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Abstract This paper describes the design and ecologically valid evaluationof a learner
model that lies at the heart of an intelligent learning environment called iTalk2Learn.
A core objective of the learner model is to adapt formative feedback based on stu-
dents’ affective states. Types of adaptation include what type of formative feedback
should be provided and how it should be presented. Two Bayesian networks trained
with data gathered in a series of Wizard-of-Oz studies are used for the adaptation
process. This paper reports results from a quasi-experimental evaluation, in authentic
classroom settings, which compared a version of iTalk2Learn that adapted feedback
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based on students’ affective states as they were talking aloud with the system (the
affect condition) with one that provided feedback based only on the students’ per-
formance (the non-affect condition). Our results suggest that affect-aware support
contributes to reducing boredom and off-task behavior, and may have an effect on
learning. We discuss the internal and ecological validity of the study, in light of ped-
agogical considerations that informed the design of the two conditions. Overall, the
results of the study have implications both for the design of educational technology
and for classroom approaches to teaching, because they highlight the important role
that affect-aware modelling plays in the adaptive delivery of formative feedback to
support learning.

Keywords Affective learning · Bayesian networks · Formative feedback ·
Learner modelling

1 Introduction

The aim of our research is to enhance a student’s learning experience and performance
in a digital learning environment by providing intelligent support that goes beyond
cognitive aspects and takes into account the student’s affective state.

It is well understood that affect interacts with and influences the learning pro-
cess (Kort et al. 2001; D’Mello et al. 2014; Baker et al. 2010). While positive affective
states (such as surprise, satisfaction or curiosity) are known to contribute towards learn-
ing, negative affective states (including frustration and disillusionment) can undermine
learning. For example, Woolf et al. (2009) describe how students can become over-
whelmed (very confused or frustrated) during learning, which may increase their
cognitive load (Sweller et al. 1998). In addition, Baker et al. (2010) found that certain
types of affective states, such as boredom, were associated with poor learning and with
gaming the system. However, when students are in a positive affective state, learning
can be improved. For example, Csikszentmihalyi (1990) argues that students in a state
of heightened engagement, that he calls in flow, are absorbed in the learning material
and are thus primed for learning.

Any learning experience is typically full of transitions between positive and negative
affective states. For example, while a student may be interested in a particular learning
task, any misconceptions might lead to frustration or disillusionment as the student is
forced to reconsider his or her existing understanding [in a process Piaget (1951) calls
accommodation]. However, if this negative affective state is reconciled, the student
might once again become deeply engaged with the task. D’Mello et al. (2014), for
example, elaborate how confusion, which initially might be thought of as a negative
affective state, is likely under certain conditions to promote learning. It is important
therefore, to deepen our understanding of the role of affective states for learning, and
to be able to move students out of states that inhibit learning.

Pekrun (2006) discusses achievement emotions, affective states that arise in a
learning situation and that are linked to learning, instruction, and achievement. In
the iTalk2Learn project, we focussed on a subset of these achievement emotions:
enjoyment [which we extend to in flow, by which we mean highly engaged, after
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Csikszentmihalyi (1990)], surprise, frustration and boredom. We also add confusion,
which has been identified elsewhere as an important affective state during learning both
for tutor support and for learning in general (Porayska-Pomsta et al. 2008; D’Mello
et al. 2014).

Carenini et al. (2014) describe how effective support in learning situations needs
to answer three main questions: (i) When should the support be provided? (ii) What
should the support contain? And, (iii) how should the support be presented? In the
iTalk2Learn project, the main support to be provided is formative feedback, text mes-
sages that the system sends during the learning experience (Shute 2008; Hattie and
Timperley 2007) in response to student problem-solving actions (Vanlehn 2006) or
other interactions (rather than messages that only summatively acknowledge the out-
come of the learning experience).

Other research works, including our own (Mavrikis et al. 2008; Holmes et al. 2015)
and more recently that of Basu et al. (2017) in this issue, focus on how formative
feedback in open-ended or exploratory environments can scaffold learners to perform
a particular learning task. However, in addition to providing context-specific guidance,
our formative feedback also aims to enhance student affective states—i.e., to move
students from nominally negative affective states (such as frustration or boredom)
into nominally positive affective states or to maintain positive affective states. In
this context, we addressed Carenini’s latter two questions by means of two Bayesian
networks: one to determinewhat the feedback should contain (i.e. the type of formative
feedback), the second for detecting how the formative feedback should be presented.
Both networks were trained with data from a series of Wizard-of-Oz studies where
we investigated the impact of feedback type and presentation on student affective
states (c.f. Grawemeyer et al. 2015a, b). We learned that a student’s affective state can
be enhancedwhen the feedback type is matched to the affective state of the student. For
example, when students were confused, affect boosts and specific instructive feedback
were most effective. In addition, adapting the presentation of the feedback according
to the students’ affective state is also important, especiallywhen the student is confused
or frustrated. For these particular affective states, high-interruptive feedback (a pop-up
window that has to be dismissed before the student can proceed) was more effective
in enhancing the student’s affective state, especially as the cost of not viewing the
feedback is likely to be a negative affective state. However, when students were in
flow, low-interruptive feedback (a glowing lightbulb which indicates that feedback is
available) was preferred by students (Mavrikis et al. 2013).

While most research to date in this area responds to a student’s affective state by
adapting the feedback message (e.g. by including empathetic statements to motivate
students (VanLehn et al. 2014; Forbes-Riley and Litman 2011a; D’Mello et al. 2010),
we instead adapt the type of feedback (whether it is, for example, instructional feed-
back or a reflective prompt), with the feedback content being based on the student’s
interaction (mainly their performance). In addition, instead of adapting the delivery
of the feedback using for example an empathetic pedagogical agent (e.g. Conati and
MacLaren 2009; Rowe et al. 2009; Woolf et al. 2009), we adapt how interruptive the
feedback is for the student (whether low- or high-interruptive).

In summary, in this paper we report on the development of intelligent formative
support and its evaluation. The system includes a learner model that contains infor-
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mation about the student’s affective state which is used to tailor the type of formative
feedback and its presentation according to the student’s affective state. It includes
two Bayesian networks, one for each adaptation (feedback type and feedback pre-
sentation), which were trained with data from earlier Wizard-of-Oz studies in which
their predictive accuracy was tested. We subsequently built on that earlier work and
incorporated the Bayesian networks in a comprehensive online system for the learn-
ing of fractions. In Rummel et al. (2016), we report on a summative evaluation of
that system that focuses on learning efficacy. In this paper, we draw on elements of
that summative evaluation to consider the potential of a learner model in relation to
enhancing student affective states and learning. We evaluated the intelligent support
and its learner model by comparing two conditions in real classroom settings. The first
condition adapted feedback based on the student’s affective state (the affect condition),
whereas the second condition used only the student’s performance (by which wemean
the creation and manipulation of fractions representations) to provide feedback (the
non-affect condition).

In the next section, we provide an overview of related literature. Section 3 describes
the development of the affect-aware intelligent support. Section 4 outlines the eval-
uation of the support. Results of the evaluation are reported in Sect. 5. A detailed
discussion that highlights the importance of affect-aware learner modelling is pro-
vided in Sect. 6, while Sect. 7 concludes the paper.

2 Related work

Different computational approaches have been adopted in order to detect affective
states in intelligent learning environments. These include speech-based approaches
(e.g. Cowie et al. 1999; Vogt and André 2005), using information from facial expres-
sions (e.g. Kaliouby and Robinson 2004), keystrokes or mouse movements (e.g. Epp
et al. 2011), or physiological sensors (e.g. Lang et al. 1993; Vyzas and Picard 1998;
Nasoz et al. 2003). Recent research (such as D’Mello and Graesser 2010; Paleari et al.
2009;Wöllmer et al. 2010; Jiang et al. 2011) focuses on a combination of input stimuli
to detect affective states.

Other research has investigated how a student’s affective state or motivation can be
detected or taken into account when providing appropriate learning material or moti-
vational feedback. Early examples include Soldato and Boulay (1995) and Mavrikis
et al. (2007) that look into a student’s level of confidence and how much effort the
student puts into performing a learning task as detected by the interaction with the
learning environment (such as help requests or task completion).

Jaques et al. (2014) describe how they use gaze data to predict boredomand curiosity
withinMetaTutor, a hypermedia environment designed to foster student self-regulated
learning processes in the domain of biology (Azevedo et al. 2009). Another exam-
ple is Santos et al. (2014), which shows that personality and self-efficacy impact
the effectiveness of motivational feedback and recommendations. Affective states
were detected from mouse and keyboard interactions as well as from physiological
parameters. Additionally, students self-reported their affective states through the Self-
Assessment Manikin emotion assessment tool (Bradley and Lang 1994) and free-text
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forms. The affective states that were detected included boredom, surprise, confusion,
and loss of motivation. Wizard-of-Oz studies were used to investigate how motiva-
tional feedback and recommendations could be adapted based on students affective
states.

Conati and MacLaren (2009) developed a model of emotions (a dynamic Bayesian
network) based on students’ bodily expressions in an educational game. The system
used six emotional states: joy, distress, pride, shame, admiration and reproach. A
pedagogical agent provided support according to students’ emotional state detected
by the system and their personal goal (such as wanting help, having fun, learning
maths, or succeeding by oneself).

Another example is Shen et al. (2009), which also reports the use of Bayesian net-
works to classify students’ affective states. Here biophysical signals, such as heart rate,
skin conductance, blood pressure, and EEG brainwaves, are used for the classification.
The detected affective states (interest, engagement, confusion, frustration, boredom,
hopefulness, satisfaction, and disappointment) are included in an affective learner
model. The system draws on the affective learner model and uses recommendation
rules to determine appropriate interventions, such as providing an example when the
student is confused or delivering a video/music when the student is bored.

Woolf et al. (2009) developed an affective pedagogical agent which is able tomirror
a student’s emotional state and alter the agent’s feedback by providing for example, an
empatheticmessage. These researchers usedhardware sensors and facialmovements to
detect student emotions. This system discriminated between seven emotions: high/low
pleasure, frustration, novelty, boredom, anxiety, and confidence. Different machine
learning techniques were applied for the classification, including Bayesian networks
and Hidden Markov models.

Similarly, Rowe et al. (2009) describe a narrative-centred learning environment,
Crystal Island, which takes into account students’ actions, locations, goals, and phys-
iological information to detect their affective states. Naïve Bayes, decision trees, and
support vector machines were used for the affect detection. The learning environment
included virtual agents, which were able to express empathy based on the student’s
affective state. Another example is the AutoTutor tutoring system (D’Mello et al.
2005, 2010), which holds conversationswith students in computer literacy and physics
courses. The system classifies emotions based on natural language interaction, facial
expressions, and gross body movements. The focus is on three emotions: frustration,
confusion, and boredom. The classification is used to respond to students via a con-
versation through an embodied pedagogical agent and to adapt both the dialogue and
the facial expression of the agent according to the student’s affective state.

The promising results of the aforementionedwork inspired us to investigate a related
system thatwouldfit our context.Methodologically, perhaps themost relevantwork for
our context is that of Forbes-Riley and Litman (2011a), who developed a physics text-
based tutoring system,UNC-ITSPOKE. This used spoken dialogue (acoustic–prosodic
and lexical features) to classify student uncertainty. Based on the student’s perfor-
mance and level of uncertainty, the dialogue-based feedback is adapted. To develop
their system, Forbes-Riley and Litman (2011a) used a corpus collected from a wiz-
arded version of a spoken dialogue computer tutor (Forbes-Riley and Litman 2011b),
where detection and natural language understanding was performed by a human in
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order to train a model to detect uncertainty. Our aim was to extend this approach to
accommodate several affective states [as previously investigated by D’Mello et al.
(2010)].

Meanwhile, several researchers have investigated adapting feedback to students’
affective states. VanLehn et al. (2014) describe an affective meta tutor, which is able
to determine what kind of motivational feedback should be provided to students based
on their affective states and log data. Physiological sensors (facial expression camera
and a posture-sensing chair) and a regression model are used to calculate whether a
student is engaged, confused, or bored. A decision tree uses the current affective state
of the student and log data to decide what motivational feedback message should be
provided by an embodied pedagogical agent. In general, these adaptations tend to be
focused on changing the text within a message (e.g. VanLehn et al. 2014) or changing
the dialogue (e.g. Forbes-Riley and Litman 2011a; D’Mello et al. 2010) to include,
for example, empathetic statements designed to motivate the students. Interestingly,
research has shown that there is a gender difference in how empathetic feedback is
perceived by students—for example, Burleson and Picard (2007) show that female
students respond more positively to empathetic feedback than male students; while
Vail et al. (2015) showed that female students were more engaged and less frustrated
when provided with affect-aware support than male students. Other research (e.g.
Conati and MacLaren 2009; D’Mello et al. 2005, 2010; VanLehn et al. 2014; Woolf
et al. 2009; Rowe et al. 2009) have altered how feedback is delivered to students, for
example through the use of a pedagogical agent capable of expressing empathy.

Finally, as explained in D’Mello and Kory (2015), most affect-aware systems up
until now have been tested or evaluated only in lab-based contexts and very controlled
settings.

In our research we extend the literature by (i) exploring how different types of feed-
back (e.g. reflective prompts or instructive feedback) can be adapted to a student’s
affective state, (ii) how the presentation of feedback can be adapted to a student’s
affective state by taking into account how interruptive that feedback is, and (iii) under-
taking an ecologically-valid evaluation of an affect-aware learning environment in real
classrooms.

3 The iTalk2Learn platform

Our research involves iTalk2Learn, an intelligent learning platform for children aged
8–12years old who are learning fractions, which is designed to detect, analyse and
respond to children’s speech in real time in order to improve learning. Specifically,
the platform’s aim is to foster the robust learning of fractions by providing activities
that help develop conceptual knowledge, in an exploratory learning environment called
Fractions Lab, which are interleaved with structured practice activities that help foster
procedural knowledge, in an ITS calledWhizzMaths (Mazziotti et al. 2015). The over-
all sequence of exploratory learning and structured practice activities is determined by
a student needs analysis (SNA) component. The SNA sequences the tasks according
to the student’s level of challenge, which is inferred from the student’s interaction
using the amount of feedback provided as a key indicator, in order to avoid students
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Fig. 1 Exploratory learning environment (Fractions Lab)

being over- or under-challenged, which may trigger boredom or anxiety [as described
by Acee et al. 2010]. In Rummel et al. (2016), we elaborate on the importance of
interleaving exploratory learning and structured practice tasks and the potential of this
interleaving for robust learning. In addition, in Holmes et al. (2015) we explore mul-
tiple dimensions of formative feedback provided while students are undertaking the
learning activities in our exploratory learning environment. In this paper, however, we
focus on how that intelligent support can usefully be made affect-aware (in Sect. 4.3
we explain how the sequence of exploratory learning and structured practice tasks was
configured to address the aims of the evaluation described in this paper).

Figure 1 shows the Fractions Lab interface. Students are given a task (displayed at
the top of the interface) which they explore and attempt to solve by choosing fraction
representations (from the right hand sidemenu) which the student thenmanipulates (in
the work area at the centre of the interface) in order to solve the given task. The large
button at the top of the work area provides access to a variety of tools (to compare,
add and subtract fractions). Adaptive feedback (which is well-known to be essential
in exploratory learning environments, Kirschner et al. 2006) is provided to students
based on their interactions with the system and their affective states.

Figure 2 shows the architecture of the adaptive support. Drawing on our previous
work (Gutiérrez-Santos et al. 2012), the support comprises three main layers: the
analysis layer, the reasoning layer, and the feedback generation layer.

The analysis layer includes an affective state detector which has several inputs:
a student’s interaction with Fractions Lab, the output of a perceived task difficulty
classifier (PTDC) which uses prosodic cues in the student’s speech to predict the level
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Fig. 2 Architecture of the adaptive support

of challenge for the current student, and the output from speech recognition software
which identifies words in the student’s speech. The analysis layer infers the student’s
affective state from these various inputs. The student’s detected affective state is then
stored, together with the student’s interaction data, in the learner model.

Building on the analysis layer, the reasoning layer decides what feedback should
be provided. This layer contains an affective state reasoner, implemented as a Bayesian
networkwhich draws on information from the learnermodel, in particular the student’s
affective state, to decide what type of feedback should be provided to the student. The
resulting feedback type is then stored in the learnermodel and provided to the feedback
generation layer.

The feedback generation layer includes an affective state presentation model
implemented as a second Bayesian network, which draws on the learner model to
decide how the feedback should be presented to the student. The information that
is accessed from the learner model includes the student’s affective state as well as
interaction data. The Bayesian network decides if the feedback should be provided in
a low-interruptive or in a high-interruptive way.
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We incorporated two Bayesian networks in order to accommodate the main archi-
tecture of the intelligent support.

When the feedback is provided depends on the student’s interactions with the learn-
ing environment. If a student’s inactivity passes a threshold time (which currently,
based on the outputs of Wizard-of-Oz studies (Grawemeyer et al. 2015a, b), is set at
4 s), the intelligent support starts the reasoning process, drawing on the learner model,
and calculates what type of feedback and how that feedback should be provided.

3.1 A hypothetical use case scenario

To illustrate the flow of information in the intelligent support, centred on the learner
model, we next present a use case scenario.

Sarah, a primary school student who is learning about fractions, is using the
iTalk2Learn system. Currently, she is working in Fractions Lab, exploring a task
about the sum of two fractions, 1

2 and 1
3 . She begins by creating a representation of

1
2 , an interaction which (like all interactions with representations and tools in Frac-
tions Lab) is logged in her learner model. Sarah moves the mouse to create another
representation, remarking as she does so “I think this’s easy”. The speech recognition
component has also been continuously monitoring, transcribing what Sarah says and
providing the words to the analysis layer. Easy is a keyword that is classified with
a high probability of being in flow, and so the affect detection component classifies
Sarah as in flow—more information that is saved in the learner model.

Sarah continues by creating a second fraction of 1
3 , but then stops, thinking about

what to do next. This lack of interaction is noticed by the intelligent support which
triggers it to start reasoning about her interactions and her affective state in order
to deliver appropriate formative feedback. Based on the interaction data stored in the
learnermodel (that reveals she has yet to receive any feedback) and her current affective
state (in flow), the first Bayesian network (the affective state reasoner) calculates that
there is a probability of 1.0 that a reflective prompt will keep her in flow). Accordingly,
the system chooses a reflective prompt, which asks her to reflect on her actions, “Why
did you use this method?”

Next, again based on interaction and affect data stored in the learner model, the
second Bayesian network (the affective state presentation model) calculates how the
message should be presented. For Sarah, it determines that there is a 0.3 probability
that providing feedback in a high-interruptiveway will keep her in flow, whereas there
is a probability of 0.7 that providing her feedback in a low-interruptive way (as an
illuminated light bulb that shemight or might not choose to access) will do so. Accord-
ingly, the light bulb starts to glow (indicating that feedback is available). However,
Sarah ignores the glowing light bulb—perhaps because she is in flow. Instead, she
creates another fraction, 2

5 , suggesting that she has a misconception about how two
fractions with different denominators are added together. Nevertheless, she puts all
three representations into the Fractions Lab addition tool to check her calculation and
then is confused to see that it is incorrect. She sighs, “This is so difficult…”. Again,
the speech recognition component provides the words to the analysis layer. Difficult
is a keyword that is classified with a high probability as confusion, and so the affect
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detection component classifies Sarah as confused which again is saved in the learner
model.

Meanwhile, Sarah continues to interact withFractions Lab, exploring other ways to
solve the task but,when she has run out of ideas, she stops again, unsurewhat to do next.
Once more, this lack of interaction is noticed by the intelligent support and triggers it
to start to reason about the information that had been stored in the learner model. The
learner model reveals that she did not view and did not follow themost recent feedback
and that her current affective state is confusion. Again, the first Bayesian network (the
affective state reasoner) calculates which feedback type has the highest probability of
improving her affective state. It determines that there is a probability of 0.6 that an
affect boost will enhance her affective state, while there is a probability of 0.7 that
instructive feedback will do so. Accordingly, the system chooses instructive feedback
(instructing her to look at the denominators). Next, again based on interaction and
affect data stored in the learnermodel, the secondBayesian network (the affective state
presentation model) calculates how the message should be presented. It determines
that there is a probability of 0.4 that providing feedback in a low-interruptiveway will
improve her affective state,whereas there is a 0.6 probability that providing feedback in
a high-interruptivewaywill do so. Accordingly, this time, Sarah’s instructive feedback
message is presented in a high-interruptive pop-up window.

After other similar interactions, speech acts, Bayesian network calculations, and
targeted formative feedback, Sarah finally completes her exploration of the task, and
has discovered that 12 plus

1
3 equals

5
6 . At this point, she receives an affirmation prompt

that acknowledges her success, and a final reflective prompt that takes into account the
misconception detected by the system and asks her to reflect on what she has achieved.
When she finishes this final reflection, a Student needs analysis component (Mazziotti
et al. 2015), determines that Sarah should move to the Whizz Maths environment,
where she engages in a series of related structured tasks to practise what she had
just explored and learned (the importance of matching denominators when adding
fractions).

The following sections provide detailed information about the different components
of the iTalk2Learn platform.

3.2 Learner model

The learner model spans all three main components and can be seen as the heart of the
intelligent support. It includes the following information about the current student:

– Feedback data

– The conditional probability table for the Bayesian network of the affective state
reasoner, which is used to determine what type of feedback should be presented
to students (please see Sect. 3.4 for more details).

– The feedback messages that have been provided to the student.
– The type of feedback provided to the student (e.g. reflective prompts or instruc-
tive feedback).

– How feedback that was provided to the student was presented (interruptive or
non-interruptive).

123



Affective learning: improving engagement and enhancing. . . 129

– Student data
– The student’s affective state (based on the student’s speech and interaction and
calculated by the affective state detector).

– The student’s progress with the task (whether the student is still exploring or
has completed it).

– The student’s interactions with the learning environment (whether a represen-
tation has been created, selected or manipulated).

– Whether or not the feedback was viewed by the student.
– Whether or not the student followed the feedback.

The learner model is constantly being updated with information about the student
and the feedback that has been provided to the student. The learner model is used by
the various components to determine what type of support should be provided to the
student and how that support should be provided.

3.3 Analysis layer (affective state detector)

The student’s affective state is detected (inferred) from the student’s speech and inter-
action with Fractions Lab. Data gathered in several Wizard-of-Oz studies (Mavrikis
et al. 2014; Grawemeyer et al. 2015a, b) were used as the basis for our affect detection,
as follows:

– The speech recognition software (Sail-Labs 2016) detects whether students are
speaking or not and produces an array of spoken words. This array is used to
detect keywords that are associated with a particular affective state. During the
Wizard-of-Oz studies, we recorded what students said and used this to determine
keywords that can provide some insight into the student’s affective state. The
selection of keywords was based on how often a particular word was spoken by
the participating students when in a particular affective state and how unique the
word was for that affective state. For example, from detected words such as ‘that’s
easy’, or ‘this is good’ the system infers the affective state of in flow, whereas from
detected words such as ‘this is hard’, or ‘tricky’ the system infers confusion. The
‘Bag of Words’ method (e.g. Schuller et al. 2005) and a naive Bayes classifier was
used to classify the student’s affective state (Grawemeyer et al. 2014).

– What we call thePTDC, extracts prosodic features (such as ‘um’s and pauses) from
the student’s speech and uses speech and pause histograms to infer whether the
student is under-, appropriately- or over-challenged (Janning et al. 2014, 2016).
The prosodic features were extracted from the voice recordings of the Wizard-
of-Oz studies, based on two independent coders who classified a student’s level
of challenge by taking into account the student’s speech and interaction with the
learning environment.

– The student’s interaction with the platform is used to add evidence towards an
affective state. For example, whether or not the student viewed and followed the
most recent feedback is used to calculate whether the student seems to be in flow
or confused. For instance, if a student has viewed and followed the most recent
feedback, the system infers that this student is in flow. However, if the student
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has viewed but not followed the most recent feedback, the system infers that the
student is confused. In addition, the student’s interaction is used in combination
with the output of the PTDC to classify students as either frustrated or bored.

The affective state detector determines the student’s overall affective state using
weights given to the different inputs. Based on what was learned in our Wizard-of-Oz
studies, the highest weight is given to the keyword detection, followed by PTDC and
then interaction. Figure 3 shows a flow diagram of how the overall combined affect
is calculated. For example, when a student has not viewed the most recent feedback,
we infer the following affective states:

– frustration (1) if the student is over-challenged and the interaction classification
shows that the student is not confused (i.e. is in flow) and no keyword has been
detected; or (2) if a keyword has been detected that is associated with frustration.

– in flow (3) if the student is appropriately challenged and the interaction classifica-
tion classifies the student as not confused and no keyword has been detected; or
(4) if a keyword has been detected that is associated with being in flow; or (5) if
the PTDC does not produce any results (when there was not enough speech data,
or the speech data was too noisy, for the PTDC to infer the student’s level of chal-
lenge), no keyword has been detected and the interaction classification classifies
the student as in flow.

– boredom (6) if the student is under-challenged and the interaction classification
classifies the student as not confused and no keyword has been detected; or (7) if
a keyword has been detected that is associated with boredom.

– confusion (8) if the interaction classification identified the student as confused and
no keyword was detected; or (9) if a keyword was detected that is associated with
being confused.

– surprise (10) only if a keyword was detected that is associated with surprise.

3.4 Reasoning layer (affective state reasoner)

The affective state reasoner uses the information from the student model to decide
what type of feedback should be provided. We explore different types of feedback
that are known from the literature (see Sect. 2) to support students in their learning
and that fit our context: affect boosts, instructive feedback, other problem solving
support, reflective prompts, talk aloud prompts, task sequence prompts, and affirmation
prompts.

Table 1 shows an example feedback message for each feedback type.
The following different feedback types are provided while the student is exploring

the task:

– AFFECT BOOSTS As described in Woolf et al. (2009), affect boosts can help to
enhance a student’smotivation to solve a particular learning task.Here,we included
prompts that acknowledged that a task is challenging in order to encourage the
student to keep trying. During the evaluation, affect boosts were provided only in
the affect condition.
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Fig. 3 Calculation of students affective state based on a combination of speech [keywords and prosodic
features (PTDC)] and interaction
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Table 1 Examples of feedback types

Feedback type Example

AFFECT BOOSTS Well done. You’re working really hard!

AFFIRMATION prompts The way that you worked that out was excellent. Now
go to the next task

INSTRUCTIVE feedback Use the comparison box to compare your fractions

OTHER PROBLEM SOLVING feedback What do you need to do now, to complete the fraction?

REFLECTIVE prompts What do you notice about the two fractions?

TALK ALOUD prompts Please explain what you are doing

TASK SEQUENCE prompts Are you sure that you have answered the task fully?
Please read the task again

– INSTRUCTIVE feedback This feedback provided detailed instructions about what
action to perform in order to solve the task.

– OTHER PROBLEM SOLVING feedback This aimed to help students tackle a prob-
lem by challenging their thinking instead of specifying next steps (a subset of
‘Socratic’ formative feedback, Holmes et al. 2015).

– REFLECTIVE prompts Reflecting on task performance and self-explanation can
be viewed as a tool to help students address their own misunderstandings (Chi
2000) and as a ‘window’ into their thinking.

– TALKALOUDpromptsThese build on the hypothesis that automatic speech recog-
nition can facilitate learning, which is based mostly on educational research that
has shown benefits of verbalization for learning (e.g. Askeland 2012). During the
evaluation, talk aloud prompts were provided only in the affect condition.

When a student has finished the task, the following additional feedback is provided:

– AFFIRMATION promptsThis feedback is provided when students have completed
the task successfully, in order to indicate that theyfinished the task and shouldmove
to the next task.

– FINAL REFLECTIVE prompts That encourage students to reflect on a certain
aspect of the task based on the students’ performance.

– TASK SEQUENCE prompts These are provided when students attempt to move to
the next task without having completed the current task. Students are encouraged
to first finish the current task or to ask for help but, in order to also allow them to
proceed if they are stuck, students are able to move on to the next task with their
third try.

Based on the information from the learner model and the affective state reasoner,
the system decides what type of feedback should be provided to the student.

The affective state reasoner is a Bayesian network based on data gathered in our
Wizard-of-Oz studies (Grawemeyer et al. 2015b) that investigated the impact of the
different feedback types on student affective states. In those studies, students were
given a series of fractions tasks andwere providedwith feedback, of the types described
above, by the researchers (the ‘wizards’) as if it was being provided by the system.
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The decision about what type of feedback to provide was based on a script. For more
information, the reader is referred to Mavrikis et al. (2014).

Following these studies, we trained a Bayesian network using human-annotated
data (265 data points) during and after the study as described in Grawemeyer et al.
(2015b). Figure 4 shows the Bayesian network of the affective state reasoner on
which we employed a tenfold cross-validation that showed promising results (accu-
racy=79.25%; Kappa=0.50; recall true=0.62; recall false=0.87) and encouraged
us to proceed to the full implementation of the system.

The affective state reasoner receives the current affective state of the student (based
on the student’s speech and interaction) as well as information about whether the
student followed the most recent feedback. For each feedback type, the Bayesian
network predicts whether the feedback type is able to improve a student’s affective
state. For example, enhancing a student’s affective state from frustration to confusion,
or from confusion to in flow. This is used to determine which feedback type will be
most effective at enhancing the affective state.

Table 2 shows an extract of the conditional probability table (CPT) used by the
affective state reasoner with example values. The CPT is stored in the learner model.

3.5 Feedback layer (affective state presentation model)

The aim of the affective state presentation model is to present the feedback in a way
that enhances the student’s affective state. In our learning environment, the feedback
can be presented in either a low-interruptive way, by highlighting a light bulb at the
top of the interface that indicates feedback is available that the student might or might
not choose to access (see Fig. 5), or in a high-interruptive way, by providing a pop-up
window that has to be dismissed before the student can proceed (see Fig. 6).

We conducted a further Wizard-of-Oz study that investigated if there was a differ-
ence in a student’s affective state when the different types of feedback were either
presented in the low-interruptive way, with the light bulb, or in the high-interruptive
way,with the pop-upwindow (Grawemeyer et al. 2015a). Two independent researchers
used video and speech recordings to annotate the students’ affective states after the
Wizard-of-Oz study (Kappa=0.52, p < .001). The data from the study was used

Fig. 4 Bayesian network of the affective state reasoner
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Table 2 Example extract of a CPT used by the affective state reasoner

Student current
affective state

Student followed
previous feedback

Feedback type Student enhanced affective state

False True

In flow F Affect boosts 0.3 0.7

Confusion F Affect boosts 0.4 0.6

frustration F Affect boosts 0.3 0.7

Boredom F Affect boosts 0.5 0.5

Surprise F Affect boosts 0.5 0.5

In flow F Instructive feedback 0.2 0.8

Confusion F Instructive feedback 0.3 0.7

Frustration F Instructive feedback 0.4 0.6

Boredom F Instructive feedback 0.3 0.7

Surprise F Instructive feedback 0.6 0.4

. . .

. . .

. . .

In flow T Reflective prompts 0.0 1.0

Confusion T Reflective prompts 0.6 0.4

Frustration T Reflective prompts 0.2 0.8

Boredom T Reflective prompts 0.5 0.5

Surprise T Reflective prompts 0.0 1.0

to train a Bayesian network that is able to predict whether the adaptation of the pre-
sentation of the feedback can improve a student’s affective state. Figure 7 shows the
Bayesian network of the affective state presentation model. This network is similar to
the Bayesian network of the affective state reasoner (please see Fig. 4), except that the
node feedback type is replaced by the node feedback presentation. The dataset con-
tained 266 cases. Each comprised the student’s affective states that occurred before and
after feedbackwas presented and the student’s interaction data (whether or not themost
recent feedback had been followed). As before, with this data set and employing a ten-
fold cross-validation,we have encouraging results (accuracy=82.38%;Kappa=0.53;
recall true=0.65; false=0.87).

The affective state presentation model receives the affective state of the student as
well as information about whether the most recent feedback had been followed. Based
on this, the presentation of the feedback most likely to enhance the affective state of
the student is inferred.

4 Evaluation

Asmentioned, we were particularly interested in the potential of our learner model for
helping adapt support to promote student learning and engagement. The iTalk2learn

123



Affective learning: improving engagement and enhancing. . . 135

Fig. 5 Low-interruptive feedback. The light bulb at the top of the interface glowing in order to indicate
that feedback is available

Fig. 6 High-interruptive feedback. A pop-up window that includes a feedback message
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Fig. 7 Bayesian network of the affective state presentation model

project ran a series of formative and summative ecologically valid evaluations with
students in real classrooms that considered a range of questions. In the summative
evaluation (among other questions that are tangential to this paper) we asked whether
feedback thatwas tailored to a student’s affective states enhanced the student’s learning
experiences and performance. To address this question, we evaluated the system and
its intelligent support in a quasi-experimental study in whichwe compared one version
that included the affect-aware support (the affect condition) with a version where the
affect-aware support was switched off (the non-affect condition).

We investigated the following sub-questions:

– Can a student’s speech and interaction be used effectively as inputs in the detection
of students’ affective states?

– Is there a difference (between the affect and non-affect conditions) in how often
feedback is accessed (based on the different feedback presentationmechanisms)?

– Are students in more positive affective states when feedback is tailored to their
affective state?

– Are students less off task when feedback is tailored to their affective state?
– Do students have higher learning gains when feedback is adapted to their affective
state?

4.1 Participants

Eighty students took part in the summative evaluation, although for several reasons
our final dataset comprises 77 students. These participants were all primary school
students, aged between 8 and 10years old, recruited from two schools in the UK (one
in the north of England, one in the south). Parental consent, for students’ involvement
in the study, was obtained for all participating students.

4.2 Conditions

The experimental condition (affect or non-affect) determined the presence or absence
of the affective learner model. In turn, this determined what evidence was available to

123



Affective learning: improving engagement and enhancing. . . 137

Table 3 Feedback type and presentation in the affect and non-affect conditions

ADAPTATION MECHANISM FEEDBACK PRESENTATION
FEEDBACK
TYPE

AFFECT
CONDITION

NON-
AFFECT
CONDITION

AFFECT
CONDITION

NON-
AFFECT
CONDITION

Talk aloud Delivered when
the student has
not spoken for
30 seconds.

n/a High-
interruptive

n/a

Affect
boosts

Determined by
the Bayesian
model in the
affective state
reasoner.

n/a Determined by
the Bayesian
network in the
affective state
presentation
model.

n/a

Instructive Rules take into
account
interaction and
previous
feedback

Low-interruptiveOther
problem
solving
Reflective
Reflective
(final)

Delivered when the student
has completed the task. High-interruptive

Affirmation
Task
sequence

Delivered when the student
presses the ‘next’ button but
has not completed the task.

the analysis, reasoning and feedback layers (as described in Sect. 3), and the type of
feedback and its presentation.

Table 3 summarises the differences in the adaptation mechanism and feedback
presentation between the affect and the non-affect conditions. The difference between
the conditions will be discussed below.

4.2.1 Affect condition

In the affect condition, the student’s affective state was used to determine what type
of feedback should be provided and how that feedback should be presented, in order
to improve that affective state.

When students were working with Fractions Lab, the Bayesian model in the affec-
tive state reasoner (see Sect. 3.4) was used to provide the student with AFFECT
BOOSTS, INSTRUCTIVE feedback, OTHER PROBLEM SOLVING support, or
REFLECTIVE prompts. How this feedback was presented (high- or low-interruptive)
was determined by the Bayesian network in the affective state presentation model (see
Sect. 3.5).

If students did not speak for 30 s, the system provided a TALK ALOUD prompt.
This was always provided in a high-interruptive way as it was important in the affect
condition that students talked aloud so that the system could detect the student’s
affective states from their speech.

When students attempted to move on to the next task (by clicking the ‘next’ button)
without having finished the current task, the system provided a TASK SEQUENCE
prompt (as described in Sect. 3.4). This prompt alsowas provided in a high-interruptive
way to improve the chance that the student did not miss it (a high-interruptive prompt
has to be responded to before a student can continue).

When students finished the Fractions Lab task they received an AFFIRMATION
prompt and a final REFLECTIVE prompt. Both of those prompts were provided in a
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high-interruptive way in order to let the student know that the task is completed and
to ask the student to reflect on their overall task performance.

4.2.2 Non-affect condition

In the non-affect condition, a narrower range of message types were provided than in
the affect condition. In addition, how feedback was presented to students also differed.

Only student performance was used to determine the type of feedback provided
to students in the non-affect condition, which meant that (because of the absence
of the affective learner model) AFFECT BOOSTS were not provided and (because
speech was not analysed) TALKALOUD prompts were not provided. TALKALOUD
prompts were also not provided because asking the students to talk without them
perceiving any benefit could have been found intrusive by some students (Mavrikis
et al. 2014; Grawemeyer et al. 2015a, b).

In the non-affect condition, INSTRUCTIVE feedback, OTHER PROBLEMSOLV-
ING support, and REFLECTIVE prompts were provided in a low-interruptive way,
as research (Mavrikis et al. 2013) has shown that students can find it very disruptive
when they are interrupted during a learning activity.

TASK SEQUENCE prompts were provided when students attempted to move on
to the next task but had not yet finished the current task (this is the same as in the affect
condition). This prompt was presented in a high-interruptive way as a direct response
to student’s clicking the ‘next’ button as described above.

In the sameway as in the affect condition,AFFIRMATIONandfinal REFLECTIVE
prompts were provided when students finished the task. These prompts were provided
in a high-interruptive way in order to let the students know that the task is completed
and to ask them to reflect on their overall task performance.

4.3 Procedure

The participating students were roughly stratified, according to previous teacher
assessments of the children’s mathematical ability, and then randomly allocated to two
sub-groups (approximately equal in size, with each group having approximately the
same number of high,middle and low achieving students). The first group (N=41)was
assigned to the affect condition: the students were given access to the full iTalk2Learn
system, which uses the student’s affective state to determine the type of feedback and
its presentation, as described above. The second group of students (N = 36) was
assigned to the non-affect condition: these students were given access to a version of
the iTalk2Learn system in which feedback is based on the student’s performance only.

Two series of sessions, one for each condition, were undertaken over several days in
each school (in the school computer rooms, each of which was equipped with around
30 individual computers) at a variety of times of day which were balanced as far as
possible between conditions. At the beginning of each session, students completed
an online questionnaire that assessed the students knowledge of fractions (the pre-
knowledge test—see Sect. 4.4 below). This was followed by 40min during which the
students engaged with fractions tasks.
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For the purposes of this evaluation (to ensure that each student experienced a variety
of exploratory and structured practice tasks), the SNA was configured to deliver two
Fractions Lab exploratory tasks followed by four Whizz Maths structured practice
tasks, a sequence that was repeated for the 40min duration. The task provided to each
student was based mainly on the student’s performance in the previous task (which
was calculated on the basis of the amount of feedback provided: the more feedback
provided in the previous task, the worse the student’s performance was inferred to
be). To enable students to proceed if they did not know what to do in a particular
task, students were able to exit that task without finishing it but only after having
been presented twice with a TASK SEQUENCE prompt that asked them to check and
complete the task.

After the 40min, students completed a second online questionnaire (the post-
knowledge test) that again assessed their knowledge of fractions and also asked them
about their experience using the system and emotional responses.

While students engaged with the system, a randomly allocated subset of students
(affect condition: N = 25; non-affect condition: N = 22) sat at computers in the
centre of the computer room in a way that allowed researchers to walk all around
them, were monitored using the Baker–Rodrigo Ocumpaugh monitoring protocol
(BROMP, Ocumpaugh et al. 2012). The researchers who undertook the coding, and
who were trained in the BROMP method, recorded the student affective states and
task behaviour data using the human affect recording tool (HART) Android mobile
app.

The BROMP specifies strict guidelines for how affective states and task behaviour
are detected. Each student is observed by a trained observer for up to 20s. The stu-
dent’s body posture, facial expression and engagement with the learning environment
are interpreted to infer whether the student is in flow, confused, frustrated, bored,
surprised, or delighted. At the same time, the student’s behaviour towards the task
(whether the student is off task, or on task, or having an on task conversation, or
having an on task reflection, or is gaming the system) is also monitored. At the
end of the observation, the coder’s interpretation of the student’s affective state and
behaviour is entered into the HART Android mobile app, and the researcher turns
to the next student. The use of the app restricts the observers to the predetermined
categories above (with the student being in in flow and on task as the default). How-
ever, when the affective state of the student was unclear to the observer, they are able
to apply an unknown state (a questionmark in the app). This process is continuously
repeated, thus logging multiple data points for each student, for the duration of the
session.

4.4 Knowledge tests

Two isomorphic versions of six fractions problemswere designed (see Fig. 8). Students
were randomly allocated one version at the first time of measurement (pre-test) and the
other version at the second time of measurement (post-test). The students received one
point for each correctly answered problem and consequently obtained an aggregated
score that we used as an overall measure of fractions knowledge. Internal consistency
of this scale was α = 0.57 at both pre- and post-test.
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Fig. 8 Example extract from the pre- and post- questionnaires

5 Results

5.1 Tasks provided to students

As described earlier, students were provided with a sequence of exploratory tasks (in
the learning environment Fractions Lab) interleaved with structured practice tasks
(in the learning environment Whizz Maths). In the affect condition, students engaged
in 263 Fractions Lab tasks (M = 6.41, SD = 2.61) and 416 Whizz Maths tasks
(M = 10.15, SD = 4.60). In the non-affect condition, students engaged in 293
Fractions Lab tasks (M = 10.15, SD = 2.92) and 450 Whizz Maths tasks (M =
12.50, SD = 4.81). Independent t tests revealed significant differences between the
conditions in the number ofFractionsLab tasks [t(75)=−2.738, p = .008, d=−0.63)
and the number of Whizz Maths tasks [t(75)=−2.182, p = .032, d=−0.50).

5.2 Affect detection

As described earlier, in the affect condition, a student’s affective state was detected
automatically by the system (henceforward, automatic-detection), by analysing the
student’s speech and interaction. In addition, the student’s affective states were mon-
itored and noted by two researchers using the BROMP method and HART mobile
app (henceforward, human-detection). As described earlier, only a subset of students
(affect condition: N=25; non-affect condition: N=22) were monitored in respect to
their affective states.

The affective states that were both automatically and human-detected were in flow,
confusion, frustration, boredom, and surprise. An additional affective state, delight,
was human-detected. During the human-detection, the researchers were restricted to
these 6 affective states (with the student being in flow as the default). However, when
the affective state of the student was unclear to the researcher (during the human-
detection), a “?” was annotated.
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Both sets of data (from the automatic and human detection) include time stamps,
identifying when a particular affective state was detected. This allowed the two sets of
data to be matched (within a 10s window). There was a moderate agreement between
the automatically-detected affective states and the human-detected affective states,
Kappa=0.522, p < .001.

The difference between automatic- and human-detection was partly due to the
affective state (delight) that was detected by the researchers and annotated with the
HART tool but not detected automatically by the system. In addition, we knew from
our Wizard-of-Oz studies that surprise and boredom are difficult to detect auto-
matically. Excluding those affective states, there was a higher agreement between
the automatically-detected affective states and the human-detected affective states,
Kappa=0.643, p < .001. However, this is lower than the commonly accepted Kappa
threshold of 0.70 and it is important to note two caveats. First, if delight, surprise
and boredom are excluded, we are ignoring some important aspects of human skills in
affect detection. Second, the use of the BROMP protocol suggests that the annotated
affective states may be less transient than they probably are. Nevertheless, given the
authentic setting and our overall goal we consider this results acceptable but recognise
that there is room for improvement. From a pedagogical point of view, we take into
account that the effect of a misclassification will probably have a relatively low cost to
a student’s learning (first, a misclassification does not always lead to feedback being
delivered or seen by a student and, second, any inappropriate feedback is unlikely to
have a long term detrimental effect).

Table 4 displays the number of automatically-detected students affective states
that matched the human-detected affective states and (in parentheses) the ‘precision’
of each detector, that is the percentage of automatically-detected states that agreed
with the human-detection. In our interpretation of the results we consider ‘recall’ (the
percentage of correct detections of a state over the total number of cases in our dataset)
even though this data is limited here because the ‘gold standard’ human-detected cases
are sparse. Nevertheless, recall can help us judge the relative contribution of each
component in the combined classification as well as the relative completeness of the
whole system.

As mentioned earlier, keywords were used to detect all five different affective states
whereas the PTDC component uses prosodic features to classify students as either
under-, over- or appropriately challenged. The output from the PTDC were matched
to the human-detected affective states as follows: under-challenged was matched to
boredom, appropriately challenged to in flow, and over-challenged to confused. The
interaction data included whether the student viewed the most recent feedback and
whether the student followed that feedback. This information was used to calculate the
probability that a student was either in flow or confused and, in combination with the
PTDC, to determine whether students were frustrated or bored (as shown in Fig. 3).

The figure in parentheses gives the precision of the automatic detectors, the per-
centage of the automatically-detected states that were correct (i.e., matched the
human-detected affective state). When keywords were detected, the match with the
human-detected student affect was very high (in flow: 100.0% precision; confused:
96.7% precision). Unfortunately, however, as we further discuss in Sect. 6, keywords
were not detected that often (recall in flow: 16.2%; recall confused: 63.7%). The detec-
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Table 4 Comparison of human- and automatically-detected student affective states

Affective state BROMP annotation Automatically-detected

Keywords PTDC Interaction Combined

In flow 222 36 (100%) 139 (92.7%) 198 (82.5)% 187 (86.2%)

Confused 91 58 (96.7%) 87 (48.9%) 73 (59.8%) 79 (67.9%)

Frustrated 5 0 (0.0%) n/a n/a 4 (28.6%)

Bored 37 0 (0.0%) 8 (36.4%) n/a 4 (80.0%)

Surprised 4 0 (0.0%) n/a n/a 0 (0.0%)

Fig. 9 Feedback types provided in the affect and non-affect condition

Table 5 Statistical details of the feedback types provided

Feedback type Mean SD t test

Affect Non affect Affect Non affect

AFFECT BOOSTS 0.80 0.0 1.40 0.0 –

AFFIRMATION 2.51 5.33 2.09 2.41 t(75)=−5.50, p = .000, d=−1.25

INSTRUCTIVE 10.32 37.14 7.04 11.75 t(55.703)=−11.94, p = .000, d=−2.769

OTHER
PROBLEM
SOLVING

6.05 0.97 2.55 2.21 t(74.991)=−9.36, p = .000, d=2.129

REFLECTIVE 7.80 5.53 3.49 2.21 t(68.501)=−3.46, p = .001, d=0.846

TALK ALOUD 17.46 0.0 5.92 0.0 –

TASK SEQUENCE 3.12 6.78 2.60 4.22 t(56.679)=−4.50, p = .000, d=1.044
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tion of in flow by the PTDC (based on prosodic features of speech) was satisfactory
(precision: 92.7%; recall: 62.6%). The precision of the detection of in flow from the
interaction data was not as high (82.5%), however, the recall of in flow from the inter-
action data was high (89.2%). Combining the different sources did not lead to the
highest precision or recall values for all of the different affective states, such as in flow
(precision: 86.2%; recall: 84.2%). However, the combination of speech and interaction
enabled the detection of frustration (precision: 28.6%; recall: 80.0%) and boredom
(precision: 80.0%; recall: 10.8%).

5.3 Adapting the feedback type

In the two experimental conditions, different approaches were used to determine the
type of feedback provided to the students. As described in Sect. 4.2, in the affect
condition the feedback type was adapted based on the students’ affective states as
they answered the task, while in the non-affect condition the feedback type was
based on students’ performance. In addition, two feedback types (AFFECT BOOSTS
and TALK ALOUD prompts) were only provided in the affect condition (please see
Table 3).

In the affect condition, a total of 1971 feedbackmessages were provided to students
(on average 48.07 messages per student, SD=14.58, min=25, max=92). In the non-
affect condition, a total of 2007 messages were provided to students (on average 55.75
messages per student, SD=11.77, min=34, max=88). Figure 9 shows the different
feedback types provided in each condition.

In order to investigate differences between the two conditions (affect and non-
affect), a multivariate ANOVA was conducted for the different feedback types. Using
Pillai’s trace, there was a significant effect of the condition on the number of different
types of feedback messages received, V=0.929, F(5, 71)=187.045, p = .000, η2p =
0.929. Separate t tests on each feedback type were conducted. Alpha level was set to
0.01 following the Bonferroni correction for five comparisons. The t tests revealed
significant effects of adapting feedback type based on affect.

AFFIRMATION prompts, INSTRUCTIVE feedback and TASK SEQUENCE
prompts were provided less often in the affect condition than in the non-affection
condition. In contrast, OTHER PROBLEM SOLVING support and REFLECTIVE
prompts were provided more often in the affect condition than in the non-affect con-
dition. As described earlier, AFFECT BOOSTS and TALK ALOUD prompts were
only provided in the affect condition. See Table 5 for statistical details.

The reason why many more INSTRUCTIVE feedback messages were provided in
the non-affect condition can be seen in the different aims of the two conditions. While
the aim of the non-affect condition is to support students to reach a solution (based on
the student’s performance), the aim of the affect condition is not only to help student’s
solve the task, but also to improve a student’s affective state. This can explain the
larger amount of INSTRUCTIVE feedback messages in the non-affect condition, as
the student is supported to reach a solution (or to perform a particular sub-task for this
solution) through instructive feedback.
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It is worth noting that intrinsic systematic differences between the two conditions,
like differences in student affect, behaviour and/or learning, may have been introduced
simply by monitoring and responding to affect rather than necessarily individualising
the response to each student’s affective states. We elaborate on this in Sect. 6.6.

5.4 Responses to low-interruptive feedback

We were also interested in exploring whether there was a difference in the stu-
dents’ behaviour when offered low-interruptive feedback (i.e. whether or not the
student clicked the light bulb). In the affect condition, students were provided with
389 low-interruptive messages (M=9.49, SD=3.551); while in the non-affect con-
dition, students were provided with 1441 low-interruptive messages (M=40.03,
SD=12.098) (the difference being due to the way in which the low-interruptive feed-
back was provided in the two conditions as explained in Sect. 4.2). When feedback
was low-interruptive, students could ignore the light bulb and therefore not see the
feedback. In the affect condition, students ignored 74 of the low-interruptive feedback
messages (M=1.80, SD=2.076). In the non-affect condition, students ignored 448
of the low-interruptive feedback messages (M=12.44, SD=10.814). In percentage
terms, the students in the affect conditionweremore likely to view the low-interruptive
feedback (81%) than students in the non-affective condition (69%).A t test showed that
this difference was a medium effect size and was statistically significant, t(75)=2.40,
p = .019, d=0.55. However, the difference in the rate of viewing and ignoring
low-interruptive feedback between the two conditions may result from the greater
frequency of low-interruptive feedback in the non-affect condition.

5.5 Affect and task behaviour

As described earlier, for a subset of students in both conditions (affect condition:
N=25; non-affect condition: N=22) the students’ affective states and task behaviour
were annotated by researchers using the Baker–Rodrigo Ocumpaugh monitoring pro-
tocol (BROMP) and the HART Android mobile app (Ocumpaugh et al. 2012). This
human detected affect data was used for further analysis as described below.

5.5.1 Human-detected affect using BROMP

Figure 10 shows the different affective states that were annotated using the BROMP
protocol.

A multivariate ANOVA using Pillai’s trace showed a significant effect of adaptive
support on the affective states overall, V=0.268, F(5,41)=3.006, p = .021, η2p =
0.268. In both conditions, studentsweremainly in flow. Thiswas followedby confusion
and boredom. Only rarely were students frustrated, delighted, or surprised. Follow-
up t tests showed that the effect of affect adaptation was statistically significant only
for boredom (please see Table 6 for statistical details, statistically significant result
highlighted in bold font), which was only half as frequent in the affect condition as in
the non-affect condition.
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Fig. 10 Affective states annotated using the BROMP protocol (during the evaluation sessions in both
conditions)

5.5.2 Task behaviour using BROMP

Figure 11 shows the different task behaviours that were annotated using the BROMP
protocol.

A multivariate ANOVA using Pillai’s trace showed a significant effect of adaptive
support on task behaviour overall, V=0.226, F(4, 42)=3.071, p = .026, η2p =
0.226. In both conditions, students were mainly on task. Fewer students had an on
task conversation, were off task, or reflecting on the task. Only seldomly were students
gaming the system. Follow-up t tests showed that the effect of affect adaptation was
significant only for off-task behaviour. Off task behaviour was only half as frequent
in the affect condition as in the non-affect condition. Please see Table 7 for statistical
details (statistically significant result highlighted in bold font).

5.6 Affect, task behaviour and performance

In the pre- and post-test questionnaire, studentswere scored according to howwell they
answered questions about fractions. In order to investigate if there was a relationship
between affect, task behaviour and performance, we correlated the variables from the
human-detected affect data (annotated with BROMP) with the post-test scores, while
controlling for pre-test scores. However, there were no significant partial correlations
of affect or task behaviour variables with the post-test scores.
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Table 6 Statistical details of students’ affective states

Affective state Mean SD t test

Affect Non affect Affect Non affect

Bored 9.74 20.38 14.01 12.41 t(45)=−2.739, p= .009, d=−0.81

Confused 27.41 27.69 23.87 17.87 t(43.94)=−0.046, p = .964, d=−0.01

Delight 0.85 0.00 2.11 0.00 t(24.00)=2.011, p = .056, d=0.80

In flow 59.78 48.91 23.91 14.98 t(40.884)=1.891, p = .066, d=0.56

Frustrated 1.48 2.67 2.81 4.66 t(45)=−1.075, p = .288, d=−0.32

Surprised 0.74 0.35 1.52 1.64 t(45)=0.843, p = .404, d=0.25

Bold font indicates the statistical significant tests

Fig. 11 Student task behaviour annotated using the BROMP protocol (during the evaluation sessions in
both conditions)

Table 7 Statistical details of students’ task behaviour

Affective state Mean SD t test

Affect Non affect affect Non affect

Gaming 0.67 0.12 2.31 0.55 t(24.00)=1.445, p = .161, d=0.58

Off task 5.75 12.31 6.95 8.75 t(45)=−2.862, p= .006, d=−0.84

On task 81.87 80.67 14.92 10.65 t(43.268)= .320, p = .751, d=0.09

On task conversation 7.41 6.75 8.74 6.66 t(45)= .284, p = .778, d=0.08

On task reflection 4.31 0.27 12.29 1.25 t(24.568)=1.636, p = .115, d=0.60

Bold font indicates the statistical significant tests
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Fig. 12 Student learning gains in the affect and non-affect condition

5.7 Learning

Figure 12 shows the students’ performance when answering fractions tasks before
(in the pre-test) and after (in the post-test) they used the learning environment in the
different conditions.

In the affect condition, students increased their knowledge of fractions from
M=2.49 (SD=1.65) to M=3.83 (SD=1.46). In the non-affect condition, students
increased their knowledge from M=2.44 (SD=1.58) to M=3.33 (SD=1.71). A
repeated measures ANOVA showed a statistically significant increase of knowledge
in both conditions [F(1, 75)=43.94, p = .000, η2p = 0.369] but there were no signif-
icant differences between conditions at pre-test [t(75)=0.12, p = .91, d=0.03) or
at post-test [t(75)=1.37, p = .17, d=0.32), nor was there a significant interaction
effect of time and condition [F(1, 75)=1.81, p = .183, η2p = 0.024]. However, the
observed tendency of the affect condition to show higher learning gains is promising
and warrants further investigation.

To explore a possible moderation effect of prior knowledge, we also calculated the
conditional effects of condition on the post-test scores at the mean and plus/minus one
SD from the mean of the pre-test scores [as suggested by Hayes (2013)]. As can be
seen in Fig. 13, the effect of adapting support to affect is largest for students with low
scores on the pre-test. However, because of the small sample size, we do not formally
test this moderation model.
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Fig. 13 Student post-test scores (y-axis) in the affect and non-affect condition for low, middle and high
pre-test scores (x-axis)

6 Discussion

The aim of our research is to enhance a student’s learning experience and performance
in a digital learning environment by providing intelligent formative feedback which
takes into account students’ affective states. This section discusses the results of our
ecologically-valid evaluation in relation to our main research questions.

6.1 Can a student’s speech and interaction be used effectively as inputs in the
detection of students’ affective states?

The automatic-detection of students’ affective states was based on their speech and
interaction with the learning environment. This was compared to the human-detected
affective states that were annotated using BROMP with the HART mobile app (by
observing the students’ facial expressions, body posture and engagement with the
learning environment). When taking into account all of the automatically- and human-
detected affective states (in flow, confusion, frustration, boredom, surprise, and the
additional human-detected delight), the comparison revealed a medium agreement.
The difference is mainly due to the quality of the automatic-detection, particularly in
relation to surprise and boredom, which are difficult to detect automatically. This we
knew from the Bayesian model’s initial training, as there were far fewer instances.

However, when keywords were recognised in the students’ speech, affect detection
was very accurate (although unfortunately, in our ecologically valid setting, noisy real
classrooms, keywordswere recognised less often than in our previous lab tests). This is
where speech recognition precision plays an important role and future research could
aim to improve it.
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As described earlier, the PTDC uses a student’s speech to extract prosodic features
(such as ‘um’s and pauses) to infer whether the student was under-, appropriately-, or
over-challenged. As this classifier was not trained to detect affective states, it is not
surprising that the precision of its detection of confusion or boredom was not high.
However, although the recall of being in flow from the PTDCmodule was only 62.6%,
this module does provide useful input for the overall detection of students being in
flow (for which the overall precision was very high: 92.7%).

In contrast, detecting affective states from students interactions, revealed a high
recall of being in flow (89.2%), but a lower precision (82.2%). The main advantage of
detecting affective states from student interactions can be seen in combining it with the
speech data to detect affective states that were difficult to detect from speech only, such
as frustration or boredom. For example, the precision of detecting boredom with the
combined sources was 80.0%. However, the recall for boredom was only 10.8%. This
is not surprising as we did learn from our earlier studies (as described in Sect. 5.2) that
boredom is difficult to detect. Combining speech and interaction to detect frustration
revealed a high recall (80.0%) but low precision (28.6%).

Nevertheless, overall, our analysis confirms the potential of the automatic-detection
of affective states using information from speech [as identified in other work such as
Forbes-Riley and Litman (2011a)] and that the combination of interaction data is
promising and warrants further research.

6.2 Is there a difference (between the affect and non-affect conditions) in how
often feedback is accessed (based on the different feedback presentation
mechanisms)?

There was a difference between the conditions in how often low-interruptive feedback
was accessed (by clicking the light-bulb). More feedback was ignored by students in
the non-affect condition (a result that was statistically significant). The reason for this
might be that students who were in a particular affective state, such as confusion or
frustration, might have not realised that feedback was available. Grawemeyer et al.
(2015a) describe that when students are in a particular affective state, such as frustra-
tion, low-interruptive feedbackmight be ignored because of cognitive load. In contrast,
the presentation of the feedback in the affect condition took students’ affective state
into account.

However, the relatively large number of low-interruptive feedback messages in the
non-affect condition compared to the affect condition (N=1441 vs N=389) might
have had some additive effects such that, after a point, students became ‘immune’ and
systematically disregarded the low-interruptive feedback messages.

6.3 Are students in more positive affective states when feedback is tailored to
the their affective state?

In both conditions students weremainly in positive affective states rather than negative
affective states. Similar to Conati and MacLaren (2009), the reason might be the
nature of the learning environment (in our case, the exploratory nature of Fractions
Lab). However, there was a statistically significant difference in how often students
experienced boredom, with the students in the affect condition being bored less often
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than students in the non-affect condition. The reason for this can be found in the
way the feedback was adapted. Students in the affect condition received feedback that
varied more often than did those in the non-affect condition. In addition, the variation
of the feedback types within the affect condition was directly in response to student
affect. Finally, by adapting and altering how the feedback delivery interrupted the
student (interruptive or non-interruptive), students who are in negative affective states
can be supported to move into a positive affective state. In contrast, when feedback is
not adapted based on a student’s affective state, there is a risk that feedback is ignored
(especially and perhaps more critically when students are in a negative affective state).

While there are probably individual differences in the effectiveness of emotional
support (Santos et al. 2014), our trained Bayesian networks were able to enhance a
student’s learning experience by reducing boredom. However, it would be interesting
to explore whether there are individual differences in the effectiveness of our different
feedback types on a student’s affective states and learning.

6.4 Are students less off task when feedback is tailored to their affective state?

Students in both conditions were mainly on task, which again might be explained
by the nature or novelty of the exploratory learning environment, which appeared to
engage the students.

However, we found a difference between the conditions in off task behaviour. Stu-
dents in the affect condition were less off task than students in the non-affect condition,
a result that was statistically significant. Here, the adaptations of the feedback type as
well as the adaptation of the feedback’s presentation based on the student’s affective
state had an effect on their engagement with the task. As discussed in Baker (2007),
off-task behaviour is likely to be related to affective states. Hence, adapting feedback
to a student’s affective states can improve the student’s task behaviour.

In addition, results from Sect. 5.1 showed that students in the affect condition
encountered fewer exploratory (Fractions Lab) tasks and fewer structured practice
(Whizz Maths) tasks, results that were statistically significant. The results also show
that students in the affect condition made fewer attempts to exit an exploratory task
without finishing it (clicking the ‘next’ button and receiving a TASK SEQUENCE
prompt, as described in Sect. 5.3), which again was statistically significant. This sug-
gests that students in the affect condition were more engaged with the tasks and spent
more time on solving the task instead of trying to move quickly on to the next task
without finishing it. This also supports our result that students in the affect condition
were less bored and also less off task.

6.5 Do students have higher learning gains when feedback is adapted to their
affective state?

Student knowledge of fractions was improved in both conditions, but the difference
between the conditions was not statistically significant. Woolf et al. (2009) show that
a student’s on task behaviour leads to higher post-test scores, which, given that our
results show that students in both conditions were mainly on task, might explain
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why students in both conditions improved their knowledge of fractions. Nevertheless,
students in the affect condition had slightly higher learning gains, which although not
statistically significant is encouraging.

Our results support Forbes-Riley and Litman (2011a) who describe how the affect-
aware version of ITSPOKE led to higher learning than a control condition, although
the difference was only statistically significant for a subset of students (those who
received the most uncertainty adaptations).

Our results also showed that the difference between the conditions in respect to
learning gains was highest when students had low pre-test knowledge scores. This
supports research from D’Mello and Graesser (2013), which showed that learning
gains improved for students with low baseline knowledge when the system responded
to confusion.

As discussed above, the aim of our affect-aware support is to enhance a student’s
affective state—to move them from negative to positive affective states—in order to
improve student learning. Interestingly, our findings suggest that students who had
low pre-knowledge benefitted more from the affect-aware support. This is presum-
ably because these low-attaining students experienced more negative affective states
than those students who had high pre-knowledge, and thus there were more opportu-
nities for the system to move them to a positive affective state. This warrants further
investigation.

6.6 Limitations

The limitations of this study are due mainly to practical constraints and our decision
to test the system in a setting as ecologically valid as possible.

The first two limitations are technical. First, we deliberately restricted ourselves to
voice and limited interaction data only, our goal being to test how far these relatively
straightforward and easily scalable modalities could be taken. Unlike physiological
sensing (such as facial expression or galvanic skin responses monitoring), voice and
interaction data are perceived by teachers and parents as less intrusive and require only
basic technology in the classrooms: voice data only requires a microphone, which are
common in many schools, while the interaction data requires no additional client-
side technology. In fact, given the promising results from our research (we were able
to detect effectively students’ affective states automatically based on their voice and
interaction data only), this limitation is also a strength.

Second, although we developed the exploratory learning environment (Fractions
Lab) and therefore were able to control its intelligent support components, the struc-
tured practice environment (the pre-existing Whizz Maths) was effectively a black
box. Presumably, more direct access to structured practice interaction data would
have enabled a richer and more accurate affect diagnosis. Nevertheless, there is merit
to black-boxing the learning activity and establishing a protocol of communication
between that part of the system and the affect modelling and intelligent support. In our
case, it was sufficient for the environment to provide feedback counts and an analysis
of whether the feedback was followed and to expose different feedback types. How-
ever, it may be necessary in other cases to modify the actual text provided or provide
other adaptations to the whole environment, all based on affect.
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Other limitations are due to the methodological choices we had to make. First,
to obtain comparative data, human annotated affective states, we used the BROMP
methodology to collect observations of student affect during the sessions. This allowed
us to achieve ecological validity but reduced the size of the dataset for the evaluation
to a subset of the students in the class.

In addition, as with other similar studies in the field, there are reliability and validity
issues stemming from the fact that for part of the studywe rely on human observations.
For example, we were not able to fully hide the experimental condition from the
annotators—the setting and whether or not the students were overtly speaking could
have made this obvious and implicitly bias the annotations. However, both annotators
were trained in the BROMP method, and one of them was not fully aware of the
existence of different conditions nor the exact research questions. However, the high
agreement between the two annotators gives us confidence in the human observations.
Therewas also promising correlations between the human observations and the system
measurements, which again support the validity of the affect detection.

A final limitation, that challenges the internal validity of this study, concerned us
both at the design and analysis stages and relates to the direct comparability of our two
conditions (affect and non-affect). For various technical, practical and experimental
reasons, these had to differ inmany respects, such that ultimately it blurs the aspects that
are responsible for the effects that we have reported here. This is a well known issue in
evaluating interactive adaptive systems (c.f. Paramythis et al. 2010). Accordingly, we
followed a layered process to evaluate different aspects of the learner model, building
it on top of previously collected data (Grawemeyer et al. 2015a, b), and we internally
validated its robustness. Nevertheless, the non-affect condition necessarily restricted
other interactive aspects of the system. This was important in our case because we
wanted to maintain the ecological validity of the study and to ensure its pedagogical
underpinning.

For both ethical and pedagogical reasons, it was better to compare our affective
learning approach with the current state of play of interactive learning environments
(i.e. those that offer affect-agnostic supportive feedback). But this introduces an experi-
mental confound, because the affect condition had additional prompts to the non-affect
condition. Although we could have let the system provide, for example, prompts based
on random affect decisions, we know from our previous studies (Mavrikis et al. 2014;
Grawemeyer et al. 2015b) that asking students to speak for the sake of speaking with-
out them perceiving some impact would be problematic. Nevertheless, we consider
that this confound does not have an adverse effect on our efforts to determine the
potential impact of the affect-aware support since we see the design of the prompts
integral to the availability of affect modelling. Notwithstanding that, further research
is needed to tease apart any interaction effects.

7 Conclusion

We have developed an adaptive learning environment that provides intelligent forma-
tive feedback according to students’ affective states. Although affect detection is also
used as input for the recommendation of different learning activities (exploratory or
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structured practice, as described by Janning et al. 2014), in this paper, we focus only
on feedback type selection and presentation as direct manifestations of the system’s
learner model. Our system includes two Bayesian networks that are able to predict
the type and presentation of feedback that has the highest likelihood to improve a stu-
dent’s current affective state. The latter is inferred from a combination of a student’s
interaction with the learning environment and keywords and prosodic features as they
are talking aloud.

We evaluated our affect-aware intelligent formative support by comparing it to
a non-affect version, where feedback was provided based on students’ performance.
Althoughour results showonly a non-significant difference between theaffect andnon-
affect conditions on learning gains, the statistically significant increase of knowledge
in both conditions and the higher learning gains in the affect condition are promising,
have implications both for the design of educational technology and for traditional
teaching, and warrant further research.

During our evaluation, the students’ affective states and task behaviour were anno-
tated by observers. We have shown, this way, that the automatic-detection of the
students’ affective states correlates highly with the human-detected affective states.
Importantly, our results show that in the affect condition students were significantly
less bored than students in the non-affect condition. In addition, students in the affect
condition showed significantly less off task behaviour than students in the non-affect
condition. These are important findings and reaffirm common-sense assumptions, that
by responding appropriately to student affect, teachers (not just technologies) are
likely to encourage students in a more productive engagement, which in turn will lead
to better learning outcomes as boredom and off-task behaviour can have a negative
impact in learning.

Future work includes the refinement of the Bayesian networks and the detection of
student affective states from keywords, prosodic features and interactions (as shown
in Fig. 3) with the newly collected data. Also, it would be interesting to compare our
automatically-detected and human-detected affective states with student self-reports
of their affective states. While the human-detected and self-reports might both have
challenges, their triangulation would increase the trustworthiness of the automatic-
detection of affective states. We also plan to analyse our data further by looking in
depth at the relationship between a student’s affective states and interactions with the
learning environment, which includes detecting interaction patterns that are associated
with particular affective states. In addition, given the promising results of open learner
models (OLMs) on learning (c.f. Long and Aleven 2017), exploring the impact of an
open affective model would also be especially interesting.

Finally, the platform overall allows for further experimentation that can help tease
apart any interaction effects and explore related research questions and hypothesis on
the role of affect-aware modelling. This has implications in both the better design of
intelligent support systems but also for human teaching in that findings from such a
platformcan also informpedagogical strategies for responding appropriately to student
affective states.
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