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Abstract
Providing relevant personalized recommendations for new users is one of the major
challenges in recommender systems. This problem, known as the user cold start has
been approached from different perspectives. In particular, cross-domain recommen-
dationmethods exploit data fromsourcedomains to address the lackof user preferences
in a target domain. Most of the cross-domain approaches proposed so far follow the
paradigm of collaborative filtering, and avoid analyzing the contents of the items,
which are usually highly heterogeneous in the cross-domain setting. Content-based
filtering, however, has been successfully applied in domains where item content and
metadata play a key role. Suchdomains are not limited to scenarioswhere itemsdohave
text contents (e.g., books, news articles, scientific papers, and web pages), and where
text mining and information retrieval techniques are often used. Potential application
domains include those where items have associated metadata, e.g., genres, directors
and actors for movies, and music styles, composers and themes for songs. With the
advent of the SemanticWeb, and its reference implementation Linked Data, a plethora
of structured, interlinked metadata is available on the Web. These metadata represent
a potential source of information to be exploited by content-based and hybrid filtering
approaches. Motivated by the use of Linked Data for recommendation purposes, in
this paper we present and evaluate a number of matrix factorization models for cross-
domain collaborative filtering that leverage metadata as a bridge between items liked
by users in different domains. We show that in case the underlying knowledge graph
connects items from different domains and then in situations that benefit from cross-
domain information, our models can provide better recommendations to new users
while keeping a good trade-off between recommendation accuracy and diversity.

Keywords Cross-domain recommender systems · User cold start · Item metadata ·
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1 Introduction

Cross-domain recommendation has recently emerged as a potential solution to the
cold start problem in recommender systems (Cantador et al. 2015), aiming to mitigate
the lack of data by exploiting user preferences and item attributes in domains distinct
but related to the target domain. In this line, most of the cross-domain approaches
proposed so far are based on collaborative filtering (Cremonesi et al. 2011), exploit-
ing user preferences as a bridge to relate source and target domains, and ignoring
the content of the items. Hence, they benefit from the fact that they do not need to
perform any kind of analysis of item contents, which are in general highly hetero-
geneous across domains, and whose inter-domain relationships may be difficult to
establish.

These difficulties, however, can be addressed nowadays thanks to the SemanticWeb
initiative (Shadbolt et al. 2006), and more specifically to its reference implementation
the Linked Open Data (LOD) project (Bizer et al. 2009), which has originated a
large number of inter-linked knowledge repositories publicly available in the Web,
following the Semantic Web standards for data representation and access. Hence, in
the current Web there is a wide array of structured data sources with information of
items belonging to a variety of domains, such as history, arts, science, industry, media
and sports, to name a few. This information not only consists of particular multimedia
contents and associated metadata, but also explicit, semantic relations between items
and metadata.

Motivated by the availability of large amounts of item metadata and semantic rela-
tions in the Linked Data cloud, we aim to address the cross-domain recommendation
problem not only focusing on user preferences and item attributes, but also exploit-
ing content-based relations between items from different domains. More specifically,
we propose to use the set of LOD semantic features and relations as inter-domain
links for supporting knowledge transfer across domains, enabling cross-domain
item similarities, and providing recommendations for cold start users in the target
domain.

Previouswork has proposed graph-based algorithms to address the recommendation
problem in heterogeneous datasets (Yu et al. 2014; Di Noia et al. 2016), analyzing the
topology of semantic networks to jointly exploit user preferences and item metadata.
These approaches have been shown to be effective for recommendation, but suffer
from computational issues caused by the size of the semantic networks, which are in
general very large. Differently, we avoid these issues by working in two steps. First,
we exploit the semantic networks to compute inter-domain similarities that link items
from different domains. Then, we leverage the computed similarities in hybrid matrix
factorization (MF) models for recommendation, which no longer need to deal with
the whole networks.

Therefore, the main contribution of this work is the development of novel, effec-
tive hybrid matrix factorization models that jointly exploit user preferences and
item metadata for cross-domain recommendation. Moreover, we adapt a fast
learning algorithm by Pilászy et al. (2010) for efficiently building our models, and
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evaluate them in cold start scenarios in several domains, in terms of both precision and
diversity.

We evaluate the performance of the proposed models using a dataset of Facebook1

likes about movies, music and books. In order to obtain semantic metadata for the
different items, we first mapped the items in our dataset to entities in LOD by means
of SPARQL queries, and then extracted their attributes and relations to enhance the
item profiles.

In a first experiment, we compared several state-of-the-art semantic similarity met-
rics for content-based recommendation, aiming to understand which is more suitable
for later injecting in our cross-domainMFmodels, and achieving the best results using
the link-based approach by Milne and Witten (2008). Then, we evaluated the ranking
precision and diversity of the recommendations computed by the proposedmodels.We
show that, depending on the involved source and target domains, our models generate
more accurate suggestions than a number of baselines in severe cold start situations.
Moreover, the proposed approaches provide a better trade-off between accuracy and
diversity, which are in general difficult to balance.

We point out that the presented approaches can be effectively used if the underlying
LOD knowledge graph encodes direct or indirect connections between items in dif-
ferent domains. In fact, we need to compute semantic similarities between items not
belonging to the same domain. These connections are quite common for knowledge
domains with some degree of information overlap, such as in the case of books, movies
and music but, in case they are missing or rare, this may result as a limitation for the
performances of the approaches we introduce here.

The reminder of the paper is structured as follows. In Sect. 2, we revise related
work on cross-domain recommender systems, focusing on those approaches that are
based on Matrix Factorization. For the sake of completeness, we provide an overview
of the standard Matrix Factorization technique in Sect. 3. In Sect. 4, we present the
developed cross-domain hybridmatrix factorizationmodels. Next, in Sect. 5, we report
and analyze the empirical results achieved in the experiments conducted to analyze
user cold start situations. Finally, in Sect. 6 we end with some conclusions and future
research lines.

2 Related work

In this section, we survey the state of the art on cross-domain recommender sys-
tems. First, in Sect. 2.1 we describe the cross-domain recommendation problem
and present a categorization of the approaches, giving representative examples of
each category. Next, in Sect. 2.2 we focus on those cross-domain recommendation
approaches that use the matrix factorization technique to bridge the source and target
domains.

1 Facebook online social networking, https://www.facebook.com.
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2.1 Cross-domain recommender systems

Nowadays, the majority of recommender systems suggest items belonging to a single
domain. For instance, Netflix2 recommends movies and TV shows, Spotify3 rec-
ommends songs and music albums, and Barnes & Noble4 recommends books. These
domain-specific systemshave been successfully deployed bynumerouswebplatforms,
and the single-domain recommendation functionality is not perceived as a limitation,
but rather pitched as a focus on a certain market.

Nonetheless, in large e-commerce sites such as Amazon.com5 and eBay6 users
often provide feedback for items from multiple domains, and in social networks like
Facebook7 and Twitter8 users express their tastes and interests for a variety of topics. It
may, therefore, be beneficial to leverage all the available user data provided in various
systems and domains in order to generate more encompassing user models and better
recommendations. Instead of treating each domain (e.g., movies, music and books)
independently, knowledge acquired in a source domain could be transferred to and
exploited in another target domain. The research challenge of transferring knowledge,
and the business potential of delivering recommendations spanning across multiple
domains, have triggered an increasing interest in cross-domain recommendations.

The cross-domain recommendation problem has been addressed from various per-
spectives in different research areas. It has been handled by means of user preference
aggregation and mediation strategies for cross-system personalization in User Mod-
eling (Abel et al. 2013; Berkovsky et al. 2008b; Shapira et al. 2013), as a potential
solution to mitigate the cold start and sparsity problems in Recommender Systems
(Cremonesi et al. 2011; Shi et al. 2011; Tiroshi et al. 2013), and as a practical applica-
tion of knowledge transfer in Machine Learning (Gao et al. 2013; Li et al. 2009a; Pan
et al. 2010). Focusing on how knowledge is exploited by cross-domain recommender
systems, in Cantador et al. (2015) we categorized existing works according a two-level
taxonomy.

– Aggregating knowledgeKnowledge from various source domains is aggregated to
perform recommendations in a target domain.Depending on the stage in the recom-
mendation process where the aggregation is performed we can further distinguish
three cases. First, we find approaches thatmerge user preferences e.g., ratings, tags,
transaction logs, and click-through data. The aggregation can be done by means
of a multi-domain rating matrix (Berkovsky et al. 2007a; Sahebi and Brusilovsky
2013), using a common representation for user preferences such as social tags
(Szomszor et al. 2008a; Abel et al. 2013; Fernández-Tobías et al. 2013) or seman-
tic concepts (Kaminskas et al. 2013), linking the preferences via a multi-domain
graph (Cremonesi et al. 2011; Tiroshi et al. 2013), or mapping user preferences to

2 Netflix streaming media and video provider, https://www.netflix.com.
3 Spotify digital music service, https://www.spotify.com.
4 Barnes & Noble online bookseller, http://www.barnesandnoble.com.
5 Amazon electronic commerce site, https://www.amazon.com.
6 eBay consumer-to-consumer and business-to-consumer sales, http://www.ebay.com.
7 Facebook social network, https://www.facebook.com.
8 Twitter online news and social networking service, https://twitter.com.
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domain-independent features such as personality traits (Cantador et al. 2013) or
user–item interaction features (Loni et al. 2014). In the second case, user modeling
data from various recommender systems is mediated to improve target recom-
mendations. For instance, Berkovsky et al. (2007a), Tiroshi and Kuflik (2012)
and Shapira et al. (2013) import user neighborhoods and user–user similarities
computed in the source domain into the target. Finally, some approaches directly
combine single-domain recommendations, e.g. rating estimations (Berkovsky et al.
2007a; Givon and Lavrenko 2009) and rating probability distributions (Zhuang
et al. 2010).

– Linking and transferring knowledge Knowledge linkage or transfer between
domains is established to support recommendations. In this case, we find methods
that (1) link domains by a common knowledge such as item attributes (Chung et al.
2007), association rules (Cantador et al. 2013), semantic networks (Fernández-
Tobías et al. 2011; Kaminskas et al. 2013), and inter-domain correlations (Zhang
et al. 2010; Shi et al. 2011; Sahebi et al. 2017); methods that (2) share latent fea-
tures between source and target domains factormodels, either by using samemodel
parameters (Pan et al. 2011; Hu et al. 2013; He et al. 2018) in both factorizations,
or by introducing new parameters that extend the factorizations (Enrich et al. 2013;
Fernández-Tobías and Cantador 2014); and methods that (3) transfer rating pat-
terns extracted by co-clustering the source domain rating matrix and exploit them
in the target domain (Li et al. 2009a; Gao et al. 2013; Cremonesi and Quadrana
2014). After defining the problem, in Pan (2016) three different knowledge trans-
fer strategies for collaborative recommendation with auxiliary data (TL-CRAD)
are introduced: (1) adaptive knowledge transfer, (2) collective knowledge transfer
and (3) integrative knowledge transfer. Then, for each of them the author surveys
related work with reference to different knowledge strategies with an emphasis on:
transfer via prediction rule, transfer via regularization and transfer via constraint.

In terms of the goals addressed by cross-domain recommenders, we find great
diversity among the reviewed approaches. Most proposals focus on improving accu-
racy by reducing data sparsity (Li et al. 2009a; Shi et al. 2011; Cao et al. 2010; Zhang
et al. 2010; Pan et al. 2010; Tiroshi et al. 2013; Loni et al. 2014; Zhu et al. 2018). In
many domains, the average number of ratings per user and item is low, which may
negatively affect the quality of the recommendations. Data collected outside the target
domain can increase the rating density, and thus may upgrade the recommendation
quality. Others seek to enhance user models, which may have personalization-oriented
benefits such as (1) discovering new user preferences for the target domain (Stewart
et al. 2009; Szomszor et al. 2008b), (2) enhancing similarities between users and items
(Abel et al. 2011; Berkovsky et al. 2008b), and (3) measuring vulnerability in social
networks (Goga et al. 2013; Jain et al. 2013). Cross-domain methods have been also
applied to bootstrap recommender systems by importing preferences from another
source outside the target domain (Shapira et al. 2013), and have been proposed to
improve the diversity of recommendations by providing better coverage of the range
of user preferences (Winoto and Tang 2008). Finally, a few approaches have dealt
with the new user problem (Hu et al. 2013; Sahebi and Brusilovsky 2013; Tiroshi and
Kuflik 2012; Enrich et al. 2013). When a user starts using a recommender system, it
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has no knowledge of the user’s tastes and interests, and cannot produce personalized
recommendations. This may be solved by exploiting the user’s preferences collected
in a different source domain.

We observe that addressing the cold-start has been barely investigated, as in Liu
et al. (2017) where the authors present a neighborhood-based algorithm for the dual
cold-start problem. The generalization of users and items into a cluster level to obtain
high-quality relations also in cold start scenario is the focus of Mirbakhsh and Ling
(2015). They first employ biased matrix factorization to map rating matrix into lower-
dimension latent spaces. After this step, they apply the k-means clustering algorithm
to categorize users and items. The cold-start is also themain topic ofWongchokprasitti
et al. (2015), where the authors propose a novel approach to cross-system personal-
ization based on two assumptions: the existence of a user model that could be shared
among platforms, and that a specific system canmaintain (and provide) the usermodels
built by its system.

As we shall present in Sect. 4, we aim to deal with the cold-start problem by
means of novel matrix factorization models that jointly exploit user ratings and item
metadata. Before, in Sect. 2.2, we revise state-of-the-art cross-domain recommender
systems based on matrix factorization.

2.2 Matrix factorization-based cross-domain recommender systems

Although matrix factorization models can be applied in cross-domain approaches
based on knowledge aggregation—essentially as a standard recommendation problem
once the user preferences from both domains are combined—, they have been mostly
used in knowledge linkage and transfer approaches. In these settings, latent factors
from source and target domains are either shared or related in order to establish the
bridge between the domains.

One way of linking domains explored in previous works exploits inter-domain
similarities by integrating them into the probabilistic matrix factorization model
(Salakhutdinov and Mnih 2007). Specifically, such similarities are imposed as con-
straints over user or item latent factors when jointly factorizing rating matrices. For
instance, Cao et al. (2010) proposed an approach inwhich inter-domain similarities are
implicitly learned fromdata, asmodel parameters in a non-parametric Bayesian frame-
work. Since user feedback is used to estimate the similarities, user overlap between the
domains is required. Addressing the sparsity problem, Zhang et al. (2010) adapted the
probabilistic matrix factorization method to include a probability distribution of user
latent factors that encodes inter-domain correlations. One strength of this approach is
that user latent factors shared across domains are not needed, allowing more flexibility
in capturing the heterogeneity of domains. Instead of automatically learning implicit
correlations in the data, Shi et al. (2011) argued that explicit common information is
more effective, and relied on shared social tags to compute cross-domain user-to-user
and item-to-item similarities. Similarly to previous approaches, rating matrices from
the source and target domains are jointly factorized; but in this case user, and item
latent factors from each domain are restricted, so that their product is consistent with
the tag-based similarities.
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Latent factors shared between domains can be exploited to support cross-domain
recommendations. In this context, two types of approaches have been studied to per-
form the actual transfer of knowledge; namely, adaptive and collective models. In
the former, latent factors are learned in the source domain, and are integrated into
a recommendation model in the target domain, while in the latter, latent factors are
learned simultaneously optimizing an objective function that involves both domains.
Pan et al. (2010) addressed the sparsity problem in the target domain following the
adaptive approach, proposing to exploit user and item information from auxiliary
domains where user feedback may be represented differently. In particular, they stud-
ied the case inwhich users express binary like/dislike preferences in the source domain,
and utilize 1–5 ratings in the target domain. Their approach performs singular value
decomposition (SVD) in each auxiliary domain in order to separately compute user
and item latent factors, which are then shared with the target domain. Specifically,
transferred factors are integrated into the factorization of the rating matrix in the tar-
get domain, and added as regularization terms so that specific characteristics of the
target domain can be captured. Latent factors can also be shared in a collective way,
as studied by Pan et al. (2011). In this case, instead of learning latent features from
the source domains and transferring them to the target domain, the authors proposed
to learn the latent features simultaneously in all the domains. Both user and item fac-
tors are assumed to generate the observed ratings in every domain, and, thus, their
corresponding random variables are shared between the probabilistic factorization
models of each rating matrix. Moreover, the factorization method is further extended
by incorporating another set of factors that capture domain-dependent information,
resulting in a tri-factorization scheme. A limitation of the proposed approach is that
the users and items from the source and target domains have to be identical. Instead
of focusing on sharing latent factors, Enrich et al. (2013) and Fernández-Tobías and
Cantador (2014) studied the influence of social tags on rating prediction, as a knowl-
edge transfer approach for cross-domain recommendations. The authors presented a
number of models based on the SVD++ algorithm (Koren 2008) to incorporate the
effect of tag assignments into rating estimation. The underlying hypothesis is that
information about item annotation in a source domain can be exploited to improve rat-
ing prediction in a target domain, as long as a set of common tags between the domains
exists. In the proposed models, tag factors are added to the latent item vectors, and
are combined with user latent features to compute rating estimations. The difference
between these models is in the set of tags considered for rating prediction. In all the
models, knowledge transfer is performed through the shared tag factors in a collective
way, since these are computed jointly for the source and the target domains. Hu et al.
(2013) presented a more complex approach that takes domain factors into account.
There, the authors argue that user–item dyadic data cannot fully capture the hetero-
geneity of items, and that modeling domain-specific information is essential to make
accurate predictions in a setting where users typically express their preferences in a
single domain. They referred to this problem as the unacquainted world, and proposed
a tensor factorization algorithm to exploit the triadic user–item-domain data. In that
method, rating matrices from several domains are simultaneously decomposed into
shared user, item, and domain latent factors, and a genetic algorithm automatically
estimates optimal weights of the domains. In a recent work, Zhu et al. (2018) propose
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a two-step approach where the latent factors, learned via MF for both the source and
target domains, are linked by training a deep neural network (DNN) representing their
connections. Interestingly, the training process of the DNN is driven by the sparsity
degrees of individual users and items in the source and target domains. Contextual and
content-based information is exploited in Taneja and Arora (2018) to cluster users in
the source domain prior to a tensor factorization. The proposed Cross Domain-Multi
Dimensional Tensor Factorization (CD-MDTF) mitigates the sparsity and cold-start
problem by transferring the aggregated knowledge from the source domain to target
domain. An approach based on linking and transferring knowledge is proposed in
Zhao et al. (2017), where the main assumption is that correspondences among entities
in different domains are unknown, but can be computed with a cost. Starting from
this assumption, the authors propose a unified framework aimed at actively mapping
entities in different domain and then transferring knowledge via collaborative filtering.
This latter step leverages partial mappings among entities for knowledge transfer. The
authors also show how to integrate in their framework various extended matrix factor-
ization techniques in a transfer learning manner. An emphasis on the meaningfulness
of the knowledge extracted from the source domain to the target domain is the main
topic in Zhang et al. (2017). A clustering step among users and items is performed
both in the source and target before a matrix factorization. Then, by comparing the
resulting matrices, it is possible to evaluate the consistency of the information transfer.

Rather than sharing user or item latent factors for knowledge transfer, a different
set of approaches analyzes the structure of rating data at the community level. These
methods are based on the hypothesis that even when their users and items are different,
close domains are likely to have user preferences sampled with the same population.
Therefore, latent correlations may exist between preferences of groups of users for
groups of items, which are referred to as rating patterns. In this context, rating patterns
can act as a bridge that relates the domains, such that knowledge transfer can be
performed in either adaptive or collective manners. In the adaptive setting, rating
patterns are extracted from a dense source domain (Li et al. 2009a; Gao et al. 2013).
In the collective setting, data from all the domains are pulled together and jointly
exploited, even though users and items do not overlap across domains (Li et al. 2009b).
In He et al. (2018), the authors propose to alleviate the data sparsity problem in a
target domain by transferring rating patterns frommultiple incomplete source domains.
The proposed approach extracts rating patterns from a sparse source domain that are
eventually combined with collaborative filtering to approximate the target domain
and predict missing values. In particular, they take into account the effects related to
negative transfer to obtain more robust recommendations.

3 Matrix factorization-based collaborative filtering

Matrix Factorization (MF) models are among the most popular approaches to collab-
orative filtering, and have been actively investigated since they were introduced in
the context of the Netflix prize competition (Bell and Koren 2007a). As opposed to
classic user- and item-based collaborative filtering heuristics (Herlocker et al. 1999;
Linden et al. 2003), MFmethods train a statistical model from the available data using
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machine learning techniques. Specifically, they perform a dimensionality reduction of
the highly sparse rating matrix into a subspace of latent factors, which aim to capture
implicit properties of users and items. In order for MF to be effective, the dimension
k of the latent subspace is assumed to be much smaller than the number of users
and items, k � min(|U |, |I |), essentially acting as a bottleneck that compresses the
sparse input while retaining enough information to explain the observed user–item
interactions.

In this section we review the classical matrix factorization models for explicit
and implicit feedback, which serve as the building blocks for our proposed models
presented in Sect. 4, as well as the state-of-the-art approaches BPR and FISM that we
use as baselines in our experiments.

3.1 Matrix factorizationmodels for rating prediction

Recommendation models based on MF have their roots on the Latent Semantic Anal-
ysis (LSA) technique (Deerwester et al. 1990), widely used in Natural Language
Processing and Information Retrieval. LSA attempts to automatically infer concepts
implicit in text documents by approximating the term-document matrix with a trun-
cated Singular Value Decomposition (SVD) of lower rank. The first MF approaches
for recommendation borrowed the same idea, and applied it to the user–item matrix in
the rating prediction task (Sarwar et al. 2000). In contrast to LSA, the SVD is not well
defined for sparse matrices as those commonly found in recommender systems, and
hence the above approaches relied on imputation techniques to fill the missing matrix
entries before applying SVD.

Rather than filling the rating matrix, which may introduce inaccurate information,
subsequent approaches aimed to only factorize observed ratings instead of the whole
matrix. One of the first and most popular methods in this line is the model proposed
by Funk (2006), in which each user u is assigned a vector pu ∈ R

k of latent features
automatically inferred from the data, and similarly each item i is assigned a vector
qi ∈ R

k in the same subspace. Intuitively, latent features aim to capture properties
implicit in the data—such as the amount of comedy or action in the case of movies—,
but does not need to be interpretable at all, as this is not enforced in the model (Koren
and Bell 2015). Ratings are then estimated as the dot product of latent feature vectors:

r̂(u, i) = 〈pu,qi 〉 (1)

Equivalently, the rating matrix R is factorized as R ≈ PQ�, where P is a |U | × k
matrix with the user vectors pu as rows, and respectively Q is |I | × k contains the
qi as rows. The values of these matrices are automatically estimated from the data,
by minimizing the Mean Squared Error of the ratings predicted against the ratings
observed in a training set. That is, P and Q are chosen to minimize to following loss
function:

L(P,Q) =
∑

(u,i)∈R

{(
rui − 〈pu,qi 〉

)2 + λ
(
‖pu‖2 + ∥∥qi

∥∥2
)}

(2)
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where R is the set of observed ratings, i.e., the set of non-zero entries of the rating
matrix R, and λ > 0 is a regularization hyper-parameter used to prevent overfitting.

In (Funk 2006) this function is minimized using Stochastic Gradient Descent, a
widely used optimization technique that iteratively updates the parameters in the
opposite direction of the gradient. When applied to Eq. (2), this technique yields
the following update rules for the parameters pu and qi for each rating rui in the
training set:

pu ← pu − η
(
euiqi + λpu

)
(3)

qi ← qi − η
(
euipu + λqi

)
(4)

The learning rate η is a hyper-parameter that controls the extent to which the model
parameters are updated in each iteration, and is carefully chosen; too large values may
make the algorithm fail to converge, while too small values may make its convergence
very slow. eui is the prediction error, and is defined as eui � rui − r̂(u, i).

In addition to StochasticGradientDescent, other optimization techniques have been
explored in the literature, such as Alternating Least Squares (Bell and Koren 2007b),
which is the standard technique followed in MF models for positive-only feedback
(Sect. 3.2).

The basic SVD model by Funk (2006) is easily extensible, and has served as a
building block for more complex matrix factorization models. For instance, Koren
(2008) proposed the SVD++ model, which includes additional parameters to account
for implicit feedback in rating predictions. Further extensions of SVD introduce tem-
poral variables to capture the evolution of user preferences through time (Koren and
Bell 2015).

3.2 Matrix factorizationmodels for positive-only feedback

The core ideas behind the standard Matrix Factorization model for collaborative fil-
tering have also been applied to the item ranking task when positive-only feedback is
available instead of numeric ratings. Recommendation models designed for this type
of data must take into account its particular characteristics, most notably the absence
of negative feedback, but also the possible uncertainty in the positive feedback, as an
observed user–item interaction may not necessarily indicate a preference of the user
towards the item.

In one of the most representative works in this direction, Hu et al. (2008) proposed
an adaptation of the rating-basedMFmodel described previously to deal with positive-
only feedback.As opposed to the rating-basedSVD,which only considers the observed
ratings, Hu et al.’s method models the full set of |U | · |I | interactions. Since negative
feedback is not available in this scenario, the authors argue that the algorithm also has
to model the missing information as an indirect source of negative user preferences.
For such purpose, they introduce a parameter cui for each possible user–item pair that
measures the confidence on the corresponding interaction, whether observed or not:

cui = 1 + αkui (5)
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where kui is the count of implicitly collected interactions between user u and item
i—such as number of clicks on a product web page on an e-commerce site, and
the number of listening records of a given song in an online music provider—, and
α > 0 is a scaling parameter. When no interaction is observed, kui = 0 and the model
assigns minimum confidence to the user–item pair, as it is unknown whether the lack
of interaction is because the user really does not like the item, or just because the user
does not know the item. Likewise, the more interactions are collected and the greater
kui , the larger is the confidence on that observation. Moreover, focusing on the item
ranking task, Hu et al.’s approach only aims to predict if the user will interact with the
item, rather than the actual number of observations kui . Hence, a new set of variables
is introduced so that xui = 1 if kui > 0, and xui = 0 otherwise.

Similarly to the SVD model for ratings, the recommendation score of item i for
user u is estimated as the dot product of their corresponding latent feature vectors:

s(u, i) = 〈pu,qi 〉 (6)

The model parameters pu and qi are again automatically learned by minimizing the
mean squared error for the score predictions, but now accounting for the different
confidence levels and the full set of possible user–item pairs:

L(P,Q) =
∑

u

∑

i

cui
(
xui − 〈pu,qi 〉

)2 + λ
(
‖P‖2 + ‖Q‖2

)
(7)

Again, the loss function can be minimized with different numerical optimization
techniques such as Stochastic Gradient Descent, but in Hu et al. (2008) the authors
propose an Alternating Least Squares (ALS) procedure that efficiently handles the
greater cost of accounting for the missing values. Clearly, the loss function in Eq. (7)
involves many more terms than that of Eq. (2), as the number of observed entries in
the user–item matrix is usually very small due to the data sparsity.

The key observation behind ALS is that when one set of parameters is fixed, the
optimization problem in Eq. (7) is convex and analytically solvable using ordinary
least-squares estimation. In particular, fixing the qi parameters and setting the gradient
with respect to pu to zero yields the solution

pu =
(
Q�CuQ + λI

)−1
Q�Cuxu . (8)

where I is the k × k identity matrix, Cu is a |I | × |I | diagonal matrix with the cui
values, and xu is a column vector of length |I |with the xui values. The same procedure
can be applied by fixing the user factors, and optimizing the item factors, leading to
the solution

qi =
(
P�CiP + λI

)−1
P�Cixi . (9)

Similarly, Ci is a |U | × |U | diagonal matrix with the cui confidence values, and xi is
a column vector of length |U | containing the binary values of xui .
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Algorithm 1 Alternating Least Squares training algorithm.
procedure ALS- Train

Initialize P,Q at random
repeat

P step
Fix Q and optimize all pu in parallel using Equation 8

Q step
Fix P and optimize all qi in parallel using Equation 9

until convergence
end procedure

As pointed out by the authors, the products Q�CuQ and P�CiP require time
O(k2|U |) and O(k2|I |) for each user and item, respectively, and represent a compu-
tational bottleneck during the training phase. However, these terms can be computed
more efficiently noting thatQ�CuQ = Q�Q+Q�(Cu−I)Q, whereQ�Q is indepen-
dent of the user and thus can be precomputed, and Cu − I only has non-zero entries in
the diagonal for the |I (u)| items with kui > 0, which is much smaller than |I |. Consid-
ering the computation of the matrix inverse, the total complexity of Eq. (8) for a single
user is O(k2|I (u)| + k3). Likewise, the complexity for Eq. (9) is O(k2|U (i)| + k3).

The main advantage of ALS is that the optimal factors for each user in Eq. (8) can
be computed in parallel once the item factors are fixed (P step). Symmetrically, once
the user factors are obtained and fixed, the item factors in Eq. (9) can be found for
each item in parallel (Q step). This observation leads to the alternating nature of ALS,
respectively fixing one set of parameters and optimizing the other until convergence
is reached or for a given number of iterations, as illustrated in Algorithm 1.

The ALS-basedmethod byHu et al. (2008) became the standard baseline for matrix
factorizationmodelswith positive-only feedback, and has been extended and improved
in subsequent works since it was first proposed. One notable paper by Pilászy et al.
(2010) presents a new training procedure to boost the time complexity of the P step
of each user to O(k2 + k|I (u)|), and analogously the Q step. In order to achieve this
significant improvement, the authors propose an approximate solution to the least-
squares problem in each step. Rather than directly finding the k-dimensional solution
as in Eqs. (8) and (9), which involves the costly computation of a matrix inverse, their
approach iteratively solves k one-dimensional least squares problems, one for each
latent dimension, much less expensive to solve. As reported in the paper, the loss of
accuracy due to the approximate algorithm is small compared to the saved time for
training. In subsequent work, Takács and Tikk (2012) extended ALS to a ranking-
based MF approach that learns to predict the relative ordering of items instead of
individual point-wise scores. More recently, Paquet and Koenigstein (2013) proposed
a graph-based Bayesian model that is able to capture the meaning of missing values,
distinguishing between a user disliking an item or being unaware of it.

3.3 Bayesian personalized ranking criterion

Matrix Factorization models can be easily trained to reduce the prediction error via
gradient descentmethods, alternating least-squares (ALS), andMCMC. If the problem
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is formulated as a top-N recommendation task, they can be trained using a learning to
rank approach like the Bayesian Personalized Ranking Criterion (BPR) from Rendle
et al. (2009). Given Θ as the model parameters, and 
u the unknown preference
structure we want to learn for user u, the optimal personalized ranking using Bayesian
formulation can be found optimizing the posterior probability:

p(Θ| 
u) ∝ p(
u |Θ) · p(Θ)

The BPR criterion is optimized using a stochastic gradient descent algorithm on a
set DS of triples (u, i, j), with i ∈ I u and j /∈ I u , selected through a random sam-
pling from a uniform distribution. From the former, the overall optimization criterion
BPR-OPT can be derived defining the individual probability with a sigmoid function
σ(·):

BPR-OPT =
∑

(u,i, j)∈Ds

lnσ(x̂ui j ) − λΘ‖Θ‖2

=
∑

(u,i, j)∈Ds

lnσ
(
x̂ui − x̂u j

) − λΘ‖Θ‖2 (10)

Given the sigmoid function, the update step is defined as:

Θ ← Θ + η

(
e−x̂ui j

1 + e−x̂ui j
· ∂

∂Θ
x̂ui j + λΘ

)
(11)

where α is the chosen learning rate, and the values x̂ui j are set to the difference of the
predicted values, between a positive element (which is present in a user’s history), and a
negative element (randomly extracted from the remaining items). In the classical BPR
formulation, a Biased Matrix Factorization model (Koren and Bell 2015) is adopted
in which the prediction x̂ui corresponds to:

x̂ui = bu + bi + 〈pu,qi 〉 (12)

where bu and bi are, respectively, the learned user and item biases. The difference of
the predicted values, x̂ui j , is thus:

x̂ui j = x̂ui − x̂u j = bi − b j + 〈pu,qi 〉 − 〈pu,q j 〉 (13)

By computing the partial derivatives, the updates of the parameters for the model are:

bu ← bu + η

(
e−x̂ui j

1 + e−x̂ui j
− λbu

)
(14)

bi ← bi + η

(
− e−x̂ui j

1 + e−x̂ui j
− λbi

)
(15)
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qi ← qi + η

(
pu

e−x̂ui j

1 + e−x̂ui j
− λqi

)
(16)

q j ← q j + η

(
−pu

e−x̂ui j

1 + e−x̂ui j
− λq j

)
(17)

pu ← pu + η

[
(
qi − q j

) e−x̂ui j

1 + e−x̂ui j
− λpu

]
(18)

Using Eqs. (14–18) the model parameters can be iteratively updated to maximize the
BPR-OPT criterion. The algorithmupdates sequentially themodel using each sampled
triple and continues the training until it reaches the convergence (usually the provided
number of iterations).

3.4 FISM

Matrix factorization has also been exploited to alleviate the sparsity problem in gen-
erating the item similarity matrix. In FISM, Kabbur et al. (2013) proposed to learn the
item similarity matrix as the product of two low dimensional latent factor matrices.
Given two items i and j , the similarity sim(i, j) between them is computed as the dot
product between the corresponding factors from P and Q, i.e., sim(i, j) = 〈p j ,qi 〉.
The rating for a given user u on item i is estimated as

x̂ui = bu + bi + (|I | − 1)−α
∑

j∈Iu\{i}
〈p j ,qi 〉 (19)

In order to solve the top-N recommendation problem, the authors used a ranking
loss inspired by Bayesian Personalized Ranking (BPR) (Rendle et al. 2009), which
optimizes the area under the curve (AUC). The consequent model, FISMauc, is
learned solving the following minimization problem:

minimize
P,Q

1

2

∑

(u,i, j)∈Ds

‖(xui − xu j ) − (x̂ui − x̂u j )‖2k + β

2
(‖P‖2k + ‖Q‖2k)

+ γ

2
(‖bi‖22) (20)

where the vectors bi correspond to the vector of item biases. The regularization terms
are used to prevent overfitting, and β and γ are the regularization weights for latent
factor matrices, and item bias vector respectively.

4 Proposedmatrix factorizationmodels for cross-domain
recommendation

In contrast to previous works that rely on graph-basedmethods for exploiting semantic
metadata, the approach proposed in this paper first computes inter-domain content-
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based similarities between the items, and then exploits these similarities to regularize
the joint learningofmatrix factorizations in the source and target domains. In particular,
we present three alternative hybrid models that make different assumptions about the
relationships between source and target domain item latent factors, simultaneously
exploiting user preferences and item metadata.

Moreover, in the paper we detail our adaptations of the fast alternating least squares
training algorithm for matrix factorization proposed by Pilászy et al. (2010), in order
to deal with the increased complexity of our models, which not only learn the auxiliary
source domain user preferences, but also the itemmetadata used to bridge the domains.

Items from different domains tend to have very diverse attributes that are not
straightforward related. For instance, a book may be characterized by its author or by
its book genres, and a movie can be described using its cast, director or movie genres.
In fact, content-based features are often different between domains, and even when
they refer to related concepts, such as book genres andmovie genres, the features may
not be directly aligned, e.g., funny movies vs. comedy books.

In order to overcome the heterogeneity of features of items from different domains,
we propose to exploit Linked Data for linking entities from multiple and diverse
domains. Specifically, we map the items in our datasets to entities in DBpedia
(Lehmann et al. 2015), a multi-domain repository that provides a semantic-based,
structured representation of knowledge in Wikipedia.9 In Sect. 5.1 we shall describe
the process of mapping items to semantic entities from DBpedia. Once the items are
mapped to their corresponding entities, we use the DBpedia graph to compute seman-
tic similarities between such entities, mining both the attributes and the structure of
the graph with semantic relations. More specifically, we exploit the information in
DBpedia to compute a semantic similarity matrix S ∈ R

|IS |×|IT | between the source
domain items IS and the target domain items IT :

si j = sim(i, j), i ∈ IS, j ∈ IT (21)

In Sect. 5.4 we shall report recommendation performance results by using several
semantic similarity metrics from the state of the art.

The computed inter-domain item similarities are then used to link the domains for
cross-domain recommendation. In the cold-start, when a user has rated a few (if any)
items in the target domain, a recommender system could suggest the user items in
the target domain that are semantically similar to those the user liked in the source
domain. Hence, the system could be effective only if there is an overlap of users
between the domains. Moreover, even cold start users in the target domain should
have some preferences in the source domain.

In the next subsections we present our three recommendation models based on the
exploitation of semantic similarities to regularize item factors in MF, so that similar
items from different domains tend to have similar parameters. In this way, even if the
user’s preferences in the target domain are unknown, a recommender system could
suggest the user with target items that are most similar to those she preferred in the
source.

9 Wikipedia online encyclopedia, https://www.wikipedia.org.
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4.1 Regularization through similarity prediction

The first semantic-basedmatrix factorization cross-domainmodel we propose is based
on the assumption that latent vectors of related items should explain the items semantic
similarities, in addition to the users’ preferences. That is, we not only seek to predict
the preferences rui ≈ 〈pu,qi 〉, but also the inter-domain similarities si j ≈ 〈qi ,q j 〉,
where i ∈ IS and j ∈ IT .

Hence, our model jointly factorizes the rating and inter-domain item similarity
matrices that link the source and target domains. Let U = US ∪ UT be the set of all
users, which we assume overlaps between the domains, and let I = IS ∪ IT be the
set of all items, which we assume do not overlap. Our model learns a latent vector
pu ∈ R

k for each user u ∈ U, but separately models source and target domain items
qi and q j , with i ∈ IS and j ∈ IT , as follows:

L(P,QS,QT ) =
∑

u∈U

∑

a∈I
cua

(
rua − 〈pu,qa〉

)2

+ λC
∑

i∈IS

∑

j∈IT

(
si j − 〈qi ,q j 〉

)2 + λ
(
‖P‖2 + ‖QS‖2 + ‖QT ‖2

)
(22)

where QS and QT are matrices containing the item latent vectors as rows from the
source and target domains, respectively. We note that the summation in the first term
iterates over all items a ∈ I from both domains, as we want to factorize the source and
target user–item preference matrices simultaneously. The cross-domain regularization
parameter λC > 0 controls the contribution of the inter-domain semantic similarities;
large values of the parameterwill force items to have too similar latent vectors, whereas
low values will result in limited transfer of knowledge between domains.

As in standard matrix factorization, we train our model using Alternating Least
Squares. First, we fix QS and QT , and solve analytically for each pu by setting the
gradient to zero. Since the user factors do not appear in the additional cross-domain reg-
ularization term, we obtain the same solution as for the baselineMFmodel (see Eq. 8):

pu =
(
Q�CuQ + λI

)−1
Q�Curu (23)

In order to simplify the notation, we have defined the matrix Q as the row-wise
concatenation of QS and QT . The matrix Cu is a diagonal matrix with the confidence
values cua for all a ∈ I, and the vector ru contains the preferences of user u, again for
all items a ∈ I.

Next, we fix the user factors P and the target domain item factors QT , and com-
pute the optimal values for the source domain item factors. Again, by setting the
corresponding gradient to zero and solving analytically we obtain:

qi =
(
P�CiP + λCQ�

TQT + λI
)−1 (

P�Ciri + λCQ�
T si

)
(24)

As previously, the vector ri contains the preferences assigned to item i , and si is the i th
row of the inter-domain semantic similarity matrix S. Finally, we proceed as before
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fixing P and QS to compute the optimal solution for the target domain item latent
vectors:

q j =
(
P�C jP + λCQ�

S QS + λI
)−1 (

P�C jr j + λCQ�
S s j

)
(25)

The computation of the optimal factors can be parallelized within each step, but the
larger number of items to consider and the extra step required for the source domain
greatly increase the training time with respect to the MF baseline. In order to address
this issue, we adapt the fast RR1 training algorithm for ALS proposed by Pilászy et al.
(2010). Since the computation of the user factors is the same as in the original MF
model, the procedure remains the same for the P-step. For the source domain Q-step,
by inspecting Eqs. (22) and (24), we note that the additional terms that arise from the
inter-domain similarities can be treated just like user preferences as follows. For each
source item i :

1. Generate examples for each rating rui as for baselineMF [see Pilászy et al. (2010)]
2. For each target item j ∈ IT :

– Generate an input example x j := q j .
– Use the similarity as the dependent variable, y j := si j .
– Use a constant confidence value c j := λC .
– The parameter to optimize is w := q j .

The above procedure will produce the similarity terms of Eq. 24, which can be defined
by means of the confidence matrix C̃i = λCI. The procedure for the target domain
Q-step is completely analogous.

4.2 Regularization based on item neighborhoods

Our second semantic-based matrix factorization cross-domain model exploits the item
semantic similarities in a different fashion. Instead of forcingpairwise item interactions
to reproduce the observed similarity values, the approach we present here leverages S
to regularize the item latent vectors, so that feature vectors of similar items are pushed
together in the latent space. Intuitively, items that are semantically similar should also
have similar latent parameters.

As previously, let U = US ∪ UT and I = IS ∪ IT be the sets of all users and
items, respectively. Our approach jointly factorizes the source and target domain rating
matrices, and regularizes similar item factors proportionally to the items similarity.
However, instead of considering all the potentially similar source domain items, we
limit the regularization of a target domain item j ∈ IT to its neighborhood, i.e., to the
set N ( j) ⊆ IS of the top-n most similar source domain items:

L(P,QS,QT ) =
∑

u∈U

∑

a∈I
cua

(
rua − 〈pu,qa〉

)2

+ λC
∑

j∈IT

∑

i∈N ( j)

si j
∥∥q j − qi

∥∥2 + λ

(
∑

u∈U
‖pu‖2 +

∑

a∈I

∥∥qa
∥∥2

)
(26)
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Wenote that itemswith greater similarity values aremore heavily regularized, whereas
items with values of si j ≈ 0 in their neighborhoods are barely affected. However, it
may still be convenient to regularize such items so that they benefit from cross-domain
information, and thus may be eligible for recommendation to cold start users. There-
fore, we also experiment normalizing the similarity scores in the item neighborhoods
so that

∑
i∈N ( j) si j = 1. In this way all target items are equally regularized, but each

is affected by its source domain neighbors proportionally to their similarity scores.
By assigning latent vectors to target domain items close to those of similar source

domain items, our model is able to generate recommendations in cold start settings.
Specifically, let q j be the latent vector learned for target item j ∈ IT , and let qi be
the latent vector of source item i ∈ IS , which we assume is semantically similar to
j . Our model will regularize both factors so that their distance

∥∥q j − qi
∥∥ is small, or

equivalently, q j ≈ qi . Consider now a cold start user u who only provided preferences
in the source domain, so that her corresponding latent vector pu is therefore only
adjusted using source domain preferences. In standard MF, it is not guaranteed that pu
will extrapolate to the target domain, and will provide an accurate prediction for q j .
In contrast, our model ensures that 〈pu,q j 〉 ≈ 〈pu,qi 〉, i.e., target domain items yield
relevance prediction scores close to that of similar source domain items. Hence, u will
be recommended with a target domain item j if the user liked the source domain item
i , or if i would be recommended to u in the source domain.

Once more, we train our neighborhood-based matrix factorization model using
Alternating Least Squares. As in the previous model, the user factors are not affected
by the extra regularization, and can be computed again using Eq. (23), leaving the
P-step unchanged. For the target domain item factors q j we proceed as usual, fixing

the user and source item factors, and finding the values such that ∂L
∂q j

= 0, which

yields the solution:

q j =
⎡

⎣P�C jP +
⎛

⎝λ + λC
∑

i∈N ( j)

si j

⎞

⎠ I

⎤

⎦
−1 ⎛

⎝P�C jr j + λC
∑

i∈N ( j)

si jqi

⎞

⎠ (27)

Repeating the same procedure for the source item factors qi we obtain:

qi =
⎡

⎣P�CiP +
⎛

⎝λ + λC
∑

j∈N−1(i)

si j

⎞

⎠ I

⎤

⎦
−1 ⎛

⎝P�Ciri + λC
∑

j∈N−1( j)

si jq j

⎞

⎠

(28)

where N−1(i) is the inverse neighborhood of item i , i.e., the set of target domain items
that have i among their neighbors: N−1(i) = { j ∈ IT |i ∈ N ( j)}.

Unlike the model presented in the previous section, we cannot apply RR1 directly
by treating the new similarity terms as additional user preferences. Instead, we derive
again the update rules for each component of the source and target domain item param-
eters. As mentioned before, user parameters remain unchanged. Let j ∈ IT be a target
item, and consider the optimization of the αth component q jα of its corresponding
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latent vector q j .We can rewrite the loss in Eq. (26) as a function only of q jα as follows:

Lα(q jα) =
∑

u∈U
cu j

(
eu j − puαq jα

)2 + λq2jα

+ λC
∑

i∈N ( j)

si j
(
q jα − qiα

)2 + constant (29)

where eu j � ru j −∑
β �=α puβq jβ , and the constant includes terms that do not depend

on q jα . If we set the derivative
dLα

dq jα
= 0, we obtain:

q jα =
∑

u∈U cu j eu j puα + λC
∑

i∈N ( j) si j qiα∑
u∈U cu j p2uα + λ + λC

∑
i∈N ( j) si j

(30)

Using the optimizations described in Pilászy et al. (2010), the computational cost of the
above formula for all items isO(k2|U|+k|R|+n|IT |), since all the neighborhoods are
formed using the top n most similar items, |N ( j)| ≤ n. Applying the same procedure
to the source domain item factor qi we obtain:

qiα =
∑

u∈U cui eui puα + λC
∑

j∈N−1(i) si j q jα∑
u∈U cui p2uα + λ + λC

∑
j∈N−1(i) si j

(31)

The main difference with respect to Eq. (30) is that the sets N−1(i) are not bounded,
as a source item can potentially be the neighbor of an arbitrary number of target items,
so that |N−1(i)| ≤ |IT |, resulting in a theoretical worst-case cost ofO(k2|U|+k|R|+
|IS||IT |). We observe, however, that in practice most of the source items appear only
in a few neighborhoods and that the algorithm is still very efficient.

4.3 Regularization based on item centroids

When neighbor source domain items are mutually diverse, the neighborhood-based
model presented in the previous section may struggle to regularize a target domain
item that has to be simultaneously close to all its neighbors. The model we propose
in this section works like the neighborhood-based model, but, instead of using the
neighbor source domain items individually in the regularization, it uses their centroid
(average) latent vector:

L(P,QS,QT ) =
∑

u∈U

∑

a∈I
cua

(
rua − 〈pu,qa〉

)2

+ λC
∑

j∈IT

∥∥∥∥∥∥
q j −

∑

i∈N ( j)

si jqi

∥∥∥∥∥∥

2

+ λ

(
∑

u∈U
‖pu‖2 +

∑

a∈I

∥∥qa
∥∥2

)

(32)
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The same considerations regarding the neighborhood N ( j) and the normalization
of the similarity scores also apply to this model. However, the effect on the item
relevance predictions for cold start users is different. Let q j be an item in the target
domain, and let N ( j) be its neighborhood of most similar source domain items. The
regularization scheme in our centroid-based approach aims to minimize the distance∥∥∥q j − ∑

i∈N ( j) si jqi
∥∥∥, so that the latent vector of item j is close, on average, to those

of the source items in N ( j), i.e., q j ≈ ∑
i∈N ( j) si jqi . Let u be a cold start user in

the target domain that has some preferences in the source domain. Again, her feature
vector pu is only learned using the user’s source preferences, and may not be reliable
for computing relevance predictions for target domain items in standard MF. Our
model, however, ensures that

〈pu,q j 〉 ≈
〈
pu,

∑

i∈N ( j)

si jqi

〉
=

∑

i∈N ( j)

si j 〈pu,qi 〉

That is, the predicted relevance score is roughly the average of the relevance scores
for the neighbor source domain items, weighted by their corresponding semantic sim-
ilarity.

As in the previous models, the user parameters are not affected by the item reg-
ularization terms, and can be computed in the standard fashion using Eq. (23). For
the target domain item factors q j , j ∈ IT , we set the gradient of Eq. (32) to zero to
obtain:

q j =
[
P�C jP + (λ + λC ) I

]−1

⎛

⎝P�C jr j + λC
∑

i∈N ( j)

si jqi

⎞

⎠ (33)

Comparing the above to Eq. (27) we observe that both are equivalent when∑
i∈N ( j) si j = 1, i.e., normalizing the similarity values has the same effect of the

centroid-based regularization on the target domain item factors. The solution for source
item factors qi , in contrast, has a different form:

qi =
⎡

⎣P�CiP +
⎛

⎝λ + λC
∑

j∈N−1(i)

s2i j

⎞

⎠ I

⎤

⎦
−1

×
⎛

⎝P�Ciri + λC
∑

j∈N−1( j)

si j
(
q j − z j\i

)
⎞

⎠ (34)

where we have defined z j\i = ∑
l∈N−1(i),l �=i sl jql to simplify the notation. We note

that, differently to the previous models, the computation of the source domain latent
vectors cannot be parallelized, as the value of qi , i ∈ IS depends on the values of
other ql , l ∈ IS through the parameter z j\i . As a result, the training process can be
slow when the set of source domain items is large. In our experiments, however, we
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observed that the time penalty of computing the source factors sequentially is usually
compensated by the faster RR1 algorithm, althoughwe do not provide any quantitative
analysis as it falls out of the scope of this work.

In order to apply RR1 to our centroid-based approach, we derive again the solutions
for each αth coordinate separately. Oncemore, the solution for the user factors remains
the same as it is not affected by the regularization terms. For the target domain item
factors q j , we consider the loss in Eq. (32) as a function only of the αth component
q jα:

Lα(q jα) =
∑

u∈U
cu j

(
eu j − puαq jα

)2 + λq2jα

+ λC

⎛

⎝q jα −
∑

i∈N ( j)

si j qiα

⎞

⎠
2

+ constant (35)

As previously, the constant includes terms that do not depend on q jα , and eu j is defined
as in Eq. (29). Setting the derivative dLα

dq jα
= 0 yields:

q jα =
∑

u∈U cu j eu j puα + λC
∑

i∈N ( j) si j qiα∑
u∈U cu j p2uα + λ + λC

(36)

We note, once again, the similar form of the above solution with respect to the previous
model in Eq. (30). If we apply the same procedure to the source domain item factors,
we obtain:

qiα =
∑

u∈U cui eui puα + λC
∑

j∈N−1(i) si j (q jα − z( j\i)α)
∑

u∈U cui p2uα + λ + λC
∑

j∈N−1(i) s
2
i j

(37)

The computational complexity for the target domain factors is equivalent to the
model from the previous section, whereas for the source domain factors it isO(k2|U|+
k|R|+n|IS||IT |) in the worst case, which is similar to the neighborhood-based model
since the size of the neighborhoods n is in general small.

5 Experiments

In a first experiment, we compared several state-of-the-art semantic similarity metrics
for content-based recommendation, aiming to understand which is more suitable for
later injecting in our cross-domain MFmodels, and achieved the best results using the
link-based approach by Milne and Witten (2008). Second, we evaluated the ranking
precision and diversity of the recommendations computed by the proposedmodels.We
show that, depending on the involved source and target domains, our models generate
more accurate suggestions than the baselines in severe cold start situations. Moreover,
the proposed approaches provide a better trade-off between accuracy and diversity,
which are in general difficult to balance.
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5.1 Dataset

Our dataset10 initially consisted of a large set of likes assigned by users to items on
Facebook. Using the Facebook Graph API, a user’s like is retrieved in the form of a
4-tuple with the following information: the identifier, name and category of the liked
item, and the timestampof the like creation, e.g.,{id: “35481394342”, name:
“The Godfather”, category: “Movie”, created_time: “2015-
05-14T12:35:08+0000”}. The name of an item is given by the user who cre-
ated the Facebook page of such item. In this context, distinct names may exist for a
particular item, e.g., The Godfather, The Godfather: The Movie, The Godfather - Film
series, etc. Users thus may express likes for different Facebook pages which actually
refer to the same item. Aiming to unify and consolidate the items extracted from Face-
book likes, we developed a method that automatically maps the items names with the
unique URIs of the corresponding DBpedia entities, e.g., http://dbpedia.org/resource/
The_Godfather for the identified names of The Godfather movie.

Linking items toDBpedia entities Given aparticular item,wefirst identifiedDBpedia
entities that are labeled with the name of the item. For such purpose, we launched
a SPARQL query targeted on the subjects of triples that have rdfs:label11 as
property and the item title as object. The next query is an example for The Matrix 2
title:

SELECT DISTINCT ? i tem WHERE {
{

? i tem r d f : t ype dbo : Film .
? i tem r d f s : l a b e l ?name .
FILTER regex ( ? name , " t h e .∗ mat r i x .∗2 " , " i " ) .

}
UNION
{

? i tem r d f : t ype dbo : Film .
? tmp dbo : w ik iPageRed i r e c t s ? i tem .
? tmp r d f s : l a b e l ?name .
FILTER regex ( ? name , " t h e .∗ mat r i x .∗2 " , " i " ) .

}
}

To resolve ambiguities in those names that correspond to multiple items belonging
to different domains, we specify the type of the item we wanted to retrieve in each
case. Specifically, the previous query includes a triple clause with rdf:type12 (or
dbo:type13) as property. Hence, in the given example, the subject The Matrix
2 refers to the “movie” type, which is associated to the dbo:Film class in DBpedia.

10 Available at http://ir.ii.uam.es/metadata.
11 Namespace for rdfs, http://www.w3.org/2000/01/rdf-schema.
12 Namespace for rdf, http://www.w3.org/1999/02/22-rdf-syntax-ns#.
13 Namespace for dbo, http://dbpedia.org/ontology.
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Table 1 Considered item types and their DBpedia and YAGO classes for the three domains of the dataset

Item type DBpedia/YAGO classes

Books

Book dbo:Book, yago:Book102870092, yago:Book102870526

Genre yago:LiteraryGenres

Writer dbo:Writer, yago:Writer110794014

Fictional character dbo:FictionalCharacter, yago:FictionalCharacter109587565

Movies

Movie dbo:Film, yago:Movie106613686

Genre dbo:MovieGenre, yago:FilmGenres

Director yago:FilmDirector110088200, yago:Director110014939

Actor dbo:Actor, yago:Actor109765278

Fictional character dbo:FictionalCharacter, yago:FictionalCharacter109587565

Music

Composition dbo:Song, dbo:MusicalWork, dbo:Single,
dbo:ClassicalMusicComposition, dbo:Opera

Genre dbo:MusicGenre, yago:MusicGenres, yago:MusicGenre107071942

Album dbo:Album, yago:Album106591815

Musician dbo:MusicalArtist, yago:Musician110339966, yago:Musician110340312,
yago:Composer109947232

Band dbo:Band, yago:MusicalOrganization108246613

The item types were set from the item categories provided in Facebook, and their
associated DBpedia and YAGO14 classes15 were identified by manual inspection of
the rdf:type values of several entities. Table 1 shows the list of item types and
DBpedia/YAGO classes we considered for the three domains of our dataset.

Moreover, running the previous query template we observed that a number of items
were not linked to DBpedia entities because the labels corresponded to Wikipedia
redirectionwebpages. In these cases, to reach the appropriate entities the query makes
use of the dbo:wikiPageRedirects property. The result of the previous query
for TheMatrix 2 is http://dbpedia.org/resource/The_Matrix_Reloaded, which actually
is the DBpedia entity of the second movie in The Matrix saga. Here, it is important
to note that thanks to the Wikipedia page redirect component we were able to link
items whose names do not have a direct syntactic match with the label of its DBpedia
entity, but with the label of a redirected entity, e.g., theMatrix 2 title matches the The
Matrix Reloaded entity.

Final semantically annotated dataset For every linked entity, we finally accessed
DBpedia to retrieve the metadata that afterward will be used as input for the rec-
ommendation models. In this case, we launched a SPARQL query asking for all the

14 The YAGO knowledge base, http://www.mpi-inf.mpg.de/yago-naga/yago.
15 Namespace for yago, http://dbpedia.org/class/yago.
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Table 2 DBpedia properties considered as item metadata; item can be book, movie and composition,
musician and band

Relation DBpedia properties

Item–genre dct:subject, dbo:genre

Book–genre dbo:literaryGenre

Music genre–music genre dbo:musicSubgenre, dbo:musicFusionGenre, dbo:movement,
dbo:derivative, dbo:stylisticOrigin

Item–author dbo:author, dbo:creator

Book–writer dbo:writer

Movie–actor, character, director dbo:starring, dbo:cinematograpy, dbo:director

Composition–musician dbo:artist, dbo:composer, dbo:musicComposer,
dbo:musicalArtist, dbo:associatedMusicalArtist

Music item–album dbo:album

Band–musician dbo:bandMember, dbo:formerBandMember, dbo:musicalBand,
dbo:associatedBand

Item–item, character dbo:series

Item–character dbo:portrayer

Item–item dbo:basedOn, dbo:previousWork, dbo:subsequentWork,
dbo:notableWork

properties and objects of the triples that have the target entity as subject. Following
the example given before, such a query would be:

SELECT ?p ?o WHERE {
dbr : The_Matr ix_Reloaded ?p ?o .

}

This query returns all the DBpedia property-value pairs of the dbr:The_Matrix
_Reloaded16 entity. However, since our ultimate goal is item recommendation, we
should only exploit metadata that may be relevant to relate common preferences of
different users. Thus, we filtered the query results by considering certain properties in
each domain. Specifically, Table 2 shows the list of DBpedia properties selected for
each of the three domains of our dataset. Hence, for example, for the movie items, we
would have as metadata the movies genres, directors, and actors, among others.

The items and relations shown in the table thus represent a semantic network that
is automatically obtained from DBpedia for each particular domain. Table 3 shows
statistics of the dataset for the three domains of interest, namely books, movies, and
music. Additionally, users may express preferences in more than one domain. Table
4 shows the number of users shared between each pair of domains.

Semantically enriched item profiles Fixing books, movies, musicians and bands as
the target items to be recommended, we can distinguish the following three types of
item metadata obtained:

16 Namespace for dbr, http://dbpedia.org/resource.
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Table 3 Statistics of the
extracted dataset enriched with
metadata

Books Movies Music

Users 1876 26,943 49,369

Items 3557 3901 5748

Likes 42,869 876,501 2,084,462

Sparsity (%) 99.4 99.2 99.3

Avg. items/user 22.85 32.53 42.22

Avg. users/item 12.05 224.69 362.64

Table 4 User overlap between domains. To the right of each target, the ratio of shared users relative to the
source domain

Source Target

Books % Movies % Music %

Books 1876 100.0 1495 79.7 1519 81.0

Movies 1495 5.5 26, 943 100.0 21, 720 80.6

Music 1519 3.1 21, 720 44.0 49, 369 100.0

– attributes, which correspond to item-attribute entities associated to the considered
item types of Table 2, and are distinct to the entities of target items, e.g., the
genre(s), director(s) and actors of a particular movie.

– related items, which correspond to the item-item properties in Table 2 that derive
related entities, e.g., the novel a movie is based on (dbo:basedOn property), the
prequel/sequel of a movie (dbo:previousWork/dbo:subsequentWork
properties), or the musicians belonging to a band (dbo:bandMember property).

– extended attributes, which correspond to attribute-attribute properties that generate
extended item attributes, originally not appearing as metadata, e.g., the subgenres
of a particular music genre (dbo:musicSubgenre property).

The above three types of item metadata constitute the semantically enriched item
profiles that we propose to use in our recommendationmodels.We note that they differ
from the commonly used content-based item profiles composed of plain attributes.
We also note that in the conducted experiments, the results achieved by exploiting the
enriched profiles were better than those achieved by only using item attributes.

5.2 Evaluationmethodology andmetrics

The evaluation of the proposed models was conducted utilizing a modified user-based
five-fold cross-validation strategy, based on the methodology by Kluver and Konstan
(2014) for cold-start evaluation. Our goal is to understand how the different approaches
perform as the number of observed likes in the target domain increases. First, we divide
the set of users into five subsets of roughly equal size. In each cross-validation stage,
we keep all the data from four of the groups in the training set. Then, for each user u
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Fig. 1 Overview of the cold start evaluation setting in a given cross-validation fold. The box indicates the
test users in the current fold, whose profiles are split into training, validation, and testing sets. Different
cold start profle sizes are simulated by sequentially adding likes to their training sets—four in the figure

in the fifth group—the test users—we randomly split her likes into three subsets, as
depicted in Fig. 1:

1. Training data initially filled with u’s likes and iteratively downsampled discarding
one by one to simulate different cold start profile sizes,

2. Validation data containing the set of likes used for tuning hyperparameters, and
3. Testing data used to compute the performance metrics.

The above procedure was modified for the cross-domain scenario by extending the
training set with the full set of likes from the auxiliary domain, in order to obtain the
actual training data for the predictive models. For each cold start profile size, we built
the recommendation models using the data in the final training set. Then, for each test
user, we generated a ranked list of the top 10 suggested items from the set of target
domain items in the training set that are not yet known to the user. The performance is
estimated from the output of each model and the test set using rank-based metrics. We
note that in our evaluation, any item ranked after position 10 by themodel is considered
not relevant when computing the metrics, as we are interested in the more realistic
setting where the user only examines a limited subset of the recommendations.

Regarding the metrics, we used the Mean Reciprocal Rank (MRR) to evaluate the
ranking accuracy of the recommendations,which computes the average reciprocal rank
of the first relevant item in the recommendation list. We also examined other metrics
such as Precision and MAP, but we found similar behavior to MRR so for brevity we
omit them in our results. Binomial Diversity Framework (BinomDiv) (Vargas et al.
2014) was used to evaluate the individual diversity, namely the degree of diversity in
the recommendation lists based on item genres extracted from DBpedia.
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5.3 Evaluatedmethods

We compared the performance of our proposedmethods against the following baseline
algorithms:

– POP Non personalized baseline that always recommends the most popular items
not yet liked by the user. Popularity is measured as the number of users in the
dataset that liked the item.

– UNN User-based nearest neighbors with Jaccard similarity. The size of the neigh-
borhood is tuned for each dataset using a validation set.

– INN Item-based nearest neighbors with Jaccard similarity and indefinite neigh-
borhood size.

– iMF Matrix factorization method for positive-only feedback (Hu et al. 2008)
trained using the fast ALS technique by Pilászy et al. (2010).

– BPR Bayesian personalized ranking from implicit feedback (Rendle et al. 2009).
We used for our experiments the implementation available in LibRec (Guo et al.
2015).

– FISM Factored item similarity model by Kabbur et al. (2013). We used the imple-
mentation of the FISMauc variant optimized for the item ranking problemavailable
in LibRec (Guo et al. 2015).

– HeteRec Graph-based recommender system proposed in Yu et al. (2014), based
on a diffusion method of user preferences following different meta-paths.

– SPRank Originally proposed in Di Noia et al. (2016), it implements a hybrid
approach to compute recommendations with LOD datasets. We used a publicly
available implementation of SPRank.17

With the exception of POP (which only uses target domain data) and SPRank, we
considered the application of all the baselines to both single- and cross-domain sce-
narios.We were not able to compute meaningful results for SPRank by using DBpedia
properties shown in Table 2 due to the structure of the connections between domains
in the underlying knowledge graph. All the paths calculated by SPRank to link items
in different domains resulted in being not very relevant thus bringing to shallow per-
formances of the algorithm.Moreover, given the datasets adopted for the experimental
evaluation, we were not able to generate all the meta-paths needed to compute recom-
mendations. We used machines with up to 3 TB of disk space but it was not sufficient.

Hereafter we use the prefix CD- to indicate that the algorithm is operating in cross-
domainmodeusing the union of the ratingmatrices from the source and target domains.
We did not consider for our evaluation the SemanticSVD++ method by Rowe (2014),
as it is designed for rating prediction rather than item ranking. Moreover, preliminary
tests showed that its performance was much lower than the other methods, and that its
training time was about one order of magnitude larger.

Wemeasured the performance of the threemethods presented in this paper18 against
the previous baselines:

– SimMF Our matrix factorization model regularized with similarity prediction
described in Sect. 4.1.

17 https://github.com/sisinflab/lodreclib.
18 Code available at https://github.com/nachoft/cross-metadata-mf.
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– NeighborMF Our proposed matrix factorization model with neighborhood-based
regularization from Sect. 4.2.

– CentroidMF Ourmatrix factorizationmodel fromSect. 4.3 that uses the neighbor’s
centroid to regularize the target domain item factors.

We tuned the hyperparameters of the considered recommendation models using a
held-out validation set of likes, as we explain in the next section. For UNN, we only
had to select the size of the user neighborhoods. For the matrix factorization models,
in contrast, the number of hyperparameters is larger, namely, the dimensionality of the
latent factor space k, the amount of regularization λ, and the confidence parameter for
positive-only feedback α. Moreover, the models proposed in this paper also include
the cross-domain regularization rate λC , which controls the contribution of the inter-
domain item similarities. Finally, for NeighborMF and CentroidMF, we tuned the size
n of the item neighborhoods N ( j), and the possibility to normalize the neighbors’
similarities so that the sum to 1, as explained in Sect. 4.2.

The high number of parameters to tune rules out the possibility of performing a grid
search for the best values. Hence, we used Bayesian Optimization techniques (Snoek
et al. 2012) that train Machine Learning models to predict candidate values that are
likely to maximize a given function while simultaneously reducing the uncertainty
over unknown parameter values.

We tuned the parameters of the single-domain methods for each profile size only
on the target domain. For simplicity, we used the same values for their cross-domain
variants due to the combinatorial explosion of possible configurations. A quick inspec-
tion on books-movies and movies-music with profile size 3 did not reveal significant
differences between the parameters on average. However, we acknowledge that our
experiments could be improved by individually tuning each algorithm in each config-
uration, which we leave for future work. For UNN, the optimal number of neighbors
was n = 50 for books, and n = 100 for movies and music. For iMF we obtained the
optimal parameters k = (10, 29, 21), λ = (10−5, 0.823, 1), and α = (6, 7, 10) for
books, movies, and music, respectively. For BPR we used λ = 0.01 for regularization
and η = 0.01 as learning rate. In the case of FISM, we used λ = 0.001 and η = 10−5.
The optimal values for our proposed cross-domain models are reported in Table 5.

5.4 Results

In this section we present the results of the conducted experiments to evaluate the
proposed matrix factorization models. First, we analyze several semantic relatedness
metrics to compute the inter-domain item similarities. Next, we report the ranking
accuracy and diversity of the evaluated recommendation approaches, and study how
the size and diversity of the source domain user profile impacts on the target recom-
mendations.
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Table 5 Optimal hyperparameters for SimMF, NeighborMF, and CentroidMF. The last column indicates
whether the similarities in the neighborhood are normalized or not

Source Method k λ α λC n Norm.

Books

Movies SimMF 112 0 1 10−8

NeighborMF 134 1 1 9.125 49 �
CentroidMF 153 0.999 1 8.778 100 �

Music SimMF 10 1 16 10−8

NeighborMF 10 0 18 10 100 �
CentroidMF 10 0 14 0.109 100

Movies

Books SimMF 12 1 1 0.002

NeighborMF 12 1 1 10 81 �
CentroidMF 14 0.100 1 0.200 1 �

Music SimMF 35 0 1 1.6 × 10−6

NeighborMF 51 1 1 10 100

CentroidMF 29 1 1 9.494 99 �
Music

Books SimMF 10 1 1 0.039

NeighborMF 10 0.995 1 3.014 100 �
CentroidMF 10 0.724 1 1.673 14

Movies SimMF 11 0.571 4 0.641

NeighborMF 10 0.978 2 0.699 46

CentroidMF 10 0.562 2 10 3 �

5.5 Inter-domain item semantic similarity

The goal of our first experiment is to analyze the performance of several semantic
relatedness metrics to compute the inter-domain similarities that we later exploit in
our matrix factorization models. We considered the following strategies:

– TF-IDF Semantically-enriched item profiles (see Sect. 5.1) are used to build TF-
IDF vector profiles based on the metadata of each item. Given an item i , the
enriched profile corresponds to a set of paths 〈i, ρ, e〉 where ρ is a predicate (or a
sequence of predicates) in the semantic network SN of a domainD. The considered
predicates are those depicted in Table 2, and described as attributes, related items,
and extended attributes. We may build the set of all possible metadata for all items
as F = {〈ρ, e〉 | 〈i, ρ, e〉 ∈ SN with i ∈ I }. Each item can be then represented
as a vector of weights ωi = [ω(i,1), . . . , ω(i,〈ρ,e〉), . . . , ω(i,|F |)] where ω(i,〈ρ,e〉) is
computed as the normalized TF-IDF value for 〈ρ, e〉:
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ω(i,〈ρ,e〉) = |{〈ρ, e〉 | 〈i, ρ, e〉 ∈ SN}|
√ ∑

〈ρ,e〉∈F
|{〈ρ, e〉 | 〈i, ρ, e〉 ∈ SN}|2

︸ ︷︷ ︸
T F

× log
|I |

|{ j | 〈 j, ρ, e〉 ∈ SN and j ∈ I }|︸ ︷︷ ︸
I DF

The similarity score between a source domain item and a target domain item is
computed as the cosine of their corresponding TF-IDF vectors.

– ESA The Explicit Semantic Analysis technique proposed by Gabrilovich and
Markovitch (2007). Instead of using the semantic metadata, we map each item
to its corresponding Wikipedia article. Then, based on the text of the article,
ESA extracts a set of other related Wikipedia articles, which represent seman-
tic concepts, and builds a TF-IDF profile from the extracted concepts. Finally, the
similarity score between two items is computed as the cosine of their corresponding
concept-based vectors.

– M&W The approach proposed byMilne andWitten (2008) computes the semantic
relatedness between two items using the overlap of their sets of inlinks and outlinks
in the Wikipedia hyperlink graph.

– Katz Based on Katz’s centrality measure, the relatedness between two items is
computed as the accumulated probability of the top shortest paths between their
corresponding entities in the semantic network (Hulpus et al. 2015).

We evaluated the previous semantic relatedness metrics indirectly by comparing
their performance in the item recommendation task. For such purpose, we chose a
content-based recommendation model with no parameters, so that we can fairly mea-
sure the effect of each similarity on the item ranking quality. According to this simple
model, the relevance score of an item is computed as the accumulated similarity with
the items in the user’s profile:

s(u, i) =
∑

j∈I (u)

si j (38)

where si j is computed any of the methods described above.
The results of our experiment are shown in Table 6. For an easier comparison

according to the methodology from Sect. 5.2, we averaged the MRR scores for all the
cold start sizes in each source–target domain combination. From the table we conclude
that M&W is the best performing metric, beating all the other approaches except when
considering the movie domain as source, in which case it is still competitive. Hence,
in the following experiments we evaluate our proposed matrix factorization models
using M&W as the backing semantic similarity. We note that better results could be
achieved in real-world systems by selecting the optimal similarity metric for each
domain. However, using the same metric simplifies the experiments and can only
harm the performance of our proposed models, as the baselines do not exploit such
information. Finally, we note that the low values for MRR are due to the simple
recommendation algorithm chosen for this experiment.
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Table 6 MRR of the evaluated
semantic relatedness metrics

Source Target TF-IDF ESA M&W Katz

Books Movies 0.058 0.030 0.123 0.092

Music 0.028 0.015 0.042 0.022

Movies Books 0.054 0.011 0.031 0.013

Music 0.030 0.011 0.028 0.009

Music Books 0.010 0.006 0.052 0.020

Movies 0.013 0.018 0.088 0.006

Best values for each row are shown in bold

5.6 Item ranking accuracy

In our second experimentwe analyze the accuracy of the item rankings generated by the
evaluated recommendation approaches.We aim to understand if cross-domain variants
are in generalmore effective than single-domain ones, andwhether the proposedmatrix
factorization models are able to outperform the other methods in cold start settings.

Table 7 shows the ranking accuracy for book recommendations in terms of MRR.
We report the average results for cold start user profiles from sizes 6–10, asweobserved
that in those cases the trends are stable and, in general, single-domain baselines start
to be effective. We remark that, according the evaluation methodology described in
Sect. 5.2, the number of test users remains constant regardless of the profile size,
which we control by iteratively downsampling the training portion of their profile (see
Fig. 1).

We notice from the table that, in general, approaches exploiting cross-domain
movies ormusic preferences provide better recommendations than their single-domain
counterparts. In case auxiliarymovie preferences are available,we observe that the pro-
posed NeighborMF and CentroidMF models achieve the best performance when only
1–3book likes are observed (statistically significantwith respect toCD-INN,Wilcoxon
test, p < 0.05). Moreover, in that case, our cross-domain matrix factorization mod-
els perform much better than the single-domain baselines. However, once 4 likes are
available, CD-INN and single-domain HeteRec are more effective approaches. When
the auxiliary preferences consist of music likes, we see that CD-INN is the overall
best method, although it is only useful for profiles of size 1. For larger profiles, it is
better to use single-domain baselines than any cross-domain method that uses music
preferences. In summary, we conclude that music preferences are not useful for book
recommendations, whereas movie likes could be used to improve the performance,
specially with NeighborMF and CentroidMF for 1–3 book likes. We observe the bad
performance of SPRank in cold start situations compared to the other baselines.

In Table 8 we show the results for movie recommendations.
We observe that most of the cross-domain approaches are able to provide recom-

mendations better than the most popular items for completely new movie users, and
that CD-HeteRec is clearly the best performing approach. Strangely, its performance
starts degrading as soon as some likes become available when it is surpassed by other
methods. We have yet to find a clear explanation for this anomaly, which we plan to
investigate in the future. If the auxiliary cross-domain data consists of book prefer-
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Table 7 Accuracy (MRR) for cold start users in the target books domain. The three groups of rows cor-
respond to single-domain, cross-domain with movies as source, and cross-domain with music as source,
respectively. Best values for each single- and cross-domain configuration are shown in bold, and overall
best values are underlined

Method Number of book likes

0 1 2 3 4 5 6–10

POP 0.242 0.244 0.246 0.248 0.251 0.252 0.260

UNN 0.222 0.265 0.286 0.289 0.290 0.322

INN 0.145 0.177 0.216 0.241 0.262 0.316

iMF 0.171 0.194 0.235 0.255 0.271 0.301

BPR 0.110 0.116 0.136 0.154 0.157 0.193

FISM 0.228 0.230 0.234 0.234 0.238 0.245

HeteRec 0.218 0.244 0.279 0.297 0.316 0.351

SPRank 0.048 0.055 0.070 0.065 0.062 0.059

Movies

CD-UNN 0.186 0.148 0.170 0.175 0.189 0.190 0.212

CD-INN 0.262 0.265 0.275 0.291 0.301 0.307 0.339

CD-iMF 0.261 0.262 0.268 0.272 0.275 0.274 0.287

CD-BPR 0.217 0.200 0.218 0.237 0.235 0.238 0.251

CD-FISM 0.235 0.228 0.225 0.231 0.236 0.235 0.245

CD-HeteRec 0.264 0.248 0.261 0.268 0.278 0.277 0.298

SimMF 0.253 0.268 0.274 0.284 0.289 0.290 0.296

NeighborMF 0.253 0.272 0.282 0.294 0.293 0.293 0.301

CentroidMF 0.252 0.271 0.283 0.289 0.293 0.295 0.301

Music

CD-UNN 0.136 0.103 0.115 0.120 0.138 0.140 0.157

CD-INN 0.259 0.260 0.266 0.278 0.296 0.302 0.329

CD-iMF 0.259 0.261 0.262 0.264 0.266 0.270 0.282

CD-BPR 0.218 0.199 0.199 0.216 0.228 0.228 0.250

CD-FISM 0.230 0.228 0.227 0.229 0.236 0.233 0.245

CD-HeteRec 0.266 0.249 0.251 0.259 0.270 0.267 0.281

SimMF 0.255 0.259 0.258 0.264 0.268 0.273 0.281

NeighborMF 0.253 0.258 0.258 0.263 0.267 0.273 0.280

CentroidMF 0.255 0.259 0.260 0.264 0.267 0.273 0.281

ences, we notice that the proposed matrix factorization models outperform the best
single-domain baselines. However, in this situation CD-INN is even a better method,
clearly providing more accurate recommendations than any other approach from pro-
file sizes 1–10. This is due to the high degree of overlap between the users of books and
movies domains (79.7%, see Table 4), which allows CD-INN to compute very accu-
rate item similarities based on the patterns of likes. Instead, when the source domain
containsmusic preferences, we see that NeighborMF, CentroidMF, and SimMF, in that
order, are consistently the best performing approaches for sizes 1–10 (statistically sig-
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Table 8 Accuracy (MRR) for cold start users in the target movies domain. The three groups of rows
correspond to single-domain, cross-domain with books as source, and cross-domain with music as source,
respectively. Best values for each single- and cross-domain configuration are shown in bold, and overall
best values are underlined

Method Number of movie likes

0 1 2 3 4 5 6–10

POP 0.285 0.287 0.289 0.292 0.294 0.297 0.305

UNN 0.332 0.320 0.318 0.330 0.348 0.405

INN 0.233 0.300 0.336 0.359 0.377 0.413

iMF 0.256 0.291 0.314 0.334 0.348 0.388

BPR 0.225 0.256 0.276 0.299 0.315 0.350

FISM 0.257 0.265 0.263 0.266 0.267 0.270

HeteRec 0.315 0.346 0.357 0.366 0.374 0.395

SPRank 0.107 0.131 0.139 0.142 0.140 0.150

Books

CD-UNN 0.219 0.169 0.185 0.219 0.256 0.292 0.385

CD-INN 0.344 0.347 0.371 0.386 0.398 0.410 0.435

CD-iMF 0.267 0.298 0.325 0.347 0.365 0.377 0.413

CD-BPR 0.018 0.189 0.237 0.254 0.278 0.298 0.326

CD-FISM 0.338 0.267 0.263 0.283 0.273 0.287 0.282

CD-HeteRec 0.479 0.320 0.349 0.359 0.367 0.375 0.396

SimMF 0.328 0.334 0.348 0.361 0.371 0.382 0.409

NeighborMF 0.330 0.335 0.348 0.361 0.371 0.383 0.409

CentroidMF 0.329 0.332 0.346 0.359 0.371 0.378 0.408

Music

CD-UNN 0.387 0.282 0.305 0.320 0.334 0.348 0.383

CD-INN 0.342 0.347 0.353 0.359 0.365 0.371 0.390

CD-iMF 0.301 0.326 0.344 0.362 0.374 0.385 0.418

CD-BPR 0.352 0.305 0.316 0.332 0.332 0.343 0.361

CD-FISM 0.105 0.089 0.093 0.089 0.091 0.091 0.093

CD-HeteRec 0.367 0.336 0.344 0.350 0.355 0.360 0.374

SimMF 0.339 0.351 0.361 0.374 0.384 0.396 0.419

NeighborMF 0.353 0.364 0.374 0.385 0.394 0.404 0.427

CentroidMF 0.345 0.355 0.367 0.377 0.385 0.395 0.418

nificant with respect to CD-INN for sizes 1–2 and CD-iMF for sizes 3–10, Wilcoxon
test, p < 0.05). By regularizing item factors independently, NeighborMF is able to
transfer source domain knowledge more effectively, which we also note is due to the
greater contribution of cross-domain information (larger values of λC in Table 5). In
summary, both book andmusic preferences are helpful for cold start movie recommen-
dations, while our models are more effective when exploiting auxiliary music likes.
On a side note, we observe the better performance of UNN over POP on the single
domain setting when only 1 like is available. Looking at the results, we found that this
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Table 9 Accuracy (MRR) for cold start users in the target music domain. The three groups of rows cor-
respond to single-domain, cross-domain with books as source, and cross-domain with movies as source,
respectively. Best values for each single- and cross-domain configuration are shown in bold, and overall
best values are underlined

Method Number of music likes

0 1 2 3 4 5 6–10

POP 0.335 0.337 0.340 0.342 0.345 0.347 0.354

UNN 0.422 0.389 0.389 0.419 0.448 0.517

INN 0.320 0.391 0.426 0.455 0.474 0.517

iMF 0.347 0.396 0.427 0.451 0.471 0.517

BPR 0.330 0.377 0.409 0.432 0.450 0.488

FISM 0.096 0.100 0.100 0.100 0.101 0.100

HeteRec 0.358 0.395 0.421 0.442 0.463 0.510

SPRank N/A N/A N/A N/A N/A N/A

Books

CD-UNN 0.290 0.244 0.266 0.300 0.344 0.387 0.487

CD-INN 0.310 0.368 0.416 0.442 0.465 0.482 0.522

CD-iMF 0.200 0.330 0.391 0.423 0.451 0.471 0.518

CD-BPR 0.004 0.267 0.323 0.362 0.380 0.404 0.433

CD-FISM 0.153 0.124 0.105 0.126 0.116 0.118 0.113

CD-HeteRec 0.514 0.367 0.407 0.432 0.453 0.474 0.516

SimMF 0.310 0.368 0.401 0.424 0.446 0.461 0.496

NeighborMF 0.328 0.372 0.402 0.425 0.445 0.461 0.496

CentroidMF 0.325 0.370 0.402 0.425 0.444 0.461 0.496

Movies

CD-UNN 0.435 0.274 0.306 0.336 0.369 0.400 0.484

CD-INN 0.412 0.431 0.451 0.467 0.478 0.490 0.522

CD-iMF 0.293 0.356 0.398 0.428 0.454 0.474 0.516

CD-BPR 0.431 0.313 0.351 0.391 0.402 0.413 0.448

CD-FISM 0.093 0.061 0.069 0.067 0.070 0.071 0.064

CD-HeteRec 0.515 0.406 0.426 0.442 0.451 0.464 0.495

SimMF 0.361 0.393 0.420 0.438 0.455 0.467 0.500

NeighborMF 0.353 0.385 0.409 0.429 0.445 0.458 0.494

CentroidMF 0.354 0.386 0.413 0.431 0.447 0.460 0.495

is caused by the Jaccard-based similarity, which favors neighbors with small profiles
that have rated similar items with high probability. A discussion of this phenomenon is
outside of the scope of this paper, and we refer the reader to Bellogín et al. (2018) for a
detailed explanation. HeteRec, on the other hand, exploits additional information from
item metadata to compute more accurate recommendations than POP, while SPRank
confirms its bad behavior in cold start scenarios.

Finally, the results for music recommendations are shown in Table 9. As previ-
ously, CD-HeteRec is a very good performing approach to provide recommendations
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for completely new users in both cross-domain configurations, before significantly
dropping for larger profiles. Once 2 music likes are available, CD-INN is clearly
the most competitive approach, independently of the used source domain. Again, we
argue that this is due to the high number of music users who also have book and movie
preferences, which allows CD-INN to compute very accurate rating-based similarities
for items (see last column of Table 4). However, when the source domain consists
of book preferences, we see that the proposed NeighborMF and CentroidMF models
are slightly better than other cross-domain approaches if only 1 music like is pro-
vided. Anyway, even better performance can be achieved in this case simply using
the single-domain UNN baseline, which does not need any extra information. Hence,
single-domain baselines are compelling approaches for cold start music recommen-
dations, and even though the proposed models are able to improve the quality of the
item rankings by exploiting cross-domain item metadata, CD-INN, which is purely
based on patterns of likes, is the best performing approach.

5.7 Recommendation diversity

In this subsection we analyze the diversity of the recommendation lists generated by
the methods, as an alternative dimension of ranking quality.

Table 10 shows the diversity of book recommendations in terms of the Binomial
Diversity metric at cutoff 10 (BinomDiv@10). We observe that, in general, cross-
domain approaches provide more diverse recommendations than their single-domain
counterparts. However, we note several differences with respect to the accuracy results
reported in Table 7. First, CD-UNN is consistently the superior algorithm in terms of
diversity, whereas its accuracy results were the poorest among single- and cross-
domain approaches. Second, when the source domain consists of movie likes, our
proposedmodels achieve slightly worse diversity than other cross-domain approaches,
specially for book profile sizes between 1–3 likes. This is in contrast with the results
obtained in Table 7, where our methods performed best precisely in that range. We
conclude that there is a clear trade-off between recommendation accuracy anddiversity,
and that the metric of interest depends on the particular application domain. We argue,
however, that in cold start situations providing relevant suggestionsmay bemore useful
than recommending diverse, but not relevant items, if the ultimate goal of a system is
to keep new users engaged.

The diversity results for movie recommendations are summarized in Table 11. We
see that CD-FISM, CD-BPR, and CD-UNN provide the most diverse yet not relevant
recommendations. Comparing the sources of auxiliary user preferences, we note that
the diversity of the cross-domain baselines is roughly the same as their single-domain
versions (comparing e.g. HeteRec and CD-HeteRec) when considering book likes. In
contrast, if the source domain contains music likes, their diversity is significantly hurt.
By comparing these results with Table 8 we observe once again the accuracy-diversity
trade-off. Most methods’ MRR greatly benefits from additional music likes at the
expense of worse diversity. The exception is CD-FISM, which follows the opposite
trend: source music likes lead to significantly worse accuracy but improved diversity.
We leave for future work an analysis of CD-FISM to understand which of its charac-
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Table 10 Diversity (BinomDiv@10) for cold start users in the books domain. The three groups of rows
correspond to single-domain, cross-domain with movies as source, and cross-domain with music as source,
respectively. Best values for each single- and cross-domain configuration are shown in bold, and overall
best values are underlined

Method Number of book likes

0 1 2 3 4 5 6–10

POP 0.739 0.674 0.690 0.702 0.703 0.710 0.736

UNN 0.733 0.706 0.716 0.709 0.729 0.715

INN 0.655 0.674 0.654 0.665 0.672 0.669

iMF 0.583 0.606 0.630 0.645 0.657 0.664

BPR 0.696 0.700 0.715 0.690 0.698 0.696

FISM 0.513 0.692 0.708 0.686 0.706 0.719

HeteRec 0.609 0.623 0.653 0.672 0.680 0.693

SPRank 0.121 0.129 0.145 0.157 0.157 0.150

Movies

CD-UNN 0.792 0.833 0.816 0.791 0.778 0.784 0.746

CD-INN 0.740 0.676 0.683 0.684 0.680 0.692 0.695

CD-iMF 0.724 0.660 0.674 0.689 0.686 0.686 0.702

CD-BPR 0.514 0.458 0.484 0.425 0.454 0.465 0.471

CD-FISM 0.453 0.464 0.479 0.488 0.495 0.499 0.533

CD-HeteRec 0.747 0.673 0.672 0.680 0.690 0.704 0.709

SimMF 0.702 0.649 0.671 0.676 0.682 0.690 0.706

NeighborMF 0.690 0.652 0.660 0.671 0.680 0.682 0.702

CentroidMF 0.699 0.647 0.659 0.668 0.684 0.686 0.702

Music

CD-UNN 0.744 0.811 0.797 0.771 0.746 0.734 0.731

CD-INN 0.746 0.676 0.683 0.684 0.674 0.689 0.691

CD-iMF 0.720 0.657 0.664 0.674 0.690 0.692 0.696

CD-BPR 0.303 0.333 0.374 0.384 0.358 0.374 0.380

CD-FISM 0.345 0.362 0.382 0.405 0.406 0.424 0.466

CD-HeteRec 0.744 0.668 0.655 0.665 0.676 0.687 0.693

SimMF 0.724 0.656 0.675 0.684 0.692 0.692 0.708

NeighborMF 0.721 0.657 0.674 0.684 0.690 0.693 0.709

CentroidMF 0.721 0.655 0.673 0.681 0.692 0.690 0.705

teristics causes this behavior. Finally, we remark the good performance of the Neigh-
borMF method when source music likes are exploited, as it is able to provide a good
trade-off of decent diversity and the most accurate recommendations (see Table 8).

Last, we report the diversity results for music recommendations in Table 12. Once
again, CD-FISM, which achieved the poorest accuracy in Table 9, provides the most
diverse recommendations for all music profile sizes in the 1–10 range. However,
for completely new users, we highlight the very good performance of CD-HeteRec,
which not only is able to generate diverse recommendations, but also achieved the
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Table 11 Diversity (BinomDiv@10) for cold start users in the movies domain. The three groups of rows
correspond to single-domain, cross-domain with books as source, and cross-domain with music as source,
respectively. Best values for each single- and cross-domain configuration are shown in bold, and overall
best values are underlined

Method Number of movie likes

0 1 2 3 4 5 6–10

POP 0.401 0.304 0.336 0.354 0.368 0.378 0.399

UNN 0.360 0.385 0.404 0.392 0.396 0.394

INN 0.289 0.308 0.315 0.321 0.323 0.332

iMF 0.299 0.320 0.335 0.344 0.347 0.362

BPR 0.590 0.608 0.628 0.644 0.650 0.653

FISM 0.561 0.614 0.594 0.689 0.636 0.644

HeteRec 0.311 0.328 0.334 0.337 0.341 0.348

SPRank 0.218 0.242 0.260 0.262 0.254 0.269

Books

CD-UNN 0.467 0.509 0.479 0.446 0.425 0.414 0.397

CD-INN 0.327 0.291 0.314 0.323 0.329 0.331 0.339

CD-iMF 0.341 0.294 0.317 0.327 0.333 0.338 0.350

CD-BPR 0.646 0.677 0.645 0.668 0.624 0.643 0.666

CD-FISM 0.548 0.549 0.671 0.574 0.609 0.625 0.664

CD-HeteRec 0.316 0.310 0.328 0.335 0.337 0.341 0.348

SimMF 0.308 0.265 0.297 0.307 0.320 0.325 0.339

NeighborMF 0.315 0.266 0.298 0.306 0.321 0.325 0.338

CentroidMF 0.313 0.273 0.302 0.315 0.326 0.334 0.348

Music

CD-UNN 0.368 0.404 0.386 0.376 0.373 0.372 0.376

CD-INN 0.309 0.240 0.268 0.283 0.297 0.304 0.321

CD-iMF 0.270 0.231 0.270 0.289 0.302 0.315 0.332

CD-BPR 0.372 0.439 0.411 0.438 0.446 0.445 0.476

CD-FISM 0.653 0.720 0.705 0.499 0.645 0.732 0.688

CD-HeteRec 0.333 0.271 0.298 0.314 0.324 0.333 0.349

SimMF 0.311 0.254 0.288 0.303 0.317 0.324 0.340

NeighborMF 0.311 0.259 0.290 0.308 0.320 0.329 0.344

CentroidMF 0.302 0.246 0.279 0.297 0.310 0.319 0.338

best accuracy results in terms of MRR. The remaining cross-domain approaches are
in general worse than single-domain UNN, independently of the exploited source
domain. It is also worth noting the contrasting results for CD-INN. While it provides
the best performance in terms of accuracy (see Table 9), its diversity is the worst for
books and only average for movies.

In summary, we observe a clear trade-off between accurate and diverse recommen-
dations. In general, when approaches performwell in terms ofMRR they tend to suffer
in terms of diversity, and vice versa.
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Table 12 Diversity (BinomDiv@10) for cold start users in the music domain. The three groups of rows
correspond to single-domain, cross-domain with books as source, and cross-domain with movies as source,
respectively. Best values for each single- and cross-domain configuration are shown in bold, and overall
best values are underlined

Method Number of music likes

0 1 2 3 4 5 6–10

POP 0.324 0.228 0.262 0.282 0.295 0.305 0.326

UNN 0.296 0.332 0.348 0.347 0.330 0.306

INN 0.200 0.213 0.219 0.223 0.229 0.236

iMF 0.196 0.217 0.232 0.241 0.249 0.259

BPR 0.539 0.577 0.589 0.590 0.594 0.619

FISM 0.683 0.766 0.709 0.731 0.737 0.676

HeteRec 0.227 0.264 0.280 0.288 0.296 0.304

SPRank N/A N/A N/A N/A N/A N/A

Books

CD-UNN 0.325 0.429 0.414 0.393 0.366 0.346 0.314

CD-INN 0.269 0.215 0.227 0.232 0.235 0.240 0.244

CD-iMF 0.270 0.214 0.233 0.240 0.249 0.252 0.258

CD-BPR 0.570 0.585 0.578 0.602 0.592 0.603 0.609

CD-FISM 0.607 0.597 0.677 0.648 0.774 0.726 0.674

CD-HeteRec 0.295 0.233 0.271 0.286 0.294 0.302 0.309

SimMF 0.274 0.220 0.240 0.249 0.257 0.264 0.275

NeighborMF 0.254 0.220 0.241 0.251 0.259 0.265 0.275

CentroidMF 0.253 0.218 0.238 0.249 0.257 0.263 0.273

Movies

CD-UNN 0.296 0.411 0.380 0.358 0.347 0.329 0.312

CD-INN 0.277 0.231 0.255 0.264 0.270 0.272 0.275

CD-iMF 0.248 0.229 0.254 0.264 0.271 0.272 0.277

CD-BPR 0.476 0.515 0.526 0.504 0.526 0.529 0.545

CD-FISM 0.601 0.664 0.541 0.757 0.578 0.771 0.669

CD-HeteRec 0.372 0.271 0.314 0.331 0.342 0.349 0.360

SimMF 0.225 0.207 0.239 0.250 0.259 0.264 0.278

NeighborMF 0.252 0.226 0.251 0.265 0.269 0.274 0.283

CentroidMF 0.264 0.233 0.257 0.270 0.274 0.279 0.286

6 Conclusions and future work

Collaborative filtering approaches have become the most investigated and popular
solutions to the cross-domain recommendation problem, as they only mine patterns
of user–item preferences (i.e., ratings), and do not require any information about
the content of the items to bridge the domains of interest. Some other approaches,
however, have shown that content-based relations (e.g., based on social tags) can be
exploited to bridge the domainsmore effectively. In this context, recent initiatives such
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as the LinkedOpenData project provide large interconnected repositories of structured
knowledge than can be exploited to relate multiple types of data. Such heterogeneous
networks allow establishing content-based links between different types of items, and
thus providing anewmechanism tobridgedomains for cross-domain recommendation.

In this paper, we have exploited Linked Open Data to extract metadata about items
in three recommendation domains. Using this additional information, we were able
to find relations between items in different domains, and ultimately compute inter-
domain item similarities. This could be a limit of the presented approaches whenever
the underlying LODknowledge graph does not expose semantic links between items in
different domains, e.g., when the source and target domains do not share information,
i.e., there is no direct or indirect link between items in different domains or it is not
possible to link an item in the catalog to the corresponding entity in the knowledge
graph. In fact, in these cases, it is not possible to compute pairwise semantic similarity
values between items belonging to different domains.

We then proposed three novel matrix factorization models for cross-domain recom-
mendation that exploit the computed similarities to link knowledge across domains.
Experiments in cold-start scenarios showed that depending on the involved source and
target domains, cross-domain recommendations exploiting itemmetadata can bemore
accurate for users with few preferences in the target domain. However, the improved
accuracy comes at the cost of less diversity among the recommendations, and baseline
approaches thriving in diversity tend to be less accurate. We argue, nonetheless, that
in cold start the priority of a system may be keeping the user engaged by delivering
relevant recommendations rather than diverse, non relevant ones.

Regarding the categorization presented in Sect. 2.1, the models proposed in this
paper belong to the category of knowledge linkage cross-domain recommendation
approaches. We applied our approaches to the linked-domain exploitation task with
the goal of addressing the user cold-start problem. In addition to the results reported in
this paper, we conjecture that item metadata may prove more useful in cross-domain
scenarios with low user overlap. In these cases, approaches purely based on col-
laborative filtering are likely to struggle to compute accurate item-item similarities.
Moreover, in our work we relied on advanced Bayesian Optimization techniques to
find the optimal hyper-parameters of the models, and in particular the values of the
cross-domain regularization λC and the item neighborhood size n parameters. It would
be interesting, however, to analyze the performance of the models in terms of these
parameters to better understand the importance of auxiliary information. We did not
report these results in the paper due to the high number of possible combinations of dif-
ferent parameter values, source–target domain configurations, cold start profile sizes,
and cross-validation folds, which maymake it very difficult to extract conclusions that
consistently hold trough all the possible scenarios.

Finally, the work presented in this paper can be extended in future contributions
by improving the experimental section, e.g., considering more cross-domain datasets
linked to DBpedia or adapting more novel approaches from the state of the art such as
those based on tensor factorization (Taneja and Arora 2018) and deep learning (Zhu
et al. 2018).
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