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Abstract
Recommender Systems help us deal with information overload by suggesting relevant
items based on our personal preferences. Although there is a large body of research in
areas such as movies or music, artwork recommendation has received comparatively
little attention, despite the continuous growth of the artwork market. Most previous
research has relied on ratings and metadata, and a few recent works have exploited
visual features extracted with deep neural networks (DNN) to recommend digital art.
In this work, we contribute to the area of content-based artwork recommendation
of physical paintings by studying the impact of the aforementioned features (artwork
metadata, neural visual features), as well as manually-engineered visual features, such
as naturalness, brightness and contrast. We implement and evaluate our method using
transactional data from UGallery.com, an online artwork store. Our results show that
artwork recommendations based on a hybrid combination of artist preference, curated
attributes, deep neural visual features and manually-engineered visual features pro-
duce the best performance. Moreover, we discuss the trade-off between automatically
obtained DNN features and manually-engineered visual features for the purpose of
explainability, as well as the impact of user profile size on predictions. Our research
informs the development of next-generation content-based artwork recommenders
which rely on different types of data, from text to multimedia.
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1 Introduction

Despite the financial crisis of 2007–2008 which shook the markets worldwide, the
global artwork market has kept growing over the years. For instance, in 2011, art
received $11.57 billion in total global annual revenue, over $2 billion versus 2010
(Esman 2012). Particularly, online artwork sales are booming mostly due to the influ-
ence of social media and new consumption behavior of millennials (Weinswig 2016).
Online art sales reached $3.27 billion in 2015, and at the current growth rate, it will
reach $9.58 billion by 2020. Notably, although many online businesses utilize rec-
ommendation systems to boost their revenue, online artwork recommendation has
received little attention compared to other areas such as movies (Amatriain 2013;
Gomez-Uribe and Hunt 2016) or music (Maes 1994; Celma 2010).

There are several stores nowadays that sell artworks online, such as UGallery,1

Singulart,2 and Artspace.3 However, finding the right artwork for people’s personal
taste is a tricky task, as several properties need to be considered.Recommender systems
could indeed help in this task, since previous research have been tailored explicitly
towards helping people find relevant artworks, specially in the context of museum
collections (Aroyo et al. 2007; Albanese et al. 2011; Semeraro et al. 2012). Most of
these works have dealt with recommendation in museum collections using traditional
methods and data such as ratings, textual descriptions and social tags (Aroyo et al.
2007; Albanese et al. 2011; Semeraro et al. 2012). The earliest of these works was
the CHIP project (Aroyo et al. 2007), which implemented well-known techniques
such as content-based and collaborative filtering for artwork recommendation in the
Rijksmuseum. More recently, He et al. (2016) used pre-trained deep neural networks
(DNN), combined with collaborative information, for the recommendation of digital
art online. This is a very promising technique, since the development of deep neural
networks has increased by orders ofmagnitude the performance on visual tasks such as
image classification (Krizhevsky et al. 2012) or scene identification (Sharif Razavian
et al. 2014). However, He et al. (2016) only studied digital art rather than physical
artifacts such as paintings or sculptures, which is what most of the aforementioned
online art stores sell.

Unlike the aforementioned works (Aroyo et al. 2007; Albanese et al. 2011; Semer-
aro et al. 2012; He et al. 2016), in this article we address the problem of artwork
recommendation for one-of-a-kind paintings in online art stores. We call a painting
one-of-a-kind when only one instance is available. If the only user feedback in the
datasets are purchases, then it is not possible to compute user co-occurrences, which
is needed for methods such as collaborative filtering. For this reason, we address
this problem using a content-based recommender, with a focus on different types of
content—including metadata, automatically learned features from deep neural net-
works (DNN) as well as manually-engineered visual features (MEVF)—and also on
how to combine them for personalized recommendation.With respect to content-based
filtering techniques, these have been extensively studied in the area of recommenda-

1 www.ugallery.com.
2 www.singulart.com.
3 www.artspace.com.
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tion. Most of content-based recommendation algorithms in literature rely heavily on
textual data (Aggarwal 2016), and more sophisticated semantics-aware techniques
draw on external knowledge sources such as ontologies and data from the Linked
Data cloud (de Gemmis et al. 2015). However, the artwork recommendation problem
we study is not very favorable for the application of sophisticated text-based tech-
niques, as the metadata available, while certainly useful, is rather limited. Instead,
most of the useful content-based representation comes from features obtained directly
from the images, which has naturally led us to rely mainly on techniques from the
domain of computer vision.

Objective In this paper, we study the impact of different features for content-
based recommender systems of physical artworks. In particular, we investigate the
utility of artwork metadata (curated attributes and artist), neural (DNN) and manually
engineered (MEVF) visual features extracted from images as well as user transactions
from the online store UGallery.4 In this work, we perform two evaluations: one with
an offline dataset from the UGallery web site, and then a small online study with 8
expert curators from UGallery.

Research questions To drive our research four questions were defined. They are
as follows:

• RQ1 To what extent is it possible to predict people’s purchases based on content-
based features? Since we have several types of content features, we answer this
question by splitting the analysis into two subgroups:

– RQ1.1 Which is the best metadata-based feature?
– RQ1.2 Which is the best visual feature?

• RQ2How do different sets of features (metadata vs. visual) compare in the artwork
recommendation domain? Although both feature sets could potentially be useful,
curated metadata is not always available. Visual features, which can be calculated
for every image, have then the potential to alleviate the new item problem.

• RQ3 Is there an optimal way of combining features with hybrid methods to max-
imize the recommendation performance?

• RQ4 To what extent is an offline evaluation consistent with an expert user valida-
tion?

Contributions (1) In general, the work outlined in this article makes a contribution
to the yet sparsely explored problem of recommending physical artworks to people
online. To make this happen, we study and compare the utility of several sources of
information (content metadata, visual features), typically available in online galleries.
We do this by running an extensive set of simulated experiments with real-world
data provided by a large online artwork store based in CA, USA called UGallery.
(2) Furthermore, our work contributes to the one-of-a-kind recommender system
problem—i.e., items that go out of stock with the first purchase—by using a content-
based approach. Also (3) we introduce a hybrid artwork recommender method, which
exploits the aforementioned features. Finally, (4) we conduct an online evaluation
with UGallery curators to reveal whether the offline results are mirrored when tested

4 http://www.UGallery.com/.
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with real people. To the best of our knowledge, we are the first to study the utility
of pre-trained DNN visual features and how these compare to manually-engineered
visual features and metadata for artwork recommendation.

Outline Section 2 presents a formal definition of the content-based artwork recom-
mendation problem. In Sect. 3 we survey relevant related work in the area. Section 4
presents the UGallery dataset. Then, in Sect. 5 we provide details of our recommen-
dation methods, following Sect. 6 with our evaluation procedure. Section 7 presents
the results, we discuss them in Sect. 8, and finally Sect. 9 concludes the article and
presents ideas for future work.

2 Problem statement: content-based recommendation of artworks

Based on the formulation of the recommendation problem by Adomavicius and
Tuzhilin (2005), we formalize our content-based recommendation problem with the
following definitions.

LetU be the set of all users and I be the set of all items (physical artworks) available
in the inventory. Let s be a function which measures the utility of an item i to a user
u, s : U × I −→ R, where R is a totally ordered set (e.g., non-negative real numbers
within a certain range). In other words, a utility function s, which, given a user u ∈ U
and an item i ∈ I , returns a predicted utility score r . Now, our end goal is to identify
the set Ru of “top-k items” {i1 . . . ik} which maximize the utility of the user u, i.e., the
list of recommended items:

Ru = argmax
{i1...ik }

k∑

j=1

s(u, i j ) (1)

Due to the one-of-a-kind nature of our artwork items, once an artwork item is pur-
chased, it is immediately removed from the system. Hence, we cannot rely directly on
co-occurrencemethods such as collaborative filtering, and for this reasonwe formulate
our utility function as a content-based recommendation problem. In a content-based
recommender, the utility function s(u, i) in Adomavicius and Tuzhilin (2005) is
defined as:

s(u, i) = score(Content BasedProf ile(u),Content(i)), (2)

where score(x, y) usually represents a similarity function (such as cosine or BM25 in
the case of documents), and Content BasedProf ile of user u and Content of item
i can be respectively represented as vectors, such as TF–IDF vectors using the bag-
of-words document model. In our case, Content BasedProf ile(u) will be the set of
artworks Pu already purchased by user u. Content(i) is a vector representation of the
artwork i , its dimensions can represent different features. In this particular research,
these features can be: (i) manually curated labels, (ii) the artist (artwork’s creator),
(iii) visual features extracted with pre-trained DNNs, e.g. VGG and AlexNet, and
(iv) manually-engineered visual features, e.g. attractiveness features and local binary
patterns (LBP).
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In Sect. 5 we will explain in detail which form the function score(x, y) takes
depending on the different features used.

3 Related work

In this section we provide an overview of relevant related work. The section is split
into twoparts:ArtworkRecommender Systems (3.1) andVisually-awareRecommender
Systems (3.2). Both sub-sections are important to better understand our contribution
and the problem we are targeting with the paper. A final Sect. Differences to Previous
Research (3.3) highlights what we add with our work to the already existing literature
in the area.

3.1 Artwork recommender systems

Within the topic of artwork recommender systems, one of the first contributions in
this area was made by the CHIP Project (Aroyo et al. 2007). The aim of the project
was to build a recommendation infrastructure for the Rijksmuseum in the Netherlands.
The project used several techniques such as content-based filtering based on metadata
provided by experts, as well as collaborative filtering based on users’ ratings given to
artworks of the Rijksmuseum.

Another important contribution in the field is the work developed by Semeraro et al.
(2012). In their paper, they introduce an artwork recommender system called FIRSt
(Folksonomy-based Item Recommender syStem) which utilizes social tags given by
experts and non-experts over 65 paintings of the Vatican picture gallery. They focused
their research on making recommendations using textual features (textual painting
descriptions and user tags), but did not employ visual features among their methods.

More complex methods were implemented recently by Benouaret and Lenne
(2015), who improve the current state-of-the-art in artwork recommender systems
using context obtained through a mobile application. The particular research question
they address is to what extent it is possible to make museum tour recommendations
more useful. Their content-based approach uses ratings applied by the users during
the tour and metadata from the artworks people have rated, e.g. title or artist names.
They address the artwork recommendation problem in museums, yet their solution
cannot be fully applied to the one-of-a-kind problem in online stores as we approach
it in this research.

Finally, the recent work of He et al. (2016) addresses digital artwork recommen-
dations based on pre-trained deep neural visual features. In this case, the experiments
were conducted on a virtual art gallery, with the advantage of items always available
and explicit user feedback in the form of ratings.

3.2 Visually-aware recommender systems

Manually-engineered visual features extracted from images (texture, sharpness,
brightness, etc.) have been used in several tasks for information filtering, such as
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retrieval (Rui et al. 1998; La Cascia et al. 1998) and ranking (San Pedro and Siers-
dorfer 2009). More recently, very promising results have been shown for the use
of low-level handcrafted stylistic visual features automatically extracted from video
frames for content-based video recommendation (Deldjoo et al. 2016). By extracting
and aggregating five stylistic visual features per video and using cosine similarity
for pairwise comparison, Deldjoo et al. achieved higher recommendation accuracy
than traditional recommendation methods based on high-level expert annotated meta-
data. Even better results are obtained when both stylistic visual features and annotated
metadata are combined in a hybrid recommender, as shown in the work of Elahi et al.
(2017).

In the latest years, many works in image processing and computer vision such as
object recognition (Akay et al. 2016), image classification (Krizhevsky et al. 2012) and
scene identification (Sharif Razavian et al. 2014) have shown significant performance
improvements by using visual embeddings obtained from pre-trained deep convolu-
tional neural networks (Deep CNN) such as AlexNet introduced by Krizhevsky et al.
(2012) or VGG by Simonyan and Zisserman (2014). These are examples of transfer
learning methods, i.e., visual embeddings trained for specific tasks (e.g. image classi-
fication) which perform well in other tasks (e.g. image segmentation) and have been
adopted for the recommendation problem.

Motivated by these results, McAuley et al. (2015) introduced an image-based
recommendation system based on styles and substitutes for clothing using visual
embeddings pre-trained on a large-scale dataset obtained fromAmazon.com.Recently,
He andMcAuley (2016) went further in this line of research and introduced a visually-
awarematrix factorization approach that incorporates visual signals (fromapre-trained
DNN) into predictors of people’s opinions. Their training model is based on Bayesian
Personalized Ranking (BPR), a model previously introduced by Rendle et al. (2009).

The latest work by He et al. (2016) deals with visually-aware artistic recommen-
dation, building a model which combines ratings, social signals and visual features.
Another relevant work was the research by Lei et al. (2016) who introduced compar-
ative deep learning for hybrid image recommendation. In this work, they use a neural
network architecture for making recommendations of images using user information
(such as demographics and social tags) as well as images in pairs (one liked, one
disliked) in order to build a ranking model. The approach is interesting, but they work
with regular images, not artwork images.

3.3 Differences to previous research

Almost all the surveyed articles on artwork recommendation have in common that they
used standard techniques such as collaborative filtering and content-based filtering, but
without exploiting visual features extracted from images. Unlike these works, we rely
exclusively on content-based methods. We are unable to use traditional collaborative
filtering, since there are no ratings or implicit feedback on the same item: once an
item is purchased, it is out of stock due to its one-of-a-kind condition. In terms of
content-based filtering, unlike the previous works we extract, compare and combine
metadata, neural visual features and manually-engineered visual features.
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Fig. 1 Screenshot of the search interface of UGallery. Users can filter by different facets on the left side

With regards to the relatedwork onvisually-aware recommender systems, almost all
of the surveyed articles have focused on tasks different from artwork recommendation,
such as clothing recommendation and video recommendation.

Only one work, the research by He et al. (2016) resembles ours in terms of the
topic (artwork recommendation) and the use of visual features. However, there are
several important differences: (i) First, although they do use visual features fromDNN
embeddings, they do not use manually-engineered visual features, such as brightness
or sharpness. (ii) Second, in addition to visual features, we also consider artwork
metadata (artwork artists and curated attributes). (iii) Third, our research deals with
physical (real-world) artworks, not digital art. Hence, when an artwork is sold, it goes
out of stock, whereas in the work of He et al. the digital artworks can be “copied” to
an unlimited amount. For us this is a big impediment to using collaborative filtering,
which is why our research focuses on content-based recommendation instead. (iv)
And fourth, in our work we also perform an online evaluation with expert curators to
verify consistency with offline evaluation results.

4 Materials

The online web store UGallery has been selling artworks for more than 10years
(Weinswig 2016). They support emergent artists by helping them sell their artworks
online. The UGallery website allows users (customers) to search for items and to
browse the catalog based on different attributes with a predefined order: orientation,
size, medium, style and others, as seen on the left side of Fig. 1. However, what
their current system does not support is the exploration of items via personalized
recommendations, which is exactly what we aim for in this paper.

UGallery provided us with an anonymized dataset of 1371 users, 3490 items and
2846 purchases (transactions) of artistic artifacts, where all users have made at least
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Fig. 2 Distribution of purchases per user. It resembles the typical skewed user consumption behavior in
online websites

one transaction. In average, each user has bought 2–3 items in the latest years.5 Figure 2
shows the distribution of purchases per user. The distribution is skewed since most
users (871 in total) bought only one item, and only a few users (53 in total) have bought
7 or more items. Our data is not atypical, since it resembles the rating distribution of
the Netflix prize or the Movielens dataset, where a few users account for most of the
activity and most users have little or none (Harper and Konstan 2015; Bennett et al.
2007).

The artworks in the UGallery dataset were manually curated by experts. Hence,
every artwork has been described with metadata attributes such as color, style and
medium, to enable the user to filter and browse in the UGallery interface. In total,
there are eleven attributes, which are described with their respective attribute values
in Table 1. The attributes in rows 1–4 (Color toMedium) are self-explaining by reading
the examples. Attributes in rows 5–11 (Energy to Age Perception) are grouped into a
meta-category calledMood. It is important to note that only from the very latest years
onwards the artworks started being filled with all their attributes more systematically.
As such, there is a distribution of attributes present and absent in the artworks, which
is shown in Table 2. While Color (97.16%) is present in almost all the artworks,
Subject is only present in 16,56%. In addition to these curated attributes, the artwork
metadata also includes another important source of information: the artwork’s artist.
In the UGallery dataset, each artwork is associated to a unique artist. In total, there
are 423 artists, who have 8.25 artworks in average each for sale.

5 Artwork recommendation approaches

In this section we describe six different content-based artwork recommendation
approaches, which we have implemented to tackle the one-of-a-kind recommendation
problem. Table 3 contains an overview of symbols used in the following sub-sections.

5 Our collaborators at UGallery requested us not to disclose the exact dates when the data was collected.
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Table 1 Metadata attributes and attribute values for artworks in the UGallery dataset

Attribute Type Values

Color Nominal B&W, Beige, Black, Blue, Brown, Dark Blue, Dark Green, Dark
Red, Green, Grey, Orange, Pink, Purple, Red, Turquoise, Violet,
White, Yellow

Subject Nominal Animals, Architecture, Cuisine, Fantasy, Fashion, Flora,
Landscape, Nature, Nudes, People, Religion, Seascape, Sports,
Still Life, Travel, Western

Style Nominal Abstract, Classical, Expressionism, Impressionism, Minimalism,
Modern , Non-representational, Pop, Primitive, Realism,
Representational, Street Art, Street Photography, Surrealism,
Vintage

Medium Nominal Acrylic Painting, Ceramic Artwork, Chalk Drawing, Charcoal
Drawing, Colored Pencil, Digital Printmaking, Drawing Artwork,
Encaustic Artwork, Gouache Painting, Ink Artwork, Marker
Artwork, Mixed Media Artwork, Oil Painting, Other Media,
Pastel Artwork, Pencil Drawing, Photography, Printmaking,
Sculpture, Watercolor

Energy Ordinal Calm, Neutral, Energetic

Seriousness Ordinal Playful, Neutral, Serious

Warmness Ordinal Warm, Neutral, Cool

Purpose Ordinal Decorative, Neutral, Thought-Provoking

Complexity Ordinal Simple, Neutral, Complex

Formality Ordinal Formal, Neutral, Informal

Age perception Ordinal Young, Neutral, Old

Table 2 Statistics of attributes’ presence among artworks in the UGallery dataset

Color Style Subject Mood Medium

Present 3391 (97.16%) 646 (18.51%) 578 (16.56%) 1550 (44.41%) 3490 (100%)

5.1 Most popular curated attribute value (MPCAV)

TheMost PopularCuratedAttributeValuemethod is the first andmost simple approach
we tested. TogetherwithRandom, it is also used and referred to as a baseline throughout
our paper. Since the concept of “popular item” is meaningless in a one-of-a-kind
setting, instead we recommend based on the most popular curated attribute values.
Given an artwork i andCAV X

i the corresponding set of curated attribute values (where
X can be eitherColor, Subject, Style,Medium,Mood or All), we compute theMPCAV
score as the sum of the frequencies (popularities) of each of its curated attribute values.
More formally, the MPCAV score is calculated as follows:

score(i)MPCAV =
∑

v∈CAV X
i

∑

j∈P

1( j, v), (3)
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Table 3 Symbols used in our artwork recommendation approaches

Symbol Description

U , I User set, item set

u, i A specific user or item (resp.)

P Set of all items purchased in the system up to an arbitrary point in time

Pu Set of all items purchased by user u up to an arbitrary point in time, we
refer to these items as the user profile or the user model, indistinctly

CAV X
i Set of all curated attribute values of type X present in item i , where X can

be either Color, Subject, Style, Medium, Mood or All (all curated
attributes at the same time)

ai The artist (creator) of item i

Vi Vector of visual features of item i , either manually engineered or obtained
with a pre-trained DNN

V X
i Vector of visual features (of item i) of the specific type X (where X can be

e.g. AlexNet, VGG, LBP or Attractiveness)

where P is the set of products purchased so far, and 1( j, v) is an indicator function,
which returns 1 if item j has curated attribute value v or 0 otherwise. Intuitively, an
item will have a higher score if its curated attribute values are more frequent (popular)
among items already purchased in the system. Finally, we rank the items based on this
score and recommend the top-n.

Because of the low granularity of the curated attribute values (which at least was
the case with the UGallery dataset), one problem of this scoring function is that it
may be prone to ties, i.e. many items with the same score. Therefore if there are too
many items with the same score that do not fit into the top-n limit, as a workaround
we uniformly sample a subset of these items just to fit the top-n recommendation.

5.2 Personalizedmost popular curated attribute value (PMPCAV)

This method is equivalent to MPCAV, with the only difference that we just look at
the past purchases of user u instead of the past purchases of the whole system. More
formally, the formula for the PMPCAV scoring function is:

score(u, i)PMPCAV =
∑

v∈CAV X
i

∑

j∈Pu

1( j, v), (4)

which is almost exactly as Eq. 3, but here we consider only the set of items purchased
by the user u, i.e., the set Pu . Then we can rank items and recommend the top-n based
on this score. In case of ties, the same workaround as in MPCAV can be used (uniform
sampling). On the other hand, if we are not able to build a user model because the
user’s purchased items lack proper tagging, a possible fallback option is to switch to
MPCAV.
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A weakness of this method compared to MPCAV is that it requires at least one
previous purchase from the user to make recommendations. On the positive side, by
considering the user’s preferences, one should expectmore accurate recommendations.

5.3 Personalized favorite artist (FA)

Besides curated attributes, the artworkmetadata also includes another important source
of information: the artist who created the painting. The FA method leverages this
information by recommending artworks created by artists that the user has shown
favoritism for. More formally, given a user u and an item i , the FA scoring function is
defined as follows:

score(u, i)FA =
∑

j∈Pu

1( j, ai ), (5)

where 1( j, ai ) is an indicator function that returns 1, if the artist ai of artwork i is also
the creator of artwork j (in our dataset, each artwork is associated to a single creator).
Intuitively, an artwork has a higher score if the user has purchased more artworks from
the same artist in the past. Then we rank and recommend the top-n artworks based
on this score. If there are too many items with the same score, a subset of these items
can be uniformly sampled to fit the top-n recommendation. On the other hand, if there
are too few items with a positive score to recommend (e.g. because the user’s favorite
artists have sold almost all their artworks), we resort to the globally most favorite
artists to rank the remaining artworks and fill the top-n recommendation.

5.4 Latent visual features: deep neural network embedding (DNN)

Since the dataset contains one image for every item, we tested visual features for
artwork recommendation. One of the two visual embeddings used was a vector of
features obtained from an AlexNet, a convolutional deep neural network developed to
classify images (Krizhevsky et al. 2012). In particular, we use an AlexNet model pre-
trained with the ImageNet dataset (Deng et al. 2009). Using the pre-trained weights for
every image a vector of 4096 dimensions was generated with the Caffe6 framework.
As seen in Fig. 3, this vector corresponds to the output of the first fully connected
layer of AlexNet, also known as fc6.

Although there are two fully connected layers (fc6 and fc7) we used fc6 rather
than fc7 because previous works show better performance of this layer in a transfer
learning setting, e.g., classifying regions using an embedding trained for a different
task, object classification (Girshick et al. 2014). Our task is also transfer learning,
since we are using an embedding originally trained for object classification, when our
goal is recommendation. Figure 3 shows the architecture and the procedure to obtain
the features from fc6.

We also tested the Visual Geometry Group (VGG) network (Simonyan and Zisser-
man 2014), a newer deep neural network architecture used to classify images. This

6 http://caffe.berkeleyvision.org/.
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Fig. 3 AlexNet architecture. This shows the process to obtain the latent feature vector we use in our
experiments, which corresponds to fc6. A convolutional window passes over the image, from each layer to
the next layer, with different shapes and strides in every layer. This figure is inspired by Karnowski (2015)

network outperformed the results obtained by the AlexNet (Simonyan and Zisserman
2014), reaching even human level of performance in the task of image classification
(Russakovsky et al. 2015), so it seemed reasonable to put this network to the test in
the task of artwork recommendation as well. We used the first fully connected layer
of this network, also known as fc14, to obtain a R4096 feature vector for each image.

DNN utility scoreWemake recommendations by maximizing the utility score that
an item provides to a user. Given a user u who has consumed a set of artworks Pu , and
an arbitrary artwork i from the inventory, the score of this item i to be recommended
to u is defined as:

score(u, i)X =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

max
jεPu

{sim(V X
i , V X

j )} (maximum)
∑
j∈Pu

sim(V X
i ,V X

j )

|Pu | (average)
min{K ,|Pu |}∑

r=1
max
jεPu

(r){sim(V X
i ,V X

j )}
min{K ,|Pu |} (average top K )

, (6)

where V X
z is a feature vector of type X associated to item z. In this particular case

V X
z stands for the vector embedding of item z obtained with a pre-trained DNN of

type X , where X can be either VGG or AlexNet. max (r) denotes the r -th maximum
value, e.g. if r = 1 it is the overall maximum, if r = 2 it is the second maximum, and
so on. sim(Vi , Vj ) denotes a similarity function between vectors Vi and Vj . In this
particular case, the similarity function used was cosine similarity, expressed as:

sim(Vi , Vj ) = cos(Vi , Vj ) = Vi · Vj

‖Vi‖‖Vj‖ (7)
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Essentially, the score in Eq. 6 looks at the similarity between item i and each item j
in the user profile Pu , and then aggregates these similarities in three possible ways:
taking either (a) the maximum, (b) the average or (c) the average of the top-K most
similar items, where K can be tuned empirically.

In addition, we also studied the performance of using both DNNs at the same time.
For this purpose, we implemented the following hybrid score:

score(u, i)DNN = α1 · score(u, i)VGG (8)

+ α2 · score(u, i)AlexNet ,

where score(u, i)VGG and score(u, i)AlexNet are calculated following Eqs. 6 and 7,
using VGG and AlexNet feature vectors, respectively, and α1 and α2 are weights to
perform the linear combination between the two scores. After an optimization of the
weights by grid search, this hybrid approach produced the best results, where the
optimal values were α1 = 0.8 and α2 = 0.2.

5.5 Manually engineered visual features (MEVF)

The visual features obtained with DNN techniques are of latent nature, i.e., they
are not easily interpretable in terms of more intuitive features such as image color-
fulness or brightness. To mitigate this problem, one might want to take advantage
of manually engineered visual features, which usually are much more intuitive and
explainable than neural features. Moreover, they are suitable to be used in a search
interface to support navigation. For example, imagine a use casewhere a content-based
recommender uses the brightness of an image to find similar items. This informa-
tion could be used to make an explanation—you might like this image because of its
brightness—or to allow the user to filter search results based on the paintings’ level
of brightness.

In order to choose which visual features to extract, we surveyed related work and
found features related to attractiveness as potentially useful.

Attractiveness San Pedro and Siersdorfer in San Pedro and Siersdorfer (2009)
proposed several explainable visual features that can capture to a great extent the
attractiveness of an image posted on Flickr. Following their procedure, for every image
in ourUGallery dataset we calculated: (a) average brightness, (b) saturation, (c) sharp-
ness, (d) RMS-contrast, (e) colorfulness and (f) naturalness. In addition, we added (g)
entropy, which is a good way to characterize and measure the texture of an image
(Gonzalez et al. 2004). These metrics have also been used in another study (Trattner
and Elsweiler 2017), where they are successfully used to nudge people with attractive
images to take up more healthy recipe recommendations.

Since each feature varies within different value ranges (e.g. 0–1, 10–100), we
applied a feature-wise min-max normalization to prevent biases in similarity calcula-
tions. Following, we provide a more detailed description of these attractiveness-based
features:
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• Brightness measures the level of luminance of an image. For images in the YUV
color space, we obtain the average of the luminance component Y as follows:

B = 1

N

∑

x,y

Yx,y, (9)

where N is the amount of pixels and Yx,y is the value of the luminance in the pixel
(x, y)

• Saturation measures the vividness of an image. For images in the HSV or HSL
color space, we obtain the average of the saturation component S as follows:

S = 1

N

∑

x,y

Sx,y, (10)

where N is the amount of pixels and Sx,y is the value of the saturation in the pixel
(x, y)

• Sharpnessmeasures the detail level of an image. For an image in gray-scale, it can
be obtained using a Laplacian filter and luminance around every pixel:

L(x, y) = δ2 I

δx2
+ δ2 I

δy2
(11)

Sh =
∑

x,y
L(x,y)
μx,y

n
, (12)

where n is the number of pixels and μx,y is the average luminance of the pixels
around the pixel (x, y).

• Colorfulness measures how distant the colors are from the gray color. For images
in the RGB space, it can be obtained with the following formulas:

C = σrgyb + 0.3 · μrgyb (13)

σrgyb =
√

σ 2
rg + σ 2

yb (14)

μrgyb =
√

μ2
rg + μ2

yb, (15)

whereμ2
rg ,μ

2
yb are the means of the components of the opponent color space. σ 2

rg ,

σ 2
yb are the standard deviations of the component of opponent color space. This

color space is defined as:

rg = R − G (16)

yb = 1

2
(R + G) − B (17)

• Naturalnessmeasures the naturalness of an image by grouping the pixels into Sky,
Grass and Skins pixels and applying the formula in San Pedro and Siersdorfer
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(2009). First, using the HSL color space, the pixels are filtered considering only
the ones with 20 ≤ L ≤ 80 and S > 0.1. Then, they are grouped by their hue
value in three classes “A - Skin”, “B - Grass” and “C - Sky”, which are defined as
follows:

– pixels with 25 ≤ hue ≤ 70 belong to the “A - Skin” set.
– pixels with 95 ≤ hue ≤ 135 belong to the “B - Grass” set.
– pixels with 185 ≤ hue ≤ 260 belong to the “C - Sky” set.

For each set, average saturation is calculated and denoted as μS . Then, local
naturalness for each set is calculated using the following formulas:

Nskin = e
−0.5

(
μA
S −0.76
0.52

)2

(18)

NGrass = e
−0.5

(
μB
S −0.81
0.53

)2

(19)

NSky = e
−0.5

(
μCS −0.43

0.22

)2

(20)

After this, the Naturalness value is obtained by:

Na =
∑

i

ωi Ni , i ∈ {“Skin”, “Grass”, “Sky”}, (21)

where ωi is the amount of pixels of set i divided by the total pixels in the image.
• RMS-contrast measures the variance of luminance in an image using the intensity
of each pixel:

Crms = 1

n

n∑

x,y

(Ix,y − Ī ),

where Ix,y is the intensity of the pixel (x, y) and Ī is the average intensity.
• Entropy The entropy of a gray-scale image is a way to measure and characterize
the texture of the image (Gonzalez et al. 2004). Shannon’s entropy is applied to the
histogram of values of every pixel in a gray-scale image. The formula is defined
as follows:

E = −
∑

x∈[0..255]
p(x) log p(x), (22)

where p(x) is the probability of finding the gray-scale value x among all the pixels
in the image.

Attractiveness utility scores For the attractiveness features we studied the perfor-
mance of (i) using each feature individually and (ii) using all features together. For the
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Fig. 4 Examples of pixelwise patterns extracted with local binary patterns (LBP). Each small square is
a pixel, and these boxes with nine pixels each represent patterns. The black circles represent pixels with
value over a threshold (= 1), while gray circles represent pixels with value below a threshold (= 0). The
threshold is set by the value of the pixel in the center of the pattern

first case, we usedR1 vectors of one single feature at a time. To calculate the similarity
between two R1 vectors, we used Euclidean distance, formally expressed as:

sim
(
V X
i , V X

j

)
=

∥∥∥V X
i − V X

j

∥∥∥ , (23)

where V X
i and V X

j are R1 vectors of items i and j , respectively, containing a single
feature of type X (where X can be either average brightness, saturation, sharpness,
RMS-contrast, colorfulness, naturalness or entropy).

For the second case (all features together), we put the 7 attractiveness-based features
into a single R7 vector, which we denote as V Attract

i . Then, to calculate the similarity
between two vectors V Attract

i and V Attract
j we used cosine similarity, as per Eq. 7:

sim
(
V Attract
i , V Attract

j

)
= cos(V Attract

i , V Attract
j ) (24)

As for the utility score (score(u, i)X ) itself,we used the same similarity aggregation
techniques outlined in Eq. 6 (maximum, average and average-top-k). This applies for
both (i)R1 vectors of single features and (ii)R7 vectors with all attractiveness features,
using the corresponding similarity function in each case.

LBP Another set of features we explored apart from those of attractiveness were
the Local Binary Patterns (LBP) (Ojala et al. 1996). Although this is not an actual
“explicit” visual feature, it is a traditional baseline in several computer vision tasks
such as image classification, so we tested it for the task of recommendation, too. LBP
is not represented as a scalar value, but rather as a feature vector of 59 dimensions.
The values in the LBP feature vector represent counts in a histogram of the patterns
found on an image. Figure 4 shows four of such patterns as example.

LBP utility score Since the output of LBP is a feature vector, we calculated the
similarity between two vectors V LBP

i and V LBP
j as we did with most of the feature

vectors, using cosine similarity (7). Namely:

sim
(
V LBP
i , V LBP

j

)
= cos

(
V LBP
i , V LBP

j

)
(25)

Finally, the utility score (score(u, i)LBP ) is calculated using the same similarity aggre-
gation techniques outlined in Eq. 6: maximum, average and average-top-k.
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MEVF hybrid utility score In addition to studying Attractiveness and LBP sep-
arately, we also studied the performance of using both feature sets at the same time.
We tried two ways to combine the features: (i) concatenating Attractiveness (R7) and
LBP (R59) into a single R66 vector and then recommending based on Eqs. 6 and 7,
and (ii) computing a relevance score for Attractiveness and LBP separately and then
merging the two scores with a convex linear combination based on Eq. 8. As we will
show in Sect. 7, this hybrid approach achieved the best results.

5.6 Hybrid recommendations (hybrid)

Since different methods can measure different sources of similarity between items
and the user profile, we developed a hybrid recommender model which integrates the
previous approaches. The basic idea is to compute a hybrid score as a convex linear
combination of the scores of individual methods. We took the best performing version
of each individual method and tested multiple hybrid combinations of them.

Formally, given a user u who has purchased a set of artworks Pu , and an arbitrary
artwork i from the inventory, we compute the hybrid score of item i for user u as
a convex linear combination of multiple scores, which for the case of combining all
features is given by:

score(u, i)Hybrid = β1 · score(u, i)FA (26)

+ β2 · score(u, i)VGG
+ β3 · score(u, i)AlexNet
+ β4 · score(u, i)LBP
+ β5 · score(u, i)Attract
+ β6 · score(u, i)PMPCAV,

where β are global (non-personalized) coefficients such that 0 � βi � 1 and
∑

i βi =
1. The β coefficients were tuned by exhaustive grid search, and in the case of the hybrid
with all features the best coefficients found were β1 = 0.207, β2 = 0.269, β3 =
0.165, β4 = 0.145, β5 = 0.062 and β6 = 0.153.7 In the equation, score(u, i)VGG,
score(u, i)AlexNet, score(u, i)LBP and score(u, i)Attract are calculated as in Eq. 6.
Meanwhile, score(u, i)PMPCAV and score(u, i)FA had to be slightlymodified to ensure
normalized values in the range [0, 1]:

score(u, i)PMPCAV =
∑

v∈CAVAlli

∑
j∈Pu 1( j, v)

∑
j∈Pu |CAVAll

j | (27)

score(u, i)FA =
∑

j∈Pu 1( j, ai )

|Pu | , (28)

7 To obtain the weights for the different methods, we initialize the coefficients based on the individual
performance (concretely, Recall@10) of each method and then we iterate with a grid search, each time
narrowing the weight search space in a greedy fashion. The performance tend to converge after two to three
iterations.
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Fig. 5 offline evaluation procedure. Each surrounding box represents a test, where we predict the items of
the purchase session. In the figure, we predict which artworks User 1 bought in purchase P3. ‘Training:P2’
means we used items from purchase session P2 to train the model

which are almost the same as Eqs. 4 and 5 but with the addition of a normalizing
denominator that represents the theoretical maximum of the score in each case.

6 Evaluationmethodology

The evaluation had two stages. The first was an offline evaluation, conducted using a
dataset of transactions (purchases) as described in Sect. 4. With this offline evaluation
we can answer research questions RQ1, RQ2 and RQ3. The second stage was per-
formed with expert curators from the UGallery store. We developed a web interface
where the experts could rate recommendations based on algorithms selected from the
offline evaluation, and we analyzed consistency between results of both stages (RQ4).

6.1 Offline evaluation

The evaluation protocol we follow in this paper is the one usually used in order to
evaluate predictive models and recommender systems offline in a time-based manner
(Macedo et al. 2015). Hence, the UGallery dataset was split into training and test
samples according to the time line of every user, as seen in Fig. 5. With this setting,
we attempt to predict the items purchased by the user in every transaction, where the
training set contains all the artworks bought by a user previous to the transaction to
be predicted.

Figure 5 shows that for every user we test the predictions made for every purchase
session excepting the first one of each user. For instance, for User 1 we tested the
predicted items of purchase P3 using items in P2 as training. In the same Figure, for
User N we performed two predictions tasks: the first one predicting items bought in
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Fig. 6 Screenshot of the upper part of the interface used in the expert evaluation. On the left the items liked
by the user. The large table to the right shows one column per each method used to make recommendations

purchase P4 using P1 as training, and then testing a prediction on purchase P5 using
P1 andP4 as training. In our evaluation, most of the experiments considered only users
who had at least 2 purchase sessions. Users who only had a single purchase session in
their whole history were considered cold start users (only MPCAV and Random were
able to make predictions in those cases, since they are non-personalized methods).

6.2 Online evaluation

The online evaluation involved 8 expert curators fromUGallery. We asked each expert
to send us a list of 10 of their preferred paintings from the current UGallery dataset,
which they sent us via email. For each expert we created five lists of recommendations
based on different methods: FA, MEVF, DNN, and the hybrids DNN+MEVF, and
FA+DNN+MEVF. Each recommendation list had 10 items, and the experts had to
rate each painting recommended with stars in a scale from 1 to 5. We used ratings
rather than likes/dislikes to evaluate the recommendations in order to give experts
the chance to express their perception of relevance with higher granularity. Unlike
regular art consumers for which a preference rating of two or three stars might be hard
to discriminate, experts are more likely to understand detailed levels of relevance of
the paintings recommended. In total, each expert rated 50 items. A screenshot of the
rating interface for a ficticious user called “Madeline” is shown in Fig. 6. We stored
the user id, item id and the ratings over every painting for each method, to calculate
the evaluation metrics and compare the results.

6.3 Evaluationmetrics

Table 4 shows a summary of symbols used in this section. As suggested by Cremonesi
et al. (2010) for Top-N recommendation, for our offline evaluations we used Recall@k
(R@k), Precision@k (P@k) and F1-score@k (F1@k), as shown in the equations
below:

p@k(t) = |rkt ∩ Rt |
k

(29)
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Table 4 Evaluation metrics symbol table

Symbol Description

t A test case during the execution of an offline evaluation of a certain recommendation
algorithm

ut User whose shopping basket is predicted during offline test case t

rkt List of top-k items recommended to user ut at offline test case t

Rt The set of relevant items (i.e. items in the shopping basket) of user ut during offline test case t

Tu The set of all test cases performed with purchase sessions of user u

Ur Set of all users who received at least 1 recommendation during a certain offline evaluation
(i.e., all u ∈ U such that |Tu | ≥ 1)

it,z Item appearing at position z in the recommended list at offline test t

vci The visual cluster that item i belongs to

PS Total number of purchase sessions in the system

r@k(t) = |rkt ∩ Rt |
|Rt | (30)

f 1@k(t) = 2 · p@k(t) · r@k(t)

p@k(t) + r@k(t)
(31)

P@k = 1

|Ur |
∑

u∈Ur

(
1

|Tu |
∑

t∈Tu
p@k(t)

)
(32)

R@k = 1

|Ur |
∑

u∈Ur

(
1

|Tu |
∑

t∈Tu
r@k(t)

)
(33)

F1@k = 1

|Ur |
∑

u∈Ur

(
1

|Tu |
∑

t∈Tu
f 1@k(t)

)
, (34)

where p@k(t), r@k(t) and f 1@k(t) are precision, recall and f1-score at k, respec-
tively, measured during the test case t , whereas P@k, R@k and F1@k are the overall
aggregations of precision, recall and f1-score at k, respectively, by first calculating
user averages and then the average of these averages. These are the evaluation metrics
that we report in Sect. 7.

In addition,we also reportNormalizedDiscountedCumulativeGain (nDCG) (Man-
ning et al. 2008) which is a ranking-dependent metric that not only measures how
relevant the items are but also takes the position of the items in the recommended list
into account. The nDCG metric with a cut-off of k items in the recommended list is
based on the Discounted Cumulative Gain (DCG@k) which is defined as follows:

DCG@k(t) =
k∑

z=1

2Bt (it,z) − 1

log2(1 + z)
, (35)
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where Bt (it,z) is a function that returns the graded relevance of item it,z appearing at
position z in the recommended list during the test case t . In our case, Bt (it,z) basically
returns 1 if item it,z was present in the shopping basket of test case t , and 0 otherwise.
nD@k is calculated as DCG@k divided by the ideal DCG@k value iDCG@k which
is the highest possible DCG@k value that can be achieved if all the relevant items
were recommended in the correct order (i.e., all shopping basket items appearing first
in the recommended list). Taken together, the overall nDCG@k is defined as follows:

nD@k = 1

|Ur |
∑

u∈Ur

(
1

|Tu |
∑

t∈Tu

DCG@k(t)

iDCG@k(t)

)
(36)

In addition, we calculated user coverage (UC), expressed as:

UC = |Ur |
|U | (37)

UserCoverage is defined as the number of users forwhomat least one recommendation
could be generated (|Ur |) divided by total number of users |U | (Lacic et al. 2015).

We also report session coverage (SC), expressed as:

SC =
∑

u∈Ur
|Tu |

PS
(38)

Session Coverage is defined as the number of purchase sessions in which the recom-
mender was able to generate a recommendation (i.e., total number of valid test cases)
divided by the total number of purchase sessions of the system (PS).

Content-based recommendation techniques are usually much more susceptible to
overspecialization than other recommendation techniques, such as e.g. collaborative
filtering (Parra and Sahebi 2013). Therefore, in order to measure the degree of this
effect we also calculated several diversity metrics.

The first of these metrics is the Artist Diversity (D@k
artist), defined as:

D@k
artist =

∑
u∈Ur

∑
t∈Tu

∣∣∣∣
⋃

i∈rkt { ai }
∣∣∣∣

∑
u∈Ur

|Tu | , (39)

where ai is item i’s artist. The Artist Diversity measures the average number of distinct
artists per recommendation. This metric is useful for getting a notion of how diverse
a recommendation is in terms of the different artists recommended. The larger the
metric, the more the chances of recommending items from novel artists to users.

Similarly, we also calculate Color Diversity andMedium Diversity, which are for-
mally defined as:
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D@k
color =

∑
u∈Ur

∑
t∈Tu

∣∣∣∣
⋃

i∈rkt CAV
color
i

∣∣∣∣
∑

u∈Ur
|Tu | (40)

D@k
medium =

∑
u∈Ur

∑
t∈Tu

∣∣∣∣
⋃

i∈rkt CAV
medium
i

∣∣∣∣
∑

u∈Ur
|Tu | , (41)

whereCAV color
i andCAVmedium

i are defined in Table 3.Color Diversity andMedium
Diversitymeasure the average number of distinct color values and medium values per
recommendation, respectively. We do not use other curated attributes apart from color
and medium because these are the only ones that are present in (almost) all artworks,
as already shown in Table 2.

In addition to Artist, Color andMedium, it is also possible to learn visual categories
directly from images bymeans of unsupervised techniques, e.g. clustering. To this end,
we crawled 10,316 images from the UGallery website (a superset of the 3490 images
used in offline evaluations), and for each of these images we obtained a feature vector
of 8258 dimensions (R8258) by concatenating AlexNet (R4096)+VGG (R4096)+LBP
(R59)+Attractiveness (R7). Thenwe calculated a z-score normalization and usedPCA
to reduce the vector dimensionality to R

100, so as to retain the most relevant visual
features according to the natural distribution of images. Finally, we used Gaussian
Mixture clustering to fit 400 clusters to this augmented image dataset (using more
clusters did not yield significant improvements in silhouette scores). Thus,we calculate
Visual Cluster Diversity, which is formally defined as:

D@k
visual
cluster

=
∑

u∈Ur

∑
t∈Tu

∣∣∣∣
⋃

i∈rkt { vci }
∣∣∣∣

∑
u∈Ur

|Tu | , (42)

where vci is defined in Table 4. This metric measures the average number of distinct
visual clusters per recommendation.

In addition to clustering, the aforementioned R
100 visual feature vectors can also

be used for pairwise comparisons. Thus, we also calculate Visual Pairwise Diversity
which we formally define as follows:

D@k
visual

pairwise
=

∑
u∈Ur

∑
t∈Tu

D@k
visual
pairwise

(t)
∑

u∈Ur
|Tu | (43)

D@k
visual
pairwise

(t) =
∑k−1

y=1
∑k

z=y+1 0.5 ·
[
1 − cos

(
V PCA(100)
it,y

, V PCA(100)
it,z

) ]

k·(k−1)
2

, (44)

where
D@k
visual
pairwise

(t) is the average of the pairwise cosine distances between the top-k

items of test case t’s recommended list, it,y and it,z are the items at positions y and
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z, respectively, of test case t’s recommended list, V PCA(100)
i is item i’s R100 visual

feature vector obtained with PCA, and cos(x, y) stands for cosine similarity.
Finally, we can also compute a pairwise diversity metric based on the whole meta-

data. By combining Artist, Colors and Medium in a single set of metadata attribute
values per item, we can use Jaccard Index to calculate Jaccard Pairwise Diversity,
which we formally define as:

D@k
jaccard
pairwise

=
∑

u∈Ur

∑
t∈Tu

D@k
jaccard
pairwise

(t)
∑

u∈Ur
|Tu | (45)

D@k
jaccard
pairwise

(t) =
∑k−1

y=1
∑k

z=y+1

[
1 − jaccard_index(Sit,y , Sit,z )

]

k·(k−1)
2

(46)

jaccard_index(Si , S j ) =
∣∣Si ∩ S j

∣∣
∣∣Si ∪ S j

∣∣ (47)

Si = CAVcolor
i ∪ CAVmedium

i ∪ { ai } (48)

In addition to these offline evaluation metrics, we also report Precision@k and
nDCG@k for the online evaluation with 8 UGallery expert curators. In this setting,
the metrics were calculated as follows:

nD@k = 1

8

8∑

x=1

DCG@k(x)

iDCG@k(x)
(49)

DCG@k(x) =
k∑

z=1

2Bx (ix,z) − 1

log2(1 + z)
(50)

P@k = 1

8

8∑

x=1

p@k(x) (51)

p@k(x) = 1

k

k∑

z=1

1x (ix,z), (52)

where x stands for the x-th expert curator, ix,z is the item appearing at position z in
the list recommended to expert x , Bx (ix,z) returns the original rating Sx (ix,z) given
by expert x to item ix,z if Sx (ix,z) >= 4, or 0 otherwise, and 1x (ix,z) is an indicator
function that returns 1 if rating Sx (ix,z) ≥ 4, or 0 otherwise (i.e., we used 4 as the
relevance threshold for the calculation of these metrics).

7 Results

In this section, we report the results focusing on different aspects. With respect to
research question RQ1—analyzing the impact of each single feature–, we analyze: a)
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Table 5 nDCG (nD), Recall (R), Precision (P), F1 Score (F1) and Coverage (UC and SC) for metadata
based methods: MPCAV (by attribute), PMPCAV (by attribute), and FA. The best result for each metric
and method group are highlighted. The superindex indicates the ID of the method with the closest but still
significantly smaller result. For instance, FA R@10 = .206712 tells that FA is significantly larger than at
least (12) PMPCAV(All) R@10 = .0785, as well as significantly larger than all the other methods with
R@10 < .0785

ID Method nD@10 R@10 P@10 F1@10 UC SC

1 MPCAV(Subject) .0115 .0172 .0023 .0041 .9985 .9991

2 MPCAV(Medium) .0106 .0211 .0025 .0043 .9993 .9995

3 MPCAV(Style) .0096 .0176 .0025 .0042 .9978 .9972

4 MPCAV(Color) .0095 .0190 .0023 .0040 .9993 .9995

5 MPCAV(Mood) .0148 .0279 .0034 .0059 .8483 .8229

6 MPCAV(All) .0087 .0157 .0020 .0034 .9993 .9995

7 PMPCAV(Subject) .0099 .0136 .0021 .0036 .0890 .1407

8 PMPCAV(Medium) .0190 .0363 .0044 .0094 .2640 .3593

9 PMPCAV(Style) .0237 .0485 .0060 .0118 .0766 .1168

10 PMPCAV(Color) .0264 .04863 .0063 .0108 .2619 .3570

11 PMPCAV(Mood) .0507 .0774 .0098 .0169 .1327 .1822

12 PMPCAV(All) .044814 .07855 .00955 .01655 .2640 .3593

13 FA .138011 .206712 .025911 .044611 .2640 .3593

14 Random .0122 .0214 .0027 .0046 1.0000 1.0000

Stat. significance by multiple t-tests, Bonferroni corr
αbon f = α/n = 0.05/91 = .00055

metatadata features (personalized and non-personalized), and b) visual features (DNN
and MEVF). For RQ2, we compare between visual features and metadata. Regarding
research question RQ3, we test several combinations of features to identify the best
hybrid recommender in terms of ranking and accuracy. In Sect. 7.5 we assess RQ2 and
RQ3 with respect to metrics of diversity. Finally, regarding research question RQ4,
the online validation, we report and discuss the results of recommendations evaluated
by expert curators from UGallery.

7.1 Metadata features (RQ1.1)

Table 5 summarizes all the results for this analysis of metadata features. Here we
report MPCAV, its personalized version PMPCAV, and Favorite Artist (FA).

Most Popular Curated Attribute Value (MPCAV) We tested the performance of
MPCAV features separately as well as combined (MPCAV(All)). Table 5 shows that
these results are not significantly different from random prediction in the performance
metrics reported (nDCG, Recall, Precision, F1score).

Personalized MPCAV (PMPCAV) As for PMPCAV, in Table 5 we observe that the
use of personalization causes a general, although rather small, improvement in the
ranking metrics over MPCAV. However, personalization has the negative side effect
of dropping user and session coverages. This is partly caused by the user cold start
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problem, which is inherent to personalization, but also because of the absence of
tags for many artworks (Table 2) which hinders the PMPCAV method from tracking
users’ attribute preferences andmaking recommendations inmany cases. This prevents
these small performance improvements from having statistical significance, with the
remarkable exception of PMPCAV(All), which by combining all attributes achieves
top user and session coverages among personalized methods, and most importantly,
significantly better ranking metrics than both MPCAV and Random.

Favorite Artist (FA)One result that stands out overall is the performance of the artist
feature. In this method, we tested whether making personalized recommendations
from the user’s most frequently purchased artists could yield good results. Our results
indicate that FA is actually the single most accurate method (nD@10 = 0.1380,
R@10 = 0.2067), between 3 and 4 times better than the second best metadata based
method—PMPCAV(All).

MPCAV versus PMPCAV The most outstanding lesson about these methods is the
relatively poor performance obtained with expertly annotated attributes with respect
to a random baseline, although personalization (PMPCAV) produces a significant
improvement. Our results support the importance of personalization to improve the
performance, as seen in Table 5. As additional evidence, all the other more sophisti-
cated personalized methods (MEVF, DNN, FA and Hybrids) are significantly better
than MPCAV, as shown in Table 7.

7.2 DNN andMEVF visual features (RQ1.2)

To the best of our knowledge, our work presents the first analysis comparing manually
engineered visual features (brightness, contrast, etc.) versus automatically extracted
features (DNN) for the task of recommending artworks. Table 6 presents the results,
where it is clear that DNN embeddings yield a significant improvement over MEVF
features, either combined or in isolation, almost doubling their performance in almost
all the accuracy and ranking metrics. These results are in line with the current state-
of-the-art of deep neural networks in computer vision, which report better results than
other methods in several tasks (Sharif Razavian et al. 2014; He and McAuley 2016).

Combining AlexNet and VGG shows a small improvement over using either DNN
separately, but the statistical tests show no significant differences between them.

Combining MEVF features improves their performance compared to using them in
isolation. This effect is remarkably clear in the case ofAttractiveness,where using each
feature in isolation shows poor results (not significantly different from Random) but
combining them all leads to significant improvements. Moreover, combining Attrac-
tiveness and LBP yields the best MEVF results, with an improvement of about 400%
above Random.

When comparing MEVF features one-by-one, we observe that LBP performs the
best (about 300% better than Random) because it encodes texture patterns and local
contrast verywell, although as a feature it’s harder to explain than e.g. image brightness
or contrast.

In summary, these results provide evidence in favor of the use of pre-trained deep
neural networks for transfer learning. Their only drawback is the great difficulty in
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Table 6 nDCG (nD), Recall (R), Precision (P), F1 Score (F1) for image based methods. User and Session
Coverage are all the same for every experiment, UC = .2640 and SC = .3593. The best absolute result of
eachmetric is highlighted. The superindex indicates the IDof themethodwith the closest but still statistically
significant difference. For instance, DNN-2 R@10 = .16714 indicates that DNN-2 is significantly larger
than at least (4)MEVF (LBP+Att:all) R@10 = .0998, as well as significantly larger than all the other
methods with R@10 < .0998

ID Method nD@10 R@10 P@10 F1@10

1 DNN-2(VGG+AlexNet) .11874 .16714 .02104 .03654

2 DNN(VGG) .11234 .16144 .02034 .03524

3 DNN(AlexNet) .10944 .15714 .02014 .03484

4 MEVF(LBP+Att:all) .06747 .09987 .011810 .021310

5 MEVF(LBP) .05007 .08977 .01047 .01837

6 MEVF(Att: all) .04247 .06379 .00857 .01467

7 MEVF(Att: contrast) .0120 .0230 .0027 .0048

8 MEVF(Att: naturalness) .0106 .0204 .0025 .0044

9 MEVF(Att: saturation) .0091 .0197 .0021 .0037

10 MEVF(Att: brightness) .0085 .0186 .0031 .0052

11 MEVF(Att: sharpness) .0095 .0178 .0021 .0039

12 MEVF(Att: entropy) .0106 .0137 .0019 .0034

13 MEVF(Att: colorfulness) .0073 .0132 .0020 .0035

14 Random .0122 .0214 .0027 .0046

Stat. significance by multiple t-tests, Bonferroni corr
αbon f = α/n = 0.05/91 = .00055

interpreting the neural image embedding in order to explain recommendations to
users. Recent works unveil which features are learned by certain neurons (Olah et al.
2017), but knowing whether those features are actually influencing the user towards a
purchase decision is still difficult to know. In general terms the features automatically
learned by neural networks are discriminating but difficult to explain, and this lack of
transparency and explainability might potentially hinder the user acceptance of these
recommendations (Konstan and Riedl 2012; Verbert et al. 2013; Nunes and Jannach
2017).

7.3 Comparing visual features versus metadata (RQ2)

Visual Features versus Curated Attributes From Table 7, which shows results of
the overall analysis, we observe that both DNN and MEVF methods significantly
outperformed curation-basedmethods (PMPCAVandMPCAV).MEVF reports signif-
icantly better metrics than some combinations of manually curated metadata—versus
PMPCAV+MPCAV (Mood) and MPCAV (Mood)—but not significantly better than
PMPCAV(All). On the other hand, DNN methods always improve over both MEVF
and PMPCAV(All), showing the potential of neural networks for automatic extraction
of high quality features.

In general, these results indicate that it is possible to leverage automatic visual
feature extraction techniques from artwork images to achieve higher accuracy and
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ranking metrics in the task of future shopping basket prediction, and noteworthily,
without using expert annotated metadata, the production of which can be very time-
consuming.

Visual Features versus Favorite Artist (FA) In total contrast to curated attributes, rec-
ommending based on the user’s favorite artists surprisingly outperforms both MEVF
and DNN in terms of ranking metrics in the offline evaluation, as can be seen in Table
7. In fact, FA (nD@10 = 0.1267 and R@10 = 0.2067) results in significantly better
metrics than the best DNN (nD@10 = 0.1074 and R@10 = 0.1671) by more than a
20%. These offline results may be explained by the fact that users are probably biased
to keep exploring and finding items they like from artists they are already familiar
with. However, when we look at the online results with expert curators (Table 9), the
differences between FA and visual methods become much narrower, where in fact
DNN and the hybrid DNN+MEVF show better results than FA in practically all met-
rics. This shows that FA is a very good heuristic for filtering the item search space
when predicting next purchases (as reflected offline), but its lack of any visual con-
tent awareness renders it incapable of performing fine-grained visual discrimination,
which is reflected in the less favorable results in the online evaluation compared to
DNN and MEVF.

7.4 Hybrid recommendations (RQ3)

The Hybrid recommenders, summarized in Table 7, show a clear tendency: when fea-
tures are combined into hybrids, they tend to perform better than the features used
individually. Some of these improvements are statistically significant, such as hybrids
2–3 in nD@10 and hybrids 1–3 in P@10 with respect to FA. In other cases there are
improvements but not strong enough to be deemed statistically significant, as in the
cases of hybrids 1–4 in R@10 with respect to FA and hybrids 5–6 in all metrics with
respect to DNN based methods. Although there are no significant differences among
the top-4 Hybrid methods, there is a trend towards showing Hybrid2(FA+DNN-
2+MEVF) as the best combination. The methods that do not include FA but include
a combination of different visual features (i.e., Hybrid5, Hybrid6 and DNN-2) signifi-
cantly outperformMEVF and curated metadata based methods (PMPCAV), and show
no statistically significant differences with respect to FA, although they are clearly
more expensive to implement. Under the light of these offline results, it is then inter-
esting answering whether the online validation with expert users is consistent or not,
i.e., if FA has such a good performance compared to hybrid methods.

7.5 Effect on diversity (RQ2 and RQ3)

Table 8 presents the results of several features and combinations of them upon six
metrics of diversity. Recall@10 is also reported in the table as a reminder of the rank-
ing performance of each method. The results can be summarized as follows: In terms
of visual diversity, we can clearly see the effect of DNN: all methods that use DNN
features show lower visual diversities than those that do not. This is an expectable
result, as pre-trained CNNs are powerful off-the-shelf tools for extracting high qual-
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ity visual features. There is a notable exception, though. FA, which recommends by
sampling artworks from the user’s favorite artists, shows lower visual cluster diver-
sity and comparable visual pairwise diversity with respect to DNN based methods.
This result indicates that artists in our dataset paint visually similar artworks, making
recommendation lists based on the same artist less diverse compared to using other
methods.

Moreover, when FA and DNN are combined, as in Hybrid3, the resulting rec-

ommender achieves the lowest visual cluster diversity (
D@10
visual
cluster

= 7.6471) and better
predictive accuracy than each individual method in isolation, providing evidence that
users aremore likely to purchase similar-looking artworks fromartists they are familiar
with, although recommending based on this heuristic can lead to lower visual diversity.
In the case of MEVF, we observe an improvement in accuracy and decrease in visual
diversity with respect to Random and curated metadata based methods, but the effect
is not as strong as that of DNN based methods.

Regarding diversitymetrics based onmetadata, themost informativemetric isArtist
Diversity (D@10

artist ). From this metric we can notice a very interesting trend: the fewer
artists used in a recommendation, the more accurate the recommendation becomes.
This trend holds until we get to FA, with the lowest artist diversity (D@10

artist = 2.5
approximately). However, the trend gets reversed when we get to the top 4 hybrid rec-
ommenders, all of them recommending from about 5 artists on average. This seems to
indicate the existence of an optimal combination in artist diversity in order to achieve
optimal recommendation accuracy. This result is also good news froma business stand-
point: the top hybrid recommenders can achieve higher accuracy while still being able
to promote paintings from a reasonably diverse group of artists. With respect to Color
(D@10
color ) and Medium ( D@10

medium) diversities, these metrics do not reveal very insightful
patterns, besides the fact that the lowest values are reached when PMPCAV(All) is

used. On the contrary, Jaccard Pairwise Diversity (
D@10
jaccard
pairwise

) do seem to show a pattern

similar to Artist Diversity, although the apparent correlation is probably due to the
influence of the artist in the bag of attributes used for Jaccard Index calculations.

7.6 Validation with expert users (RQ4)

Table 9 presents the results of the online evaluation with 8 expert curators from
UGallery, showing the mean over four metrics: nDCG@5, nDCG@10, Precision@5
and Precision@10. As explained in Sect. 6.2, each user had to rate 10 recommended
items from each of the fivemethods shown in Table 9 (i.e., they rated 50 items in total).
The most important aspect to highlight is that combining FA with visual features in a
single hybrid (FA+DNN+MEVF) outperforms all the other features, either hybrid
or single, in all four metrics, which is consistent with the offline results. Another inter-
esting result is that DNN shows better performance than FA, which is the opposite
to the offline evaluation. We think that this might be due to the lack of diversity that
FA promotes, but also to the potential noise present when sampling artworks from
artists to fit a top-n recommendation without awareness of the visual content. It is also
remarkable that the isolated features show smaller differences between them in this
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Table 9 nD@5, nD@10, P@5 and P@10 for algorithms tested with 8 UGallery experts

Name nD@5 nD@10 P@5 P@10

Hybrid(FA+DNN+MEVF) 0.9042 0.8913 0.7500 0.6750

Hybrid(DNN+MEVF) 0.6747 0.6638 0.5000 0.4250

DNN 0.7176 0.6947 0.5000 0.4000

FA 0.4276 0.5662 0.3000 0.4000

MEVF 0.5498 0.5314 0.3500 0.2625

For nD@k, all ratings ≤ 3 were set to 0. For P@k, only ratings ≥ 4 were regarded as relevant
Bold to highlight the highest value of each metric

user experiment than in the offline evaluation. In terms of nDCG@5, nDCG@10 and
Precision@5, DNN seems to outperform both FA and MEVF, while it has the same
performance as FA in terms of Precision@10. Given the small sample size, we cannot
report tests of statistical significance, but the trend of results points toward imple-
menting a hybrid recommender with FA and visual features for the best performance
without hindering diversity.

8 Summary and discussion

The main findings with respect to our RQs can be summarized as follows:

• RQ1. Metadata In general, using the most popular curated attribute values
(MPCAV) performed not significantly different than random prediction. The per-
sonalized version PMPCAV, specially the one using all attributes, performed
significantly better than the non-personalized version MPCAV, but still the results
were rather poor. Notably, just recommending based on a user’s favorite artists
produced very high ranking metrics.

• RQ1.Visual featuresThe features automatically obtained from pre-trained neural
networks (DNN) significantly outperformed manually-engineered visual features
(MEVF). This is an interesting result, considering that the AlexNet and VGG
neural networks were trained for object classification, not for recommendation.
This supports the use of transfer learning.

• RQ2. Visual features versus metadata Visual features performed better than
curated attributes. This is an important result, since it points towards using features
extracted directly from the images rather than spending resources for manually
tagging the images.However, the single best predictive feature overall was Favorite
Artist, so combining the strengths of both visual features and FA seems like a
promising approach.

• RQ3. Hybrids Hybrid methods combining multiple features outperformed indi-
vidual features. The hybrid method which combined FA, DNN and MEVF
produced the best results (a variant including PMPCAV performed equally well),
in both offline and online evaluations.

• RQ4. Expert online evaluation The expert evaluation allows us to show the con-
sistency of the offline results when assessed by real people. There was consistency
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Fig. 7 Recall@10 of different methods at different user profile sizes

in terms of the best hybrid (FA+DNN+MEVF), which outperformed the other 4
alternatives. Also notable was the small difference among isolated features (DNN,
MEVF, FA) compared to their offline results.

Taken together, our results show that a recommender system which utilizes sev-
eral types of content could indeed support people who buy artworks online based on
their personal taste. Moreover, we have some additional thoughts with respect to the
intriguing high predictive power of favorite artist and the risk of relying solely on
features such as those from neural networks.

Our offline evaluation results indicate that themethodFA (based simply on sampling
artworks from the favorite artists of a user) performs really well, with a 20%-30%
improvement over the next competitor DNN, whereas the best Hybrid improves FA
by a smaller margin of 10%–23%. We investigated further whether the size of the
user profile (items in training) could give us more evidence of this effect. Our intuition
behind this analysis is that artists have in average 8 artworks for sale, and if a customer
buys them all, then it will be more difficult to predict the next potential favorite artist.

Figure 7 shows the Recall@10 of different methods considering different user
profile sizes. The plot shows that DNN, MEVF, and PMPCAV return always very
consistent results independent of profile size and that, among them, DNN performs the
best. FA and hybrid methods perform better than DNN and MEVF up to user profiles
with 5–8 items. However, with larger user profiles (9+) DNN and MEVF seem to
improve or maintain results, whereas other methods such as FA and the Hybrids suffer
an important decrease. This decrease in methods using FA could be explained by the
fact that artists tend to sell their artworks over time, leading to a natural shortage of
available artworks from users’ favorite artists, and therefore forcing users to explore
new artists instead. It can also reflect a natural evolution of users’ taste or the curiosity
for exploring new artists over time. In contrast, the apparent stability displayed by
visual features, especially DNN, seems to indicate that users are relatively more stable
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in terms of their visual tastes over time. An interesting line of work could be exploring
more sophisticated recommendation methods that can take the temporal dimension
into account, such as the use of temporal decay to account for the effect of users’
preference drift over time (Koren 2010; Larrain et al. 2015). Another possible factor
contributing to the better performance of visual methods with larger user profiles can
be found in the scoring function of DNN and MEVF, shown in Eq. 6. As a reminder,
the score assigned to an item is calculated as either (a) the maximum, (b) the average
or (c) the average of the top-k most similar items in the user profile. Based on our
experiments, the best results were usually obtained with the average of the top 2 and
top 3 most similar items in the user profile. This way of calculating the score can help
to make recommendations that are supported by subsets of similar-looking items from
the user profile (which can be thought of as emergent “mini-clusters” that capture “sub-
tastes” of the user). This strategy turns useful when dealing with large user profiles,
where a naive average can introduce too much noise and a greedy maximum can
overlook emergent patterns across different user’s purchases.

Furthermore, we show evidence that deep neural networks can be of great value
in the field of personalized artwork recommendations, since they decrease the cost of
domain expert knowledge to identify the visual features which can be most successful,
with a small compromise on diversity. However, in order to make recommendations
really useful and not only persuasive (Tintarev and Masthoff 2015), researchers and
developers need to make sure that people can inspect and have a sense of control
(Knijnenburg et al. 2012; Parra and Brusilovsky 2015), which is achieved by combin-
ing latent easy-to-engineer information (such as features from deep learning models)
with actual explicit features, such as artist, color, style, or brightness. One way we
have thought of to provide users with such control is by using techniques such as
t-SNE with an interactive interface. t-SNE (Maaten and Hinton 2008) is a dimension-
ality reduction technique commonly used to visualize what DNN embeddings might
encode (He et al. 2016; He and McAuley 2016; Nguyen et al. 2016). This technique
could be used to help users visualize high-dimensional data in a lower-dimensional
space in order to understand recommendations, explore them and inspect them, fea-
tures associatedwith improved user satisfaction (Knijnenburg et al. 2012; Verbert et al.
2013). For instance, Fig. 8 uses t-SNE to reduce DNN embeddings and then display an
anonymized user profile and the images predicted by three different methods: DNN,
MPCAV and MEVF. We could perform a similar process over the MEVF embedding
and show users differences between both representations, as well as allowing them rich
exploration.We foresee building rich visual applications providing user control, trans-
parency and explainability, important characteristics to build user trust and acceptance
on recommendations (Tintarev and Masthoff 2015; Ekstrand et al. 2015).

An important aspect to bear in mind when interpreting our results is that they relate
to only one single artwork retailer website, although one of the most popular on the
Web. This might hinder the generalizability of our results. In addition, other forms of
user evaluation are needed in order to test whether user evaluation correlates with our
offline results, such as a large controlled laboratory study as well as a field online study
using A/B testing. Another aspect to bear in mind is that the presented work is not
intended to provide precise guidelines for an industrial implementation of an artwork
recommender system, whichwould require pondering other aspects, such as algorithm
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Fig. 8 t-SNEmap of theDNN image embedding displaying paintings of an anonymized user profile (green),
and recommendations contextualized with three methods: DNN (blue), MPCAV (yellow) and MEVF (red).
Check marks indicate correct predictions. (Color figure online)

complexity and scalability. Rather, our focus has been to provide insights into which
features and combinations thereof are the most promising if such a recommender
system were to be implemented. That being said, one possible strategy for generating
recommendations more efficiently is to quickly pre-filter the search space first, for
example based on artists or using approximate nearest neighbor techniques in an
image embedding space, and then perform a second re-ranking step over the filtered
dataset with a more expensive ranker such as any of the hybrids proposed in this work.

9 Conclusions and future work

In this article, we have presented several notable results in the area of content-based
artwork recommendation under the one-of-a-kind item problem.We have investigated
the potential of several different features for this task. As our results reveal (in the con-
text of a physical artwork online store named UGallery), individual expert-annotated
metadata attributes perform not better than random predictions, unless they are com-
bined in a personalized manner, which can improve the results by a small margin.
However, recommending solely based on the favorite artists (FA) of the user can yield,
surprisingly, very good results, at the expense of a small diversity in recommendation
lists. Moreover, we found that visual features are more useful in predicting future pur-
chases than expert-annotated metadata. Among the visual features investigated, image
embeddings from Deep Convolutional Neural Networks work better than manually-
engineered visual features, but overall, the hybrid combination of FA+DNN+MEVF
produces the best results. Finally, a user study with expert curators fromUGallery sup-
ports the use of a hybrid combining FA+DNN+MEVF for the optimal results.

In a deeper analysis, our study of the user profile sizes revealed that time may play
an important role in recommending artwork to people. Though further investigation is
needed, our results that consider different user profile sizes for training the usermodels
can produce important differences in terms of Recall@k. As such we are interested
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in investigating the time dimension in more detail, which has not been the focus of
this work so far. The previous work by Hidasi et al. (2016) which introduces a neural
network model for feature-rich session-based recommendations could be a starting
point in this direction.

In this work we focused on comparing useful content features rather than on
developing state-of-the-art recommendation models. As several new neural network
architectures have been introduced to the recommender and visualization commu-
nities, we could apply some of these approaches to our problem. One example of
such architectures is Convolutional Autoencoders, which are able to learn compact
representations of images in an unsupervised manner, as in the work of David and
Netanyahu (2016), who use the unsupervised compact image embedding learned by
a convolutional autoencoder as a basis for a supervised painter classification task.
Another option is to use generative models. Although generative models are usually
designed, as the name implies, to generate samples of a certain distribution, there are
works that show they can also be used to learn representation embeddings of images
(Radford et al. 2015; Mathieu et al. 2016). All of these procedures could allow us to
learn different image embeddings to eventually use them for learning a recommenda-
tion model.

We can also test a Siamese network architecture to learn an image embedding
that locates similar images close to each other. There are many works confirming the
success of this approach, such as the work by Schroff et al. (2015) in face recognition,
or the work by Koch et al. (2015) in one-shot image recognition. Yang et al. also
used successfully a Siamese network architecture for food recommendation based on
images (Yang et al. 2015). The key point in the Siamese network approach lies in
determining whether two images belong to the same class or not. Given the good
results achieved by the artist attribute in our experiments, a natural choice for the class
would be the artist, i.e., pulling images from the same artist together and pushing
images from different artists apart.

However, there is a potential disadvantage in the Siamese network approach with
the artist as the class label: the network might fail to learn fine-grained visual features
to be able to rank images when they belong to the same artist. Moreover, there can
be cases in which two similar-looking paintings belong to different artists, in which
case we would still want the images to be close to each other in the embedding
space. In this case, Triplet loss can be an alternative. By using triplets of the form
(query,+ similar ,− similar) the network can learn fine-grained visual features to
rank images even when they belong to the same class, as shown in the work of Wang
et al. (2014). Moreover, Triplet loss has been successfully applied in industry, as in the
visual recommender system and search engine at Flipkart, India’s largest e-commerce
company (Shankar et al. 2017).Another interesting approachwecould take ismultitask
learning. Rush (1979) observed that people’s ability to accurately recognize artistic
style could be enhanced if the exposition to image instances was accompanied with
contextual side information (metadata). Inspired by this observation, very recently
(2017) Strezoski et al. achieved state-of-the-art results in the Rijksmuseum challenge
(Mensink and Van Gemert 2014) by fine-tuning the last layer of a pre-trained CNN as
a common representation for solving multiple and complementary recognition tasks
(e.g. period, materials and artist recognition) concurrently. We could try to reproduce
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their work and study how the learned embedding performs in a recommendation
setting.

There is also room for improvement with regards to the use of pre-trained CNNs.
First of all, there are new state-of-the-art architectures we could use, such as Inception-
v4 and Inception-ResNet-v2 (Szegedy et al. 2017). Furthermore, there is no need for
limiting ourselves to just the last fully-connected layers in a pre-trained CNN, we
can also leverage the rich stylistic, lower-level features captured by the convolutional
layers that are closer to the input image, as shown by the work of Gatys et al. (2015).
We foresee combining these ideas with siamese loss, triplet loss or even multitask
learning in order to learn high quality artistic image embeddings. Another aspect for
improvement is with respect to manually-engineered visual features. In addition to
Attractiveness and LBP, there are more state-of-the-art handcrafted feature extraction
techniques we could test, such as Histogram of Oriented Gradients (HOG) (Dalal
and Triggs 2005), Scale-Invariant Feature Transform (SIFT) (Lowe 2004), Binarized
Statistical Image Features (BSIF) (Kannala and Rahtu 2012), Extended Local Ternary
Patterns (ELTP) (Liao and Young 2010), among others. This would allow us to make
a more robust comparison between MEVF and DNN.

Finally, we are also interested in improving the statistical significance of our results,
both offline and online. Therefore we are planning on conducting a larger analysis with
more transactional data from our partners at UGallery, and we also want to conduct
large scale user studies on online platforms such as AmazonMechanical Turk. In fact,
amassive online study could give us the chance to study other aspects, such as different
ways of usingMEVF andmetadata to generate explanations for recommendations and
study their effects on user experience.
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