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Abstract Predictive models of student success in Massive Open Online Courses
(MOOCs) are a critical component of effective content personalization and adap-
tive interventions. In this article we review the state of the art in predictive models of
student success in MOOCs and present a categorization of MOOC research according
to the predictors (features), prediction (outcomes), and underlying theoretical model.
We critically survey work across each category, providing data on the raw data source,
feature engineering, statistical model, evaluation method, prediction architecture, and
other aspects of these experiments. Such a review is particularly useful given the rapid
expansion of predictive modeling research in MOOCs since the emergence of major
MOOCplatforms in 2012. This survey reveals several keymethodological gaps, which
include extensive filtering of experimental subpopulations, ineffective student model
evaluation, and the use of experimental data which would be unavailable for real-
world student success prediction and intervention, which is the ultimate goal of such
models. Finally, we highlight opportunities for future research, which include tem-
poral modeling, research bridging predictive and explanatory student models, work
which contributes to learning theory, and evaluating long-term learner success in
MOOCs.
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1 Introduction

In their short history to date, Massive Open Online Courses (MOOCs) have simul-
taneously generated enthusiasm, participation, and controversy from both traditional
and novel participants across the educational landscape. Trying to understand and
improve enrollment, completion, and the overall learner experience has led to efforts
to generate effective student models which can predict student dropout, completion,
and learning in MOOCs. Despite the extensive attention devoted to such work by sev-
eral related research communities and by the popular media, little overall synthesis
of this work has been performed. We believe that such a synthesis is necessary, now
more than ever, for several reasons.

First, MOOC research is at a critical stage in its development. An abundance of
research has explored the phenomenon of MOOC dropout from several perspectives
since the “year of the MOOC” in 2012 (Pappano 2012), as shown in Fig. 1. We survey
n = 87 such studies in this work. A clear synthesis of this research is necessary in
order to explore where consensus has emerged across the research community, where
there may be research gaps or unanswered questions, and what action needs to be
taken as a result of both. If we fail to learn from the lessons of several years of MOOC
analysis, MOOCs may fail to deliver on their promise for millions of learners around
the globe.

Second, there is a need to evaluate not only the findings of such research, but
also its methodology. Now that a body of research on student success prediction in
MOOCs has accumulated, it is possible and appropriate to survey the techniques most
commonly used. Such a critical survey allows us to disseminate consensus findings
on effective techniques for student success prediction, to understand whether gaps
exist, and to determine a future research agenda to address them. In particular, this
issue is relevant to predictive modeling of student success in MOOCs because of the
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Fig. 1 Published predictive modeling research in MOOCs over time. MOOC research has expanded dra-
matically since 2012, but little overall synthesis of predictive modeling work has been published. Even less
work has synthesized or critically evaluated the feature extraction, modeling, and methodology of prior
research, as we do in the current work
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diverse communities that its practitioners are drawn from: education and the learning
sciences, computer science, statistics and machine learning, behavioral science, and
psychology researchers each bring different methods to the field. A methodological
survey allows scientists to ensure that their knowledge is constructed on a strong
methodological foundation, and to strengthen it where appropriate. In particular, this
survey of predictive modeling allows for (a) the sharing of feature extraction and
modeling approaches known to be effective, while also encouraging exploration into
under-researched methods, and (b) sharing of overarching experimental protocols,
such as prediction architectures and statistical evaluation techniques, which affect the
inferences such modeling experiments produce. In this work, we provide detailed and
novel data about the state of predictive student modeling in MOOCs for researchers
interested in both (a) and (b).

Third, a critical promise of student success prediction in MOOCs has not yet been
delivered on: the use of these predictions to actively improve learner outcomes and
experiences through the operationalization of predictive models in MOOC platforms.
We hope that this work can identify effective strategies for such tools to be used
“in the wild” in active courses to achieve their oft-stated goal of impacting learner
success in MOOCs. The implementation of live, real-time tools and personalized
interventions stands to benefit from effective predictive modeling which can target
and personalize interventions for those who need them most. Additionally, the imple-
mentation of predictive modeling as part of a MOOC has never been more practically
achievable, as both the hardware and software required for user modeling in digital
environments (such as MOOCs) have become increasingly accessible. The use of pre-
dictive models for adaptive user experiences more broadly has grown quite common,
and is commonly executed at a massive scale (for example, prediction-based targeted
advertising on the World Wide Web). A clear knowledge of the research consensus
on effective predictive modeling methods in MOOCs will support the construction
of such tools, effectively “closing the loop” of predictive modeling in MOOCs. We
leave the development of the interventions based on these predictive models to future
work.

In the work that follows, we address each of these three goals. In the remainder of
this section, we provide the reader with a basic introduction toMOOCs and survey the
state of the overallMOOC landscape to date. In Sect. 2, we dive deeper into the specific
focus of this work by discussing student success prediction in MOOCs, introducing
the task, the data typically available for its execution, and the basic procedure for
the construction and evaluation of predictive models. Section 3 surveys prior work
on predictive models of student success in MOOCs, including a detailed matrix of
n = 87 previous works on this topic in Appendix Table 7 (with abbreviations listed
in Table 8). We synthesize the results of this survey in Sect. 4, highlighting overall
trends and providing detailed data on the methodologies used across the sample of
works surveyed. We discuss research gaps, methodological issues, and unanswered
questions suggested by the literature survey inSect. 5.Opportunities for future research
suggested by our survey, as well as our interpretation of the direction of the field, are
discussed in Sect. 6. We conclude in Sect. 7.
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130 J. Gardner, C. Brooks

This work is part of a series on predictive models in MOOCs, and in future works
we provide a discussion of techniques for model evaluation, and infrastructure for
replication of machine learned models in MOOCs.

1.1 MOOCs: a novel educational and research context

Massive Open Online Courses are enticing, in part, because they are so dif-
ferent from many other forms of education. However, exactly what a MOOC
is is itself the subject of some debate. We do not seek to fully resolve this
debate here, but in this section, we detail several generally agreed-upon charac-
teristics of MOOCs in order to build a working definition for use within this
review.

We take MOOCs to have the following attributes:
Massive, open and online By definition, these are the attributes most closely

associated with MOOCs. MOOCs are massive in that they typically have far more
students than even the largest traditional classroom courses. This would include, at
minimum, hundreds of learners for specialized courses to hundreds of thousands of
learners for more general or popular courses. The instructional team tasked with sup-
porting these learners is typically very small; therefore the student–teacher ratio in
these courses is far higher than in traditional higher education or e-learning courses.
MOOCs are open to all learners, often being both public and free. The two largest
English-language MOOC providers, Coursera and edX, initially offered all courses
free of cost, though business model changes have seen more barriers to taking
free courses over time (though both platforms still offer financial aid programs,
and at least partial access for unpaid learners in most courses). The openness of
MOOCs is perhaps what makes them most exciting by providing access to high-
quality educational experiences for all learners around the globe.1 Finally, MOOCs
are online—they are digital, internet-based courses, not in-person courses. Course
materials, assignments, instructors, and peers are all accessed on theWorldWideWeb
via a computer or other device with a web browser or a dedicated platform-specific
application.

Low- or no-stakes Traditional higher education and e-learning courses are typically
taken strictly for academic credit or other official certifications, often at a non-trivial
financial cost to the participant, with implicit or explicit penalties for poor perfor-
mance (e.g. low grades, loss of tuition without credit). In contrast, MOOCs provide
the option to simply take the course independent of any certification, credit, or degree
program, with no penalty for repeating or failing to complete the course. This gives
MOOCs a particularly unique set of course participants who sometimes have little or
no investment in completing a course, making the task of student success prediction
(and, consequently, the task of student support based on these predictions) particularly
challenging. Under this definition, paid and for-credit online courses are typically not

1 Other work has emphasized the “openness” of MOOCs as reflective of open content and open-ended
learning structures (e.g. Kennedy et al. 2015); this is highly debatable with current MOOC providers,
where much of the content is under copyright and may follow strict instructivist designs, and we consider
these senses of openness to be too constraining for the present work.
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consideredMOOCs.Many other low- or no-stakes learning environments exist—such
as textbooks and tutorials, museums, and other offline and online resources—but these
environments do not share the other features of MOOCs.

AsynchronousThe time scale for content consumption and participation in aMOOC
tends towards the flexible, although the degree of this flexibility may vary. Many
MOOCs are clearly divided into “modules,” often by week, which are released to
learners over time. These courses often have clearly-defined start and end dates, with
successful completion being contingent upon learners meeting specified criteria by
the course end date. Within these time windows, however, learners were typically
free to browse content and complete assignments in any order and at any time. A
fully asynchronous model has recently become more common in MOOCs, where
learners have access to all content on demand after entering a course, and can complete
content at their own pace. We note that this model has coincided with the transition
to a subscription-based, as opposed to course-based, pricing model on certain MOOC
platforms.

Heterogeneous As a direct consequence of many of these features, the population
of learners in MOOCs is heterogeneous in terms of both demographics and intentions
(Koller et al. 2013; Chuang and Ho 2016). Even as course populations skew toward
college-educated males from industrialized countries, these course populations are
still far more diverse than any of the other educational contexts superficially similar
to MOOCs (Glass et al. 2016). The backgrounds of learners vary significantly, from
graduate-level educated learners who are employed full-time in the subject area of
the course, to students without a high school diploma. Learners vary in gender, age,
nationality, and intent. The majority of MOOC students are located outside the United
States and hold a bachelor’s degree (Chuang and Ho 2016), and there is also evidence
that teachers are well-represented in course populations (Seaton et al. 2015; Chuang
and Ho 2016). However, obtaining even basic demographic data on users is currently
only available through on optional questionnaires with low response rates (Kizilcec
and Halawa 2015; Whitehill et al. 2015; DeBoer et al. 2013). As a result, predictive
models are often unable to utilize this data directly and instead need to draw directly
on learner behavior, not demographics or reported intentions.

Together, these features of MOOCs define an educational environment that is
sufficiently different from other well-studied environments—such as e-learning, on-
campus higher education, or digital K-12 education—to justify the formation of a
new and separate predictive modeling literature. As an illustrative example, consider
a comparison of a “dropout” student (a non-completer) in a MOOC versus any of the
traditional contexts mentioned above. One might reasonably expect different factors
to contribute to dropout, different subpopulations to be most likely to drop out, and
for learners to experience different consequences of dropping out, in a MOOC com-
pared to other educational contexts. Indeed, DeBoer et al. (2014) argues for a broad
reconceptualization of traditional student success metrics in MOOCs instead of the
use of terms grounded in traditional education courses, such as the term “dropout;”
Reich (2014) proposes “stopout” as a more appropriate term for this outcome.

As we will discuss below, there are also very different data sources available in
MOOCs compared to other educational contexts: for example, MOOCs collect rich,
granular behavioral data at a level that is unavailable in almost any other context.
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132 J. Gardner, C. Brooks

MOOCs are also characterized by a lack of complete and reliable historical or demo-
graphic data; in contrast, institutional course providers (such as brick-and-mortar
schools) typically lack any readily-available behavioral data but have rich historical,
demographic, and co-curricular data. These data sources are directly relevant to the
predictive models which they are used to construct in each context. Again, this implies
a material difference between predictive modeling in MOOCs and other educational
environments.

Our goal in describing these features of MOOCs is not to argue for a particular
conceptualization of MOOCs; it is simply intended to introduce the basic concept of
a MOOC to readers, and to motivate the features of MOOCs used as the criteria for
inclusion in the literature review in Sect. 3 below.

1.2 The state of the MOOC landscape

As of 2017, an estimated 81 million students have registered for or participated in at
least one MOOC (Shah 2018). The five largest MOOC providers, according to self-
reported enrollment numbers, are Coursera,2 30 million registered users; edX,3 14
million registered users; XuetangX,4 9.3 million registered users; Udacity,5 8 million
registered users; and FutureLearn,6 7.1 million registered users (Shah 2018). Enroll-
ment continues to grow over time, but there is some indication that enrollments have
begun to slow as platforms have transitioned to paid models and phased out various
free certification options, and as the course population declines in size over repeated
iterations of a course (Chuang and Ho 2016).

These impressive enrollment figures mask a well-known issue with the MOOC
experience: around 90% of students who enroll in a MOOC fail to complete it (Jordan
2014). Given the lack of barriers to entry, massive course populations, and high student
to teacher ratios in MOOCs, this may not be particularly surprising. As shown in
Table 1, a majority of predictive modeling research inMOOCs has focused on dropout
prediction. While the massive dropout rate may fail to account for student intentions
(Koller et al. 2013), the best data indicates that slightlymore than half of students intend
to achieve a certificate of completion in a typical MOOC, and around 30% of these
respondents achieve this certification (Chuang and Ho 2016). This low completion
rate even among intended completers is still cause for concern. Effective predictive
models can support several approaches to improving MOOC dropout rates.

As of 2017, MOOCs cover a variety of topics, with over 6850 courses offered by
more than 700 universities across these platforms (Shah 2018). Coursera, for instance,
offers more than 180 specializations (sequences of courses in a specific topic area,
such as “Data Structures and Algorithms” or “Dynamic Public Speaking”). There
are several full online graduate degrees offered on the platform, such as the Master of

2 https://www.coursera.org/.
3 https://www.edx.org/.
4 http://www.xuetangx.com/.
5 https://www.udacity.com/.
6 https://www.futurelearn.com/.
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Business Administration iMBA program offered by the University of Illinois, Urbana-
Champaign on Coursera. The edX platform offers pathways for learners into higher
education, such that when a program (called a MicroMasters) is completed on the
MOOC platform, learners are then provided with credit transfer if they subsequently
enroll in a residential graduate program. TheUniversity of Arizona’s Global Freshman
Academy provides the opportunity for students to complete their entire freshman
year online. Regardless of platform, format, and structure, Computer Science courses
continue to be themost popular courses on the platform,with science, history, business,
and health courses also popular (Chuang and Ho 2016; Shah 2018; Whitehill et al.
2017).

2 Student success prediction in MOOCs

Before surveying the vast body of prior work on student success prediction inMOOCs,
in this section we seek to clearly define and motivate the task. This framing is essential
to the discussion below and to the conclusions we draw from this review.

2.1 Defining student success

Student success in aMOOC can be viewed from several different perspectives. Several
outcomes have been used tomeasure and predict student success inMOOCs, including
completion, certification, overall course grades, and exam grades, shown in Table 1.
The task of discussing student success in MOOCs is particularly challenging due
to the fact that we typically apply language and metrics adopted from traditional
educational settings—i.e., dropout, achievement, participation, enrollment—that can
mean different things, or seem incoherent, in the context of a MOOC (DeBoer et al.
2014).

In the context of this work, we define student success as encompassing a broad
class of metrics which measure course completion, engagement, learning, or future
achievement related to the content or goals of a MOOC. We believe that each of these
broad categories suggests at least one kind of motivation participants in a MOOC
might have for joining the course, but each alone is certainly inadequate to describe
“success.” We review work which presents the results of a predictive model of any
type of student success according to this definition.

Having several potential metrics to describe student success inMOOCs is useful for
several reasons: (a) it allows us to capture metrics related to the diverse goals MOOC
learners have, such as course completion, certification, career advancement, or subject
mastery (Koller et al. 2013; Reich 2014); (b) it reflects the lack of research consensus
on how to measure student success in MOOCs (Perna et al. 2014; DeBoer et al. 2014);
and (c) it allows us to test the robustness of models by potentially checking their ability
to predict multiple different outcomes. While (c) has been an uncommon approach to
date, we believe that this is an important avenue for future work [for one example, see
Fei and Yeung (2015)].

Several metrics are used to measure student success in the works surveyed below.
A collection of the most common metrics used for student success prediction and the
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Student success prediction in MOOCs 135

frequency with which they occur in our literature review is shown in Table 1. For an
examination of alternative long-term metrics of student success, see Wang (2017).

2.2 Why model student success in MOOCs?

Student success predictions are useful for a wide variety of tasks, and these models
vary along three main dimensions relevant to these tasks (shown in Fig. 2).We identify
three main reasons for developing predictive models of student success:

Personalized support and interventions Identifying students likely to succeed (or
not succeed) has the potential to improve the student experience by providing targeted
and personalized interventions to those students predicted to need assistance. This
is the stated motivation behind much of the work surveyed here, which often refer
to these students as “at risk” learners (a term adopted from the broader educational
literature). In particular, because of the massive student population inMOOCs relative
to the size of the instructional support staff, clearly identifying struggling students is
important to providing those students with targeted and timely support. Many of the
“human” resources in MOOCs are quite scarce (i.e., instructor time), and predictive
models can provide timely guidance on (a) identification of which students need these
resources, and (b) intervention by predicting which resources can best support each at-
risk student. While a teacher might be able to directly observe students in a traditional
in-person higher education course, or even in a modestly sized e-learning course,
such observation is not available to support MOOC instructors at scale, and predictive
models can serve this purpose. Particularly when instructor time and resources are
scarce, predictive models which can identify these students with high confidence and
accuracy are required. Additionally, many interventions would be unnecessary or even
detrimental to the learning of engaged or otherwise successful students.

In order to deliver personalized support and interventions, a predictive model must
provide predictions which are both accurate and actionable. We refer to the dimension
along which model predictive performance varies in its ability to relate student behav-
ior or attributes to the outcome of interest as its accuracy. We discuss how to measure

Fig. 2 Three salient dimensions
of predictive models in MOOCs.
Models vary along all three
dimensions, but there is no strict
trade-off between any
dimensions. We synthesize the
state of MOOC research with
respect to these dimensions, and
highlight methodological gaps
needed to improve predictive
student models, in Sect. 5

Actionability

Accuracy

Theory-building
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the quality of a model’s predictions in Sect. 5.2. Here, it suffices to say that accuracy is
critical to the delivery of personalized interventions; a model which cannot correctly
identify students at risk of dropout cannot effectively support interventions to prevent
it. Furthermore, the predictions of such a model must also be actionable. That is, these
predictions must enable targeted and timely interventions for supporting student suc-
cess. We argue in Sect. 5 that there are problems with the actionability of most prior
predictive modeling research in MOOCs due to their prediction architecture, which
often cannot be implemented in actively running courses.

Adaptive content and learner pathways Predictive models in MOOCs stand to
enable the delivery of course content and experiences in a way that optimizes for
expected student success. Very little prior research has utilized adaptivity or true
real-time intervention based on student success predictions of any form in MOOCs.
Whitehill et al. (2015) utilizes dropout prediction to optimize learner response to a
post-course survey (this work optimizes for data collection, not learner success), and
He et al. (2015) describes a hypothetical intervention based on predicted dropout prob-
abilities (but only implements the predictive model to support it, not the intervention
itself). Kotsiantis et al. (2003) describes a predictive model-based support tool for
a distance learning degree program of 354 students, a scale far smaller than most
MOOCs. The work which most clearly demonstrates adaptive content and learner
pathways of which the authors are aware is Pardos et al. (2017), which implements a
real-time adaptive content model in an edX MOOC. However, this implementation is
optimized for time-on-page, not student learning. The dearth of research on adaptive
content and learner pathways supported by accurate, actionable models at scale is, at
least in part, due to a lack of consensus on the most effective techniques for building
predictive models in MOOCs, which we address through the current work.

Data understanding Predictive models can also be useful exploratory or explana-
tory tools that help understand the mechanisms behind the outcome of interest. Instead
of strictly providing predictions to enable personalized interventions or adaptive con-
tent, predictive models can be tools to identify learner behaviors, learner attributes,
and course attributes associated with success in MOOCs. These insights can drive
improvements to the content, pedagogy, and platform, and contribute to our under-
standing of the underlying factors influencing student success in these contexts. They
also contribute more directly to theory by providing a more detailed understanding
of the complex relationships between predictors and outcomes discovered via predic-
tive modeling. We describe this dimension of models as theory-building to highlight
their usefulness in the formation of theories about these underlying factors. From
this perspective, certain types of models are more useful than others: models with
straightforward, interpretable parameters (such as linear or generalized linear models,
which provide interpretable coefficients and p values; and decision trees, which gen-
erate human-readable decision rules) are far more useful for human understanding of
the underlying relationship than those with many complex and interacting parameters
(such as a multilayer neural network). Unfortunately, the latter are usually (although
not always) more effective in making predictions in practice, so there is often a trade-
off between interpretability and predictive performance. Recent advances in making
more complex models interpretable suggest that this tradeoff may be reduced in the
future (e.g. Baehrens et al. 2010; Craven and Shavlik 1996; Ribeiro et al. 2016), but
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at present this “fidelity-interpretability tradeoff” is still a salient issue for predictive
models in MOOCs (Nagrecha et al. 2017). This issue is further discussed in Sect. 6.2
below.

2.3 Data for student success prediction in MOOCs

In this subsection, we briefly describe the raw data available for student success pre-
diction in MOOCs, including the common formats, schema, and types of behaviors
andmetrics collected.We provide data on the use of each raw data source across works
surveyed in Sect. 4.

Student success prediction in MOOCs has attracted a great deal of enthusiasm
in part because of the data available to researchers interested in studying MOOCs.
Digital learning environments such as MOOCs provide rich, high-granularity data
at a scale simply not available in traditional educational contexts. While this data
varies slightly from platform to platform, because of the dominance of only a few
large MOOC providers (most notably, Coursera and edX), the available datasets are
remarkably consistent in practice. This is useful for several reasons: (a) enables the use
of consistent feature extraction and modeling methods, even across platforms, which
reduces both development and computation time; (b) it allows for direct replication of
research across courses and even across platforms (Gardner et al. 2018).

Common data generated by MOOC platforms are discussed below. The frequency
with which these data types were utilized across our literature survey is shown in
Fig. 7.

2.3.1 Clickstream exports

Clickstream exports, also called server logs or clickstream logs, are typically records
of every interaction with the server which hosts the course platform in JavaScript
Object Notation (JSON) format. These interactions include every request to the web
server hosting the course content, including each mouse click, page view, video
play/pause/skip, question submission, forum post, etc. The same metadata is recorded
for each interaction, and from this record, we can build detailed datasets at several
levels of aggregation. An example of entries from a clickstream log is shown in Fig. 3;
note the many detailed attributes recorded for each interaction. Clickstream exports
are the most raw, high-granularity data available from MOOC platforms. However,
this granularity also presents a challenge: raw clickstream data cannot be directly
used as input for most predictive models; instead, “features”—attributes relevant to
the outcome of interest—need to be manually extracted from the clickstream log.
This is a labor-intensive process (we use the terms feature engineering and feature
extraction interchangeably to refer to this process). Feature engineering appears more
important to the effectiveness of predictive models than the statistical algorithm itself
(see Sect. 3 for a more detailed discussion of the importance of feature engineering).
Indeed, many of the works surveyed here introduce innovations only to the feature
engineeringmethod and adopt otherwise standard classification algorithms for predict-
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Fig. 3 Sample clickstream entries, sensitive data redacted for publication

ing student success from clickstream data (e.g. Brooks et al. 2015a; Veeramachaneni
et al. 2014).

Clickstream data also presents a challenge of scale. This data is often quite large
(tens of gigabytes for a single course), due to its granular nature and themany individual
interactions that takeplaceover thedurationof aMOOC.Anyaggregationof individual
user sessions or interactions requires manually parsing and aggregating data from the
clickstream. Simply reading, processing, and extracting the features from such data
can be computationally expensive.

2.3.2 Forum posts

A defining feature of most MOOCs is a set of thread-based discussion fora used for
various tasks, including interactions directly related to course content andmore general
community-building and discussion. Different platforms implement discussion fora
differently,7 but across every major platform, the text of forum posts and a variety
of metadata and related interactions (such as upvotes for questions or answers) are
typically collected in a relational database, accessed via Structured Query Language
(SQL). As shown in Fig. 7, forum post data is second only to clickstream data in terms
of its use in predictive models of student success in MOOCs. This data is often used
to extract (a) measures of engagement, by tracking users’ forum viewing patterns; (b)
measures of mastery, understanding, or affect, generated by applying natural language
processing to the raw text of forum posts; and (c) social network data by assembling
graphs where various connections in the fora constitute edges. An illustration of a
threaded discussion post in a Coursera course is shown in Fig. 4.

7 DiscourseDB (http://discoursedb.github.io/), andMOOCdb (https://github.com/MOOCdb) are both tools
used to bridge these different implementations and data sources across platforms to enable research and
encapsulate the full breadth of forum experiences. Both are now components of LearnSphere (http://
learnsphere.org/).
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Fig. 4 An example of a
threaded forum post in a
Coursera MOOC. Visible are the
user-generated text, threaded
replies (note that some are
hidden from this view), and
optional upvotes

2.3.3 Assignments

Assignments are often used in MOOCs similar to the way they are used in residen-
tial or in-person courses, and data related to assignment submission is also often
stored in a relational database. A variety of assignment types are used in MOOCs,
including automatically graded assignments (such as multiple-choice assessments
and small programming tasks), manually-graded assignments (such as data anal-
ysis reports or essays, which can be graded by both course instructors or, more
commonly, peers in the course), in-video questions, interactive lab simulations, and
programming assignments completed in external environments (e.g., Jupyter note-
books). Assignment data is typically limited to metadata (i.e., open date, due date)
and assignment-level or (less commonly) question-level data about submissions or
data about the content of submissions (such as text cohesion metrics of written work
or syntactic analysis of submitted code). As Fig. 7 indicates, the use of assignment
features is less common, likely due to a combination of (a) the low number of users
who complete assignments in MOOCs, as a proportion of total registrants or partic-
ipants, and (b) the substantial variation across courses in the way assignments are
used.
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2.3.4 Course metadata

Detailed information about the course and instructional materials are also typically
recorded in MOOC platforms and retained for post-hoc analysis. This includes infor-
mation about course modules, video lectures (length, title, module), and assignments
(including quizzes, homework, essays, human-graded assignments, exams, etc.). Lit-
tle research has actively explored the use of course metadata in predicting student
success. The research which has evaluated such data, however, suggests that it may
indeed impact factors such as learner persistence and engagement (e.g. Evans et al.
2016; Qiu et al. 2016).

2.3.5 Learner demographics

MostMOOCplatforms also record information about learner demographics, when it is
available. However, such information is typically collected via optional pre- and post-
course surveys, which are subject to various response biases (Kizilcec and Halawa
2015). While this information is potentially interesting, its limited availability (and
bias in the data that is available) has limited the research on demographics in MOOCs
to date to a small number of studies which we survey in Sect. 3.8. Hansen and Reich
(2015) explores using external datasets and IP address-based geolocation to fetch
additional demographic data, but not for predictive student modeling.

2.4 Relation to other MOOC research

The predictive modeling research evaluated in this work is situated in the context
of a much larger and broader body of MOOC-related research. Prior research on
MOOCs has covered a broad variety of topics, including changes in learner discourse
over time (Dowell et al. 2017), interventions to improve student completion (Kizilcec
and Cohen 2017), demographics and participation rates and the relationship to course
activity (Guo andReinecke 2014), and student plagiarism and academic honesty issues
(Alexandron et al. 2017). Additionally, the researchers addressing this topic, both
in the predictive context and more broadly, come from a wide variety of academic
perspectives, including learning theory, social and experimental psychology, computer
science, statistics, economics, design, and linguistics.

Predictive modeling most often occurs in research contexts where the goal is either
(a) data understanding (e.g., for learning theorists and psychologists with the aim of
understanding the factors most closely associated with dropout) or (b) utilizing predic-
tions as part of a larger learner support system which can be used to improve student
experiences or outcomes (e.g., for instructional designers and platform architects).
This distinction reflects a larger distinction between the “two cultures” of statistical
modeling discussed in Sect. 6.2. We consider both types of work (those focused on
modeling for understanding, and those modeling for prediction) in this survey, as both
contribute to the goals of understanding and supporting MOOC learners.
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3 Predictive models of student success in MOOCs: a feature, outcome,
and model-based taxonomy

In this section, we survey prior research on predictive models of student success. We
begin the review with an overview of our methodology and relevant categorizations,
as well as our methodology and its motivation.

3.1 Categorization scheme

This section describes the categorization scheme used to organize the literature review
presented in thiswork.The three components used in the categorization are also defined
in Table 2.

3.1.1 Feature-outcome-model categorization

The works below are grouped into broad conceptual categories based on the the input
features, the outcomes of the prediction, and the theoretical models used to motivate
the work, when they are described. Generally, there is a strong association between
these three components (i.e., experiments which use activity-based features most often
predict an activity-based outcome, dropout, and are constructed to evaluate theories
about learner behaviors; experiments using cognitive features most often predict a
cognitive outcome, such as learning gains, and are supported by theories of cognition
and learning). The strongest association is between the input features and the prediction
outcome (as we will discuss in detail in Sect. 4.2.2). Theoretical motivations for
predictive models are sometimes missing or left unstated (see Sect. 6.3 for further
discussion), but when thesemodels are present, they often also alignwith the input data
and the outcomeof interest.Whilewenote that the feature-model-outcomecorrelations
are imperfect and there is significant overlap between many groups, we believe that
this provides both an effective categorization of prior MOOC research as well as a
reasonablemodel of how this research is conducted (with a set of input data, an outcome
of interest, and a theoretical model or question about what is driving associations

Table 2 Aspects of predictive modeling experiments used to categorize works surveyed

Category Definition Example

Features (predictors) Structured data, typically extracted from raw
MOOC platform data or collected using
other means, which is used as the basis for
a predictive model

Count of forum posts; student
gender

Outcome (prediction) The label or outcome of interest of a
predictive model on which model
performance is evaluated

Dropout status; final grade

Theory (model) The conceptual or theoretical model which
provides the basis for the hypothesis being
tested by a predictive modeling experiment

Social learning theory
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Table 3 Model type (according to categories in Sect. 3) versus prediction outcomes across works surveyed

Model type
Activity Text Social Cognitive Learning Dem. Total

Outcomes

Academic 15 7 6 7 15 11 61

Completion 9 5 3 1 2 6 26

Dropout 29 6 5 6 4 7 57

Other 11 3 1 5 5 1 26

Total 64 21 15 19 26 25

When experiments considered a predictive model which could be considered multiply types, or predicted
multiple outcomes, they were included in each category in this table, so cell totals exceed the total number
of works surveyed. “Academic” outcomes includes: pass/fail, final grade, assignment grade, exam grade.
“Completion” includes all metrics of course completion, e.g. certification, participation in final course
module

between input predictors and the outcome).Where a work fits into multiple categories,
we discuss it in each applicable category below.

This categorization is a novel contribution of the current work, and has not been
previously applied to predictive modeling research in MOOCs, to the authors’ knowl-
edge. Data describing the observed feature-outcome pairings across prior research
also contributes insight regarding well-researched areas, and gaps or opportunities
for future research. For example, Table 3 shows that only two works surveyed used
performance-based features to predict course completion; further research in this area
seems warranted.

Each of the broad model categories considered below has something important to
offer predictive modeling efforts, but there are likely different underlying factors driv-
ing the predictive performance of student success in each category, which makes the
separate discussion necessary. Similar feature-based groupings have been used or sug-
gested in otherworks (e.g.Whitehill et al. 2015, 2017; Li et al. 2017; Liang et al. 2016).

3.1.2 Feature extraction as critical to predictive modeling in MOOCs

Feature extraction, in particular, emerged throughout our survey as a useful dimen-
sion on which to separate models, and an element of particular interest to predictive
modeling researchers in MOOCs. It has been noted in several works that in addition
to being perhaps the most difficult, feature extraction is also one of the most critical
tasks in predictive models of student success (Li et al. 2016a; Robinson et al. 2016;
Nagrecha et al. 2017).

For example, Li et al. (2017), citing Zhou et al. (2015), notes that “data prepro-
cessing should be considered with more attention than learning algorithms”. Sharkey
and Sanders (2014) claims that feature extraction is “arguably the most important
step in the process of developing a predictive model.” Taylor et al. (2014b) state that
“[w]e attribute success of our models to these variables (more than the models them-
selves)...any vague assumptions, quick and dirty data conditioning or preparation will
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create weak foundations for ones modeling and analyses,” emphasizing their feature
extraction methods over their modeling techniques despite fitting over 70,000 mod-
els in this experiment. The same authors argue in Veeramachaneni et al. (2014) that
“[h]uman intuition and insight defy complete automation and are integral part of the
process” of predictive modeling inMOOCs; they find that the most predictive features
are complex, often relational (requiring the linking of multiple data fields), and were
discovered through expert knowledge of both context and content. Feature extraction
is highlighted as one of the core components of the dropout prediction problem in
Nagrecha et al. (2017), which notes that “the electronic nature of MOOC instruction
makes capturing signals of student engagement extremely challenging, giving rise to
proxy measures for various use-cases”—that is, the extraction of signal (useful fea-
tures) from the electronic records of aMOOC is a key task in the pipeline of predictive
model-building.

Therefore, we concluded that an effective categorization scheme for this review
should highlight feature extraction techniques. The association between many feature
extraction methods and the outcomes they are used to predict further “brightens the
lines” of this categorization in many cases (such as with performance-based models,
which are overwhelmingly used to predict academic performance as shown in Table 3).

3.1.3 Predictive performance evaluation

Despite the current survey’s emphasis on understanding predictive models of student
success, we avoid categorizing the work surveyed based on their predictive results
alone. This is because of large case-by-case variation in (a) the experimental subpopu-
lations, which are different subgroups of different MOOC course populations, (b) the
methodology and metrics for model evaluation, and (c) the outcome being predicted.
These three factors are so divergent across the work surveyed that holding the per-
formance of each experiment to the same standard would be more misleading than it
would be useful, as we discuss below.

Limited prior research has investigated the issue of how using different types of
experimental protocols in predictive modeling experiments might influence or bias the
results. This work has demonstrated how different prediction architectures, for exam-
ple, can influence the results of predictive modeling experiments in MOOCs (Boyer
and Veeramachaneni 2015; Brooks et al. 2015a;Whitehill et al. 2017).Wewill discuss
some of the methodological shortcomings that make conducting these comparisons
so difficult in Sect. 5 below, including inconsistent experimental populations; ineffec-
tive model evaluation; unrealistic or impractical prediction architectures; inconsistent
model performance metrics; and others. In another work, we present a sociotechnical
platform designed to enable direct replication of predictive modeling results on the
same MOOC datasets, which can ameliorate the issue of “apples-to-oranges” model
comparison faced by readers to date (Gardner et al. 2018).

3.2 Survey methodology and criteria for inclusion

We intend this to be a relatively broad, inclusive literature survey. We include work
which (a) involves an application of predictive modeling of student success, where
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student success is broadly construed according to one or more of the metrics listed in
Table 1; (b) doing so in the context of aMOOC, or in a context sufficiently similar to be
of interest to MOOC researchers; (c) which meet basic standards for quality research,
including peer-reviewed work which contains sufficient description of their methods
as to provide insight into the data and feature engineering, modeling, and experimental
results. When a work was considered borderline on one or more of these criteria, we
generally erred on the side of inclusion if it made a novel or relevant contribution to
the literature. The literature surveyed was drawn from several top conferences and
journals in the fields of learning analytics and educational data mining, computer
science, web usage mining, and education, but was also collected from other sources
(online searches, citations from other works surveyed).

We conducted a broad survey of existing research, hoping to unify work from
a wide variety of disciplines which can be broadly considered predictive models.
We evaluate work which studies environments that meet the definition of MOOCs
described in Sect. 1.1 above. Where studies are excluded, it is typically because they
did not evaluate what we considered to be MOOCs, or did not meet other criteria
discussed in Sect. 3.

Several keywordswere used to search prominent peer-reviewed conference, journal,
and workshop proceedings in the fields of Learning Analytics and Educational Data
Mining, including the Journal of Learning Analytics, the International Conference on
Learning Analytics and Knowledge (LAK), Journal of Educational Data Mining , the
International Conference on Educational Data Mining, the International Conference
on Learning@Scale, the International Conference on Artificial Intelligence in Educa-
tion, and the Journal of Artificial Intelligence in Education. Keywords used included
“MOOC”, “predict”, “model”, and “dropout”. Additionally, we used the works cited
in those works uncovered in our initial survey to ensure that we collected relevant work
from the many other fields which have contributed research to predictive modeling in
education, such as computer science, datamining, psychology, and educational theory.
This review surveys work published in the year 2017 or earlier.

We note that select studies were still included despite not meeting individual com-
ponents of this definition (for example, we do consider somework evaluating for-credit
courses); in these cases we typically include such work either (a) for completeness
due to the novelty or important contribution of the work, or (b) in order to err on the
side of inclusion when the context of the course(s) under evaluation was not clear. We
also note that the xMOOC phenomenon is not represented in our analysis, but this is
in part because we were not able to identify any instances of xMOOCs being used
with predictive student success models.

In particular, we also note that some work included in the review below might not
have prediction as its stated aim. We believe, however, several such works are relevant
to this review. “Predictive” modeling and modeling for data understanding are, as we
discuss in Sect. 6.2, two sides of the same coin—both use statistical models of the
data, which must capture relevant attributes and learn their relationship to an outcome
of interest. While one work might construct a logistic regression model, for example,
with the aim of understanding its parameters (e.g. Kizilcec and Halawa 2015), another
might use the samemodeling technique for a purely predictive goal (e.g.Whitehill et al.
2017). As such, techniques which are effective for one approach are often enlightening
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Fig. 5 Counts of works surveyed by feature type, which broadly represents the most common approaches
in predictive models of student success inMOOCs. Activity-based feature sets are the most common, which
primarily reflects the activity-based outcome (dropout) most commonly predicted in the works surveyed.
Note that experiments considering multiple types of features were counted in all relevant categories. Each
category is defined in a corresponding subsection of Sect. 3

for the other as well. This is one of the core tensions of the “two cultures”—while
black-box models often fit the data better, they are more difficult to interpret; while
data models are often highly interpretable, they are often so at the cost of the quality
of fit. We thus found that many experiments which might not have the stated aim of
prediction were still of great interest to readers of this review.We do, however, attempt
to distinguish between works which are purely exploratory or descriptive (where the
stated goal is not predictive) throughout the survey that follows.

3.3 Activity-based models

Activity-based models use behavioral data, evaluate behavioral outcomes, or are
grounded in theories of learner behavior for predictive modeling.

As shown in Fig. 5, models utilizing activity-based features and outcomes are
overwhelmingly themost common in thework surveyed. This is so for several reasons:
first, as demonstrated in Fig. 8, most of the works surveyed predict an engagement-
based outcome related to dropout or course persistence. Activity features seem most
appropriate for this type of prediction task (although more diverse feature sets may
improve the quality and robustness of these models). Second, activity data are the
most abundant and granular data available from MOOC platforms. Clickstream files
(shown in Fig. 3) provide detailed interaction-level data about users’ engagement
with the platform, and such granular data is simply not available for any of the other
model categories we survey. Collecting a similar level of granularity for these other
feature types would require far more sophisticated data collection practices, such as
affect detectors or other sensors, which are impractical at MOOC scale. Third, activity
features appear to provide reasonable predictive performance even in non-activity-
based prediction tasks, such as in grade prediction (e.g., Brinton et al. 2015). Indeed,
it is reasonable to expect behavior to be associated with non-behavioral outcomes (i.e.,
learning). However, we note that state-of-the-art predictive models generally combine
feature types to achieve a complete, multidimensional view of learners (e.g. Taylor
et al. 2014b).
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The level of sophistication of the activity-based features in the works surveyed
varies substantially, ranging from simple counting-based features (e.g. Kloft et al.
2014; Xing et al. 2016) to more complex features, including temporal indicators of
increase/decrease (Veeramachaneni et al. 2014; Chen and Zhang 2017; Bote-Lorenzo
and Gómez-Sánchez 2017), sequences (Balakrishnan and Coetzee 2013; Fei and
Yeung 2015), and latent variable models (Sinha et al. 2014a; Ramesh et al. 2013,
2014; Qiu et al. 2016). Despite this variation, each of these typically uses the same
underlying data source (clickstream, or a relational database consisting of extracted
time-stamped clickstream events) and draws from a relatively small and consistent set
of base features, including:

– Page viewing, or visiting various course pages, such as video lecture viewing pages,
assignment pages, or course progress pages;

– Video interactions, such as play/pause/skip/change speed;
– Forum posting or forum viewing (a more specific subset of page viewing which
has received particular attention);

– Content interactions,which can take a variety of formsdependingon the course and
which may include assignment attempts, programming activity, peer assignment
review, or exam activity.

The relative consistency of the underlying activity-based feature sets and the few
categories into which they can be distilled is largely a reflection of the consistency of
the affordances available across the dominant MOOC platforms, particularly edX and
Coursera: page viewing, video viewing, forum posting, and assignment submission
were, until the introduction of relatively recent features such as interactive program-
ming exercises, some of the only activities available to users of the platform, and the
only activities recorded in Coursera clickstreams (Coursera 2013).

3.3.1 Counting-based activity features

Kloft et al. (2014) provided a foundational early predictive model, utilizing a Support
VectorMachine (SVM)built on simple counting-based features extracted entirely from
clickstream events. They find that high-level features related to activity (number of
sessions, number of active days) were predictive of dropout during the first third of the
course; measures of content interaction (wiki page views and homework submission
page views) became more predictive in the middle third of the course; and navigation
and general activity (number of requests, number of page views) were most predictive
during the final third of the course. Kloft et al. use principal component analysis
to demonstrate that successively generating a wider feature space by concatenating
feature vectors for each subsequent week improves separability between dropout and
non-dropout students by the final third of the course. This feature appending strategy
has been widely adopted in predictive modeling in MOOCs (e.g. Xing et al. 2016),
likely due to the nearly universal structuring of MOOCs into weekly modules. Kloft
et al. (2014) only report the accuracy of their method, but based on the data they
provide, the model’s predictions offer less than a 5% improvement on a majority-
class prediction over the first 10weeks of the course, when most dropouts occur (the
challenge of evaluating this particular result using only accuracy highlights issues
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related to model evaluation and the lack of consistent metrics for reporting predictive
results we discuss in Sect. 5). If predictive models are to be used to support early
interventions in MOOCs, more accurate predictions are required.

Kloft et al’s results reinforce earlier findings from other digital education environ-
ments, such as Ramos and Yudko (2008), who argued in 2008 in the title of their work
that “Hits” (not “Discussion Posts”) predict student success in online courses. This
pre-MOOC study, conducted on an online university course, is notable for its finding
that a simple count of page hits predicted student success (as measured by final course
grade) better than either discussion posts or quiz scores, predicting between 7 and 26%
of the variance in course grades. This finding has been reinforced in subsequent exper-
iments evaluating behavioral features against other feature types inMOOCs (Crossley
et al. 2016; Gardner and Brooks 2018).

3.3.2 Models utilizing early course activity

Several works attempt to address the need for early predictions of student success
in a MOOC. Jiang et al. (2014b) offers a simple logistic regression classifier based
only on week 1 behavior which effectively predicts certification in a MOOC offered
to university students. This model uses only four predictors representing different
aspects of student engagement in week 1 of the course (average quiz score, number
of peer assessments completed, social network degree, and an indicator for being an
incoming university student at the institution offering the course), again suggesting
that a limited, but diverse, feature space can effectively predictMOOC student success.
However, the fact that this model was trained and tested on only a single MOOC—one
which may be particularly unique, because it was offered with an incentive (early
enrollment in a university biology major) to current or prospective students at the
hosting institution—means that further replication is needed to determine the extent
to which these results are generalizable. We highlight similar issues with comparing
different experimental populations in MOOC research in Sect. 5.

Other work which attempts to perform more fine-grained dropout prediction with
the intention of performing early intervention includes Xing et al. (2016), which uses
an ensemble ofC4.5 tree andBayesianNetworkmodels built on a set of counting-based
engagement features and a Principle Component Analysis-based approach similar to
Kloft et al. (2014). Baker et al. (2015) find that early access to course resources in
an e-learning history course, including a course textbook and its integrated formative
assessments, provides accurate predictions of success or failurewithin the first 2weeks
of the course. In a pair of works which use more sophisticated temporal features to
aid in early dropout prediction, Ye and Biswas (2014) and Ye et al. (2015) find that
fine-grained features related to either (a) temporal engagement with lecture quizzes
or (b) the quantity of engagement with lecture quizzes improve models, but that once
either (a) or (b) is included, adding the other provides no further performance gains.
This result may suggest a plateau to the effectiveness of the features they evaluate, or
it may highlight the need for more flexible modeling techniques to learn the complex
patterns in rich, granular feature sets.

Stein and Allione (2014) evaluate learner behavior in a microeconomics MOOC.
Stein and Allione find that early engagement—completing a quiz or a peer assessment
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exercise in the first week of a 9-week course—is a significant predictor of persistence
in the course, even when controlling for other behaviors. They conclude that “the
attrition pattern is not uniform among all enrollees, but rather there are distinct sub-
groups of participants who reveal their type early on” (Stein and Allione 2014, p.
2). This suggests that students’ behavior early in the course might be particularly
predictive of their final performance, which is a useful result for researchers or other
stakeholders interested in obtaining accurate, early performance predictions.

A practical issue with “early warning” systems is that their predictions can change
dramatically during the early stages of a course as the model predicts based on only
small amounts of data. He et al. (2015) address this challenge by using a smoothed
logistic regression model trained from a previous offering of a MOOC to make cali-
brated predictions on a future offering which where fluctuation of predicted dropout
probabilities over time is minimized. This smoothing provides stable predictions of
at-risk students for early intervention, a useful property for real-world implementation
which allows the students tagged as “at-risk” to remain relatively stable over time.

3.3.3 Temporal and sequential activity models

An early approach to utilizing the temporal nature of activity data (by using a model
which captures transition probabilities over time from a weekly feature set) is Balakr-
ishnan andCoetzee (2013). Thiswork uses a relatively small set of features (cumulative
percentage of available lecture videos watched, number of threads viewed on the
forum, number of posts made on the forum, number of times the course progress
page was checked), compiled over each week of the course, to construct a Hidden
Markov Model (HMM) to predict dropout. A particularly novel aspect of this work
is the use of students’ checking of their course progress page as an input feature. A
challenge present in all predictive models of student success in MOOCs is accounting
for students’ diverse intentions (browsing, learning, completing, etc.). Balakrishnan
and Koetzee introduce the course progress checking feature as an observable—and
effective—proxy for an intention to complete: students who never check their course
progress have a dropout rate of 20–40% at eachweek of the course, while students who
check their progress four or more times have a dropout rate of less than 5% each week.
This particular result suggests that finding observable proxies for student intentions is
a tractable and useful problem for predictive models of student success in MOOCs.

In contrast to the simple feature appending approach used by e.g. Kloft et al. (2014),
which shows variable (and only slight) improvement over weeks as data accumulates,
more sophisticated temporal modeling approaches have demonstrated the ability to
improve predictions more rapidly and consistently. Brooks et al. (2015a) examine how
a higher-order time series method improves by exploring its incremental changes in
performance with each additional day of MOOC data; they demonstrate rapid perfor-
mance gains over the first 3 weeks of each MOOC evaluated. Fei and Yeung (2015)
explore sequential models, including a Long Short-Term Memory neural network
(LSTM), which takes sequences of weekly activity feature vectors as its input. Fei and
Yeung demonstrate consistent improvement in these models’ performance as addi-
tional data is collected over course weeks, particularly over the initial weeks of a
course. This model is directly compared to several others, outperforming (1) a Sup-
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port Vector Machine [SVM; for reference to Kloft et al. (2014) but with a different
basis kernel]; (2) two variants of Input–Output Hidden Markov Models [IOHMM; for
reference to Balakrishnan and Coetzee (2013), which uses a different HMM variant];
and (3) logistic regression [compare to Jiang et al. (2014b), Veeramachaneni et al.
(2014), Liang et al. (2016)].

The use of an LSTM by Fei and Yeung (2015) is a promising approach, but further
replication across a larger sample of courses is needed. This work also demonstrates
how challenging it can be to compare results across machine learned models when
exact replication of experimental populations andmethod is not possible (for example,
Fei and Yeung cannot compare their model by using the data from Balakrishnan and
Coetzee (2013), nor can they perfectly reproduce the HMM model implementation
from only the published description; we discuss this issue in Sect. 5), but their effort
to provide these reference points is still useful.

Additionally, Fei and Yeung (2015) implement their model using three different
definitions of dropout, which demonstrates the challenges of comparing predictive
models of student success using published results (which often only vaguely describe
outcome or feature definitions) and also suggests the robustness of their results. Wang
and Chen (2016) evaluate a Nonlinear State Space Model (NSSM) in comparison
to several other models, including an LSTM, and suggest that the NSSM achieves
superior performance. We discuss the need for further comparative work in Sect. 6.

Furthermore,wenote thatLSTMsandanydeepneural network architectures require
a large amount of data in order to accurately estimate the large number of model
parameters involved. As a result, the use of these models is only available when
large sets of training data (thousands or millions of instances) are available. This also
points to the need for large, shared benchmarking datasets in the educational predictive
modeling community, such as those provided by the MOOC Replication Framework
(MORF) (Gardner et al. 2018)8 and DataStage.9

Sinha et al. (2014b) use sequential activity features in combination with higher-
order graphical features (which represent the richness, repetition, and activity/passivity
of students’ interaction sequences) to predict dropout. They also conduct the useful
comparison of whether using features from the current week only versus a students’
entire history improves performance, finding that the full history does not provide
a significant improvement over current week only features. This result conflicts with
Xing et al. (2016), which finds that historical features improve the quality and stability
of predictions in a single course offered on Canvas, but Sinha et al. use a larger and
perhaps more representative sample of MOOCs.

3.3.4 Latent variable modeling

Latent variable modeling has been commonly applied to predictive models of student
success, because of its ability to infer complex relationships between predictors in a
data-driven way.

8 educational-technology-collective.github.io/morf/.
9 https://datastage.stanford.edu/.
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Ramesh et al. (2013) apply Probabilistic Soft Logic (PSL) to a set of activity-
and natural language-based features to model student performance. This work uses
an expert-generated latent variable approach in which engagement is “modeled as a
complex interaction of behavioral, linguistic and social cues” (p. 6). However, this
particular method presents a potential barrier to practical implementation by utilizing
only human-generated PSL rules. This is problematic for two reasons: (a) even experts
may not be able to exhaustively identify the factors important to student success in
MOOCs, particularly in a new course or a different domain (indeed, this is what
motivates much of the work surveyed here), and (b) learning these features is itself
the goal of data-driven predictive modeling. Manually defining latent engagement
categories prevents truly data-driven discovery of latent user profiles or engagement
types. Furthermore, by restricting themodel to a small set of 5-7 features, this approach
limits experimenters from learning about broader feature sets and their relationship to
student success. Ramesh et al. (2014) expands on their approach by using the latent
variable assignments from this PSL method as predictors in a survival model.

In a pair of works utilizing the same underlying feature set, Halawa et al. (2014) and
Kizilcec and Halawa (2015) explore the use of learner activity features for predicting
dropout inMOOCs. In the first of theseworks, Halawa et al. (2014) use a simple thresh-
olding model to explore the use of counting-based learner activity features to predict
dropout, theorizing that both observable learner activity and dropout are driven by
latent, unobservable “persistence factors” which students possess to varying degrees.
Halawa et al. show that this model is able to spot risk signals at least 2 weeks before
dropout for over 60% of the students in their experimental population (students who
joined in the first 10 days of the course and have viewed at least one video), suggest-
ing that early dropout prediction may be tractable for this group. Kizilcec and Halawa
(2015) applies this analysis to a sample of 20 MOOCs, utilizing the same feature set
with a simple logistic regression model with similar findings.

3.3.5 Course metadata

There has been a limited amount of prior work on studying aspects of courses them-
selves which may be relevant to student activity within the courses. In a work notable
for its comprehensive sample of MOOCs, Evans et al. (2016) examine a sample of
44 MOOCs and over 2 million learners, evaluating both student and course traits for
association with engagement and persistence. Four findings are particularly relevant
to student success prediction in MOOCs. First, early engagement (such as register-
ing more than 4 weeks prior to course opening, or completing a pre-course survey)
is the strongest predictor of completion. Second, the steep dropoff in engagement is
“very strong and nearly universal” across the courses examined, which provides evi-
dence supporting the implicit assumption of generalizability across courses in many
other works. Third, the title of individual lectures are associated with differing levels
of engagement, with titles containing the words “intro,” “overview,” and “welcome”
having significantly higher rates of watching. Fourth, the first offering of a course
has significantly higher rates of completion than subsequent offerings—an important
finding with implications for the real-world deployment of models learned on data
from previous courses.
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Additionally, Qiu et al. (2016) evaluates the ways in which course subject interacts
with learner demographics (i.e., gender) in predictivemodels. Qiu et al. find significant
differences between the behavior of students in science MOOCs versus non-science
MOOCs. However, Whitehill et al. (2017) find that models trained on data from many
different domains are actuallymore accurate thanmodels trained on courses from only
the same field as the target course, so perhaps these cross-disciplinary differences
in student behavior can be addressed by using sufficiently diverse training sets to
construct student models.

3.3.6 Higher-order activity-based features

Other work, utilizing more complex feature types, has also begun to emerge inMOOC
research. This includes explorations of higher-order n-gram representations of learner
activity data, which has demonstrated promising predictive performance (e.g. Brooks
et al. 2015a, b; Li et al. 2017). In activity-based n-grammodels, features are assembled
using counts of unique sequences of events or behaviors; these features are then used to
construct supervised learning models. This allows for the construction of large feature
spaces which capture complex temporal patterns, and the frequency with which they
occur. These works operate under the (often explicit) assumptions that sequences of
behavior, irrespective of the time gaps between them, contain richer information than
individual events or counts of these events without considering the context of other
neighboring events in time.

As discussed above, Sinha et al. (2014b) use n-gram features with a graphical
model, and demonstrate that they can achieve reasonable predictive accuracy with
only a single week of historical data.

We previously discussed Coleman et al. (2015), which applies topic modeling to
sequences of learner data to learn “profiles” of MOOC learners based on their activity
sequences (“shopping”, “disengaging”, and “completing”) . Each of these works and
other sequence-based approaches discussed above (i.e., Balakrishnan and Coetzee
2013; Wang and Chen 2016) can be thought of as capturing a temporal element of
MOOC data. We argue in Sect. 6.1 below that further work in this vein is needed.

Aswediscuss below, feature engineering (not predictivemodeling algorithms) is the
primary driver of improvements in predictivemodeling inMOOCs to date; futurework
should continue to pursue higher-order or other unique feature engineering approaches
which capture information relevant to student success.

3.3.7 Novel feature extraction and prediction architectures

In a series of works, Veeramachaneni et al. (2014), Taylor et al. (2014a); Taylor et al.
(2014b) and Boyer and Veeramachaneni (2015) further demonstrate both the utility
of effective feature engineering and how, when combined with effective statistical
models, such methods yield performant student success predictors. These works use a
combination of crowd-sourced feature extraction, automatic model tuning, and trans-
fer learning to demonstrate several novel approaches to constructing activity-based
models of student success in MOOCs.
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Veeramachaneni et al. (2014) use crowd-sourced feature extraction, leveraging
members of a MOOC to apply their human expertise and domain knowledge to define
behavioral features for stopout prediction. The authors find that these crowd-proposed
features aremore complex and have better predictive performance than simpler author-
proposed features for all four cohorts evaluated (passive collaborator, wiki contributor,
forum contributor, and fully collaborative). This work utilizes a simple regularized
logistic regression for the predictive model, again demonstrating that many effective
predictive models of student success in MOOCs have relied on clever feature engi-
neering, not sophisticated algorithms. The use of regularization common in MOOC
research (see Sect. 4 for details) due to the large number of correlated predictors often
present in student models.

Taylor et al. (2014b) applies the feature set from Veeramachaneni et al. (2014) to
explore over 70,000 models using a self-optimizing machine learning system. How-
ever, the consideration of such a massive model space on only a single cohort of
students virtually guarantees at least some success in prediction due to chance alone.
Further validation and testing of the “best” models identified in this work are needed.
In many ways, this work is an extreme example of a common approach where large
model spaces are explored without utilizing effective statistical evaluation methods,
resulting in performance data whose significance and generalizability is difficult to
interpret.10

Boyer and Veeramachaneni (2015) explore transfer learning using a subset of the
feature set from these prior works. Boyer and Veeramachaneni (2015) is notable for its
experimental treatment of howprevious iterations of aMOOCcan be used to predict on
future iterations, which is how such models are used in practice. This setup addresses
one challenge of model deployment in “live” courses, and provides initial data on
effective transfer architectures for doing so. While many of the experimental results
are inconclusive, Boyer and Veeramachaneni demonstrate two particularly important
findings.

First, Boyer and Veeramachaneni find that a posteriori models—built retrospec-
tively using the labeled data from the target course itself, which is the dominant
experimental architecture used across our survey—presents “an optimistic estimate,”
and that such models “struggle to achieve the same performance when transferred”
(we discuss potential issues with a posteriori models, and their prevalence across the
work reviewed, in Sect. 5.3). They conclude: “when developing stopout models for
MOOCs for real time use, one must evaluate the performance of the model on suc-
cessive offerings and report its performance” (emphasis from original) (Boyer and
Veeramachaneni 2015, p. 8). This and other work (e.g. Brooks et al. 2015a; Evans
et al. 2016; Whitehill et al. 2017) suggests that there is a great deal of work to do in
replicating, re-evaluating, and exploring the generalizability of previous stopout pre-
diction work performed using an a posteriori architecture. For one example of work
which compares models evaluated both within and across courses, seeWang and Chen
(2016), which presents evidence that the “penalty” for model transfer across courses
might be minimal.

10 We discuss concerns related to large numbers of comparisons, including with self-optimizing or auto-
tuning machine learning toolkits, in a forthcoming work.
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Second, Boyer and Veeramachaneni find that an in situ prediction architecture
transfers well, achieving performance comparable to a model which considers a users’
entire history (which is not actually possible to obtain during an in-progress course).
In situ architectures consider data and proxy labels from the same course to train
a model (rather than true labels of future stopout, which are not known at the time
of training/prediction in this realistic formulation of the task). This finding presents a
possible approach to resolve the problemswith using a posteriori modeling in practice,
and is supported by other work (e.g. Whitehill et al. 2017).

In a different examination of model transfer, we surveyed two works (Vitiello
et al. 2017b; Cocea and Weibelzahl 2007) which examine how models trained on one
platform transfer to another (the former studies a MOOC environment; the latter a
web-based e-Learning system). Both demonstrate that high-performing features are
stable even for models trained across different platforms. This suggests that effective
activity-based feature sets may transfer well across MOOC platforms (when the data
they require is available from these platforms), but further research is required to verify
this result.

Another innovative approach to representing and modeling activity sequences is
presented inZafra andVentura (2012),where amulti-instance genetic algorithm is used
to model “bags” of instances representing information about each students’ activity
across various behavior and resource types. This algorithm is particularly unique in
its ability to resolve missing-data issues with sparse features (such as forum posts)
available only for a small subset of learners (Gardner and Brooks 2018): the multi-
instance algorithm accepts bags of varying sizes to accommodate the unique subsets
of activities displayed by each student. Zafra and Ventura’s experiment is conducted
in the context of a set of e-learning courses offered via Moodle, but the authors argue
that this approach is scalable and that it would be particularly useful for large online
courses due to the heterogeneous student behavior patterns in these courses.

3.4 Discussion forum and text-based models

Discussion forum and text-based models use natural language data generated by learn-
ers and/or use linguistic theory as the basis of student models.

Threaded discussion fora are a prominent feature of every major MOOC platform
and are widely used in most courses. Detailed analysis of the data from discussion
fora provides the opportunity to study several dimensions of learner experience and
engagement which are not detectable elsewhere. This includes a rich set of linguistic
(measured by analysis of the textual content of forum posts), social (measured by the
networks of posts and responses, or actions such as up/downvotes), and behavioral
features not available purely from the evaluation of clickstream data. Gardner and
Brooks (2018) argues that understanding the individual contributions that separate data
sources make to predictive models is useful in determining whether scarce developer
time ought to be dedicated to feature engineering, extraction, andmodeling from those
sources. This is particularly relevant to the complex data in discussion fora: extracting
the features required to construct many of the models surveyed below can be time-
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and developer-intensive; it should only be done if the benefits (in terms of improved
prediction or insight) justify these costs.

A foundational series of forum-based predictive work is that of Rosé, Wen, Yang,
and collaborators (Rosé et al. 2014; Wen et al. 2014b; Yang et al. 2015), and partic-
ularly Yang et al. (2013). This series of work uses discussion forum data to identify
the social environmental characteristics that are most conducive to persistence or sus-
tained engagement in a MOOC. Yang et al. (2013) uses forum post data to explore
the predictiveness of three types of features for forum posters in a single MOOC:
cohort (the week in which a user joined the course), forum post (threads started,
post length, content length), and social network (several metrics, including centrality,
degree, authority, etc.). Of 16 variables considered in a variety of model specifications,
Yang et al. find only three that are significant predictors for these students: being a
member of cohort 1 (joining in the first week of the course), writing forum posts
that are longer than average, and having a higher than average authority score are all
associated with a lower probability of dropout. Rosé et al. (2014) adds subcommunity
membership to this feature set; in this case, cohort 1 membership is still significant,
but their finding on authority is reversed—with a “nearly 100% likelihood of dropout
on the next time point for students who have an authority score on a week that is a
standard deviation larger than average in comparison with students who have an aver-
age authority score” (p. 198). AMixed Membership Stochastic Blockmodel (MMSB)
is used to identify the subcommunities utilized as predictors. These results suggest
that the social factors, and not the language, of discussion fora may be more effec-
tive predictors of dropout for students who post in the fora than the text of the post
itself. Work by Wen et al. (2014b) and Yang et al. (2015) are discussed in Sect. 3.6
below.

Robinson et al. (2016) apply natural language processing to pre-course open-
response questions on learners’ anticipated utility of course material. Using unigram
features improves dropout prediction over a demographics-only model for students
intending to complete the course. A series of richer features from the Linguistic
Inquiry and Word Count (LIWC) framework (Pennebaker et al. 2015) are not found
to be significant predictors of dropout. However, the final model in this work achieves
a relatively low AUC (59.8) despite being evaluated using a post hoc architecture
(cross-validated testing using the same course on which the model was trained) and
analyzing a subpopulation which is less than 5% of the students who registered for
the course, and less than 7% of the students who engaged with the course during
the first 2 weeks. This suggests that the model is not particularly well fit to the
data, even given the small subsample of the course population used; further research
would help identify the extent to which these results generalize to other populations.
We note in Sect. 6.2 that the lack of fit from using simple, but interpretable, data
models is an argument in favor of more complex (but less interpretable) models;
we expect future work to continue the trend of bridging this fidelity-interpretability
gap.

Dowell et al. (2015) explore discourse features generated from forum posts, which
are able to account for 5% of the variance in learner final grades (in contrast, a model
with discourse features and participant features explains 93% of this variance). For
the most active students (the top quartile, based on count of posts), discourse features
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explain 23% of the variance in performance. The authors conclude that discourse
features are most effective at predicting performance for the most active students.
Considering that forum posters might already be considered the most active and
engaged students in a MOOC, these results suggest that the predictive usefulness
of discourse analysis might be limited to a small subpopulation of learners in many
MOOCs.

Crossley et al. (2016) compares the predictiveness of clickstream-based activity
features and natural language processing features. They find that clickstream-based
activity features are the strongest predictors of completion, but that NLP features
were also predictive; the addition of clickstream-based activity features improves
the performance over a linguistic-only model by about 10% (Crossley et al. 2016).
While the sample size in this experiment is only the small subset of students who
both posted in a forum and completed an assignment, it makes a useful and impor-
tant contribution to the literature by systematically comparing two of the dominant
feature sets (activity and forum features). Further exploration, including systematic,
statistical evaluation of the predictive efficacy of each feature set across larger course
populations, is needed to validate these results and explore the degree to which they
generalize.

Tucker et al. (2014) investigate the correlation between students’ sentiment in
posts about specific assignments and their performance on those assignments in an
art MOOC, finding a modest negative correlation. They also find a modest positive
trend in forum post sentiment over the duration of the course. Other predictive work
related to sentiment analysis includes (e.g. Wen et al. 2014a), which demonstrates an
association between sentiment and attrition which appears to differ by course topic,
and Chaplot et al. (2015a).

Adamopoulos (2013) presents an alternative approach to using text analysis to
understand student success inMOOCsby analyzing public student reviews ofMOOCs.
Adamopoulos suggests that student course completion is influenced by perceived
course quality, course characteristics (topic, perceived difficulty), characteristics of
the offering institution (e.g. university ranking or prestige), platform characteristics
(i.e. usability), and student characteristics (i.e. gender). Thisworkmatches other exam-
inations of factors affecting student dropout in e-learning and distance learning courses
(i.e. Levy 2007; Park and Choi 2009).

We conclude this section with a brief note. One of the particular challenges of
working with text and forum data in MOOCs is the relative sparsity of this data:
as optional activities, forum posts (as well as up- and down-voting, pre- and post-
course surveys, and other questionnaires) are only available for the subpopulations
which elect to participate in them. In most cases, this is a fraction of the population;
sometimes as little as 5% (see Table 4). Therefore, work which utilizes these data
sources typically restricts its experimental population only to the small subpopulation
of students for whom this data is available. While this can still lead to interesting and
informative insights about this subgroup, we believe that work which excludes 95% of
the participants in a course ought to be considered either exploratory or very limited
in its scope. This observation applies to a great deal of MOOC research, as we discuss
in Sect. 5 below, but it is particularly problematic (and is least often acknowledged)
in language-based experiments.
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3.5 Social models

Social models use observed or inferred social relationships, or theories of social
interaction, as the foundation for student models.

Many works surveyed use discussion fora to construct social networks where
students are nodes and various reply relationships constitute edges. For example, Jok-
simović et al. (2016) uses two sessions of a programming MOOC, offered in English
and Spanish, respectively, to evaluate the relationship between social network ties and
performance (specifically, non-completion vs. completion or completion with distinc-
tion). Students who achieved a certificate or distinction were more likely to interact
with each other than with non-completers (in contrast, Jiang et al. (2014a) find in a
different set of MOOCs that learners tend to communicate with others in different
performance group). Furthermore, Joksimović et al. (2016) find that weighted degree
centrality was a statistically significant predictor of completion with distinction in
both courses, and a significant predictor of basic completion in the Spanish-language
course, while closeness and betweenness centrality showed more variable and incon-
sistent effects across courses. They conclude that structural centrality in the network
appears to be positively associated with course completion (Joksimović et al. 2016).
The finding matches that of Russo and Koesten (2005), who also identified centrality
as a statistically significant predictor of student performance in a small e-learning
course. In a related work, Dowell et al. (2015) evaluate how social centrality itself can
be predicted by text discourse features,11 finding that discourse features explain about
10% of the variance in performance (compared to 92% explained with a model using
discourse+participant features); this increased to 23% explained for the most active
participants in the fora.

Yang et al. (2014), also discussed above, use a graph clustering method to construct
probabilisticmodels of students’ social networkmembership over the subcommunities
in a course. Membership in some subcommunities defined by the MMSB are signif-
icantly predictive of dropout, while others are not; the number of subcommunities
that are significant predictors varies between two and four across their three-MOOC
sample (the authors consider up to 20 subcommunities per course). Other work has
identified social networks as effective predictors of student performance in traditional
academic courses (Fire et al. 2012; Gašević et al. 2013).

Agudo-Peregrina et al. (2014) examines social interactions in online courses, find-
ing that student–student, student–teacher, and student–resource interactions are all
significantly related to learner performance, while the same interactions are not sig-
nificant predictors in courses with an in-person component. Whie this work is not
conducted in MOOCs, it demonstrates how broader elements of student engagement
with other students and teachers might take on special importance in digital learning
environments.

More research on the impact of social networks inMOOCs, and further exploration
of external social network data, is necessary. Social networks appear to be an important

11 While the current survey is not specifically interested in the prediction of these outcomes, we include
these works on the basis that they contain other, more direct predictions of student success in MOOCs or
generate insights relevant to such predictions.
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factor in students’ learning, but are challenging to measure with existing MOOC data
and even harder in relatively small, single-course samples. The use of external digital
social networks (such as data from Facebook or LinkedIn) is rare in MOOCs, despite
the richness of these data sources. Instead, existing research appears to be overly reliant
on discussion fora as sources of social network data. The examination of novel data
sources on social factors stands to substantially influence the research consensus in
this area and would likely lead to novel and useful findings about the relationships
between social connectedness and student success in MOOCs.

3.6 Cognitive models

Cognitive models use observed or inferred cognitive states, or rely on theories of
cognition, as the basis for student models.

While MOOCs are ultimately concerned with impacting learners’ cognitive states
(because learning is a cognitive process), surprisingly little research has attempted to
explore the use of cognitive data inMOOCs. Thismay be, in part, because of the unique
challenges of collecting this data, especially relative to the ease with which other rich
data sources (activity, forum posts, etc.) can be collected from MOOC participants.
A substantial portion of the work on cognitive states in MOOCs involves novel data
collectionmethods, frombiometric tracking (e.g.Xiao et al. 2015) to contemporaneous
questionnaires (Dillon et al. 2016).

Wang et al. (2015) use discussion forum data to investigate “the higher-order think-
ing behaviors demonstrated in student discourse and their connectionwith learning” (p.
226). Hand-coded data, using a learning activity classification scheme from cognitive
science research, is used to evaluate several learning outcomes. Of particular interest
is the authors’ finding that students who have demonstrated “active” and “construc-
tive” behaviors in the discussion forum—which demonstrate higher-level cognitive
tasks such as synthesis, as opposed to merely paraphrasing or defining—had signifi-
cantly more learning gains than students who did not use these behaviors. This work
demonstrates that useful cognitive data that is relevant to student performance can be
extracted from discussion forum posts, even using relatively simple models (a bag-
of-words and linear regression). Furthermore, it suggests that cognitive strategies—if
they can be effectively identified—appear linked to student performance in MOOCs,
and that cognitive theory can inform predictive models in MOOCs.

Wen et al. (2014b) and Yang et al. (2015) extend their work discussed in Sect. 3.4
work to use linguistic features of forum posts to identify the cognitive states they
express; in particular, they seek to identify learnermotivation and the degree of confu-
sion. Wen et al. (2014b) use forum posts to derive (a) cognitive engagement features
from the presence of unigrams in post text, and (b) human-coded learner motivation
features. They find that these are significant predictors of dropout, using the survival
modeling approach implemented in their previous work. Yang et al. (2015) examines
confusion in the text of forumposts, finding that the influenceof confusionvaries across
courses, and that different types of confusion are significant predictors of dropout in
each of the two courses evaluated. Yang et al. attribute this to differences in the domain
of these two courses.
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Sinha et al. (2014a) uses activity data to infer cognitive states by generating an
“information processing index” for each student based on an expert-generated tax-
onomy of user interaction sequences defining various behavioral actions (e.g. “clear
concept,” “slow watching,” or “checkback reference”) and weights which the authors
manually assign to each action group. Again, however, using manually-defined fea-
tures risks injecting experimenter bias into the model instead of generating truly
data-driven features in this model. Sinha et al. (2014b) also uses interaction sequences
to infer the presence of cognitive states; as mentioned above, this work attempts to
discern, for example, the activity/passivity of a user based on the observed sequences
of behaviors.

Emotions are cognitive states which have received particular attention in MOOC
modeling research. Dillon et al. (2016) use self-reported emotional states to examine
the relationship between emotions and activity type; co-occurring emotional states;
and the relationship between emotions and dropout. Anxiety, confusion, frustration,
and hope are each significantly correlated with dropout. Initial work by (e.g. Wen
et al. 2014a; Chaplot et al. 2015a; Tucker et al. 2014, discussed above) utilizing senti-
ment analysis also suggest that information related to emotional states captured from
learner-generated text can be useful in dropout prediction. Gütl et al. (2014) evaluate
learner emotions by administering questionnaires during learning activities, finding
no significant difference between the relative proportion of happiness versus sadness,
anxiety, and anger between completers and non-completers. Russo andKoesten (2005)
explore whether network centrality and prestige can predict “affective learning”—how
students feel about a course—in an e-learning course, but find that neither is a signifi-
cant predictor.While affect has been studied in K-12 education and in digital cognitive
tutoring environments (e.g. Pardos et al. 2013), there is comparatively less research
on emotions in MOOCs. The use of information corresponding to emotional states
represents a useful line of inquiry for future work.

Xiao et al. (2015) and Pham and Wang (2015) use heart rate tracking on mobile
phones to conduct “Implicit Cognitive States Inference,” whereby MOOC learners’
cognitive states (mind wandering and interest/confusion) are predicted from mobile
phone measurements. This work is a proof-of-concept, but given the growth of both
mobile devices for learning and the expansion of sensors andmultimodal learning ana-
lytics, it points to potential future directions for student models that measure learners
directly (not simply their navigation or submission behavior) and respond to real-time
physiological, emotional, or cognitive feedback.

Street (2010) reviews eight different studies of factors for student dropout of dis-
tance learning courses, with a focus on self-reported mindsets and attitudes which
contribute to student success. Street finds that several internal factors (self-efficacy,
self-determination, autonomy, and timemanagement), external factors (family, organi-
zational, and technical support), and course factors (relevance, design) all significantly
impact learners decisions to persist or drop such courses. Other work surveying partic-
ipants in e-learning courses finds similar influence of family support, organizational
support, relevance, and other individual characteristics on individuals’ decisions to
drop out in this context (Park and Choi 2009). Although neither of these works can
be considered predictive, they provide insight into cognitive factors which may be
contributing to student outcomes in MOOCs.

123



Student success prediction in MOOCs 159

Greene et al. (2015) explores students’ perceived relevance of course material,
commitment, and students’ implicit theories of intelligence, as well as demographic
indicators and information about students’ prior experience with MOOCs. Self-
reported commitment is reported as one of the strongest predictors of dropout, but
students’ implicit theories of intelligence are not strongly associated with dropout.
They also find that intended hours spent on the MOOC is a significant predictor of
exam scores, but that implicit theory of intelligence was not. We note that the relation-
ship between intention and student success is reinforced in other work byBalakrishnan
and Coetzee (2013), which measured intention by students’ views of course progress
pages; Gütl et al. (2014) finds a high level of self-reported motivation for both dropout
and non-dropout students.

Much of the work in this section involves novel data collection methods. Similar to
our findings on social factors above, there is a need for future research to move beyond
questionnaires and self-reports as the sole source of cognitive data from learners. As
sensing technology becomes increasingly affordable, and as users are increasingly
already equipped with sensors inside their own devices (such as smartphones and
tablets), the type of data required for this type of research should become increasingly
accessible for researchers. There are many canonical cognitive findings in educational
research which have yet to be explored or replicated in a MOOC context, and future
work is needed to determine the limitations of these findings from traditional brick-
and-mortar classrooms when applied to MOOCs.

3.7 Learning-based models

Learning-based models use observed student learning or performance on course
assignments or theories of student learning as the basis for predictive modeling.

While the formal purpose of aMOOC is, broadly construed, for participants to learn,
the use of learning-based features and outcomes in predictiveMOOCmodels has been
surprisingly limited, as shown in Table 3. Much of the work in this section draws upon
methods derived from the broader psychometrics, learning analytics, and educational
data mining communities, applying well-known methods (e.g. Item Response Theory,
Bayesian Knowledge Tracing) to MOOC data.

Several predictive studies inMOOCs discussed above attempted to predict learning-
based outcomes, despite being otherwise focused on different theoretical or modeling
approaches. Some previously-discussed work in this category includes (Brooks et al.
2015a; Greene et al. 2015; Kennedy et al. 2015; Li et al. 2017; Ye and Biswas 2014).
Such work predicts outcomes such as pass/fail, final grade, assignment, or exam pre-
diction (further data on the use of learning-based prediction outcomes is provided in
Fig. 8).

Ren et al. (2016) explore the use of “personalized linear regression” for predicting
student quiz and homework grades, finding that this approach outperforms KT-IDEM,
an item-level variant of Bayesian Knowledge Tracing widely researched in intelligent
tutoring systems, in predicting homework scores across two MOOCs.

Garman (2010) applies pre-existing learning assessment to online courses by admin-
istering a commonly-used reading comprehension test (the Cloze Test) to students in
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an e-learning course. Garman finds that reading comprehension is positively associ-
atedwith examperformance and overall course grade, but finds no association between
reading comprehension and online open-book quizzes or projects. Garman argues that
this is because online tasks are more under control of the student (taken independently,
with fewer or no time constraints), while exams and course assignments occurred in
an in-person environment with time constraints. While this study is administered in
an e-learning course, these findings are relevant to MOOCs given the degree to which
MOOC participants are expected to read and comprehend substantial amounts of text
independently. Wojciechowski and Palmer (2005) also find significant relationships
between student reading comprehension (as measured by ASSET scores and ACT
English scores) in university e-learning courses.

Kennedy et al. (2015) evaluate how prior knowledge and prior problem-solving
abilities predict student performance in a discrete optimization MOOCwith relatively
high prior knowledge requirements, drawing on robust learning theory results from in-
person courses. Prior content knowledge and problem solving abilities are measured
using two performance tasks. The prior knowledge variables alone account for 83%
of the variance in students’ performance in this MOOC. The relationship between
prior knowledge and student performance is well-documented in traditional education
research, but is largely unexplored in MOOCs, despite the potential presence of many
more students who lack prerequisite prior knowledge inMOOCs relative to traditional
higher education courses. Further research on both data collection (i.e., methods for
efficiently measuring learners’ prior knowledge at scale) and on the impact of prior
knowledge on learner outcomes is a useful avenue for future research.

Time-on-task and task engagement are also student performance concepts which
have been applied extensively to educational contexts outside of MOOCs. Champaign
et al. (2014) evaluate how learner time dedicated to various tasks within the MOOC
platform (assignment problems, assessments, e-text, checkpoint questions) correlates
with their learning gain and skill improvement in two engineering MOOCs. They find
negative correlations between time spent on a variety of instructional resources and
both skill level and skill increase (i.e., improvement in students’ individual rate of
learning), using assessments calibrated according to Item Response Theory. Cham-
paign et al. find these results “obviously discouraging” (p. 18), but their evaluation is
purely correlational. They note that the observed association is likely due to struggling
students spending more time working with learning activities. A more fine-grained
analysis is needed to determine whether the results are truly causal, or perhaps instead
indicative of other behavior, such as productive struggle. This work certainly suggests
that further evaluation is necessary to measure whether students are truly learning in
MOOCs (as opposed to high-skill students succeeding, while low-skill students drop
out) and what types of resources and affordances best support learning. Cocea and
Weibelzahl (2007) also address the task of evaluating students’ engagement with con-
tent and explore the task of student engagement prediction in a web-based e-Learning
system; thiswork demonstrates that accurate engagement predictions (based on expert-
rated engagement) can bemade using relatively simple activity features extracted from
log files.

Koedinger et al. (2015) examine the impact of using interactive educational
resources inMOOCs versus using passive informational resources (videos, text) avail-
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able in many MOOCs. Specifically, this work examines the use of interactive tools
from the Open Learning Initiative, which were embedded into the Coursera platform.
They find that learners using more interactive resources learn significantly more than
those who read more text or watch more videos, estimating the impact of a 1-standard
deviation increase in interactive resource use to be more than six times that of a 1-
standard deviation increase in watching or reading. However, they find that the use
of interactive resources was not a significant predictor of dropout, with quiz scores
and quiz participation instead being significant predictors. This suggests that while
these resources may indeed assist students in learning more, this may not translate
directly into course completion. This work highlights the importance of evaluating
results along multiple outcome dimensions in MOOCs.

DeBoer and Breslow (2014) find that time spent on homework and labs in a Circuits
andElectronicsMOOCon edXpredict higher achievement on assignments, while time
spent on the discussion board or book is less predictive or not statistically significant.
Additionally, time on the ungraded in-video quiz problems between lecture videos is
found to be more predictive of achievement than time on lecture videos themselves.

Peer learning and peer assessment are also important theoretical concepts in educa-
tion, but have seen only limited applications in MOOCs to date. Ashenafi et al. (2015)
and Ashenafi et al. (2016) examine models for student grade prediction which only
use peer evaluation; these models are applied in traditional courses with web-based
components but the authors argue that their findings are also applicable toMOOC con-
texts. Peer assessment is used extensively in MOOCs (Jordan 2015) and its predictive
capacity is largely unexplored.

Brinton and Chiang (2015) explore using platform clickstream data to build models
of whether learners are Correct on First Attempt (CFA) in answering questions in a
MOOC.After buildingmodels to predict CFA, these predictions are used as features in
a model to predict students’ future quiz performance. Brinton and Chiang demonstrate
potential performance gains from this approach, suggesting that not only effective
feature engineering, but also the predictions of intermediate models, can improve
predictions of student success in MOOCs. Brinton et al. (2015) extends this work with
a sequence-based input approach. Sinha and Cassell (2015) use a sequence-based
approach to student learning, modeling the outcome as a sequence and predicting
sequences of student grades using Conditional Random Fields.

Kotsiantis et al. (2010) apply various incremental algorithms to student performance
prediction using a dataset of student grades in a distance education course. They find
that an ensemble of incrementally-trained predictive models can achieve improved
final exam pass/fail predictions over the base learners. While this model is applied
to a single higher education distance learning course, it demonstrates a successful
application of a technique—incremental model training, requiring only a single pass
through large datasets—which may be particularly useful with the massive datasets
in MOOCs. Further exploration of these techniques stands to make real-time training
and prediction more tractable. Sanchez-Santillan et al. (2016) also explores the use of
incremental interaction classifiers using Moodle course data.

As the functionality of MOOC platforms and the associated tools used within those
courses—IntegratedDevelopment Environments (IDEs), notebook environments such
as iPython and Jupyter, etc.—have expanded, so too has the student performance and
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activity data available to instructors. Recent work has begun to evaluate this data. Hos-
seini et al. (2017) uses a plugin in the NetBeans IDE to collect detailed data on student
problem-solving in Java programming assignments to predict student problem-solving
and learning in two programming courses and two MOOCs. The work evaluates
both stereotype-based and fully data-driven models constructed using a “genome”
representing student problem-solving behavior extracted from students’ program sub-
missions. Performance Factors Analysis is used to compare several models, and the
authors identify clusters of students based on their problem-solving activity (“tin-
kerers”, “movers”). While the authors uncover some apparent relationships between
problem-solving behavior and learning, they conclude that there are both strong and
weak students within each group—these behavioral profiles are not, as constructed,
predictive of learning. Hosseini et al. conclude that “finding a useful learning-focused
stereotype, like good students or slow students, is not trivial. There might be students
who approach learning differently, but the distinction between these approaches are
orthogonal to the conventional dimensions that we apply to quantify learning” (p. 83).
This suggests that further evaluation of data-driven profiles of learning behavior are
required in order to construct accurate models of how this behavior predicts student
learning.

3.8 Demographics-based models

Demographics-based models utilize learner attributes which remain static over the
interval of a course to predict student success.

In this section, we explore work which student demographics to understand and
predict student success in MOOCs. This work often utilizes optional surveys about
learner demographics.

Several works have investigated the relationship between learner demographics and
their success in MOOCs. Similar to research in more traditional educational contexts,
the primary focus of this research is in understanding for which groups of students
MOOCs may be more or less effective. In general, this work therefore tends toward
explanatory or data modeling.

In an analysis of edX’s first course, DeBoer et al. (2013) find that having taken
differential equations (a recommended prerequisite for the course), having a parent
who is an engineer, andworkingwith the teacher offline are significant predictorswhen
controlling for other behavioral and academic factors; they do not find a relationship
between gender and achievement for the survey completers examined. This finding
regarding prior knowledge reinforces (Kennedy et al. 2015), discussed previously.
Similarly, Dupin-Bryant (2004) show that prior computer experience is also a predictor
of retention in online distance education courses, likely because such students are better
prepared to learn and engage with course content by computer.

Stein and Allione (2014), discussed previously, evaluates a range of demographic
factors for students who completed a pre-course survey, finding that self-reported
motivation for taking the course is not a significant predictor of completion, but that
age is (with both young and very old students more likely to disengage).
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Greene et al. (2015) also explores a combination of motivational factors (discussed
in Sect. 3.6 and demographic factors, finding that demographic variables including
age, prior education, and prior experience with MOOCs are significant predictors of
both dropout and achievement.

Qiu et al. (2016) examines the impact of both gender and level of education on forum
posting, total active time, and certification rate for a sample of XuetangX MOOCs.
They find that being female is associated with higher rates of forum posting and
replying, more time spent on video and assignment activity, and higher certification
rate in non-science courses, while female is associated with each of these outcomes
being lower in science courses (only the association between female and forum replies
and certification rates in science courses were not statistically significant at α = 0.1).
With respect to level of prior education, Qiu et al. (2016) find that students with a
bachelors degree ask more questions, particularly in non-science courses. They also
report that students with a graduate degree are not as active as those with bachelors
in terms of asking questions, but are instead more active in answering questions,
particularly in science courses.

Specific findings related to various demographic features are multifarious, but com-
paring the magnitude of findings across different studies can be challenging when
different controls are included in various models. Stein and Allione (2014) find that
age is a significant predictor of MOOC completion. Greene et al. (2015) also find
age, prior education, and prior experience with MOOCs to be significant predictors
of both dropout and achievement. Reich (2014) finds that intention to complete is a
stronger predictor than any of several demographic traits measured across a sample
of 9 MOOCs. In a review of works surveying potential causes of MOOC dropout
rates, Khalil and Ebner (2014) also find that lack of time, lack of motivation, lack of
interaction, and “hidden costs” (such as paid textbooks needed for reference, or paid
certificates of which learners were unaware) contribute to MOOC dropout.

Several works have evaluated the predictiveness of demographics in e-learning
or distance learning courses. While these are not directly analogous to MOOCs, the
conclusions of such research can suggest useful starting points for further research into
demographic and other factors which may contribute toMOOC dropout. For example,
Willging and Johnson (2009) use a post-course survey to understand explanatory
factors underlying student dropout in an online human resources masters program.
The authors find that demographics are not associated with dropout in the courses
evaluated, and that reasons for dropout vary considerably by individual including
personal reasons, job-related reasons, program-related reasons, and technology-related
reasons.

Brooks et al. (2015b) examines whether demographics can improve the predic-
tive performance of activity-based predictive models, showing that demographics
“have minimal predictive power when determining the academic achievement of
learners enrolled in MOOCs.” In particular, Brooks et al. (2015b) demonstrates that
demographics-based models underperform activity-based models in MOOCs even
early in the course when activity data is minimal, and that demographic features pro-
vide no discernable improvement over activity-only models (and actually degrade
their performance in the second half of the course, as activity data accumulates). This
stands in contrast to prior machine learning research in other educational domains,
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which suggests that demographics may be strong predictors of online course perfor-
mance in traditional distance learning contexts (e.g. Kotsiantis et al. 2003). The work
of Brooks et al. highlight how the complexity and heterogeneity of MOOC learners
require new and potentially more sophisticated student models, and how demographic
findings may be less powerful than other unique, rich sources of data available in the
contexts of MOOCs.

4 Synthesis: trends in predictive models of student success in MOOCs

In this section, we present high-level synthesis and conclusions from this survey of
predictive modeling work in MOOCs to date, including data on the methods and
findings of this work. We profile the data sources, methodologies, and experimental
populations evaluated in these works. We find evidence that (a) a small number of
MOOC platforms and raw data sources are used as the basis for the majority ofMOOC
research to date, and (b) a similarly dominant group of methodologies (activity-based
features, tree-based and generalized linearmodeling algorithms) that are used for these
experiments. Together, these trends suggest a need for future research comparing these
methods (particularly when considered in light of the many different success metrics
used to evaluate these models across works surveyed), and exploring the use of other
techniques and methods described in Sect. 6.

4.1 Data sources: platforms and raw data sources

Little attention has been paid to the data sources used in predictive modeling research
in MOOCs. Understanding which data sources are effective for prediction, and which
are unexplored, provides a useful foundation for future work. Also, because feature
extraction requires significant expense, both in terms of development time and compu-
tation time, recognizing which data sources are most useful can improve the efficiency
of predictive modeling work in practice.

We provide data on the MOOC platforms evaluated across work surveyed in Fig. 6.
These results reflect the dominance of the two largest MOOC providers, Coursera
and edX (Shah 2018). Non-English MOOC platforms, such as the Chinese platform
XuetangX, are less well represented in the work surveyed. As non-English platforms
continue to grow, they should be researched more extensively: a substantial segment
of the populations who stand to benefit most from global access to MOOCs are non-
English speaking, and these learners are likely to differ from the population of English-
speaking course takers.

Figure 7 demonstrates that, of the raw data sources discussed in Sect. 2.3, click-
streams are the dominant raw data source for predictive modeling research inMOOCs.
In one sense, this is unsurprising: clickstreams provide rich, granular data that the field
is only beginning to harness the ability to represent in its full complexity. On the other
hand, clickstreams are raw, semi-structured text files that require extensive human and
computational effort to parse. Their formats are complex and sometimes inconsistent
due to errors in platformserver logging, and several levels of aggregation canbe applied
to a given entry (i.e., clickstream entries contain both session and user IDs, such that
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aggregating at both levels is not possible). In contrast, the other data formats shown
in Fig. 7 are typically provided as structured relational databases that can be access
with simple SQL statements. The fact that clickstreams are so widely used, despite
these barriers to accessing and utilizing this data, is a testament to their usefulness in
predictive modeling. Gardner and Brooks (2018) evaluates features generated from
different data sources, comparing the predictiveness of clickstream features versus
forum- and assignment-based features; this work verifies that clickstream features are
more effective predictors than forum- or assignment-based features when predicting
dropout across the entire population of learners in a large sample of MOOCs.

We observe a growing “long tail” of additional data sources, which represents a
continued trend toward combining other data sourceswithMOOCdata to gather amore
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complete picture of learners. This is a useful development, but the privacy-protected
nature of learner data often make it difficult to combine with other sources. Finally, we
note that the forthcoming discussion in Sect. 5 is relevant to the use of clickstream data.
While clickstreams contain complex, potentially useful temporal information about
learner behavior over time, most modeling has been limited to simple counting-based
representations of these temporal patterns (with few exceptions; i.e. Fei and Yeung
2015; Brooks et al. 2015a). Much of the complexity contained in these interaction logs
has likely not been captured with the research methods used to date.

4.2 Feature engineering methods

4.2.1 Feature types used in work surveyed

Feature engineering from these data sources is a focal point of MOOC research, and
many advances in predictive modeling have hinged on clever or state-of-the-art feature
extraction techniques, even when strikingly simple models are used. For example,
Veeramachaneni et al. (2014) combines a comprehensive set of crowd-sourced features
with a simple penalized logistic regression model; subsequent work demonstrates that
this model is capable of state-of-the-art prediction accuracy despite its algorithmic
simplicity (Taylor et al. 2014b). As mentioned in our introduction to Sect. 3, there is a
clear consensus that feature extraction is important to predictive modeling inMOOCs,
and that future work should continue these investigations into feature engineering.
Additionally, work which compares the predictive usefulness of various feature sets
in a rigorous, experimental way—as in Crossley et al. (2016) with activity- and NLP-
based features, Brooks et al. (2015a) with demographics and activity features, and
Gardner and Brooks (2018) with activity, forum, and assignment features—will be
particularly useful as feature engineering continues to diversify. As Sinha et al. note,
“[t]he biggest limitation of most of these emerging works is that they focus solely on
discussion forum behavior or video lecture activity, but do not fuse and take them into
account” (Sinha et al. 2014b, p. 1)—the focus on using individual groups of features
is holding back predictive modeling research in MOOCs.

Figure 5 shows the broad categories used for taxonomizing the work surveyed
here, which are largely (although not entirely) based on features. This data clearly
demonstrates the dominance of activity-based feature extraction approaches. Two
main factors explain this dominance: first, activity data is simply the most prevalent
and fine-grained data available from MOOC platforms, and there are rich, complex
patterns embedded in this data that the scientific community has correctly identified as
important to explore. Second, activity-based outcomes (i.e., dropout or stopout) have
been a focus of MOOC research, as shown in Table 3. Activity features seem a neces-
sary (if not sufficient) set of features for the task. As research begins to explore other
outcomes beyond dropout and completion (such as learning), and as feature extrac-
tion becomes a less labor-intensive task perhaps due to open-sourced code or open
MOOC data analysis frameworks (e.g. Gardner et al. 2018), it is likely that feature
engineering will increasingly utilize other feature types either in addition to or instead
of activity-based features.
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Fig. 8 Student success outcomes predicted by works surveyed. When experiments predicted multiple
outcomes, they were included in each category in this table, so the total across all groups exceeds the total
number of works surveyed

4.2.2 Input features and prediction outcomes

Because of the importance of feature engineering to thework of predictivemodeling in
MOOCs, and because this is the first large-scale survey of such work, we also provide
detailed data on the relationship between model types and prediction outcomes used
across work surveyed. The trends we observe suggest uneven exploration of different
model types and student success outcomes across the work surveyed, suggesting both
(a) a family of well-researched outcomes which we may be able to more reliably
predict using insights from prior work, and (b) potential areas for further research.

Figure 8 demonstrates that dropout prediction was more than twice as common
as any other outcome predicted across our survey. 39 works attempted to predict
some form of dropout or stopout. In contrast, outcomes related to completion, certi-
fication, grades, or other outcomes [e.g. level of engagement (Cocea and Weibelzahl
2007), “healthy” vs. “unhealthy” attrition (Vitiello et al. 2017a)] were predicted less
commonly and at similar frequencies. This largely reflects the current state of the
MOOC landscape since 2012, discussed previously: concern about low completion
rates prompted extensive research into the factors driving these rates.

We demonstrated in Fig. 5 that activity-basedmodelswere themost prevalent across
our survey. Table 3 adds further context to these groupings, demonstratingwhichmodel
types were used to predict various student outcomes in MOOCs. This suggests more
specific research gaps than those in Fig. 8: for example, only one work surveyed used
a cognitive modeling approach to predict completion (Kizilcec and Halawa 2015), and
only two used learning models to predict completion (Jiang et al. 2014b; Qiu et al.
2016). Table 3 demonstrates several such avenues for potential research in this and
other areas as MOOC prediction moves beyond activity-based dropout modeling, the
most common approach to date.
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Note that several outcomes in Fig. 8 are grouped into a single “academic” out-
come category in Table 3. “Pass/Fail” is typically an indicator for whether a learner
exceeded a predetermined final grade threshold for passing the course; “Certifica-
tion/Completion” is typically an indicator for whether a learner officially completed
all course requirements for an official certificate of completion (which sometimes, but
not always, requires payment and identity verification).

4.3 Modeling algorithms

The statistical models used to map features to predictions are a core component of
predictive studentmodeling inMOOCs, but there is little prior synthesis of the findings
of which algorithms are most widely used. Figure 9 provides two perspectives on the
modeling algorithms used across our survey.

First, the top panel, Fig. 9a shows that tree-based models and generalized linear
models are the most common techniques for predictive modeling in MOOCs. The
prevalence of tree-based algorithms is due to several useful properties of these tech-
niques: tree-based models can handle different data types (i.e., categorical, binary, and
continuous) and are less susceptible to multicollinearity than linear models; they are
relatively fast and simple to fit; they are nonparametric and make few assumptions
about the underlying data while providing highly flexible models; and the results of
these models are highly interpretable by visualization, inspection of decision rules,
variable importance metrics etc.. Figure 9a shows that generalized linear models
(GLMs) are also popular for MOOC learner modeling. This reflects several benefits of
these models, in particular: GLMs empirically have achieved excellent performance
across many large-scale MOOC modeling experiments; they are fast and simple to fit
to data, requiring little or no hyperparameter tuning; and they produce interpretable
output (which provides different information compared to tree-based models), includ-
ing coefficients representing the magnitude and direction of association between each
predictor and the response, and the statistical significance of these predictors.

Second, the lower panel, Fig. 9b, shows the specific algorithms used across work
surveyed, essentially disaggregating Fig. 9a. Figure 9b shows how the dominance
of tree-based algorithms largely obscures the lack of uniformity on which specific
algorithms are used; of all tree-based algorithms considered, only random forests
were used in more than 10 works surveyed. This makes it difficult to evaluate the
effectiveness of any specific tree algorithm across our survey. In contrast, there are
relatively few GLM algorithms adopted in the literature; logistic regression (LR) and
L2-penalized logistic regression (“ridge” regression, L2LR) account for almost all
use of GLM algorithms. As noted above, GLMs, and L2LR in particular, generally
achieve excellent performance when used with large and robust feature sets, despite
their strong parametric assumptions about the underlying data.

Finally, Fig. 9 clearly reveals that there is a “long tail” of modeling techniques
represented in the work surveyed here, with nearly half of the work surveyed using an
algorithm which is not utilized in any other work (represented by ‘Other’ in Fig. 9a,
b). In part, this represents an emphasis on novelty in published academic research;
this is also indicative of a nascent field which has little consensus on the best approach
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to solving its prediction problems. We note that none of the algorithms in the work
surveyed demonstrate performance which consistently exceeds all other algorithms,
suggesting that there is indeed no single “best” algorithm a priori for a given task or
dataset (Wolpert and Macready 1997). Future work which compares and evaluates
the fitness of various predictive modeling algorithms for different tasks in MOOC
research would be appropriate at this stage; we advocate such work in Sect. 6 below.

We observe that supervised learning approaches dominate the literature, with few
examples of unsupervised approaches; this is likely due to the fact that many of the
outcomes (i.e., dropout, certification, pass/fail, grades) are observable for all learn-
ers, making unsupervised techniques unnecessary for many of the prediction tasks
addressed by research to date.

4.4 Model evaluation metrics

Our data also reveal a considerable lack of agreement about which model evaluation
metrics to use inMOOCs, shown inFig. 10.Compared to the analysis of algorithms and
data sources above, this data reveals a slightly stronger consensus around a smaller set
of evaluation metrics, most notably accuracy (ACC), Area Under the Receiver Oper-
ating Characteristic Curve (AUC), precision (also called positive predictive value)
(PREC), and recall (REC) (also called true positive rate, sensitivity, or probability of
detection). Strictly speaking, a diversity of metrics is not a problem—different met-
rics measure different aspects of predictive quality, which vary depending on the task
and research goals—but this lack of a consistent baseline leaves readers unable to
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Fig. 10 Evaluation metrics reported for predictive modeling experiments in work surveyed. Note that
individual works are counted multiple times when results are presented according to multiple model perfor-
mance metrics. Selected abbreviations: FNR/TNR false/true negative rate, RMSE root mean squared error,
LogLik log-likelihood, R2 r-squared
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compare performance across otherwise-similar studies which report different perfor-
mance metrics. Reporting severalmetrics would often give a more complete picture of
model performance and allow for easier comparison across studies, while still allow-
ing researchers to examine performance according to their metric(s) of interest. Open
data or open replication frameworks would allow for more nuanced comparison and
would shift the burden from purely on the researcher, to allowing reviewers and critical
readers to inspect results using any performance metric of interest.

10 of the works surveyed—over 10%—report classification accuracy as the
only model performance metric. We consider this practice particularly concerning.
Accuracy is useful and interpretable for many readers, but it can be a misleading mea-
surement of prediction quality with highly imbalanced outcome classes. This scenario
is very common inMOOCs (i.e., most students drop out, do not certify, etc.). Accuracy
is also threshold-dependent, while other metrics, such as Area Under the Receiver
Operating Characteristic, measure performance over all possible thresholds. While
accuracy is useful as an interpretable metric for readers, it is often difficult to assess
the value of work which only reports performance using accuracy. The practice of
only reporting accuracy should be discouraged, as computing additional performance
metrics from the data used to compute accuracy (namely, predicted labels and class
labels) requires minimal additional effort (sensitivity, specificity, F1, Fleiss’ Kappa,
and several other metrics can be computed from these labels).

Additionally, it is important to note that the appropriate model evaluation met-
ric often depends on both the outcome being measured and on the unique goals of
a predictive modeling experiment. For example, in a dropout modeling experiment
where the goal is to provide an inexpensive, simple intervention to learners (such as a
reminder or encouragement), recall might be an appropriate model evaluation metric;
in contrast, when the goal is to provide an expensive or resource-intensive support to
predicted dropouts, precision might be a better choice.

Together, the data source, feature extractionmethod, statistical modeling algorithm,
and evaluation metric reflect the accuracy dimension of predictive student models
introduced in Fig. 2. A key element of any usage of predictive student models requires
that thesemodels are effective at predicting the outcome of interest; research into—and
methodological progress in—each of these areas (feature extraction, modeling, and
evaluation) stand to substantially improve the accuracy of future predictive MOOC
models.

5 Methodological and research gaps

In this section, we critically review the existing research body on predictive models of
student success in MOOCs. In particular, we highlight (a) areas where the methods of
prior research or the interpretation of its results are biased toward specific populations
or overly prone to statistical errors; and (b) opportunities for future research toward
modeling and understanding learner behavior in MOOCs. Because these issues are
often two sides of the same coin (methodological gaps imply future research oppor-
tunities), we discuss them together. Additional opportunities for future research are
discussed in Sect. 6.
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Table 4 A sample of experimental subpopulations in works surveyed

Study Subpopulation % of Enrollees

Perna et al. (2014) Registered after official course start date and
no more than 2months after course end
date

90

Halawa et al. (2014) Joined in the first 10 days of the course and
have viewed at least one video

Not reported

Fei and Yeung (2015) Students with at least one interaction as
measured by 7 features used

46.7

He et al. (2015) Students who submitted at least 1
assignment each week

13

Greene et al. (2015) Completed pre-course survey and completed
the first end-of-unit exam

11.4

Yang et al. (2013) Posted at least once in discussion forum by
seventh course week

6.3

Robinson et al. (2016) Started in first 2 weeks; completed
pre-course survey; saw utility value of
course; fluent in writing English; intends to
complete course; and wrote more than one
word on survey

< 5

Percentage of total enrolled students is shown. Such divergent filtering criteria and small, nonoverlapping
subpopulations make comparing the results of different predictive work difficult

5.1 “Small” data and experimental population filtering

Many of the challenges discussed in this section point to the difficulty of comparing
findings across experiments. Because many MOOCs are at least superficially similar
to each other and offered in similar contexts, this type of comparison is theoretically
possible: making these comparisons would be neither unreasonable nor difficult, and
would allow evidence for or against specific predictive modeling techniques to accu-
mulate across experiments. However, under existing research methods, experimental
populations are often not comparable.

The use of small, highly-subsetted experimental populations in prior work is one
way in which its generalizability is limited. Often, predictive experiments in MOOCs
identify a subpopulation of learners onwhich the analysis is conducted. Unfortunately,
these subpopulations are often so divergent that the results from one experimental
subpopulation to another could be entirely different. Examples of experimental sub-
populations from work surveyed are shown in Table 4. We note that 40 of the works
surveyed, or 46%, filtered the sample from the total available population of registrants
or participants in some way.

Several comments are warranted here.
First, there is tremendous diversity in the subpopulations evaluated by different

works, and it is difficult, if not impossible, to compare findings of otherwise-similar
experiments across studies.We simply do not know, for example, how the studentswho
submitted at least oneweekly assignment in He et al. (2015)might compare to students
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whowatched a video and submitted a problem in Li et al. (2016b) or to those who com-
pleted the surveywith the relevant characteristics considered byRobinson et al. (2016).

Second, filtering the population so significantly—as Table 4 shows, many experi-
ments which share this data reveal that over 80% of MOOC participants are excluded
from their analysis—moves research further from the goal of understanding large seg-
ments of the learner population. While it is useful, for example, to know how natural
language features and unigram frequencies in Robinson et al. (2016) can be used
to predict persistence, this data is of little practical use if it only applies to fluent
English-speakers who see the value of the course, intend to complete it, and com-
pleted a pre-course survey with more than one word. Indeed, we would expect such
learners to be quite different from the average or overall population in such a course,
and such work gives us little information about the broader population.12 Previous
educational data mining research suggests that affect detection models, for example,
do not transfer across even regional and demographic boundaries within the United
States (Ocumpaugh et al. 2014). It seems even less likely that models trained on sub-
populations of globally diverse MOOC learners, for example natural language models
which only evaluate courses conducted in English, would generalize effectively across
behavioral subgroups. At the very least, presenting the results both in terms of a small
subpopulation and in terms of the entire course population would provide a useful
point of reference.

Third, these highly-subsetted experimental populations are often themselves a
“sample of samples”, evaluating just one or a few MOOCs which may or may not be
representative of the larger population of MOOCs. Conducting research using these
types of populations make it difficult to determine how such work might generalize
even to the same subpopulation in other courses. Table 5 shows that over 50% of
the works surveyed evaluated just one MOOC, with fewer than 20% of these works
evaluating 10 or more courses. At best, highly-subsetted populations of an already
narrow sample (of the overall MOOC population) can be taken as promising avenues
for future research; it would be amistake to consider the findings of such research fully
resolved conclusions.We should be particularly concerned about works which publish
“statistically significant” results for single-course populations in a small and highly-
contingent subpopulation: these analyses can be subject to high “researcher degrees of
freedom” (Gelman and Loken 2013), and the extent to which these degrees of freedom
were exploited during data analysis is rarely reported in published research. This bias
may be compounded when predictive models are evaluated on the same course that is
used to fit them (Boyer and Veeramachaneni 2015; Whitehill et al. 2017).

Having discussed the limitations and challenges raised by work which utilizes such
specific experimental populations, we recognize, of course, the value of such research,
even with its limits, and the reasons for doing so in practice. Our intent is not to sin-
gle out the authors of any one particular study; indeed, the fact that this applies so
broadly to many of the most highly-cited works in the field suggests that even many
of the most substantial contributors to the field have conducted such research. Many

12 This concern is similar to that raised in Henrich et al. (2010) in the context of psychological research; as
Henrich et al. argue, such sampling bias could have true and significant consequences for the generalizability
of these findings.
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Table 5 Number of MOOCs
evaluated across research
surveyed

Number of courses Count

1–5 63

6–10 4

11–15 6

16–20 1

21–30 1

31–40 5

40–50 1

51–100 0

100–150 1

Most studies (70% of work
surveyed) evaluate data from 1
to 5 courses

of these works reflect early exploratory research into MOOCs, and were initial efforts
at understanding any cross-section of this novel population. We simply note that these
limits are often not acknowledged by the broader research community when interpret-
ing these results, and that further research is needed to explore the generalizability of
these findings and ensure that the field’s knowledge base is constructed on firm ground
as the field grows and matures.

5.2 Model evaluation, comparison, and replication

A second area where substantial research gaps exist is in the evaluation, comparison,
and replication of the predictive models of student success in MOOCs. As work on
predictive modeling has expanded across all domains, a substantial research base has
emerged on techniques for comparing and evaluating the results of predictivemodeling
experiments.Wefind that thework surveyed often lags behind these accepted standards
and methods for practice, which can be applied to predictive models in any domain.
This also raises concerns about the accuracy dimension of these models, particularly
when applied to unseen data.

5.2.1 Multiple comparisons and statistical testing

There is concern in the broader statistical community about issues of multiple com-
parisons in model evaluation, particularly when applied to large spaces of potential
statistical models. The field has begun to move beyond these concerns through to the
adoption of simple (if conservative) tehniques for accounting for the many compar-
isons performed over the course of an experiment [i.e., the methods of Bonferonni or
Benjamini and Hochberg (1995), or techniques specific to the evaluation of machine
learningmodels outlined inDemšar (2006)]. Bayesianmethods have also been increas-
ingly adopted for inference and data analysis, in part due to their robustness in cases
of multiple comparisons (Benavoli et al. 2017; Gelman et al. 2012).

However, almost none of thework surveyed utilized appropriate significance testing
techniques [according to the standards of Demšar (2006) or Benavoli et al. (2017)].
Molina et al. (2012) was the only exception, based on our reading of these works,
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Table 6 Counts of the number
of predictive models reported to
have been fitted/compared
within each of the studies
evaluated

Number of models Count

1–5 34

6–10 9

11–20 5

21–30 3

31–40 2

41–50 2

51–100 4

101–500 4

501–1000 1

> 1000 2

42 experiments—48% of work
surveyed—reported evaluating
more than 20 different predictive
models, raising clear
methodological concerns about
multiple comparisons

but Molina evaluates traditional courses managed in Moodle, not MOOCs. We also
found no acknowledgement of concerns about multiple comparisons in interpreting
the statistical significance of results in any work. This lack of concern exists in spite
of the fact that 18 of the works surveyed (20%) reported evaluating more than 20
models as shown in Table 6, which means that at least one Type I Error would be
expected for a single test at a 5% significance level using a traditional hypothesis test
to compare models. It is possible that works which reported fewer than 20 models
evaluated additional predictive models in the course of their experiments, exposing
these experiments to an inflated risk as well.

There are clear reasons why these methodological concerns emerged in the first
place. First, a complete lack of testing fails to quantifiably evaluate the findings of
a predictive model. Some form of evaluation is needed to quantify the degree to
which we might attribute observed differences in performance to chance versus to a
“better” model or feature extraction technique. This is especially important given the
small samples of courses in works surveyed shown in Table 5. Second, even when
statistical testing is used, often these tests require specific corrections when applied
for predictive model evaluation. Many common statistical tests, such as the Student’s
t test or Analysis of Variance (ANOVA), are not appropriate or calibrated for testing
predictive models (Demšar 2006; Dietterich 1998). It is possible that the concerns
which motivated these approaches may have been realized in many of the works
surveyed.13 Even the large number of models reported in the work surveyed (note that
at least 1

3 of the works did not report the total number of models evaluated) suggest
that inferential errors caused by uncorrected multiple comparisons may lurk in the
current knowledge base of student success models. This lack of replicability of most
work (discussed below), combined with the “file drawer problem” wherein null results
are rarely published Rosenthal (1979), make it particularly difficult to determine when

13 Some corrections, such as the Bonferonni correction, can be applied by readers directly by simply
multiplying the reported p value by the number of comparisons; however, even this depends on the researcher
self-reporting the number of models considered. It is unlikely that the total number of models considered
over the scope of an entire experiment are reported in most published research.
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these Type I errors may have occurred or how prevalent they may truly be in the field
of predictive MOOC modeling.

While the appropriate technique(s) for model evaluation vary based on the nature of
the comparison (i.e., two models vs. many models; a single dataset vs. many datasets),
these procedures do exist and are often simply ignored in predictive modeling research
in MOOCs. These procedures are discussed in detail in a future work regarding pre-
dictive model evaluation in MOOCs; we refer the reader to that work or to (Benavoli
et al. 2017; Dietterich 1998; Demšar 2006) for further details.

5.2.2 Cross-validation for model inference

Particularly relevant in this discussion are the specific limitations of using the results of
cross-validation to compare and draw inferences about the performance of predictive
models. Average cross-validation performance was used to evaluate and compare the
performance of 31 studies, or nearly 40% of the work surveyed. Again, problems with
this procedure have been well-studied. Utilizing average cross-validated performance
with unadjusted statistical tests (such as a paired t test) makes such research suscep-
tible to both high Type I error rates (higher than expected probability of concluding
that there is a significant difference in performance when none exists) and low power
(low ability to discern true differences in performance when they do exist) (Dietterich
1998; Bouckaert and Frank 2004). These issues are discussed specifically in the con-
text of model evaluation in MOOCs in Gardner and Brooks (2018). Works which
evaluate many predictive models—effectively conducting large numbers of multiple
comparisons—inflate this risk. This exposes predictive modeling research in MOOCs
to serious and preventable concerns about the reproducibility of its findings, at a critical
time when the field’s work is growing in both visibility and practical significance.

5.2.3 Replication of predictive modeling experiments

Taken in sum, the two challenges outlined above—multiple comparisons and a lack of
rigor inmodel evaluation—point to a third challenge in predictive research inMOOCs:
replication. We note with some concern that there is a dearth of replication research
in MOOCs in particular, and in the field of education in general (Makel and Plucker
2014). This means that despite the concerns, outlined above, about the inferential and
sampling procedures often used in MOOC research, we are unable to estimate the
impact of these procedures on the generalizability of many published findings. Of the
work surveyed for this evaluation, nonewas a replication of prior work by new authors,
although in limited cases (a) original authors reproduced their analyses on newMOOC
datasets (e.g. Rosé et al. 2014), or (b) new authors attempted to at least compare their
work to algorithms used in others’ work as a baseline (e.g. Fei and Yeung 2015).
An initial attempt at replication in MOOC models is shown in Andres et al. (2016,
2018), but theseworks replicate predictivemodels as relatively limited production-rule
analyses and do not replicate the predictive models themselves (i.e., by controlling for
covariates). Exact replication should be relatively more tractable in MOOC research
than in other fields: MOOC data is largely consistent within (and even across) the two
major platforms, Coursera and edX. The largest apparent barriers to replication are
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(a) lack of access to data; (b) lack of clarity in published descriptions of experimental
methods; and (c) the lack of incentive to replicate previously-published research.
Extensivework on the challenges of reproducible computational research (Peng 2011),
best practices for conducting computational research (Stodden andMiguez 2013), and
tools or software for facilitating such research (Kitzes et al. 2017) provide a foundation
for future efforts in the field.

Particularly with the rapid proliferation of different approaches to predictive mod-
eling in MOOCs, replication would provide a useful basis for comparing these
approaches. Work that exactly implements the methods from another experiment has
been called direct replication by Donoho (2015); such research is extremely uncom-
mon in educational research (Makel and Plucker 2014) but is needed. For example,
while multiple existing studies might use an SVM and compare these results, the com-
parisons often ignore important differences in hyperparameter tuning, kernel selection,
regularization, and feature selection which can have genuine effects on the perfor-
mance of these algorithms across experiments. Future workwhich evaluates predictive
models using multiple outcome metrics would also give a more complete picture of
their performance (i.e. Fei andYeung 2015), evenwhen authors cannot or choose not to
openly share their code or data for replication.Wenote thatKitzes et al. (2017) provides
several useful case studies for addressing computational reproducibility across several
domains, including domains which require working with privacy-restricted data (e.g.
health care, nuclear physics); recent work in MOOCs has also made progress toward
sociotechnical solutions to this problem (Gardner et al. 2018).

5.2.4 Toward the “state of the art”

In conclusion, the generalizability of many results in the work surveyed is seriously
called into question. Future work which (a) adopts more effective inference and eval-
uation techniques which are robust to multiple comparisons and are appropriate for
the evaluation of predictive models and (b) replicates the findings of prior work on
new, larger data would make a valuable contribution to the pursuit of robust and gen-
eralizable knowledge about predictive modeling in MOOCs.

We note that a particular consequence of the analysis of the current section and
Sect. 5.1 is that they point to a confluence of factors which make it difficult, if not
impossible, to reliably identify the “state of the art” in predictive models of student
success in MOOCs. This extends to evaluations of both the best feature engineer-
ing methods and of statistical modeling techniques. Because of the large differences
between the subpopulations evaluated, the model evaluation metrics, and the statisti-
cal methods for evaluating experimental results (if any), comparisons across studies
to determine which methods are most effective are tenuous at best. We can make
observations about the popularity of various techniques, and can note based on the
current survey that activity-based features are the most commonly used, followed
by text-based features. However, in order to draw reliable conclusions about which
methods are truly the “state of the art” in student performance prediction, we would
need one or more large, highly-representative, shared benchmarking datasets (and,
ideally, infrastructure or tools for executing, sharing, and replicating experiments run
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on this dataset). As noted previously, the MOOC Replication Framework (MORF)14

and DataStage15 represent possible solutions to conduct such comparisons in future
work to truly determine the state of the art in MOOC student performance prediction.

5.3 Realistic experimental contexts

A second area in which methodology and experimentation in MOOCmodeling stands
to grow is the context in which predictive modeling experiments are conducted. In
particular, we advocate the use of realistic experimental contexts in future work; the
state of the practice largely produces models which are not actionable.

Building actionable predictive models to support downstream support and inter-
vention is the stated aim of much of the work surveyed—these works often explicitly
describe the aspirational use of their predictive models as the linchpins of “early
warning” systems for “at-risk” students. Some works surveyed describe planned
or hypothetical interventions based on such models; one utilized a student-initiated
micro-commitment intervention and explored using student commitment as a predic-
tor of assignment submission (Cheng et al. 2013), and a single work surveyed actually
utilized predictive models for live adaptive interventions (Whitehill et al. 2015).

However, much of the work surveyed is simply not possible to implement in an
active course—we call such experimental contexts not realistic. A realistic context
matches the situation in which predictive models would be employed for active use in
MOOCs, particularlywith respect to the information available at the time of prediction.
Many utilize post hoc prediction architectures, where (a) model-fitting requires labels
which are not knowable until a course completes, and (b) model evaluation takes
place by evaluating test predictions made on the same course used for training—
not a disjoint future course. These contexts do not match those in which a real-time
predictive model would be used: for example, dropout labels are not known at the time
of training and prediction if a course is still in progress; by definition, a users’ dropout
status is not knowable until the course completes.Of theworks surveyed, onlyAshenafi
et al. (2016), Bote-Lorenzo and Gómez-Sánchez (2017), Boyer and Veeramachaneni
(2015), Brooks et al. (2015a, b), He et al. (2015), Kizilcec and Halawa (2015), Wen
et al. (2014b), Whitehill et al. (2015, 2017)—fewer than 10%—examine prediction
architectures in which the test predictions could be made for an incomplete course
(either by training and predicting on different iterations/courses and using transfer
learning, or using some form of proxy labeling).

The degree to which the prediction context, particularly same-course evaluation
versus future-course evaluation, may bias results is unclear. Veeramachaneni et al.
(2014)find that predictingon future courses generally achieves lower performance than
same-course prediction, and that second-to-third transfer is more accurate than first-
to-third. Whitehill et al. (2017) examine a variety of prediction architectures and find
thatwhile same-course (post hoc) prediction architectures optimistically bias estimates
of model performance, in situ proxy labeling achieves comparable performance. He

14 educational-technology-collective.github.io/morf/.
15 https://datastage.stanford.edu/.

123

https://datastage.stanford.edu/


Student success prediction in MOOCs 179

et al. (2015) find that “prediction models trained on a first offering work well on a
second offering”, with such models achieving an AUC of 0.8 using only 1 week of
data when predicting on a future iteration. Evans et al. (2016) shows that users engage
with later runs differently from the way they engage with earlier runs in an analysis of
44 MOOCs, suggesting that such transfer would be less effective than with a model
trained on another non-first run (i.e., training on second iteration, predicting on third
iteration). Model transfer to future courses is also evaluated in Brooks et al. (2015a),
which achieves anAUCof 0.9while predicting on future runs of aMOOC.Theseworks
collectively suggest that same-course training and prediction may optimistically bias
results, but that accurate prediction on future iterations is possible and that multiple
methods for such prediction exist.

Of course, real-time intervention is not the goal of all predictive modeling research
in MOOCs. In the case of many explanatory/inferential works, the goal of model-
fitting is simply data understanding. In such cases, the issues highlighted above are
less relevant. However, for any taskswhich do indeed require real-timemodel-fitting or
prediction—which appears to be the “gold standard” for predictive research inMOOCs
and the ultimate goal of many of the works surveyed—utilizing techniques which are
adaptable to such contexts is a necessity. Without using these architectures, we are left
wonderingwhether the predictive performance achievedbymanyotherwise-promising
works could be achieved under the constraints of real-time prediction or model-fitting.

Our goal in this section is not to suggest that prior work is useless, or even
incorrect—we believe that the search for effective predictive modeling techniques
is an iterative process that requires initial experimentation and exploration, even in
laboratory contexts which do not fully mimic real-world constraints—but it certainly
suggests a promising avenue for future research, which might be able to test previous
feature engineering and modeling approaches, re-architected in ways that allow for
model training and prediction in “live” environments.

An additional methodology that appears particularly useful for efficient real-world
model training are incremental or pre-training approaches,which can efficiently update
predictive models to incorporate new data without requiring additional passes over
previously-seen data. Such techniques have been demonstrated in the incremental
training utilized in Kotsiantis et al. (2010), Sanchez-Santillan et al. (2016); and in
the pre-training techniques used to incrementally grow the neural network models in
Whitehill et al. (2017). We hope that future research adopts the use of incremental
techniques, which would allow for smoother adoption of predictivemodels in practice.

Just as Sect. 5.1 highlighted how a large portion of the work surveyed fails to
consider or model massive segments of the learner population, this section indicates
how much of this research may fail to provide accurate or actionable insights for the
segments it does evaluate.

6 Opportunities for future research

Several of the trends and methodological gaps outlined above directly suggest areas
for future research. As we note above, this includes work which examines large,
unfiltered, andmulti-MOOC experimental populations; work applying rigorousmodel
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evaluation and comparison tests to identify effective feature engineering techniques
and algorithms for prediction (including, especially, when such approaches may be
statistically indistinguishable in terms of their predictive performance); and work
utilizing training and prediction contexts which match those in which a predictive
model might be deployed in a live course environment.

Our survey identifies four research gaps in addition to those described above: (1)
adoption of temporalmodeling techniques, (2) bridging the “two cultures” of statistical
modeling in MOOC research, (3) theory-buildingMOOC research, and (4) modeling
long-term student success in MOOCs.

6.1 Utilizing temporal modeling

There is a clear temporal element to prediction in MOOCs: many courses are offered
using a cohort-based model (for example, with new cohorts beginning at monthly
intervals); course activity and learning takes place over time, with most courses lasting
several weeks; data is collected incrementally, with little usage data being available
during the early phases of a course and more data collected as it progresses; learner
behavior evolves over the duration of a MOOC. This suggests that models which
can account for and explicitly model the complex, time-dependent patterns in MOOC
learner data are likely to form a more complete picture of this behavior than those
which ignore the element of time. However, research to date has been limited in its
use of temporal modeling techniques.

Most prior research which does account for temporality falls into two broad groups.
(1) One group utilizes “weekly” feature sets to broadly capture separate collections
of features over time periods, typically for each week of a course. Many of the works
surveyed here utilize this approach, e.g. Kloft et al. (2014), Vitiello et al. (2017a).
Xing et al. (2016) refer to this as “appended” feature extraction. While this type
of modeling does capture different features over time, it does not explicitly model
these features as being captured sequentially, and treats those predictors as otherwise
independent when they are actually related across time steps (Wang and Chen 2016).
(2) A second broad class of work utilizes survival models. This includes Rosé et al.
(2014), Wen et al. (2014b), Yang et al. (2013, 2014, 2015). Many of the methods used
in these experiments, as the Cox Proportional Hazards Model for survival analysis
and logistic regression, are forced to make the statistical assumption that student
dropout probability at different time steps is independent (Wang and Chen 2016)—an
assumption which is almost certainly violated, and which limits these models’ ability
to model correlation between student dropout probabilities at different steps over time.

Attempts to capture more complex temporal patterns in MOOC data have been
limited. Hidden Markov Modeling has been used for some dropout models, most
notably in Balakrishnan and Coetzee (2013), but this is a generalized form of sequence
modeling, not strictly a time-series methodology. A nonlinear state space model is
used to capture longer-term information in student interaction sequences for dropout
prediction in Wang and Chen (2016). Some work has explored the use of higher-order
time series data, utilizing n-grammodels of feature sets or behavioral patterns (Brooks
et al. 2015a; Li et al. 2017). Fei and Yeung (2015) explore the use of a form of complex
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neural network model, a Long Short-Term Memory (LSTM) Network. This LSTM
model takes as inputs sequences of weekly feature vectors, and is used to predict
dropout in this context.

Future work which explores these approaches more deeply [such as by exploring
other survival modeling approaches such as random survival forests (Ishwaran et al.
2008)], or which applies other time series approaches, would be valuable and is likely
to uncover both informative patterns in data, and gains in predictive modeling perfor-
mance, improving both the accuracy and theory-building components of futuremodels.

6.2 Bridging the “two cultures”

Another significant opportunity for futureMOOC research isworkwhich unites highly
complex, predictive models with techniques for understanding and inspecting the rela-
tionships these models uncover, increasing the theory-buildingness and actionability
of these models without sacrificing accuracy.

In his seminal 2001 essay Statistical Modeling: The Two Cultures, Leo Breiman
argued that the field of statistics was (at the time) divided between a data modeling
culture, concerned primarily with understanding the underlying data generation pro-
cesses and which emphasized the use of inspectable, generative models such as linear
regression; and an algorithmic culture, concerned with maximizing predictive accu-
racy and employing sophisticated (but largely uninterpretable) “black box” machine
learning models to this end. At the time, Breiman felt that the algorithmic culture
was a troublingly small minority of statisticians—a concern which may ring less true
today when considering the rapid growth and adoption of machine learning which
has at least partially penetrated the field of academic statistics. However, Breiman’s
distinction between these two cultures is still, to a large extent, visible in the respective
techniques employed by each. This division between the data modeling culture and
the algorithmic culture is clear to any reader of predictive modeling research. Both
cultures contribute useful knowledge in the context of MOOCs: data models have
the potential to inform course design and learning theory by revealing the underlying
associations and mechanisms driving student outcomes; algorithmic models have the
potential to support real-time earlywarning and intervention systemswith highly accu-
rate predictions even in the absence of interpretable knowledge about the underlying
factors behind these predictions.

However, recent research in other fields, including the broader machine learning
research community, has begun to erode the distinction between these two cultures,
bringing us closer to having the best of both. Several streams of work have begun
to make highly complex models more interpretable, gaining theory-building bene-
fits without sacrificing the accuracy of those models. These include approximation
approaches, which fit complex models and then approximate the final model using
more interpretable linear (Ribeiro et al. 2016) or decision tree models (Craven and
Shavlik 1996), and perturbation approaches, which are used to inspect and explain
individual predictions (Baehrens et al. 2010). This work, along with others, suggests
that predictive models are increasingly able to capture the benefits sought by the
algorithmic culture—notably, accurate predictions of student success in MOOCs—
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while also achieving the interpretability or theory-building results sought by the data
modeling culture. Both Breiman and Domingos note that these more complex mod-
els typically fit the data better (which is why they are preferred by the algorithmic
culture) (Breiman 2001; Domingos 1999)—and therefore an interpretable version of
these models is likely to be more informative and useful than the simple models tra-
ditionally used by data modelers, even for their own goals (understanding parameters
and relationships in the data). Domingos argues that the notion that simpler models
are preferable because simplicity is a goal in itself amounts to a mere preference for
simple models (which implies that the data modeling culture and the algorithmic cul-
ture simply have different preferences, but that neither approach is more “correct” a
priori). Domingos (1998, 1999) demonstrates that there is no trade-off between accu-
rate and theory-building models: the notion that more interpretable models achieve
better performance is demonstrably false under most conditions.

Future research in predictive modeling in MOOCs should continue to explore tech-
niques for making complex, highly accurate models more interpretable, following the
lead of initial work by Nagrecha et al. (2017). This work is particularly salient in the
case of educational student models, where the goal of such research is not only to
understand the mechanisms underlying these models but also to intervene to support
students, and to actively support their achievement of certain outcomes (learning, sus-
tained engagement, etc.). With a clear understanding of the patterns and relationships
predictivemodels are identifying inMOOCdata, many stakeholders inMOOCswould
be able to act on this insights to support students. This includes course instructors, plat-
form developers, course designers and content producers, support staff, community
mentors, and even learners themselves. Furthermore, detailed inspection ofmodels can
help identify and reduce algorithmic bias in predictive studentmodels (Luo et al. 2015).

The dual advances in model interpretability and model fit do not, of course, absolve
researchers from carefully considering the ethical implications of student models. To
the contrary, as predictive models of student success improve and the use of their
use becomes more widespread, the ethical implications of using these models—and
the responsibility of those constructing them—will grow. Learning analytics and edu-
cational data mining researchers must consider and advocate for the use of student
success models in ways that promote fairness, equity, and reductions in achievement
gaps across student groups. This includes considering the training data itself and how
(and whether) models based on this data might transfer to make predictions in other
contexts or student populations, and working to prevent “autopropaganda” driven by
such models (Slade and Prinsloo 2013).

6.3 Contributing to a theory of learning in MOOCs

In terms of the three dimensions of predictive modeling research illustrated in Fig. 2
(accurate, actionable, and theory-building), the area where the research above has
made the most limited contributions, relative to its potential, is in its contributions to
theory, in particular to learning theory.

We previously outlined how MOOCs represent a highly distinct domain for learn-
ers. While MOOCs require the development of novel learning theory for these novel
contexts—or at least the validation that traditional learning theory from brick-and-
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mortar environments, or similar digital learning environments such as e-learning, still
hold in MOOC contexts. Predictive modeling research often utilizes an exceptional
amount of learner data which is rarely available in more traditional educational envi-
ronments. This data could be used not only to construct accurate or actionable models,
which the field is making progress toward, but thosewhich actually contribute to learn-
ing theory in novel ways. Indeed, a growing body of research has actively questioned
whether the predictive component of predictive models is their most important con-
tribution, instead arguing for more educational research which uses granular learning
data to contribute to learning theory, not just make predictions (Ho 2017).

To date, this contribution has been limited, and while predictive modeling research
may not always be able to support the types of rigorous causal inference necessary to
serve as a foundation for learning theory, there is certainly more that such research
can do to contribute to the development of learning theory. This includes grounding
future predictive modeling efforts in known theoretical paradigms of student learning
or engagement (e.g. Tinto 2006).

6.4 Understanding long-term learner success

Connecting learners’ course performance to anything outside the course is a chal-
lenge for future MOOC research to address. Little research has explicitly evaluated
the connection between MOOC performance and future career or academic success
[Wang (2017) is a notable exception]. Studies which evaluate real-world outcomes
or link MOOC students to out-of-MOOC outcomes would be especially informative,
because it is likely that such research more closely measures the outcomes we seek for
many MOOC learners: it would be desirable for MOOC learners to experience career
advancement and academic success outside of the platform, not for them to simply
watch all course videos or persist until the end of a course (even though these are also
useful, and relevant, outcomes in many cases). As we have previously mentioned, pri-
vacy protections toMOOC data and a reliance on optional learner questionnaires serve
as barriers to this type of research.Using a diversity of available outcomemeasures (i.e.
both engagement and learning) to evaluate existing predictive models would at least
provide some indication of the all-encompassing learner success that these long-term
outcomes represent, and is tractable with existing research methods and data.

7 Conclusion

In less than a decade, MOOCs have emerged as a global source of educational oppor-
tunity and have reached millions of learners. Predictive models have been central
to understanding user engagement and outcomes in MOOCs, and a diverse space
of features and modeling techniques have been explored to this end. This includes
diverse data sources, experimental subpopulations, feature extraction methods, mod-
eling algorithms, prediction architectures,model evaluation techniques, and prediction
outcomes. However, to date, little synthesis, survey, or critical evaluation of this work
has been published. Such synthesis is necessary to survey the existing research and
scientific consensus (or lack thereof) emerging in the field, and to direct future work.
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Furthermore, these student models can be used to actively support future MOOC
learners, but only if they are sufficiently accurate, interpretable, and generalizable.
This novel educational context requires a corresponding shift in research methodolo-
gies, which this survey demonstrates have achieved only incomplete adoption on the
field of student success modeling to date. The MOOC research community stands
to benefit substantially from the adoption of many of the techniques outlined in this
paper.

In particular, our recommendations based on this work are that the field needs to
move towards more robust model evaluation; broader experimental populations; and
realistic experimental contexts. This will encourage growth toward building accurate,
actionable, and theory-building student success models. Actionable models in par-
ticular are lacking in current MOOC research. We envision student success models
supporting personalized, targeted interventions in MOOCs which are able to deliver
effective support for students to reach a variety of goals. This vision can only be
achieved, however, by closing the gaps outlined above: ineffective model evaluation
will lead to poor generalizability and inaccurate identification of at-risk students;
restrictive experimental sub-populations will yield models which are not applicable to
large segments of learners; the use of unrealistic experimental contexts will produce
models that are simply not operationalizable, requiring datawhich is not available at the
time of prediction. However, if these barriers are overcome, MOOCs can truly deliver
on their promise of providing effective educational opportunities for all learners.

This is a critical time for the community to consider, and to repair, these method-
ological gaps.MOOCs, and thefield ofMOOCresearch, is transitioning fromanascent
domain into a fully-fledged field of research, with canonical findings and scientific
consensus beginning to emerge on key questions. However, failing to recognize where
these gapsmay affect scientific knowledgemay result in this consensus forming around
findings which have limited generalizability, methodological flaws, or practical barri-
ers to implementation. Each of these gaps can be filled by adopting small changes to
methodology in future research, and they can be further ameliorated by the construc-
tion of tools which enable researchers to follow these procedures without constructing
the infrastructure themselves. In particular, we believe that future research which (a)
replicates prior research using more rigorous statistical evaluation techniques, and (b)
provides research tools and frameworks which support replication and benchmarking
of published research, would be valuable contributions.

At the pace of current developments, we are optimistic about future developments
in the field, and eager to see the impact these developments will bring to a generation
of future MOOC learners.
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Table 8 Abbreviations used in literature review matrix (Table 7)

Field Common abbreviations

Data source CLICK=clickstream; FORUM= forum posts;
ASSGN=assignments; SIS= student information system;
LMS= learning management system; DEM=demographics;
SURV= survey; META=course metadata

Algorithms LR= logistic regression; RF= random forest; OLS=ordinary least
squares linear regression; SURV= survival model; NN=neural
network; NB=naive bayes; L2LR=L2-penalized logistic
regression; ENS=ensemble; BN=Bayesian network

Performance metrics ACC=accuracy; AUC=area under receiver operating
characteristic curve; PREC=precision; REC= recall; K=kappa;
CORR=correlation; DEV=deviance

Prediction architecture T/T= independent train/test split; CV=cross-validation;
CORR=correlation analysis; RESAMP= resampling;
SSS= stratified shuffle split; * also used to code regression
models where performance is evaluated directly on training data

References

Adamopoulos, P.: What makes a great MOOC? an interdisciplinary analysis of student retention in online
courses. In: Proceedings of the 34th International Conference on Information Systems, pp. 1–21 (2013)

Agudo-Peregrina, Á.F., Iglesias-Pradas, S., Conde-González, M.Á., Hernández-García, Á.: Can we predict
success from log data in VLEs? Classification of interactions for learning analytics and their relation
with performance in VLE-supported F2F and online learning. Comput. Hum. Behav. 31, 542–550
(2014)

Alexandron, G., Ruipérez-Valiente, J.A., Chen, Z., Muñoz-Merino, P.J., Pritchard, D.E.: Copying@ scale:
using harvesting accounts for collecting correct answers in a MOOC. Comput. Educ. 108, 96–114
(2017)
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