish-times within 1 minute of t ± � , and from these cases we select the single 
case that is most similar to C(r, w) using a standard Euclidean distance metric, 
based on the normalised features of the query and these candidate cases. In this 
way, our target runner r will be recommended a new week of training from the 
training of a similar runner who achieved r’s modified goal-time.

It is worth noting that we select the single most similar case because we wish 
to use its training sessions for week w − 1 (the next week of training). It is rea-
sonable to consider selecting more than one case, such as the k most similar 
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Fig. 3   An overview of a case-based reasoning system for supporting marathoners during their training 
by predicting (P) their estimated marathon time and by recommending (R) a tailored training plan for 
an adjusted marathon time. Note that although a runner’s age and weight are shown in this figure, these 
features are not used in the results presented here as they did not substantially improve on prediction 
accuracy
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cases. The complication with this is that it introduces the additional problem of 
how to combine different weeks of training prior to recommendation. The train-
ing weeks of the top k cases may suggest different numbers of sessions on dif-
ferent days of the week, which will complicate the combination process. In the 
future it will be important to explore this further, but for now we focus on the 
single most similar case.

5.1.3 � From single‑week to multi‑week cases

So far the focus has been on matching weekly training cases based on a single 
(current) week of training, but since marathon programmes are typically designed 
around 4-week training blocks, it is also worth considering a longer, 4-week 
training period during recommendation. To do this we use an ensemble approach 
to generate recommendations based on each of the 4 most recent weeks of train-
ing. Thus, for example, for week w = 10 , we identify 4 similar cases using the 
case bases for weeks 10, 11, 12, and 13, and the final recommendation is based on 
the most similar of these cases.

One problem with this approach is that training plans are not always in sync, 
because training volumes ramp up and down during each training block. To 
deal with this, we implement a variation of this 4-week ensemble by ordering 
the 4 training weeks in ascending order of training-load. For example, for week 
w = 10 , we use cases from weeks 10, 11, 12, 13 ordered by their longest run dis-
tance. So the w − 3 case base contains the training week with the shortest long-
run, the w − 2 case base contains the next shortest long-run, etc. The advantage of 
this is that it facilitates a better alignment between the training weeks of runners 
over a 4-week period and in the work of Feely et al. (2020b) this has proven to be 
a more effective approach than either the single-week approach or the unordered 
4-week ensemble.

5.2 � Evaluation

Properly evaluating training plan recommendations requires a live-user trial in 
which runners at least provide their opinions of the recommended training plans, 
if not avail of them as part of their training so that we can test the eventual race 
outcome. While this is planned for the future, it is beyond the scope of the present 
work. In the alternative, we present a more conventional off-line evaluation, using 
the training data from real runners, to demonstrate the reasonableness of these 
training plan recommendations.

The main Strava dataset was used, but this time focusing on a subset of 5000 
female runners who completed their marathon in 3–5 h and 15,000 male run-
ners who completed their marathons in up to 5 hours. We use a standard tenfold 
cross-validation to generate training recommendations for each runner r, training 
week w and for −20 ≤ � ≤ 20 minutes, and we evaluate the recommended train-
ing weeks by comparing their total weekly training volume and average weekly 
pace to the target runner’s volume and pace for their default next week of training 
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( � = 0 ). We should expect the recommendations generated for faster target finish-
times ( 𝛿 < 0 ) to have a greater training volume and a faster average pace, and 
vice versa for slower ( 𝛿 > 0 ) target finish-times.

5.2.1 � Results

The results of the experiment are summarised in Figs.  4 and  5 for recommen-
dations generated at weeks 4, 6 and 8 of training, using the ordered 4-week 
approach described above; additional results are presented in Feely et al. (2020b). 
In general, the results are consistent with expectations. When runners request 
training plans that are faster than their current predicted finish-time ( 𝛿 < 0 ), then 
mean weekly pace tends to speed-up (a negative % difference as in Fig. 4), while 

Fig. 4   The difference in mean weekly pace (mins/km) for training plans based on adjusted goal-times 
for a men and b women during weeks 4, 6, and 8 of training. Note 𝛿 < 0 implies a goal-time that is delta 
minutes faster than the runner’s current predicted time while a 𝛿 > 0 indicates a slower pace 

Fig. 5   The difference in mean weekly distance (km) for training plans based on adjusted goal-times for 
a men and b women during weeks 4, 6, and 8 of training. Note delta< 0 implies a goal-time that is delta 
minutes faster than the runner’s current predicted time
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total weekly distance tends to increase (a positive % difference as in Fig. 5). The 
reverse is true when they request a plan for a slower marathon time.

The changes in pace exhibit a very strong correlation with � ( R2 > 0.92 for 
men and women). The changes in weekly distance are also strongly correlated 
with � for men ( R2 > 0.90 ), but less so for women ( R2 > 0.66 on average). The 
relative changes in distance tend to be greater (for a given � ) than the correspond-
ing changes in pace.

5.3 � Discussion and limitations

While not definitive, these results are encouraging, especially given the challenges 
inherent in this particular recommendation task; conventional recommendation tech-
niques have largely focused on recommending simple, atomic items (books, music, 
movies) rather than complex items, such as training plans, which are made up of a 
complex mix of interacting elements. The fact that we can generate training plan 
recommendations that are at least consistent with a runner’s modified goals (in terms 
of training volume and pace) is an encouraging starting point. And since these plans 
are based on the real training plans of similar runners, this increases the chances that 
they will be acceptable to runners.

That being said, it is important to consider the additional risk associated with this 
form of recommendation if, for example, the most similar runner (used as the basis 
for next week’s training) is not following a suitable marathon programme. Then, the 
recommended training plan may not be suitable for the target runner and may do 
damage to their training. This is not explicitly accounted for in this case-study and, 
indeed, may be exacerbated by the focus on a single most similar case; reusing and 
combining the training plans of k similar runners may help in this regard. In related 
work by Berndsen et al. this issue is addressed more directly (Berndsen et al. 2020c) 
by accounting for training periodisation, for example, and by nudging users towards 
training behaviours that are more similar to expertly designed plans.

Certainly a more thorough evaluation is needed to build on this initial work. It 
remains to be seen, for example, how receptive runners are to these recommenda-
tions during their own training. How can such recommendations be justified and 
explained? How should the risks be communicated? Is there evidence that by adapt-
ing their training as per the recommendations that they tend to achieve a better out-
come? These issues require live-user studies over extended periods of training and 
this remains an important objective for future work.

6 � Case‑study 3—estimating injury risk during training

As training progresses most runners will begin to feel the burden of week after week 
of longer, faster, more intense sessions. Most training plans are designed to gradu-
ally increase training load in a way that is safe for most runners but great care needs 
to be taken to avoid over-training and the injury risk that this entails. This does not 
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always work out and so-called running-related injuries (RRIs) are one of the most 
common reasons why people fail to make it to the start-line (Clough et al. 1987).

In this original case-study we use the Strava activity dataset from Sect.  4 
(1,857,698 activities for 31,122 runners of the Dublin, London, and New York 
marathons during the 2014-2017 period) to estimate the risk of a runner develop-
ing a RRI, so that we can alert runners if they are at a greater risk than expected. 
If they are at greater risk, then runners can choose to temporarily reduce their 
training load or intensity. Alternatively, they can supplement their training with 
more active recovery (stretching, strength and conditioning, better sleep, etc.).

In general, injury prediction is a challenging task (Carey et al. 2017; Kampakis 
2016; Rossi et al. 2018) but it is especially demanding here for at least two rea-
sons. First and foremost, we do not have any information about a runner’s injury 
history or status, which can be an important factor when predicting future injuries 
(Hulme et al. 2017; van der Worp et al. 2015; Saragiotto et al. 2014). The second 
problem is that the activity dataset does not include explicit injury data, so we 
cannot even tell if the runner becomes injured during their training. Instead, we 
use disruptions in a runner’s training activities—extended breaks in training—as 
a proxy for likely injuries.

In the following, we describe how we identify and use these training disrup-
tions to predict future injuries and to estimate injury risk, using the Strava dataset. 
Note that we do not attempt to distinguish between different types of injuries—
soft-tissue, overuse, accidental, etc.—mainly because the data do not support it.

6.1 � Using training disruption as a proxy for injury

For some training activity Ai(r) we use next(Ai(r)) to denote the number of days 
between activity Ai(r) and the next activity, Ai+1(r) as shown in Eq. 12; in what 
follows we may refer to Ai(r) as Ai where the correspondence to runner r is 
unambiguous.

While short breaks of up to a week or so might occur for reasons other than injury 
(busy at work, travelling, illness, lack of motivation, etc.) longer breaks of more than 
10–14 days are likely to be more reliable indicators of some injury-related issue that 
is preventing the runner from training. Thus, we are interested in identifying sec-
tions of a runner’s training where the next training activity is more than n days in the 
future, for n = 7, 10, 14 , as in Eq. 13; break

(

Ai(r),m, n
)

 is true, if and only if there 
exists some future training activity Aj(r) , within m days of Ai(r) , such that Aj(r) rep-
resents the beginning of a break of more than n consecutive days.

(12)next
(

Ai(r)
)

= Ai+1.d − Ai.d

(13)break
(

Ai(r), n,m
)

⟺ ∃Aj ∶ i < j < i + m ∧ next
(

Aj

)

> n
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6.2 � Representing activity features

Next we define the features that will be used to predict these disruptions. We pro-
pose four groups of features as follows:

6.2.1 � Baseline features (B)

Baseline features (Table  7) include the runner’s age (in years), their sex (male 
or female), and days-from-race, the number of days that the current activity is 
from the target race; previous studies have reported varying relationships between 
RRIs and age and gender (Agresta et al. 2018; Napier et al. 2018).

6.2.2 � Ability features (A)

As runners train, their performance over a range of distances should improve, but 
the rate of these improvements may signal over/under training, which will likely 
influence injury risk. Our instances include three features based on the fastest 
pace observed for a runner over 1 km, 5 km, and 10 km distances, as shown in 
Table 8.

These are similar to the fastest-pace features used in Sect.  4, and these par-
ticular distances have been chosen because they represent likely time-trial dis-
tances for runner during training: many training programmes will include 5k and 
10k races, for example. These features contain no explicit information about any 
training disruptions but they are included on the grounds that the ability of a run-
ner may help to predict their risk of disrupted training; for example, faster, more 
able runners are likely more experienced and more diligent in their training, and 
as such they may experience a lower likelihood of a training disruption.

Table 7   The baseline features 
(B) used during injury 
prediction and risk assessment

Feature Description

1 Sex The runner’s sex (male or female)
2 Age The runner’s age in years
3 Days-before-race The number of days until the target race

Table 8   The ability features (A), based on fastest paces during training, used during injury prediction 
and risk assessment

Feature Description

1 Fastest-pace-1 k(d) Runner’s fastest 1 k pace up to d days before race-day
2 Fastest-pace-5 k(d) Runner’s fastest 5 k pace up to d days before race-day
3 Fastest-pace-10 k(d) Runner’s fastest 10 k pace up to d days before race-day
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6.2.3 � Disruption history features (H)

Whether or not a runner has already experienced a training disruption, may pre-
dict further disruptions in the future; for example, (Hulme et  al. 2017; van der 
Worp et  al. 2015; Saragiotto et  al. 2014) conclude that a history of running-
related injury is a risk factor for future injuries. Hence, we include two features 
related to past disruptions as shown in Table 9.

6.2.4 � Training load features (T)

Training load is believed to be an especially significant factor when it comes to 
whether a runner is likely to become injured (Thornton et al. 2017; Malisoux et al. 
2015). We measure training load using the acute-chronic ratio (ACR) metric (Barros 
et al. 2017; Bowen et al. 2019). ACR is usually defined as a runner’s current weekly 
training load (acute load) divided by the 4-week rolling average of their weekly load 
(chronic load). Thus, an ACR > 1 means that their current week has a higher load 
than their 4-week average. We use weekly training volume (total distance) as a basic 
estimate of training load, leaving more sophisticated measures for future work. For 
this study we calculate three ACR features to reflect different chronic-load periods 
as shown in Table 10.

By considering these variations on how the chronic training load is calculated, we 
can obtain a more detailed picture of how a runner’s training load has evolved over 
an extended period of time. Also, recent work has speculated about the need to con-
sider changes in training load over extended periods of time (Damsted et al. 2018) 
when it comes to injury prediction.

Table 9   The disruption history 
features (H) capture whether a 
runner had a previous disruption 
up to d days before race-day and 
the number of days since such a 
disruption if one occurred

Feature Description

1 Has-prev-break (d) True if a runner 
had a break up 
to d days before 
race-day

2 Days-since-break (d) Number of days 
since the most 
recent target 
break

Table 10   The training load features (T) estimate different training load ratios based on the ratio between 
the current week’s training load and the average training load of the previous 4, 6, or 8 weeks

Feature Description

1 Acr-1w-4w(d) The current week’s load divided by the mean of the last 4 weeks
2 Acr-1w-6w(d) The current week’s load divided by the mean of the last 6 weeks
3 Acr-1w-8w(d) The current week’s load divided by the mean of the last 8 weeks
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6.3 � Evaluation

For evaluation purposes, we frame our approach as an imbalanced binary classifica-
tion task (Saito and Rehmsmeier 2015)—given some target activity Ai(r) the task 
is to predict whether the runner will experience a training disruption of > n days at 
some point in the next m days, for different values of n and m.

6.3.1 � Methods

We evaluate performance by using 3 representative machine learning algorithms 
(standard Scikit-learn implementations)—logistic regression (LR, using an L2 norm 
for penalisation, with a stopping tolerance of 0.0001, and a regularisation strength of 
1), random forests (RF, with 100 estimators), and Gaussian Naive Bayes (NB)—to 
predict breaks of varying durations ( n = 7, 10, 14 days ) and for different look-ahead 
periods ( m = 7, 14, 21, 28,∞ days11), using the B, A, H, T feature sets, and for dif-
ferent training dataset sizes (50k, 100k, 500k, all 1.8m Strava instances).

For each configuration we run a tenfold cross-validation to train and test models 
from the data using each algorithm; for example, in one configuration, we train and 
test a random forest model to predict training disruptions of > 14 days up to race-
day ( m = ∞ ) using training datasets of 100k observations.

Since this work is an example of an imbalanced machine learning problem, with 
positive instances—those indicating the presence of a training disruption—in the 
minority, we use random undersampling (He and Garcia 2009; Chawla 2010) to re-
balance the number of positive and negative training instances, by deleting negative 
instances at random; in line with best practice resampling is performed after split-
ting training and test data during each cross-validation fold.

In this evaluation, we consider two classification outcomes: (1) the accuracy of 
the predicted class, to determine how often we can correctly predict whether a run-
ner will succumb to injury in the future; and (2) the probability of the positive class 
as a type of injury risk score, which is closely related to the type of lift analysis that 
is often used to evaluate the efficacy of churn prediction models (Hung et al. 2006) 
or marketing response rates (Piatetsky-Shapiro and Masand 1999).

6.3.2 � Results

Figure 6 shows the classification accuracy results for each algorithm, break-type (n), 
and look-ahead (m), using three common accuracy metrics, precision, recall, and F1. 
It is worth noting that in this type of imbalanced classification task, where there are 
many negative instances, precision is widely accepted as the most suitable evalua-
tion metric (Davis and Goadrich 2006; Saito and Rehmsmeier 2015). Precision eval-
uates the fraction of positive predictions that are correct—essentially estimating the 
probability of correctly classifying training disruptions of a given duration—which 

11  Note that here ∞ denotes the period up until race-day.
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is not effected by the number of negative examples. For completeness, we also show 
the recall and F1 results.

In each graph, the solid lines represent the average scores (whether precision, 
recall, or F1), computed over all of the feature sets in our evaluation, whereas the 
dotted lines show the corresponding scores for the single best model in each trial; 
that is, for a given algorithm, break-type, and look-ahead. For example, for RF we 
can see how the precision of predicting short ( > 7d ) training disruptions up to 60 
days from race-day, is just under 0.5, on average over all models, but among these 
models the best precision we obtain is just over 0.5, or about 10% better than the 
mean.

These results suggest that the classifiers are not performing well enough to be use-
ful in practice: precision rarely exceeds 0.5 and when it comes to predicting longer 
training disruptions ( > 14d)—those most likely to be associated with injury—then 
precision typically falls below 0.1 regardless of look-ahead. In other words, when 
the classifier predicts that a runner will experience a > 14-day training disruption, 
then it is correct less than 10% of the time. This is not accurate enough to be useful 
to runners and, although precision improves for shorter disruption durations, these 
are less likely to be reliably associated with genuine injuries. Disappointing as these 
results are, they are not so surprising given the limited information that is available 
in the activity dataset.

Nevertheless, these results do not necessarily mean that there is no value in the 
approach. For example, when we use the probability of the positive class as a type of 
injury risk score we find a strong correlation between the positive class probabilities 

Fig. 6   The precision, recall, and F1 results for classifiers (NB, RF, LR), averaged overall all dataset sizes 
(50 k, 100 k, 500 k, 1.8 m), for different break-types ( > 7d , > 10d , > 14d ), and by look-ahead days (7d, 
14d, 21d, 28d, and ∞ , which means up until race-day)
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and the incidence of training disruptions in test data, particularly for the Spearman 
rank correlation coefficient and RF, which always enjoys correlation values in excess 
of 0.9; the Spearman values tend to be higher than Pearson because the relationship 
between the positive probabilities and the incidence of training disruptions tends to 
be nonlinear. This is evident in Fig. 7, which shows the correlation results for each 
look-ahead value, using the full complement of data (1.8m instances) for each algo-
rithm and break-type.

6.4 � Discussion and limitations

In this case study, the aim was to support runners during their training by alerting 
them if their training patterns suggest a higher risk of injury. Ideally we wanted to 
be able to reliably predict whether a given training pattern was likely to lead to a 
future injury, but the results presented did not support this. However, the positive 
(injury) class probability score, produced as a side-effect of classification, proved to 
be strongly correlated with the likelihood of future injury and, as such, may provide 
a reliable measure of injury risk. The benefit of this is that it makes it possible to 
inform runners about their current level of injury risk, using alerts or notifications 
such as the following or other visual indicators:

Alert: your current injury risk score is 0.8. At least 40% of runners with a 
similar risk score go on to experience a training disruption of >14 days before 
race-day.

Alert: your current injury risk score is 0.8. This means you are > 3-times more 
likely to suffer from a training disruption of > 14 days than a typical runner.

Fig. 7   The (max) correlation coefficients (Pearsons and Spearmans) between the positive class probabil-
ity scores and the frequency of break-types among runners with these scores, for the different algorithms 
and break-types
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One limitation of this work is that we are using training disruptions as a proxy for 
injuries, because our dataset does not include any explicit injury data and it is, as 
yet, unclear whether (long) training disruptions can be used as reliable proxies for 
injury. Another limitation relates to the features used for prediction. Certainly it may 
be feasible to consider additional features to model the onset and recovery from pre-
vious disruptions, either as a way to more reliably identify true injury breaks, or as 
a way to infer how a runner has recovered from previous injuries. For example, if a 
runner is becoming injured then we might expect their training patterns to change 
before the training break. If they return to training too quickly, then we might find 
that this is a stronger predictor of future injuries. Certainly these ideas are worthy of 
future consideration and may help to improve the results.

Another methodological limitation with the approach taken here is that it fails to 
properly account for runners who become injured so close to the marathon that they 
fail to participate in the race: such runners are not present in our dataset. This means 
that we cannot properly evaluate this approach when it comes to injuries that occur 
in the 1-3 weeks before a race, which are more likely to see a runner dropping out; 
the approach may work for these runners but our evaluation cannot test it. Indeed 
there may also be issues related to class skew if the frequency or nature of disrup-
tions depends on the prediction horizon (Boyd et  al. 2012). It is difficult to ana-
lyse this further, given that the current dataset is likely to be missing runners who 
become injured late in training, further highlighting the need to address this short-
coming in the current dataset. As part of future work we plan to explore whether it 
may be possible to identify runners who appear to be training for a particular mara-
thon but who fail to participate due to a late training disruption. One way to identify 
these runners might be by clustering runners based on their similarity to runners 
who are known to be training for a given marathon.

Finally, future work will explore more sophisticated estimates of training load, for 
example by using heart-rate data, when available, to determine effort and intensity. 
That being said, it is encouraging that even though we are using simple, volume-
based, estimates of training load, we can still produce a useful estimate of injury 
risk; it is also worth pointing out that while ACR proved to be a useful measure of 
training load in this instance, its general utility remains a matter of debate (Bornn 
et al. 2019).

7 � Case‑study 4—personal‑best prediction and pacing 
recommendation

In choosing case studies for this paper we have followed the chronology of a typical 
marathon runner during training: we started by estimating their early and evolving 
fitness in Sect. 4; then, we attempted to personalise their training as their race-goals 
evolved in Sect. 5; next, we monitored their training load to alert them to injury risks 
in Sect. 6. The central aim has been to get them safely to race-day. Now it is time to 
prepare them for their race and help them to secure a finish-time to be proud of and 
that does justice to their training efforts.
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Race planning is an especially important task when it comes to competing in an 
endurance event such as the marathon, because there is plenty of time for things to 
go wrong. It is rarely a good idea to turn up at the start-line without a pacing plan. 
Instead, marathon runners are advised to estimate their likely finish-time and work 
out their pacing for the different phases of the race. Some runners use a pacing plan 
for each km/mile of the race. For others, having a pacing target every 5kms or so is 
sufficient. Either way it is important for runners to calibrate their pacing with respect 
to realistic finish-time expectations. Otherwise, they run the risk of starting too fast 
and burning up before the end of the race (Smyth 2018) or even hitting the wall (Ste-
vinson and Biddle 1998; Buman et al. 2009, 2008; Berndsen et al. 2020a). On the 
other hand, without a plan they may run too conservatively, and cross the finish-line 
without feeling they have achieved their best time, leaving them disappointed and 
demoralised.

In practice, different runners will adopt different types of pacing plans. Some 
common approaches include: 

1.	 Positive Splits—runners run the first half of their race faster than the second half;
2.	 Negative Splits—runners run the second half of their race faster than the first half;
3.	 Even Splits—runners run the first half of their race in a similar time to their sec-

ond half.

Generally speaking, positive splits are much more common among recreational run-
ners—after all, it is only natural for runners to slow during the second half of the 
race—but more experienced runners often aim for even splits or sometimes nega-
tive splits. Obviously pacing will depend on course topology too, and other factors 
(temperature, wind, etc.), but all other things being equal, even splits are generally 
viewed as preferable to more extreme positive or negative splits. Certainly, large 
negative and positive splits tend to be associated with sub-optimal finish-times. In 
this final case-study we summarise recent work on predicting personal best (PB) 
finish-times, and recommending pacing plans to help runners achieve these times 
(Smyth and Cunningham 2017b, 2018a, b), using ideas from case-based reasoning.

7.1 � Using CBR to predict PBs and recommend pacing plans

Instead of using training activities, in this case-study we use past marathons race 
records as the basis for prediction and recommendation; see Sect. 3.2.2. Each mara-
thon is represented at a set of paces (mins/km) at 5km intervals plus the pace for the 
final 2.2 km as in Eq. 4 and Fig. 8a; note that in Fig. 8a we convert actual segment 
paces into relative paces calculated with respect to a runner’s mean race-pace. Then, 
for each runner with at least two races, we can identify their fastest marathon as their 
PB, and for we generate a set of cases by pairing each of their non-PB races with 
their single PB race as in Eq. 14. For example, in Fig. 8b we see a runner, r, who has 
completed three marathons ( m1,m2,m3 ) with m2 as their PB, leading to two cases, 
c(r,m1,m2) and c(r,m3,m2).
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Thus, each case represents the progression of a runner, from some non-PB mara-
thon finish-time to a PB finish-time, encoding the different pacing profiles of the 
non-PB and PB races. Then, given a new target runner, trying to achieve a new PB, 
and with some prior non-PB marathon, we can use their non-PB as a query into the 
case base to retrieve the k most similar cases—we use a simple cosine similarity 
metric—based on their non-PB pacing profiles and finish-times; we also separate 
the cases for male and female runners as performance and pacing differs between 
the sexes. The resulting k cases have similar non-PB races to the target runner and, 
as such, their subsequent PBs may be informative with respect to the target runner’s 
PB prospects.

In this way, the PB races in these k similar cases can be used as the basis for PB 
prediction and pacing plan recommendation. To obtain a PB prediction for the target 
runner we use the finish-times of the PB races in these k cases. To obtain a pacing 
plan recommendation we can use the pacing plans from the PB races. There are sev-
eral ways to combine these PBs races: 

1.	 Best—The simplest approach is to focus on the single best case (the case with the 
fastest finish-time) and use its PB finish-time or pacing plan directly.

2.	 Mean—Another approach is to compute the mean PB finish-time or the mean PB 
pacing plan from these k similar cases; we use a similarity-weighted mean for this 
calculation.

3.	 Even—The third option is to reuse the finish-time and pacing plan from the 
similar case with the most even pacing profile; this is based on the idea that even 
pacing is usually considered to be an optimal pacing strategy.

7.2 � Evaluation

To evaluate these ideas we use the marathon dataset from the London Marathon, 
using public race records from 2011–2016. Each race record includes 5km pacing 
and there are 5390 unique runners who have completed at least three London mara-
thons (37% female) in this dataset—we use a minimum of three races so that we can 
select each runner’s PB from at least three races—leading to 12,968 unique cases; 
on average these runners are associated with 3.4 races.

7.3 � Methods

We implement a form of tenfold cross-validation, selecting 10% of cases to use as 
target/test problems to be solved and using the remaining 90% of cases as our case-
base. However, since runners may be associated with multiple cases we need to 
ensure that the splits are constructed in such a way that runners in the 10% test sets 
cannot participate (via another case) in the 90% of training cases; this means that the 
folds are not guaranteed to be 10/90 splits, but they are close in practice.

(14)cij(r,mi,mj) =
⟨

nPBi(r,mi),PB(r,mj)
⟩
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For each target runner we use the non-PB part of their case as a query to identify 
the k most similar cases and, using the techniques described above, generate predic-
tions and pacing plans. These are then compared to the actual PB time of the target 
runner and the actual pacing profile of the PB, to compute a percentage prediction 
error and pacing plan similarity. Lower errors mean more accurate predictions while 
higher pacing similarities mean closer pacing recommendations. These errors and 
similarities are averaged across the target runners and cross-validation folds. We 
compute separate averages for males and females and also an overall average for all 
runners.

7.4 � Results

The results (averaged over all values of k between 1 and 20) are presented in 
Fig. 9—showing separate results for the Best, Mean, and Even approaches, and for 
males, females and all runners—and based on different PB finish-times as a useful 
way to see how they vary with runner ability; further results and analysis can be 
found in Smyth and Cunningham (2017b), Smyth and Cunningham (2018b), Smyth 
and Cunningham (2017a), Smyth and Cunningham (2018a).

It should be clear how, in general, prediction accuracy and pacing similarity 
declines for slower runners; the most accurate PB predictions and closest pacing rec-
ommendations are available to faster runners ( < 3 hours); these more able runners 
are probably more experienced and run more predictable races.

It is also interesting to note how the prediction accuracy and pacing similarity 
are better for women than for men, regardless of k. This is consistent with recent 
research, which has shown how female runners tend to run in a more disciplined 
manner than their male counterparts (Trubee 2011; Deaner 2006). In short, women 
run more evenly paced races, they are less likely to hit the wall, and so their races 

Fig. 9   Prediction error (a) and pacing profile similarity (b) vs. nPB finish-time for Best, Mean, and Even 
strategies, for all runners and men and women
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unfold in a more predictable fashion. Our results suggest that this also extends to the 
matter of predicting a personal best time and recommending a bespoke pacing plan.

Overall the Mean method for combining the PBs of the k similar cases performs 
better than the Best and Even alternatives. The Best strategy turns out to be too opti-
mistic, especially for higher values of k as it defers to the fastest PB, which is gener-
ally too fast for the target runner. Conversely, the Mean approach generates signifi-
cantly more accurate predictions and more similar pacing recommendations for men 
and women, regardless of ability (PB finish-time). To place these results in context 
it is worth noting, as we did in Sect. 4, how they compare favourably to the current 
state-of-the-art in marathon time prediction, given that the mean prediction error of 
a variety of state-of-the-art models (many using sophisticated physiological feature) 
is approximately 6% while the popular Riegel prediction formula is associated with 
an average error of 10%; the average error for the Mean method is approximately 5% 
despite not using any training data nor having access to any physiological measures 
of fitness.

7.5 � Discussion and limitations

Even though this work does not have access to training or fitness data, other than 
past marathon race records, it has nevertheless been possible to generate reasonably 
accurate PB predictions and pacing plans to help runners to achieve them. In the 
future it will be interesting to combine this approach, using historical race times, 
with more recent training activities.

One immediate shortcoming of the approach discussed in this case-study is that 
it requires runners to have completed at least one previous marathon, which neces-
sarily excludes first-time marathoners who are the very runners who may be most 
in need of pacing plans. One option is to fall-back on their experiences in shorter 
race distances so that, for example, cases could be constructed by mapping 10km 
or half-marathon races to marathon PBs, thus allowing first-timers to be matched 
with a similar set of cases and recommended a suitable marathon time and pacing 
plan. Alternatively the work of Berndsen et al. (2020b) suggests a complementary 
approach using ideas from collaborative filtering to suggest a suitable pacing strat-
egy based on their current fitness level.

Another shortcoming of the approach as described is that it uses a very limited 
case representation, just the pacing values of a pair of non-PB and PB races, even if 
the runner has competed in many other marathons. Clearly there is an opportunity 
to include additional past races in each case if they exist. One approach to doing this 
was described and evaluated in Smyth and Cunningham (2018a) and led to further 
improvements in overall performance across all experimental conditions; similar 
ideas have recently been explored in sports such as speed-skating (Smyth and Wil-
lemsen 2020) and ultra-running (McConnell and Smyth 2019).

Notably, this case-study stops short of race-day. In other words, while runners 
may benefit from finish-time predictions and pacing plans prior to race-day, once 
the starter’s pistol fires they are on their own. Clearly, there is also an opportunity 
to support runners during their race. If things do not go to plan then inexperienced 
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runners might be unsure about how to adjust their pacing to compensate: continuing 
as planned might not be wise and often the right approach is to make small but early 
pacing adjustments.

In Fig.  10, we present an example of a prototype app for supporting maratho-
ners with their pre-race and in-race planning. In Fig. 10a, b the target runner selects 
previous races to use as the basis for PB prediction and pacing recommendation as 
described. Then during the race itself, progress is monitored and pacing feedback is 
provided in real-time. For example, in Fig. 10d we see that the runner is currently 
going too fast—their current pace is 5:05 mins/km but their planned pace is 5:15 
mins/km—and so they are encouraged to slow-down. We have recently described 
and evaluated an approach for this type of in-race pacing support (Berndsen et al. 
2019), by providing runners with real-time pacing suggestions at different key points 
in their race.

8 � Conclusions

For more than 20 years recommender systems have played an important and influ-
ential role in many aspects of our everyday lives, from the music and movies that 
entertain us to the books and news that inform us, and from the purchases we make 
to the vacations we take. Now, the widespread adoption of mobile computing and 
wearable sensors presents a new set of challenges and opportunities for recom-
mender systems, when it comes to understanding and supporting our real-world 
activities and interests. With fitness, exercise, and sports applications at the leading 
edge of this mobile, wearable revolution, it is natural to consider such applications 
as novel targets for machine learning and recommender systems research.

In this work, we focus on marathon running as one such application domain. 
We choose it for several reasons: it is a popular and challenging sport; it is well 
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Fig. 10   Example screens from the PB app showing the prediction/recommendation process (a, b) and the 
race-day feedback (c, d)
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represented by current fitness apps; it appeals to technologically savvy participants; 
and the sport attracts a large percentage of first-timers and novices who stand to 
reap significant benefits from targeted recommendations and advice. We have pre-
sented a broad vision for the different ways in which recommendation and machine 
learning techniques can be used to help marathon runners, particularly recreational 
marathon runners, who stand to benefit most from personalised recommendations 
and interventions to help them train more effectively and more safely. We have pre-
sented a number of concrete case studies to tackle different marathon challenges: 
estimating fitness levels during training; recommending tailored training sessions; 
predicting injury risk as training progresses; providing pacing advice to optimise 
finish-times. Initial evaluation results, based on large-scale, real-world datasets, have 
been broadly positive but now need to be tested in situ, by incorporating these ideas 
into systems and apps that can be used by runners as they train. This is an ongoing 
focus of current research.

Finally, it is worth emphasising that although the focus in this work has been on 
marathons and marathon runners, it should be clear that similar opportunities exist 
in a much wider range of sporting activities, especially other endurance sports such 
as cycling, triathlons, mountain biking, etc. Indeed, we have recently applied similar 
ideas to ultra-running (McConnell and Smyth 2019) and speed-skating (Smyth and 
Willemsen 2020), demonstrating similar successes to those found for marathon run-
ning, and we hope that this work will help to highlight the value that recommender 
systems can bring to many similar domains in the future.

Author Contributions  Author contributions are consistent with the authorship principles for UMUAI.

Funding  Open Access funding provided by the IReL Consortium. Supported by Science Foundation Ire-
land through the Insight SFI Centre for Data Analytics (12/RC/2289P2) and the SFI Centre for Research 
Training in Machine Learning (18/CRT/6183).

Data Availability  Some data are not available at this time as they subject to a data sharing agreement 
between the authors and Strava Inc. Other data, on marathon race-times, are publicly available and rel-
evant details are provided.

Declarations 

Conflicts of interest  The authors declare that they have no conflict of interest.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


829

1 3

Recommendations for marathon runners: on the application…

References

Abt, G., Lovell, R.: The use of individualized speed and intensity thresholds for determining the distance 
run at high-intensity in professional soccer. J. Sports Sci. 27(9), 893–898 (2009)

Abut, F., Akay, M.F., George, J.: Developing new VO2max prediction models from maximal, submaxi-
mal and questionnaire variables using support vector machines combined with feature selection. 
Comput. Biol. Med. 79, 182–192 (2016). https://​doi.​org/​10.​1016/j.​compb​iomed.​2016.​10.​018

Agresta, C.E., Peacock, J., Housner, J., Zernicke, R.F., Zendler, J.D.: Experience does not influence 
injury-related joint kinematics and kinetics in distance runners. Gait Posture 61, 13–18 (2018). 
https://​doi.​org/​10.​1016/j.​gaitp​ost.​2017.​12.​020

Akay, M.F., Aktürk, E., Balıkçı, A.: VO2max prediction from submaximal exercise test using artificial 
neural network. In: Proceedings of the 21st Signal Processing and Communications Applications 
Conference (SIU), pp. 1–3 (2013). https://​doi.​org/​10.​1109/​SIU.​2013.​65311​63

Akay, M.F., Inan, C., Bradshaw, D.I., George, J.D.: Support vector regression and multilayer feed forward 
neural networks for non-exercise prediction of VO2max. Exp. Syst. Appl. 36(6), 10112–10119 
(2009). https://​doi.​org/​10.​1016/j.​eswa.​2009.​01.​009

Akay, M.F., Zayid, E.I.M., Aktürk, E., George, J.D.: Artificial neural network-based model for predicting 
VO2max from a submaximal exercise test. Exp. Syst. Appl. 38(3), 2007–2010 (2011). https://​doi.​
org/​10.​1016/j.​eswa.​2010.​07.​135

Akay, M.F., Abut, F., Cetin, E., Yarim, I., Sow, B.: Support vector machines for predicting the hamstring 
and quadriceps muscle strength of college-aged athletes. Turk. J. Elect. Eng. Comput. Sci. 25(4), 
2567–2582 (2017)

Akehurst, J., Koprinska, I., Yacef, K., Pizzato, L.A.S., Kay, J., Rej, T.: CCR: a content-collaborative 
reciprocal recommender for online dating. In: Proceedings of the 22nd International Joint Confer-
ence on Artificial Intelligence (IJCAI), Barcelona, Catalonia, Spain, pp. 2199–2204. AAAI Press, 
Palo Alto, CA, USA (2011). https://​doi.​org/​10.​5591/​978-1-​57735-​516-8/​IJCAI​11-​367

Álvarez, P., Guiu, A., Beltrán, J.R., de Quirós, J.G., Baldassarri, S.: Dj-running: an emotion-based sys-
tem for recommending spotify songs to runners. In: Proceedings of the 7th International Confer-
ence on Sports Science research and Technology Support (icSPORTS), pp. 55–63. ScitePress 
(2019). https://​doi.​org/​10.​5220/​00081​64100​550063

Álvarez, P., Zarazaga-Soria, F., Baldassarri, S.: Mobile music recommendations for runners based on 
location and emotions: the dj-running system. Pervasive Mob. Comput. 67, 101242 (2020)

Anderson, T.: Biomechanics and running economy. Sports Med. 22(2), 76–89 (1996)
Barros, E.S., Nascimento, D.C., Prestes, J., Nóbrega, O.T., Córdova, C., Sousa, F., Boullosa, D.A.: Acute 

and chronic effects of endurance running on inflammatory markers: a systematic review. Front. 
Physiol. 8, 779 (2017). https://​doi.​org/​10.​3389/​fphys.​2017.​00779

Bartolucci, F., Murphy, T.B.: A finite mixture latent trajectory model for modeling ultrarunners behav-
ior in a 24-hour race. J. Quant. Anal. Sports 11(4), 193–203 (2015). https://​doi.​org/​10.​1515/​
jqas-​2014-​0060

Bassler, T.: Rehabilitation through marathon running. West. J. Med. 130(5), 466 (1979)
Bauer, J.S., Consolvo, S., Greenstein, B., Schooler, J., Wu, E., Watson, N.F., Kientz, J.: Shuteye: encour-

aging awareness of healthy sleep recommendations with a mobile, peripheral display. In: Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems (CHI’12), pp. 1401–
1410. ACM, New York, NY, USA (2012). https://​doi.​org/​10.​1145/​22076​76.​22086​00

Berlin, E., Laerhoven, K.V.: Detecting leisure activities with dense motif discovery. In: Proceedings of 
the 2012 ACM Conference on Ubiquitous Computing, Ubicomp ’12, Pittsburgh, PA, USA, Sep-
tember 5–8, 2012, pp. 250–259 ACM, New York, NY, USA (2012). https://​doi.​org/​10.​1145/​23702​
16.​23702​57

Berndsen, J., Lawlor, A., Smyth, B.: Running with recommendation. In: Proceedings of the 2nd Interna-
tional Workshop on Health Recommender Systems (HealthRecSys 2017) co-located with the 11th 
International Conference on Recommender Systems (RecSys 2017), Como, Italy, August 31, 2017, 
CEUR Workshop Proceedings, vol. 1953, pp. 18–21 (2017)

Berndsen, J., Smyth, B., Lawlor, A.: A collaborative filtering approach to successfully completing the 
marathon. In: Proceedings of the 2020 19th IEEE International Conference on Machine Learn-
ing and Applications (ICMLA), pp. 653–658. IEEE (2020). https://​doi.​org/​10.​1109/​ICMLA​51294.​
2020.​00108

https://doi.org/10.1016/j.compbiomed.2016.10.018
https://doi.org/10.1016/j.gaitpost.2017.12.020
https://doi.org/10.1109/SIU.2013.6531163
https://doi.org/10.1016/j.eswa.2009.01.009
https://doi.org/10.1016/j.eswa.2010.07.135
https://doi.org/10.1016/j.eswa.2010.07.135
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-367
https://doi.org/10.5220/0008164100550063
https://doi.org/10.3389/fphys.2017.00779
https://doi.org/10.1515/jqas-2014-0060
https://doi.org/10.1515/jqas-2014-0060
https://doi.org/10.1145/2207676.2208600
https://doi.org/10.1145/2370216.2370257
https://doi.org/10.1145/2370216.2370257
https://doi.org/10.1109/ICMLA51294.2020.00108
https://doi.org/10.1109/ICMLA51294.2020.00108


830	 B. Smyth et al.

1 3

Berndsen, J., Smyth, B., Lawlor, A.: Fit to run: Personalised recommendations for marathon training. 
In: RecSys 2020: Fourteenth ACM Conference on Recommender Systems, Virtual Event, Brazil, 
September 22–26, 2020, pp. 480–485. ACM, New York, NY, USA (2020). https://​doi.​org/​10.​1145/​
33833​13.​34122​28

Berndsen, J., Smyth, B., Lawlor, A.: Mining marathon training data to generate useful user profiles. In: 
International Workshop on Machine Learning and Data Mining for Sports Analytics, pp. 113–125. 
Springer (2020). https://​doi.​org/​10.​1007/​978-3-​030-​64912-8_​10

Berndsen, J., Smyth, B., Lawlor, A.: Pace my race: recommendations for marathon running. In: T. Bogers, 
A. Said, P. Brusilovsky, D. Tikk (eds.) Proceedings of the 13th ACM Conference on Recommender 
Systems, RecSys 2019, Copenhagen, Denmark, September 16–20, 2019, pp. 246–250. ACM 
(2019). https://​doi.​org/​10.​1145/​32986​89.​33469​91

Berndsen, J., Lawlor, A., Smyth, B.: Exploring the wall in marathon running. J. Sports Anal. 6(3), 173–
186 (2020)

Billat, V., Bernard, O., Pinoteau, J., Petit, B., Koralsztein, J.: Time to exhaustion at vo2max and lac-
tate steady state velocity in sub elite long-distance runners. Arch. Int. Physiol. Biochim. Biophys. 
102(3), 215–219 (1994)

Billat, V., Hill, D., Pinoteau, J., Petit, B., Koralsztein, J.P.: Effect of protocol on determination of velocity 
at vo2 max and on its time to exhaustion. Arch. Physiol. Biochem. 104(3), 313–321 (1996)

Billat, V.L., Sirvent, P., Py, G., Koralsztein, J.P., Mercier, J.: The concept of maximal lactate steady state. 
Sports Med. 33(6), 407–426 (2003)

Boratto, L., Carta, S., Fenu, G., Manca, M., Mulas, F., Pilloni, P.: The role of social interaction on users 
motivation to exercise: a persuasive web framework to enhance the self-management of a healthy 
lifestyle. Pervasive Mob. Comput. 36, 98–114 (2017). https://​doi.​org/​10.​1016/j.​pmcj.​2016.​08.​009

Bornn, L., Ward, P., Norman, D.: Training schedule confounds the relationship between acute: chronic 
workload ratio and injury. In: Proceedings of the MIT Sloan Sports Analytics Conference, Boston, 
MA, USA (2019)

Borràs, J., Moreno, A., Valls, A.: Intelligent tourism recommender systems: a survey. Exp. Syst. Appl. 
41(16), 7370–7389 (2014)

Bowen, L., Gross, A.S., Gimpel, M., Bruce-Low, S., Li, F.X.: Spikes in acute:chronic workload ratio 
(ACWR) associated with a 5–7 times greater injury rate in English Premier League football play-
ers: a comprehensive 3-year study. Br. J. Sports Med. 54, 731–738 (2019). https://​doi.​org/​10.​1136/​
bjspo​rts-​2018-​099422

Boyd, K., Costa, V.S., Davis, J., Page, C.D.: Unachievable region in precision-recall space and its effect 
on empirical evaluation. In: Proceedings of the 29th International Conference Machine Learning, 
pp. 1619–1626. OmniPress (2012)

Bridge, D., Göker, M.H., McGinty, L., Smyth, B.: Case-based recommender systems. Knowl. Eng. Rev. 
20(3), 315–320 (2005). https://​doi.​org/​10.​1017/​S0269​88890​60005​67

Buman, M.P., Brewer, B.W., Cornelius, A.E., Van Raalte, J.L., Petitpas, A.J.: Hitting the wall in the mara-
thon: phenomenological characteristics and associations with expectancy, gender, and running his-
tory. Psychol. Sport Exerc. 9(2), 177–190 (2008)

Buman, M.P., Omli, J.W., Giacobbi, P.R., Jr., Brewer, B.W.: Experiences and coping responses of hitting 
the wall for recreational marathon runners. J. Appl. Sport Psychol. 20(3), 282–300 (2008)

Buman, M.P., Brewer, B.W., Cornelius, A.E.: A discrete-time hazard model of hitting the wall in recrea-
tional marathon runners. Psychol. Sport Exerc. 10(6), 662–666 (2009)

Burke, R.: Hybrid recommender systems: survey and experiments. User Model. User Adap. Inter. 12(4), 
331–370 (2002)

Carey, D.L., Ong, K.L., Whiteley, R., Crossley, K.M., Crow, J., Morris, M.E.: Predictive modelling of 
training loads and injury in australian football. arXiv:​1706.​04336 (2017)

Caulfield, B., Blood, J., Smyth, B., Kelly, D.: Rehabilitation exercise feedback on android platform. In: 
Proceedings of the 2nd Conference on Wireless Health, pp. 1–2. ACM (2011). https://​doi.​org/​10.​
1145/​20775​46.​20775​67

Chakraborty, B.: Integrating awareness in user oriented route recommendation system. In: The 2012 
International Joint Conference on Neural Networks (IJCNN), pp. 1–5. IEEE (2012). https://​doi.​org/​
10.​1109/​IJCNN.​2012.​62525​43

Chawla, N.V.: Data mining for imbalanced datasets: an overview. In: Maimon, O., Rokach, L. (eds.) Data 
mining and knowledge discovery handbook, pp. 875–886. Springer, Boston, MA (2010). https://​
doi.​org/​10.​1007/​978-0-​387-​09823-4_​45

https://doi.org/10.1145/3383313.3412228
https://doi.org/10.1145/3383313.3412228
https://doi.org/10.1007/978-3-030-64912-8_10
https://doi.org/10.1145/3298689.3346991
https://doi.org/10.1016/j.pmcj.2016.08.009
https://doi.org/10.1136/bjsports-2018-099422
https://doi.org/10.1136/bjsports-2018-099422
https://doi.org/10.1017/S0269888906000567
http://arxiv.org/abs/1706.04336
https://doi.org/10.1145/2077546.2077567
https://doi.org/10.1145/2077546.2077567
https://doi.org/10.1109/IJCNN.2012.6252543
https://doi.org/10.1109/IJCNN.2012.6252543
https://doi.org/10.1007/978-0-387-09823-4_45
https://doi.org/10.1007/978-0-387-09823-4_45


831

1 3

Recommendations for marathon runners: on the application…

Chen, C.W., Yang, L., Wen, H., Jones, R., Radosavljevic, V., Bouchard, H.: Podrecs: Workshop on pod-
cast recommendations. In: Fourteenth ACM Conference on Recommender Systems, pp. 621–622. 
ACM. (2020)

Cheng, H.T.: Learning and recognizing the hierarchical and sequential structure of human activities. 
Ph.D. thesis, Carnegie Mellon University, Carnegie Mellon University, Pittsburgh, PA, USA (2013)

Cheung, K.L., Durusu, D., Sui, X., de Vries, H.: How recommender systems could support and enhance 
computer-tailored digital health programs: a scoping review. Dig. Health 5, 2055207618824727 
(2019). https://​doi.​org/​10.​1177/​20552​07618​824727

Claudino, J.G., Capanema, Dd.O., de Souza, T.V., Serrão, J.C., Machado Pereira, A.C., Nassis, G.P.: Cur-
rent approaches to the use of artificial intelligence for injury risk assessment and performance pre-
diction in team sports: a systematic review. Sports Med. Open 5(1), 28 (2019). https://​doi.​org/​10.​
1186/​s40798-​019-​0202-3

Clough, P.J., Dutch, S., Maughan, R.J., Shepherd, J.: Pre-race drop-out in marathon runners: reasons for 
withdrawal and future plans. Br. J. Sports Med. 21(4), 148–149 (1987). https://​doi.​org/​10.​1136/​
bjsm.​21.4.​148

Cornforth, D., Campbell, P., Nesbitt, K., Robinson, D., Jelinek, H.F.: Prediction of game performance 
in Australian football using heart rate variability measures. Int. J. Signal Imag. Syst. Eng. 8(1–2), 
80–88 (2015)

Damsted, C., Glad, S., Nielsen, R.O., Sørensen, H., Malisoux, L.: Is there evidence for an association 
between changes in training load and running-related injuries? A systematic review. Int. J. Sports 
Phys. Ther. 13(6), 931–942 (2018)

Daniels, J.T.: Daniels’ running formula. Human Kinetics (2013)
Daskalova, N., Metaxa-Kakavouli, D., Tran, A., Nugent, N., Boergers, J., McGeary, J., Huang, J.: Sleep-

coacher: A personalized automated self-experimentation system for sleep recommendations. In: 
Proceedings of the 29th Annual Symposium on User Interface Software and Technology, pp. 347–
358. ACM (2016). https://​doi.​org/​10.​1145/​29845​11.​29845​34

Daskalova, N., Lee, B., Huang, J., Ni, C., Lundin, J.: Investigating the effectiveness of cohort-based sleep 
recommendations. Proc. ACM Interact. Mob. Wear. Ubiquit. Technol. 2(3), 1–19 (2018)

Davis, J., Goadrich, M.: The relationship between precision-recall and roc curves. In: Proceedings of the 
23rd international conference on Machine Learning, pp. 233–240. ACM (2006). https://​doi.​org/​10.​
1145/​11438​44.​11438​74

De Brabandere, A., De Beeck, T.O., Schütte, K.H., Meert, W., Vanwanseele, B., Davis, J.: Data fusion 
of body-worn accelerometers and heart rate to predict vo2max during submaximal running. PLoS 
ONE 13(6), e0199509 (2018)

Deaner, R.O.: More males run fast: a stable sex difference in competitiveness in us distance runners. 
Evol. Hum. Behav. 27(1), 63–84 (2006)

Ding, Y., Zhang, Y., Li, L., Xu, W., Wang, H.: A reciprocal recommender system for graduates’ recruit-
ment. In: Proceedings of the 2016 8th International Conference on Information Technology in 
Medicine and Education (ITME), pp. 394–398. IEEE (2016)

Direito, A., Carraça, E., Rawstorn, J., Whittaker, R., Maddison, R.: mhealth technologies to influence 
physical activity and sedentary behaviors: behavior change techniques, systematic review and 
meta-analysis of randomized controlled trials. Ann. Behav. Med. 51(2), 226–239 (2017)

Doherty, C., Keogh, A., Davenport, J., Lawlor, A., Smyth, B., Caulfield, B.: An evaluation of the training 
determinants of marathon performance: a meta-analysis with meta-regression. J. Sci. Med. Sport 
23(2), 182–188 (2019)

Doherty, C., Keogh, A., Smyth, B., Megyesi, P., Caulfield, B.: Devising a pace-based definition for the 
wall: an observational analysis of marathoners subjective experiences of fatigue. J. Athletic Train. 
55(5), 494–500 (2020)

Donohue, B., Miller, A., Beisecker, M., Houser, D., Valdez, R., Tiller, S., Taymar, T.: Effects of brief 
yoga exercises and motivational preparatory interventions in distance runners: results of a con-
trolled trial. Br. J. Sports Med. 40(1), 60–63 (2006)

Dunne, L.E., Smyth, B.: Psychophysical elements of wearability. In: Rosson, M.B., Gilmore, D.J. (eds.) 
Proceedings of the 2007 Conference on Human Factors in Computing Systems, CHI 2007, San 
Jose, California, USA, April 28–May 3, 2007, pp. 299–302. ACM (2007). https://​doi.​org/​10.​1145/​
12406​24.​12406​74

Dunne, L.E., Walsh, P., Smyth, B., Caulfield, B.: A system for wearable monitoring of seated posture in 
computer users. In:  Leonhardt, S.,  Falck, T.,  Mähönen, P. (eds.) 4th International Workshop on 
Wearable and Implantable Body Sensor Networks, BSN 2007, March 26–28, 2007, RWTH Aachen 

https://doi.org/10.1177/2055207618824727
https://doi.org/10.1186/s40798-019-0202-3
https://doi.org/10.1186/s40798-019-0202-3
https://doi.org/10.1136/bjsm.21.4.148
https://doi.org/10.1136/bjsm.21.4.148
https://doi.org/10.1145/2984511.2984534
https://doi.org/10.1145/1143844.1143874
https://doi.org/10.1145/1143844.1143874
https://doi.org/10.1145/1240624.1240674
https://doi.org/10.1145/1240624.1240674


832	 B. Smyth et al.

1 3

University, Germany, pp. 203–207. Springer (2007). https://​doi.​org/​10.​1007/​978-3-​540-​70994-7_​
35

Dunne, L.E., Walsh, P., Hermann, S., Smyth, B., Caulfield, B.: Wearable monitoring of seated spinal 
posture. IEEE Trans. Biomed. Circuits Syst. 2(2), 97–105 (2008). https://​doi.​org/​10.​1109/​TBCAS.​
2008.​927246

Ely, M.R., Martin, D.E., Cheuvront, S.N., Montain, S.J.: Effect of ambient temperature on marathon pac-
ing is dependent on runner ability. Med. Sci. Sports Exerc. 40(9), 1675–1680 (2008)

Emig, T., Peltonen, J.: Human running performance from real-world big data. Nat. Commun. 11(1), 1–9 
(2020)

Faude, O., Kindermann, W., Meyer, T.: Lactate threshold concepts. Sports Med. 39(6), 469–490 (2009)
Fawcett, T.: Mining the quantified self: personal knowledge discovery as a challenge for data science. Big 

Data 3(4), 249–266 (2015)
Feely, C., Caulfield, B., Lawlor, A., Smyth, B.: Providing explainable race-time predictions and training 

plan recommendations to marathon runners. In: Proceedings of the Fourteenth ACM Conference 
on Recommender Systems, pp. 539–544. ACM (2020). https://​doi.​org/​10.​1145/​33833​13.​34122​20

Feely, C., Caulfield, B., Lawlor, A., Smyth, B.: Using case-based reasoning to predict marathon perfor-
mance and recommend tailored training plans. In: Proceedings of the International Conference on 
Case-Based Reasoning, pp. 67–81. Springer (2020). https://​doi.​org/​10.​1007/​978-3-​030-​58342-​2\_5

Fister, I., Rauter, S., Yang, X.S., Ljubič, K., Fister, I.: Planning the sports training sessions with the bat 
algorithm. Neurocomputing 149(PB), 993–1002 (2015). https://​doi.​org/​10.​1016/j.​neucom.​2014.​07.​
034

Fitzgerald, D., Trakarnratanakul, N., Dunne, L., Smyth, B., Caulfield, B.: Development and user evalu-
ation of a virtual rehabilitation system for wobble board balance training. In: Proceedings of the 
30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 
pp. 4194–4198. IEEE (2008)

Fitzgerald, D., Trakarnratanakul, N., Smyth, B., Caulfield, B.: Effects of a wobble board-based therapeu-
tic exergaming system for balance training on dynamic postural stability and intrinsic motivation 
levels. J. Orthopaed. Sports Phys. Therapy 40(1), 11–19 (2010)

Florence, Sl., Weir, J.P.: Relationship of critical velocity to marathon running performance. Eur. J. Appl. 
Physiol. 75(3), 274–278 (1997)

Frejlichowski, D., Czapiewski, P., Hofman, R.: Finding similar clothes based on semantic descrip-
tion for the purpose of fashion recommender system. In: Asian Conference on Intelligent Infor-
mation and Database Systems (ACIIDS), pp. 13–22. Springer (2016).  https://​doi.​org/​10.​1007/​
978-3-​662-​49381-​6\_2

Fry, R., Morton, A., Keast, D.: Periodisation and the prevention of overtraining. Can. J. Sport Sci. J. Can. 
des Sci. du Sport 17(3), 241–248 (1992)

Fry, R., Morton, A., Keast, D.: Periodisation of training stress: a review. Can. J. Sport Sci. 17(3), 234–
240 (1992)

Fullagar, H.H., Skorski, S., Duffield, R., Hammes, D., Coutts, A.J., Meyer, T.: Sleep and athletic perfor-
mance: the effects of sleep loss on exercise performance, and physiological and cognitive responses 
to exercise. Sports Med. 45(2), 161–186 (2015)

Gabbett, T.J.: The training-injury prevention paradox: should athletes be training smarter and harder? Br. 
J. Sports Med. 50(5), 273–280 (2016)

Gavalas, D., Konstantopoulos, C., Mastakas, K., Pantziou, G.: Mobile recommender systems in tourism. 
J. Netw. Comput. Appl. 39, 319–333 (2014)

Ge, M., Ricci, F., Massimo, D.: Health-aware food recommender system. In: Proceedings of the 9th ACM 
Conference on Recommender Systems, pp. 333–334. ACM (2015)

Glaros, C., Fotiadis, D.I., Likas, A., Stafylopatis, A.: A wearable intelligent system for monitoring health 
condition and rehabilitation of running athletes. In: Proceedings of the 4th International IEEE 
EMBS Special Topic Conference on Information Technology Applications in Biomedicine, 2003, 
pp. 276–279. IEEE (2003). https://​doi.​org/​10.​1109/​ITAB.​2003.​12225​31

Goyal, P., Sapienza, A., Ferrara, E.: Recommending teammates with deep neural networks. In: Proceed-
ings of the 29th International Conference on Hypertext and Social Media (HT), pp. 57–61. ACM 
(2018). https://​doi.​org/​10.​1145/​32095​42.​32095​69

Hammer, C., Podlog, L.: Motivation and marathon running. In: Marathon running: Physiology, psychol-
ogy, nutrition and training aspects, pp. 107–124. Springer (2016)

Han, Z., Xu, J.: Recommending sports instructional content based on motion sensor data (2016). US Pat-
ent 9409074

https://doi.org/10.1007/978-3-540-70994-7_35
https://doi.org/10.1007/978-3-540-70994-7_35
https://doi.org/10.1109/TBCAS.2008.927246
https://doi.org/10.1109/TBCAS.2008.927246
https://doi.org/10.1145/3383313.3412220
https://doi.org/10.1007/978-3-030-58342-2\_5
https://doi.org/10.1016/j.neucom.2014.07.034
https://doi.org/10.1016/j.neucom.2014.07.034
https://doi.org/10.1007/978-3-662-49381-6\_2
https://doi.org/10.1007/978-3-662-49381-6\_2
https://doi.org/10.1109/ITAB.2003.1222531
https://doi.org/10.1145/3209542.3209569


833

1 3

Recommendations for marathon runners: on the application…

Hanks, S., Weld, D.S.: A domain-independent algorithm for plan adaptation. J. Artif. Intel. Res. 2, 319–
360 (1994)

He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 
(2009). https://​doi.​org/​10.​1109/​TKDE.​2008.​239

Hong, W., Zheng, S., Wang, H., Shi, J.: A job recommender system based on user clustering. JCP 8(8), 
1960–1967 (2013)

Hosseinpour, M., Terlutter, R.: Your personal motivator is with you: a systematic review of mobile phone 
applications aiming at increasing physical activity. Sports Med. 49(9), 1425–1447 (2019). https://​
doi.​org/​10.​1007/​s40279-​019-​01128-3

Hulme, A., Nielsen, R.O., Timpka, T., Verhagen, E., Finch, C.: Risk and protective factors for middle- 
and long-distance running-related injury. Sports Med. (Auckland, N.Z.) 47(5), 869–886 (2017). 
https://​doi.​org/​10.​1007/​s40279-​016-​0636-4

Hung, S.Y., Yen, D.C., Wang, H.Y.: Applying data mining to telecom churn management. Expert Syst. 
Appl. 31(3), 515–524 (2006). https://​doi.​org/​10.​1016/j.​eswa.​2005.​09.​080

Hwangbo, H., Kim, Y.S., Cha, K.J.: Recommendation system development for fashion retail e-commerce. 
Electron. Commer. Res. Appl. 28, 94–101 (2018)

Jelinek, H.F., Kelarev, A., Robinson, D.J., Stranieri, A., Cornforth, D.J.: Using meta-regression data min-
ing to improve predictions of performance based on heart rate dynamics for Australian football. 
Appl. Soft Comput. 14, 81–87 (2014)

Jeukendrup, A.E.: Nutrition for endurance sports: marathon, triathlon, and road cycling. J. Sports Sci. 
29(sup1), S91–S99 (2011)

Kampakis, S.: Predictive modelling of football injuries. arXiv preprint arXiv:​1609.​07480 (2016)
Kelly, D., Smyth, B., Caulfield, B.: Uncovering measurements of social and demographic behavior from 

smartphone location data. IEEE Trans. Hum. Mach. Syst. 43(2), 188–198 (2013)
Keogh, A., Smyth, B., Caulfield, B., Lawlor, A., Berndsen, J., Doherty, C.: Prediction equations for mara-

thon performance: a systematic review. Int. J. Sports Physiol. Perform. 14(9), 1159–1169 (2019)
Khan, M.A., Smyth, B., Coyle, D.: Addressing the complexity of personalized, context-aware and health-

aware food recommendations: an ensemble topic modelling based approach. Journal of Intelligent 
Information Systems (2021). https://​doi.​org/​10.​1007/​s10844-​021-​00639-8

King, A.C., Hekler, E.B., Grieco, L.A., Winter, S.J., Sheats, J.L., Buman, M.P., Banerjee, B., Robinson, 
T.N., Cirimele, J.: Harnessing different motivational frames via mobile phones to promote daily 
physical activity and reduce sedentary behavior in aging adults. PLoS ONE 8(4), e62613 (2013)

Knijnenburg, B.P., Kobsa, A.: Making decisions about privacy: information disclosure in context-aware 
recommender systems. ACM Trans. Interact. Intel. Syst. (TiiS) 3(3), 20 (2013)

Krouse, R.Z., Ransdell, L.B., Lucas, S.M., Pritchard, M.E.: Motivation, goal orientation, coaching, and 
training habits of women ultrarunners. J. Strength Condit. Res. 25(10), 2835–2842 (2011)

Kurade, N.P.: An intelligent method for selecting and recommending best players to help build sports 
team. Int. J. Comput. Appl. 105, 7 (2014)

Lam, S., Frankowski, D., Riedl, J.: Do you trust your recommendations? An exploration of security and 
privacy issues in recommender systems. In: Proceedings of Emerging trends in information and 
communication security (ETRICS) pp. 14–29. Springer (2006).  https://​doi.​org/​10.​1007/​11766​
155\_2

Lazarus, B.H., Stewart, A.M., White, K.M., Rowell, A.E., Esmaeili, A., Hopkins, W.G., Aughey, R.J.: 
Proposal of a global training load measure predicting match performance in an elite team sport. 
Front. Physiol. 8, 930 (2017)

Li, L., Li, T.: Meet: a generalized framework for reciprocal recommender systems. In: Proceedings of 
the 21st ACM international conference on Information and knowledge management (CIKM), pp. 
35–44. ACM (2012). https://​doi.​org/​10.​1145/​23967​61.​23967​70

Lister, C., West, J.H., Cannon, B., Sax, T., Brodegard, D.: Just a fad? Gamification in health and fitness 
apps. JMIR Serious Games 2(2), e9 (2014). https://​doi.​org/​10.​2196/​games.​3413

Loepp, B., Ziegler, J.: Recommending running routes: framework and demonstrator. In: Workshop on 
Recommendation in Complex Scenarios co-located with the 12th ACM Conference on Recom-
mender Systems (2018)

López-Valenciano, A., Ayala, F., Puerta, J.M., DE  Ste  Croix, M.B.A., Vera-Garcia, F.J., Hernández-
Sánchez, S., Ruiz-Pérez, I., Myer, G.D.: A preventive model for muscle injuries: a novel approach 
based on learning algorithms. Med. Sci. Sports Exerc. 50(5), 915–927 (2018). https://​doi.​org/​10.​
1249/​MSS.​00000​00000​001535

https://doi.org/10.1109/TKDE.2008.239
https://doi.org/10.1007/s40279-019-01128-3
https://doi.org/10.1007/s40279-019-01128-3
https://doi.org/10.1007/s40279-016-0636-4
https://doi.org/10.1016/j.eswa.2005.09.080
http://arxiv.org/abs/1609.07480
https://doi.org/10.1007/s10844-021-00639-8
https://doi.org/10.1007/11766155\_2
https://doi.org/10.1007/11766155\_2
https://doi.org/10.1145/2396761.2396770
https://doi.org/10.2196/games.3413
https://doi.org/10.1249/MSS.0000000000001535
https://doi.org/10.1249/MSS.0000000000001535


834	 B. Smyth et al.

1 3

Macedo, A.Q., Marinho, L.B., Santos, R.L.: Context-aware event recommendation in event-based social 
networks. In: Proceedings of the 9th ACM Conference on Recommender Systems, pp. 123–130. 
ACM (2015). https://​doi.​org/​10.​1145/​27928​38.​28001​87

Maier, T., Meister, D., Trösch, S., Wehrlin, J.P.: Predicting biathlon shooting performance using machine 
learning. J. Sports Sci. 36(20), 2333–2339 (2018)

Malisoux, L., Nielsen, R.O., Urhausen, A., Theisen, D.: A step towards understanding the mechanisms of 
running-related injuries. J. Sci. Med. Sport 18(5), 523–528 (2015). https://​doi.​org/​10.​1016/j.​jsams.​
2014.​07.​014

Marks, W.H.: Footwear recommendations from foot scan data describing feet of a user (2017). US Patent 
9648926

Masters, K.S., Ogles, B.M., Jolton, J.A.: The development of an instrument to measure motivation for 
marathon running: the motivations of marathoners scales (moms). Res. Q. Exerc. Sport 64(2), 
134–143 (1993)

Mayer-Schönberger, V., Cukier, K.: Big data: a revolution that will transform how we live, work, and 
think. Houghton Mifflin Harcourt, Boston (2013)

McConnell, C., Smyth, B.: Going further with cases: Using case-based reasoning to recommend pac-
ing strategies for ultra-marathon runners. In: Proceedings of the 27th International Conference on 
Case-Based Reasoning (ICCBR), pp. 358–372. Springer (2019).  https://​doi.​org/​10.​1007/​978-3-​
030-​29249-​2\_​24

McGinty, L., Smyth, B.: Collaborative case-based reasoning: Applications in personalised route plan-
ning. In: Proceedings of the 4th International Conference on Case-Based Reasoning (ICCBR), pp. 
362–376. Springer (2001). https://​doi.​org/​10.​1007/3-​540-​44593-5_​26

Mika, S.: Challenges for nutrition recommender systems. In: Proceedings of the 2nd Workshop on Con-
text Aware Intelligent Assistance, Berlin, Germany, pp. 25–33. CEUR Workshop Proceedings 
(2011)

Millington, B.: Smartphone apps and the mobile privatization of health and fitness. Crit. Stud. Media 
Commun. 31(5), 479–493 (2014)

Minkov, E., Charrow, B., Ledlie, J., Teller, S., Jaakkola, T.: Collaborative future event recommendation. 
In: Proceedings of the 19th ACM international conference on Information and knowledge manage-
ment, pp. 819–828. ACM (2010). https://​doi.​org/​10.​1145/​18714​37.​18715​42

Mulas, F., Carta, S., Pilloni, P., Manca, M.: Everywhere run: a virtual personal trainer for supporting peo-
ple in their running activity. In: Proceedings of the 8th International Conference on Advances in 
Computer Entertainment Technology, ACE 2011, Lisbon, Portugal, November 8–11, 2011, p. 70. 
ACM (2011). https://​doi.​org/​10.​1145/​20714​23.​20715​10

Mulas, F., Pilloni, P., Manca, M., Boratto, L., Carta, S.: Using new communication technologies and 
social media interaction to improve the motivation of users to exercise. In: Second International 
Conference on Future Generation Communication Technologies (FGCT 2013), London, UK, 
November 12–14, 2013, pp. 87–92. IEEE (2013). https://​doi.​org/​10.​1109/​FGCT.​2013.​67671​89

Muniz-Pumares, D., Karsten, B., Triska, C., Glaister, M.: Methodological approaches and related chal-
lenges associated with the determination of critical power and curvature constant. J. Strength Con-
dit. Res. 33(2), 584–596 (2019)

Munoz-Avila, H., Cox, M.T.: Case-based plan adaptation: an analysis and review. IEEE Intell. Syst. 
23(4), 75–81 (2008)

Napier, C., MacLean, C.L., Maurer, J., Taunton, J.E., Hunt, M.A.: Kinetic risk factors of running-related 
injuries in female recreational runners. Scand. J. Med. Sci. Sports 28(10), 2164–2172 (2018). 
https://​doi.​org/​10.​1111/​sms.​13228

Ni, J., Muhlstein, L., McAuley, J.: Modeling heart rate and activity data for personalized fitness recom-
mendation. In: Proceedings of the World Wide Web Conference, WWW-19, pp. 1343–1353. ACM 
(2019). https://​doi.​org/​10.​1145/​33085​58.​33136​43

Nicolas, M., Banizette, M., Millet, G.Y.: Stress and recovery states after a 24 h ultra-marathon race: a 
one-month follow-up study. Psychol. Sport Exerc. 12(4), 368–374 (2011)

Noakes, T.: Lore of running. Human Kinetics (2003)
Noakes, T.: Physiological models to understand exercise fatigue and the adaptations that predict or 

enhance athletic performance. Scand. J. Med. Sci. Sports Rev. Article 10(3), 123–145 (2000)
O’Donovan, J., Gretarsson, B., Bostandjiev, S., Hollerer, T., Smyth, B.: A visual interface for social infor-

mation filtering. In: Proceedings of the 2009 International Conference on Computational Science 
and Engineering, vol. 4, pp. 74–81. IEEE (2009)

https://doi.org/10.1145/2792838.2800187
https://doi.org/10.1016/j.jsams.2014.07.014
https://doi.org/10.1016/j.jsams.2014.07.014
https://doi.org/10.1007/978-3-030-29249-2\_24
https://doi.org/10.1007/978-3-030-29249-2\_24
https://doi.org/10.1007/3-540-44593-5_26
https://doi.org/10.1145/1871437.1871542
https://doi.org/10.1145/2071423.2071510
https://doi.org/10.1109/FGCT.2013.6767189
https://doi.org/10.1111/sms.13228
https://doi.org/10.1145/3308558.3313643


835

1 3

Recommendations for marathon runners: on the application…

O’Donovan, J., Smyth, B., Gretarsson, B., Bostandjiev, S., Höllerer, T.: Peerchooser: visual interactive 
recommendation. In: Proceedings of the SIGCHI Conference on Human Factors in Computing 
Systems, pp. 1085–1088. ACM (2008). https://​doi.​org/​10.​1145/​13570​54.​13572​22

O’Huiginn, B., Smyth, B., Coughlan, G., Fitzgerald, D., Caulfield, B.: Therapeutic exergaming. In: Pro-
ceedings of the 2009 Sixth International Workshop on Wearable and Implantable Body Sensor 
Networks, pp. 273–277. IEEE (2009). https://​doi.​org/​10.​1109/​BSN.​2009.​43

Panjan, A., Sarabon, N., Filipčič, A.: Prediction of the successfulness of tennis players with machine 
learning methods. Kinesiology 42(1), 98–106 (2010)

Piatetsky-Shapiro, G., Masand, B.: Estimating campaign benefits and modeling lift. In: Proceedings of 
the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 
KDD ’99, pp. 185–193. ACM (1999). https://​doi.​org/​10.​1145/​312129.​312225

Pilloni, P., Mulas, F., Piredda, L., Carta, S.: Assessing the user experience design as a persuasive meth-
odology in a real world sport application. In: The 11th International Conference on Advances in 
Mobile Computing and Multimedia, MoMM ’13, Vienna, Austria, December 2–4, 2013, p. 387. 
ACM (2013). https://​doi.​org/​10.​1145/​25368​53.​25368​74

Pilloni, P., Piras, L., Boratto, L., Carta, S., Fenu, G., Mulas, F.: Recommendation in Persuasive eHealth 
Systems: an Effective Strategy to Spot Users’ Losing Motivation to Exercise. In: Elsweiler, 
D., Hors-Fraile, S., Ludwig, B., Said, A., Schäfer, H., Trattner, C., Torkamaan, H., Valdez, A.C. 
(eds.). Proceedings of the 2nd International Workshop on Health Recommender Systems co-
located with the 11th International Conference on Recommender Systems (RecSys 2017), Como, 
Italy, August 31, 2017, CEUR Workshop Proceedings, vol. 1953, pp. 6–9. http://​ceur-​ws.​org/ 
(2017)

Pilloni, P., Piras, L., Carta, S., Fenu, G., Mulas, F., Boratto, L.: Recommender system lets coaches iden-
tify and help athletes who begin losing motivation. IEEE Comput. 51(3), 36–42 (2018). https://​doi.​
org/​10.​1109/​MC.​2018.​17310​60

Pizzato, L., Rej, T., Chung, T., Koprinska, I., Kay, J.: Recon: a reciprocal recommender for online dat-
ing. In: Proceedings of the fourth ACM conference on Recommender systems, pp. 207–214. ACM 
(2010). https://​doi.​org/​10.​1145/​18647​08.​18647​47

Pizzato, L., Rej, T., Chung, T., Koprinska, I., Yacef, K., Kay, J.: Reciprocal recommender system for 
online dating. In: Proceedings of the fourth ACM conference on Recommender systems, pp. 353–
354. ACM (2010). https://​doi.​org/​10.​1145/​18647​08.​18647​87

Poole, D.C., Wilkerson, D.P., Jones, A.M.: Validity of criteria for establishing maximal o2 uptake dur-
ing ramp exercise tests. Eur. J. Appl. Physiol. 102(4), 403–410 (2008). https://​doi.​org/​10.​1007/​
s00421-​007-​0596-3

Prabhakar, S., Spanakis, G., Zaiane, O.: Reciprocal recommender system for learners in massive open 
online courses (moocs). In: International Conference on Web-Based Learning, pp. 157–167. 
Springer (2017). https://​doi.​org/​10.​1007/​978-3-​319-​66733-1_​17

Pulkkinen, A., Saarikoski, E.: System for monitoring and predicting physiological state under physi-
cal exercise (2010). US Patent 7805186

Qiao, Z., Zhang, P., Zhou, C., Cao, Y., Guo, L., Zhang, Y.: Event recommendation in event-based 
social networks. In: Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intel-
ligence, pp. 3131–3131. AAAI Press (2014)

Rae, D.E., Chin, T., Dikgomo, K., Hill, L., McKune, A.J., Kohn, T.A., Roden, L.C.: One night of 
partial sleep deprivation impairs recovery from a single exercise training session. Eur. J. Appl. 
Physiol. 117(4), 699–712 (2017)

Rauter, S.: New approach for planning the mountain bike training with virtual coach. TRENDS Sport 
Sci. 2(25), 69–74 (2018). https://​doi.​org/​10.​23829/​TSS.​2018.​25.2-2

Ribeiro, D., Machado, J., Ribeiro, J., Vasconcelos, M.J.M., Vieira, E.F., de Barros, A.C.: Souschef: 
Mobile meal recommender system for older adults. In: Proceedings of the 3rd International 
Conference on Information and  Communication Technologies for Ageing Well and e-Health 
(ICT4AgeingWell), pp. 36–45. SCITEPRESS (2017). https://​doi.​org/​10.​5220/​00062​81900​
360045

Ricci, F., Rokach, L., Shapira, B. (eds.): Recommender Systems Handbook. Springer, New York 
(2015). https://​doi.​org/​10.​1007/​978-1-​4899-​7637-6

Ricci, F.: Travel recommender systems. IEEE Intell. Syst. 17(6), 55–57 (2002)
Riegel, P.S.: Athletic records and human endurance: a time-vs.-distance equation describing world-

record performances may be used to compare the relative endurance capabilities of various 
groups of people. Am. Sci. 69(3), 285–290 (1981)

https://doi.org/10.1145/1357054.1357222
https://doi.org/10.1109/BSN.2009.43
https://doi.org/10.1145/312129.312225
https://doi.org/10.1145/2536853.2536874
http://ceur-ws.org/
https://doi.org/10.1109/MC.2018.1731060
https://doi.org/10.1109/MC.2018.1731060
https://doi.org/10.1145/1864708.1864747
https://doi.org/10.1145/1864708.1864787
https://doi.org/10.1007/s00421-007-0596-3
https://doi.org/10.1007/s00421-007-0596-3
https://doi.org/10.1007/978-3-319-66733-1_17
https://doi.org/10.23829/TSS.2018.25.2-2
https://doi.org/10.5220/0006281900360045
https://doi.org/10.5220/0006281900360045
https://doi.org/10.1007/978-1-4899-7637-6


836	 B. Smyth et al.

1 3

Rolf, C.: Overuse injuries of the lower extremity in runners. Scand. J. Med. Sci. Sports 5(4), 181–190 
(1995)

Rooksby, J., Rost, M., Morrison, A., Chalmers, M.C.: Personal tracking as lived informatics. In: Pro-
ceedings of the 32nd annual ACM conference on Human factors in computing systems, pp. 
1163–1172. ACM (2014). https://​doi.​org/​10.​1145/​25562​88.​25570​39

Rossi, A., Pappalardo, L., Cintia, P., Iaia, F.M., Fernàndez, J., Medina, D.: Effective injury forecast-
ing in soccer with gps training data and machine learning. PLoS ONE 13(7), e0201264 (2018)

Ryan, M.B., Valiant, G.A., McDonald, K., Taunton, J.E.: The effect of three different levels of foot-
wear stability on pain outcomes in women runners: a randomised control trial. Br. J. Sports 
Med. 45(9), 715–721 (2011)

Saito, T., Rehmsmeier, M.: The precision-recall plot is more informative than the ROC plot when 
evaluating binary classifiers on imbalanced datasets. PLoS ONE 10(3), e0118432 (2015). 
https://​doi.​org/​10.​1371/​journ​al.​pone.​01184​32

Saragiotto, B.T., Yamato, T.P., Hespanhol Junior, L.C., Rainbow, M.J., Davis, I.S., Lopes, A.D.: What 
are the main risk factors for running-related injuries? Sports Med. (Auckland, N.Z.) 44(8), 
1153–1163 (2014). https://​doi.​org/​10.​1007/​s40279-​014-​0194-6

Schmid, W., Knechtle, B., Knechtle, P., Barandun, U., Rüst, C.A., Rosemann, T., Lepers, R.: Predictor 
variables for marathon race time in recreational female runners. Asian J. Sports Med. 3(2), 90 
(2012)

Schoeppe, S., Alley, S., Van Lippevelde, W., Bray, N.A., Williams, S.L., Duncan, M.J., Vandelanotte, 
C.: Efficacy of interventions that use apps to improve diet, physical activity and sedentary 
behaviour: a systematic review. Int. J. Behav. Nutr. Phys. Act. 13(1), 127 (2016)

Scott, D., Gurrin, C., Johansen, D., Johansen, H.: Searching and recommending sports content on 
mobile devices. In: Proceedings of the International Conference on Multimedia Modeling, pp. 
779–781. Springer (2010). https://​doi.​org/​10.​1007/​978-3-​642-​11301-​7\_​86

Senin, P., Lin, J., Wang, X., Oates, T., Gandhi, S., Boedihardjo, A.P., Chen, C., Frankenstein, S.: 
GrammarViz 3.0: interactive discovery of variable-length time series patterns. ACM Trans. 
Knowl. Discov. Data 12(1), 10:1-10:28 (2018). https://​doi.​org/​10.​1145/​30511​26

Shin, D.: The effects of explainability and causability on perception, trust, and acceptance: implica-
tions for explainable AI. Int. J. Hum. Comput. Stud. 146, 102551 (2021)

Smyth, B., Cunningham, P.: A novel recommender system for helping marathoners to achieve a new 
personal-best. In: Proceedings of the Eleventh ACM Conference on Recommender Systems, 
RecSys 2017, Como, Italy, August 27-31, 2017, pp. 116–120. ACM (2017). https://​doi.​org/​10.​
1145/​31098​59.​31098​74

Smyth, B., Cunningham, P.: An analysis of case representations for marathon race prediction and 
planning. In: Proceedings of the 26th International Conference on Case-Based Reasoning 
(ICCBR), Stockholm, Sweden, July 9–12, 2018, pp. 369–384. Springer (2018). https://​doi.​org/​
10.​1007/​978-3-​030-​01081-2_​25

Smyth, B., Cunningham, P.: Marathon race planning: a case-based reasoning approach. In: Proceedings 
of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, July 
13–19, 2018, Stockholm, Sweden, pp. 5364–5368. AAAI Press (2018). https://​doi.​org/​10.​24963/​
ijcai.​2018/​754

Smyth, B., Cunningham, P.: Running with cases: a CBR approach to running your best marathon. In: Pro-
ceedings of the 25th International Conference (ICCBR), Trondheim, Norway, June 26–28, 2017, 
pp. 360–374. Springer (2017). https://​doi.​org/​10.​1007/​978-3-​319-​61030-6_​25

Smyth, B., Muniz-Pumares, D.: Calculation of critical speed from raw training data in recreational mara-
thon runners. Med. Sci. Sports Exercise. 52(12), 2637-2645 (2020)

Smyth, B., Willemsen, M.: Predicting the personal-best times of speed skaters using case-based reason-
ing. In: Proceedings of the 28th International Conference (ICCBR), Salamanca, Spain, June 8–12, 
2020,  pp. 112–126. Springer (2020). https://​doi.​org/​10.​1007/​978-3-​030-​58342-​2\_8

Smyth, B.: Case-based recommendation. In: The Adaptive Web, Methods and Strategies of Web Person-
alization, pp. 342–376. Springer (2007). https://​doi.​org/​10.​1007/​978-3-​540-​72079-9_​11

Smyth, B.: Fast starters and slow finishers: a large-scale data analysis of pacing at the beginning and end 
of the marathon for recreational runners. J. Sports Anal. 4(3), 229–242 (2018)

Smyth, B.: Recommender systems: a healthy obsession. Proc. AAAI Conf. Artif. Intel. 33, 9790–9794 
(2019). https://​doi.​org/​10.​1609/​aaai.​v33i01.​33019​790

Stevinson, C.D., Biddle, S.J.: Cognitive orientations in marathon running and hitting the wall. Br. J. 
Sports Med. 32(3), 229–234 (1998)

https://doi.org/10.1145/2556288.2557039
https://doi.org/10.1371/journal.pone.0118432
https://doi.org/10.1007/s40279-014-0194-6
https://doi.org/10.1007/978-3-642-11301-7\_86
https://doi.org/10.1145/3051126
https://doi.org/10.1145/3109859.3109874
https://doi.org/10.1145/3109859.3109874
https://doi.org/10.1007/978-3-030-01081-2_25
https://doi.org/10.1007/978-3-030-01081-2_25
https://doi.org/10.24963/ijcai.2018/754
https://doi.org/10.24963/ijcai.2018/754
https://doi.org/10.1007/978-3-319-61030-6_25
https://doi.org/10.1007/978-3-030-58342-2\_8
https://doi.org/10.1007/978-3-540-72079-9_11
https://doi.org/10.1609/aaai.v33i01.33019790


837

1 3

Recommendations for marathon runners: on the application…

Sullivan, A.N., Lachman, M.E.: Behavior change with fitness technology in sedentary adults: a review of 
the evidence for increasing physical activity. Front. Public Health 4, 289 (2017). https://​doi.​org/​10.​
3389/​fpubh.​2016.​00289. https://​www.​front​iersin.​org/​artic​le/​10.​3389/​fpubh.​2016.​00289

Sundar, S.S., Bellur, S., Jia, H.: Motivational technologies: a theoretical framework for designing preven-
tive health applications. In: Proceedings of the International conference on persuasive technology, 
pp. 112–122. Springer (2012). https://​doi.​org/​10.​1007/​978-3-​642-​31037-​9\_​10

Taha, Z., Musa, R.M., Majeed, A.P.A., Alim, M.M., Abdullah, M.R.: The identification of high potential 
archers based on fitness and motor ability variables: a support vector machine approach. Hum. 
Mov. Sci. 57, 184–193 (2018)

Tang, J., Hu, X., Liu, H.: Social recommendation: a review. Soc. Netw. Anal. Min. 3(4), 1113–1133 
(2013)

Thornton, H.R., Delaney, J.A., Duthie, G.M., Dascombe, B.J.: Importance of various training-load meas-
ures in injury incidence of professional rugby league athletes. Int. J. Sports Physiol. Perform. 
12(6), 819–824 (2017). https://​doi.​org/​10.​1123/​ijspp.​2016-​0326

Trubee, N.W.: The effects of age, sex, heat stress, and finish time on pacing in the marathon. Ph.D. thesis, 
University of Dayton, Dayton, OH, USA (2011)

Vall, A., Dorfer, M., Eghbal-Zadeh, H., Schedl, M., Burjorjee, K., Widmer, G.: Feature-combination 
hybrid recommender systems for automated music playlist continuation. User Model. User Adap. 
Inter. 29(2), 527–572 (2019)

van der Worp, M.P., ten Haaf, D.S.M., van Cingel, R., de Wijer, A., Nijhuis-van der Sanden, M.W.G., 
Staal, J.B.: Injuries in runners; a systematic review on risk factors and sex differences. PLoS ONE 
10(2), e0114937 (2015). https://​doi.​org/​10.​1371/​journ​al.​pone.​01149​37

Vandelanotte, C., Müller, A.M., Short, C.E., Hingle, M., Nathan, N., Williams, S.L., Lopez, M.L., 
Parekh, S., Maher, C.A.: Past, present, and future of ehealth and mhealth research to improve phys-
ical activity and dietary behaviors. J. Nutr. Educ. Behav. 48(3), 219–228 (2016)

Vickey, T., Breslin, J., Williams, A.: Fitness-theres an app for that: review of mobile fitness apps. Int. J. 
Sport Soc. 3, 4 (2012)

Wakita, Y., Oku, K., Huang, H.H., Kawagoe, K.: A fashion-brand recommender system using brand 
association rules and features. In: Proceedings of the 2015 IIAI 4th International Congress on 
Advanced Applied Informatics, pp. 719–720. IEEE (2015). https://​doi.​org/​10.​1109/​IIAI-​AAI.​2015.​
230

Webb, C., Vehrs, P.R., George, J.D., Hager, R.: Estimating vo2max using a personalized step test. Meas. 
Phys. Educ. Exerc. Sci. 18(3), 184–197 (2014). https://​doi.​org/​10.​1080/​10913​67X.​2014.​912985

Werthner, H., Ricci, F.: E-commerce and tourism. Commun. ACM 47(12), 101–105 (2004)
Whiteside, D., Cant, O., Connolly, M., Reid, M.: Monitoring hitting load in tennis using inertial sensors 

and machine learning. Int. J. Sports Physiol. Perform. 12(9), 1212–1217 (2017)
Yingying, L., Chiusano, S., D’Elia, V.: Modeling athlete performance using clustering techniques. In: 

Proceedings of the Third International Symposium on Electronic Commerce and Security Work-
shops (ISECS 2010), p. 169 IEEE (2010)

Zhang, F.: Development of a performance prediction model for college athletes based on chaos theory 
and machine learning algorithms. In: Proceedings of the 2019 5th International Conference on 
Education and Training Technologies, pp. 146–150. ACM (2019).  https://​doi.​org/​10.​1145/​33376​
82.​33377​09

Zhao, J., Freeman, B., Li, M.: Can mobile phone apps influence peoples health behavior change? an evi-
dence review. J. Med. Internet Res. 18(11), e287 (2016)

Zrenner, M., Ullrich, M., Zobel, P., Jensen, U., Laser, F., Groh, B.H., Duemler, B., Eskofier, B.M.: Kin-
ematic parameter evaluation for the purpose of a wearable running shoe recommendation. In: Pro-
ceedings of the 2018 IEEE 15th International Conference on Wearable and Implantable Body Sen-
sor Networks (BSN), pp. 106–109. IEEE (2018). https://​doi.​org/​10.​1109/​BSN.​2018.​83296​70

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.

Barry Smyth  holds the DIGITAL Chair of Computer Science in the School of Computer Science Uni-
versity College Dublin, where he is a Founding Director of the Insight SFI Research Centre for Data 

https://doi.org/10.3389/fpubh.2016.00289
https://doi.org/10.3389/fpubh.2016.00289
https://www.frontiersin.org/article/10.3389/fpubh.2016.00289
https://doi.org/10.1007/978-3-642-31037-9\_10
https://doi.org/10.1123/ijspp.2016-0326
https://doi.org/10.1371/journal.pone.0114937
https://doi.org/10.1109/IIAI-AAI.2015.230
https://doi.org/10.1109/IIAI-AAI.2015.230
https://doi.org/10.1080/1091367X.2014.912985
https://doi.org/10.1145/3337682.3337709
https://doi.org/10.1145/3337682.3337709
https://doi.org/10.1109/BSN.2018.8329670


838	 B. Smyth et al.

1 3

Analytics. Barry’s research interests include many aspects of Artificial Intelligence and Machine Learn-
ing, particularly recommender systems and case-based reasoning.

Aonghus Lawlor  is an Assistant Professor in the School of Computer Science at University College Dub-
lin and a Funded Investigator at the Insight SFI Research Centre for Data Analytics. His research interests 
include Machine Learning, Artificial Intelligence, Explainable AI, Natural Language Processing and Rec-
ommender Systems. Aonghus has been actively involved in several research projects in these areas and 
has been the co-PI of some large Industrial projects.

Jakim Berndsen  is a researcher at the Insight SFI Research Centre for Data Analytics. He completed his 
Ph.D. in Computer Science at University College Dublin with work focusing on generating personalised 
advice for recreational marathon runners as they train and race. His research interests are in the fields of 
recommender systems and sports analytics, where he is interested in seeking novel ways to help athletes 
in a variety of sporting contexts.

Ciara Feely  is a PhD researcher at ML-Labs, an SFI Centre for Research Training in Machine Learning, 
in the School of Computer Science at University College Dublin. Ciara’s research interests include the 
application of ideas and techniques from machine learning, recommender systems, and wearable sensors 
to support runners as they train for, and compete in, marathon races.


	Recommendations for marathon runners: on the application of recommender systems and machine learning to support recreational marathon runners
	Abstract
	1 Introduction
	2 The marathon as a novel recommender systems domain
	2.1 Primary recommendation opportunities
	2.1.1 Fitness estimation and training effects
	2.1.2 Training session classification
	2.1.3 Injury prediction and training load estimation
	2.1.4 Personalised training programmes
	2.1.5 Goal-time prediction and pacing

	2.2 Secondary recommendation opportunities
	2.2.1 Event recommendation
	2.2.2 Recommending routes and training partners
	2.2.3 Gear and equipment recommendation
	2.2.4 Nutritional support
	2.2.5 Motivational advice
	2.2.6 Active recovery and rehabilitation
	2.2.7 Exercise and sleep

	2.3 On the implications for profiling, personalisation, and recommendation

	3 Case studies, research questions and data sources
	3.1 Research questions
	3.2 Data sources
	3.2.1 The Strava training dataset
	3.2.2 The marathon race dataset


	4 Case-study 1—estimating personalised fitness models
	4.1 Mining fitness models from training data
	4.1.1 Fastest-pace (FP) model
	4.1.2 Functional threshold pace (FTP) model
	4.1.3  model

	4.2 Critical velocity (CV) model
	4.3 Evaluation
	4.3.1 Methods
	4.3.2 Results

	4.4 Discussion and limitations

	5 Case-study 2—recommending personalised training sessions
	5.1 A case-based reasoning approach to training recommendation
	5.1.1 From training sessions to training cases
	5.1.2 Generating training recommendations
	5.1.3 From single-week to multi-week cases

	5.2 Evaluation
	5.2.1 Results

	5.3 Discussion and limitations

	6 Case-study 3—estimating injury risk during training
	6.1 Using training disruption as a proxy for injury
	6.2 Representing activity features
	6.2.1 Baseline features (B)
	6.2.2 Ability features (A)
	6.2.3 Disruption history features (H)
	6.2.4 Training load features (T)

	6.3 Evaluation
	6.3.1 Methods
	6.3.2 Results

	6.4 Discussion and limitations

	7 Case-study 4—personal-best prediction and pacing recommendation
	7.1 Using CBR to predict PBs and recommend pacing plans
	7.2 Evaluation
	7.3 Methods
	7.4 Results
	7.5 Discussion and limitations

	8 Conclusions
	References




