
User Model User-Adap Inter (2015) 25:427–491
DOI 10.1007/s11257-015-9165-3

What recommenders recommend: an analysis
of recommendation biases and possible
countermeasures

Dietmar Jannach1 · Lukas Lerche1 ·
Iman Kamehkhosh1 · Michael Jugovac1

Received: 29 May 2014 / Accepted in revised form: 4 June 2015 / Published online: 25 July 2015
© Springer Science+Business Media Dordrecht 2015

Abstract Most real-world recommender systems are deployed in a commercial con-
text or designed to represent a value-adding service, e.g., on shopping or Social Web
platforms, and typical success indicators for such systems include conversion rates,
customer loyalty or sales numbers. In academic research, in contrast, the evaluation
and comparison of different recommendation algorithms is mostly based on offline
experimental designs and accuracy or rank measures which are used as proxies to
assess an algorithm’s recommendation quality. In this paper, we show that popular
recommendation techniques—despite often being similar when compared with the
help of accuracy measures—can be quite different with respect to which items they
recommend.We report the results of an in-depth analysis in which we compare several
recommendations strategies from different perspectives, including accuracy, catalog
coverage and their bias to recommend popular items. Our analyses reveal that some
recent techniques that perform well with respect to accuracy measures focus their
recommendations on a tiny fraction of the item spectrum or recommend mostly top
sellers. We analyze the reasons for some of these biases in terms of algorithmic design
and parameterization and show how the characteristics of the recommendations can be
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altered by hyperparameter tuning. Finally, we propose two novel algorithmic schemes
to counter these popularity biases.

Keywords Recommender systems · Bias · Evaluation

1 Introduction

1.1 Background

Ten years after the publication of a report on the extensive use of recommenda-
tion technology at Amazon.com (Linden et al. 2003), the provision of personalized
recommendation services has become a standard feature of modern e-commerce plat-
forms and various other types of software applications and services.

In practice, the success of such a recommendation service can be measured in dif-
ferent ways, depending on the goals that should be achieved. Linden et al. (2003),
for example, mention click-through rates and conversion rates as important measures
of success. In fact, a recommendation service can have an impact on several typical
measures from Web analytics and Internet marketing such as visit duration or cus-
tomer return rates. Many of these measures can correspondingly be used to assess
the system’s effects on the behavior of the visitors. Of course, one can also mea-
sure aspects that are more directly related to the application or business goals of the
provider, including immediate changes in sales and download figures (Jannach and
Hegelich 2009),mid- and long term sales effects (Dias et al. 2008), or other desired and
undesired changes in the customer behavior, e.g., regarding the relative popularity of
different shop items or sales diversity (Fleder andHosanagar 2009; Zanker et al. 2006).

In academic research on recommender systems, measuring the real effects on cus-
tomers in order to compare different recommendation strategies is only possible in very
rare cases. Usually, no real system is available for researchers, for example, to conduct
A/B tests in which the effects of different recommendation strategies or user interface
variants can be explored. Researchers therefore rely on other evaluation approaches,
in particular on (a) offline experimental designs using historical data or (b) laboratory
studies inwhich the study participants interact with a system that was often specifically
developed for the experiment (Herlocker et al. 2004; Shani and Gunawardana 2011).

Offline experiments are particularly popular among researchers, as they are com-
parably cheap to conduct and a number of datasets are available. For the comparison
of different algorithms, list-based measures from Information Retrieval such as pre-
cision, recall or rank metrics as well as prediction error measures such as the mean
absolute error (MAE) and root mean squared error (RMSE) are prevalent. While the
limitations of relying on such measures alone are well-known (McNee et al. 2006),
in particular the Netflix Prize inspired many researchers to work on algorithms that
achieve optimal results with respect to one single metric.1

However, several recent works indicate that not in every domain the algorithm that
achieves the lowest RMSE leads to the best results with respect to the business goals. In

1 See (Jannach et al. 2012b) for an analysis of the literature on recommender systems, which covers over
300 research papers that were published in the five years after the Netflix Prize.
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the real-world studies reported by Jannach and Hegelich (2009) or Kirshenbaum et al.
(2012), for example, content-based methods worked particularly well. Furthermore,
user studies such as (Cremonesi et al. 2011, 2012) indicate that the objective evaluation
of a system’s quality can be different from the subjective evaluation by users. However,
this does not seem to be consistent across domains and a recent study comparing
the results of an offline experiment with a user study by Cremonesi et al. (2013b)
indicated that—for the domain of tourism—higher accuracy indeed corresponds with
better perceived quality of recommendations.

Given these limitations of accuracy measures, researchers have proposed a variety
of other measures to quantify the quality of a recommendation algorithm in terms of
the diversity, serendipity, novelty, or familiarity of the recommended items (Shani and
Gunawardana 2011). While for some of these quality factors like diversity a number
of “plausible” objective metrics such as intra-list diversity have been proposed (Vargas
and Castells 2011; Zhang and Hurley 2008; Ziegler et al. 2005), finding a good metric
that characterizes the serendipity or unexpectedness of a recommendation can be
comparably hard. Unfortunately, the correspondence of objective diversity measures
with the user-perceived diversity has not been deeply explored in the literature so far,
even for often-cited measures like intra-list diversity.

In contrast to accuracymeasures, considering or optimizing one suchmeasure alone
is in many cases not meaningful. Increasing the diversity or serendipity of a recom-
mendation list can, for example, be easily achieved by including random items, which
may, however, lead to a lower perceived quality of the system by the users. It can
therefore be advisable to look at different measures beyond accuracy and potential
trade-offs at the same time when comparing systems or algorithms (Adamopoulos
2013; Said et al. 2013a). Adomavicius and Kwon (2012), for example, propose tech-
niques to increase the “aggregate diversity”2 of recommendations while at the same
time maintaining a high level of accuracy. Steck (2011) and Zhang and Hurley (2010),
on the other hand, discuss accuracy and item popularity. Niemann andWolpers (2013)
also examine the relationship between accuracy and aggregate diversity as well as
novelty through recommendations from the long tail. Said et al. (2012) propose a
multi-objective evaluation framework that considers various aspects determining the
recommendation quality in parallel. Shi (2013) introduces a trade-off model involv-
ing the factors accuracy, similarity, diversity and the long tail by using a graph-based
approach that incorporates a cost-efficiency function. Overall, the often-cited defini-
tion of a recommender being a function that assigns a rating for a given user/item pair
from (Adomavicius and Tuzhilin 2005) appears to be too narrow as it does not capture
desired qualities of the list as a whole.

1.2 Motivating example and research goals

In this paper, we continue this more recent line of research that aims to look at var-
ious possible quality factors simultaneously. In particular, we aim to investigate if

2 In contrast to “per-user” diversity measures, this measure rather determines howmany different items are
recommended to all users.
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algorithms which were primarily designed to optimize accuracy measures exhibit a
tendency of producing recommendations that may be in conflict with some application
goals, e.g., promoting items from the long tail. One particular motivation of our work
is therefore to look closer at which items recommenders recommend and not only
consider their predictive accuracy.

For example, algorithmsmight focus their recommendations on a certain part of the
product spectrum, e.g., by recommending only a small number of items to everyone or
by only recommending popular items. To quantify these effects, we will analyze the
concentration and popularity biases of different algorithms on a number of popular
datasets. Consider the illustrative example shown in Table 1, which displays the top-
10 recommendations for a random user of a MovieLens dataset when using four
different algorithms. An analysis of the algorithms later on in Sect. 3 will show that
some of them are quite similar with respect to their predictive accuracy. The top-10
recommendations that probably get the most attention by the users can, however, be
quite different from each other.3

Let us consider, for example, the first two lists in the upper part of the table, which
correspond to the recommendations produced by a recent learning-to-rank technique
(BPR) and a typicalmatrix factorization approach (Funk-SVD). A closer look reveals that
they only have one movie in common in their top-10 recommendations. If we compare
the average ratings by users on the IMDb.com platform for the recommended movies
(these are not shown in the table), BPR recommends items which are on average rated
with 7.9 by the community, while Funk-SVD’s average is 8.7 (on a ten-point rating
scale).

The algorithms Funk-SVD and Koren-MF are both based on matrix factorization.
On the one hand, the top-10 recommendation lists for this random user have not a
single element in common and the Koren-MF method also recommends completely
different items than all the other techniques. On the other hand, the Rr-Rec algorithm,
which bases its recommendations on the frequencies of the rating values, recommends
several movies which are also part of the top-10 list of the more complex Funk-SVD

technique. However, not all of Funk-SVD’s recommended movies are broadly known
like, for example, The Lives of Others or Festen. As reported by Ekstrand et al. (2014),
Funk-SVD can exhibit a tendency to recommend niche but high-quality movies.

This example illustrates that the actual recommended items can be largely different
and that there seem to be algorithms which have a stronger tendency to recommend
movies that everyone likes. Later on, we will see that the algorithm labeled BPR, for
example, recommends movies which are more popular and rated by more people, but
not rated as high as the recommendations of, e.g., Funk-SVD. The important point in the
context of this paper is that both mentioned biases—high rating and high popularity—
could be desired by the provider of the recommendation service, for example, with
the intention to boost the blockbusters. However, the goal of the provider could as
well be to promote niche items or guide the customer to off-mainstream parts of the

3 Table 1 shall be considered as an illustrative example. A systematic comparison of the recommendation
lists for all users (Sect. 3.3) shows that the average overlap of the first 10 items for BPR and Funk-SVD is
only at about 6 %. The overlap of the two matrix factorization (MF) methods Koren-MF and Funk-SVD
is similarly small.
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Table 1 An example of different recommendation lists for a random MovieLens user

BPR Funk-SVD

The Lord of the Rings (2002) Shawshank Redemption (1994)

Indiana Jones (Raiders) (1981) Schindler’s List (1993)

Signs (2002) Star Wars (1977)

Star Wars: Episode I (1999) The Godfather (1972)

Shrek (2001) Once (2006)

Monsters, Inc. (2001) Indiana Jones (Raiders) (1981)

A Christmas Story (1983) Festen (1998)

Rain Man (1988) The Silence of the Lambs (1991)

Life is beautiful (1997) The Lives of Others (2006)

Titanic (1997) The Dark Knight (2008)

Koren-MF Rf-Rec

A Clockwork Orange (1971) Shawshank Redemption (1994)

The Godfather: Part II (1974) Rear Window (1954)

Leaving Las Vegas (1995) The Godfather (1972)

Annie Hall (1977) The Usual Suspects (1995)

Fargo (1996) City of God (2002)

Hoop Dreams (1994) Wallace and Gromit (1995)

American Beauty (1999) Shichinin no samurai (1954)

Dr. Strangelove (1964) Once Upon a Time in the West (1968)

Memento (2000) Schindler’s List (1993)

Life of Brian (1979) The Third Man (1949)

Movies that appear in more than one recommendation list are printed in bold face. The majority of items
appear only in one recommendation list. No movie is contained in every recommendation list

product catalog, which can also be observed in real-world applications (Dias et al.
2008; Zanker et al. 2006).

Overall, the goal of our work is to systematically analyze a number of such
practically-relevant differences between popular recommendation algorithms. In this
paper, we will in particular focus on popularity biases, diversity aspects and potential
popularity reinforcement effects that can result from such biased recommendations.
Based on the analysis of selected algorithms, we will furthermore present possible
countermeasures based on hyperparameter tuning, algorithm modification, and post-
processing.

1.3 Methodology of research and outline of the paper

The analyses presented in this paper are based on offline experimental designs. We
implemented a number of traditional and more recent algorithms that cover differ-
ent families of recommendation approaches and conducted a series of experiments to
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compare various characteristics of the generated recommendation lists and the algo-
rithms themselves. The experiments were based on a number of rating datasets from
domains which exhibit distinctive characteristics, e.g., with respect to their size and
density.
The structure and the contributions of the paper are as follows.

– In Sect. 2, we first providemore details about the algorithms used in our evaluation.
In contrast to previous comparative evaluations like the one presented by Lee
et al. (2012), we cover different families of algorithms, including nearest-neighbor
methods, matrix factorization approaches, a learning-to-rank technique as well as
a content-based filtering technique.4

– In the same section, we give more details of the used datasets. We made tests
using several rating datasets fromdifferent domains (movies, books, hotels, mobile
games). The largest dataset is a subset of the data used in the Netflix Prize
containing 7 million ratings on items for which we could also retrieve content
information. We will primarily base the discussion of our observations on two
datasets with distinctive characteristics and available content information: a sub-
sample of the MovieLens10M dataset, which comprises 400,000 ratings, and a
dataset from Yahoo!Movies. Both datasets allow us to run computationally inten-
sive experiments with neighborhood-based methods. Observations for the other
datasets will be discussed in the paper whenever noteworthy differences were
observed.

– In Sect. 3, the predictive accuracy of the compared algorithms is reported. The
main observation in this section is that the differences between algorithms in
terms of the RMSE can be comparably small and the ranking can depend on
dataset characteristics, see also (Adomavicius and Zhang 2012). At the same time,
the ranking of the algorithms in terms of precision and recall strongly depends on
the way these measures are actually calculated, i.e., how the items are treated for
which the ground truth is unknown.

– In Sects. 4 to 6 we analyze and discuss popularity and concentration biases of
the different algorithms. Our results reveal that some techniques can lead to quite
different recommendation lists even though they belong to the same family of algo-
rithms or are similar in terms of accuracy measures. The results of a simulation
experiment, which is also reported in this section, indicate that the concentration
bias of some algorithms can lead to a possibly undesired reinforcement (block-
buster) effect.

– In Sect. 7, we discuss possible countermeasures to deal with the observed biases,
e.g., manipulating algorithm hyperparameters, and propose novel methods to deal
with possible trade-offs, e.g., between accuracy and popularity, bymodifying algo-
rithm intrinsics or by post-processing the results of common algorithms.

4 To make our results reproducible, we publish the source code of our evaluation framework, see http://
ls13-www.cs.tu-dortmund.de/homepage/recommender101/.

123

http://ls13-www.cs.tu-dortmund.de/homepage/recommender101/
http://ls13-www.cs.tu-dortmund.de/homepage/recommender101/


What recommenders recommend... 433

2 Algorithm and dataset information

2.1 Algorithms and parameter settings

In this section, we will give a brief overview on the algorithms and datasets that were
compared in our evaluations. Table 2 shows details of the recommendation algorithms
analyzed in this work. In order to obtain a broad picture when comparing the results,
we picked algorithms that implement a number of different strategies to predict ratings
or rank the items. Our main focus is on collaborative filtering (CF) algorithms, as this
is the most common type of algorithms in the literature according to (Jannach et al.
2012b). We selected various representatives of this family of algorithms which range
from traditional kNN-methods to matrix factorization techniques to a learning-to-rank
approach. To contrast these rating-based approaches with a content-aware method, we
also included a content-based filtering algorithm that relies on TF-IDF encoded item
descriptors. Finally, two non-personalized baseline methods that recommend items
based on their popularity were evaluated. All techniques are implemented in the Java-
based Recommender101 recommender systems evaluation framework (Jannach et al.
2013).

For many of the algorithms, suitable (hyper-)parameters have to be chosen. In our
measurements, we systematically determined the parametrization that maximizes the
predictive accuracy of each algorithm and each dataset. Typically, we started with the
parameter values that were mentioned in the original papers, values reported to work
well in the literature, e.g., by Ekstrand et al. (2011), or the settings used in the experi-
ments reported in the MyMediaLite project.5 For example, for the Funk-SVD method,
we used 100 latent factors and 50 initial training iterations for the MovieLens sub-
sample, which was also a reasonable choice in the experiments on the MovieLens1M
dataset reported by Gantner et al. (2014); our results for the RMSE were finally very
similar to those presented by Gantner et al. (2014). The neighborhood-based methods,
for instance, work best with 100 neighbors and 0 as a minimum similarity threshold.

Generally, tiny further accuracy improvements might be obtained for some algo-
rithms on specific datasets through an even more fine-grained parameter tuning
procedure. However, results like those reported by Gantner et al. (2014) or Koren
(2008) suggest that the impact on accuracy of varying some parameters can be quite
small. For the MovieLens1M dataset, the differences between two configurations of
the Funk-SVD algorithm in terms of the RMSE are often below 0.01, even if, e.g., the
number of latent factors was doubled. In the context of our work, where we are more
interested in better understanding algorithm characteristics other than accuracy, the
small further accuracy improvements that can probably be achieved through intensive
hyperparameter tuning would not substantially affect the main outcomes of our analy-
ses. Later on in Sect. 7, we will take a closer look at tuning the hyperparameters of
some exemplary algorithms and discuss their impact on both accuracy and in particular
on other characteristics.

5 http://www.ismll.uni-hildesheim.de/mymedialite/.
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Table 2 Overview of the compared algorithms

Non-personalized baselines

PopRank Popularity-based ranking that depends on the number of ratings for
an item in the dataset

ItemAvgP Rating prediction and item ranking based on the average rating of
the items

Simple weighting schemes

WeightedAvg Calculates the weighted combination of the active user’s average
and the target item’s average rating. Weight factors for users and
items are determined through error minimization. This method is
in some respect similar to the baseline predictor by Koren (2008)

Rf-Rec A similar weighting scheme that makes predictions based on rating
frequencies (Gedikli et al. 2011). The general idea is to predict
the rating value that was assigned most often to an item by the
community and the individual user instead of using average
values

Standard CF algorithms

Weighted SlopeOne Recommendation based on rating differences (Lemire and
Maclachlan 2005). The prediction is based on the average rating
difference of two items provided by users who rated both

User-kNN, Item-kNN Nearest neighbor methods. We use the prediction scheme by
Resnick et al. (1994), Pearson correlation as the similarity
measure for User-kNN, and cosine similarity for Item-kNN

Matrix factorization techniques

Funk-SVD A typical and often-cited matrix factorization (MF) method using
gradient descent as an optimization procedure (Funk 2006)

Koren-MF Koren’s factorized neighborhood model that has shown to work
very well on the Netflix dataset. We use the item-item approach
described by Koren (2010)

Factorization Machines (FM) Factorization Machines combine feature engineering and
factorization models and can be applied for general prediction
tasks (Rendle 2012). Both Alternating Least Squares (ALS) and
Markov Chain Monte Carlo optimization (MCMC) were used in
the experiments

Alternative item ranking and prediction approaches

BPR Bayesian Personalized Ranking is a method that learns to rank
items based on implicit feedback (Rendle et al. 2009). We use
matrix factorization as the underlying model

CB-Filtering A content-based ranking method based on TF-IDF vectors. The
feature vectors were derived using the plot summaries crawled
from IMDb (MovieLens, Netflix) or based on the descriptions
provided with the dataset itself (Yahoo!Movies). Items are ranked
based on the cosine similarity with the user profile, which is
computed as the average vector of all liked items. No rating
prediction function was implemented
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Table 3 Statistics of the
MovieLens400k dataset Users 4896

Items 963

Ratings 404,205

Density 0.086

Rating average (max) 3.8 (5)

Average ratings/user 82.5

Average ratings/item 419.7

Minimum number of ratings/user 10

Minimum number of ratings/item 10

2.2 Datasets

We conducted experiments both with data from the movie domain and with datasets
from the domains of books, hotels, and mobile games. For the movie datasets (Movie-
Lens, Netflix, and Yahoo!Movies), we retrieved additional content information such
as plot description, genre, or actors through a web crawling process. The book dataset
was sampled from BookCrossing (Ziegler et al. 2005) and the hotel and mobile game
rating datasets were those collected by Jannach and Hegelich (2009) and Jannach et al.
(2012a), respectively. The detailed dataset statistics are given in the Appendix in Table
11.

Asmentioned above, wewill base the accuracy discussion on a subset of theMovie-
Lens10M dataset and only report findings when we observe noteworthy results for the
other datasets. For our dataset, which we call MovieLens400k in the following sec-
tions, we randomly sampled about 5000 users who assigned ratings for about 1000
movies resulting in a sample of 400,000 ratings.6 The statistics of the dataset are shown
in Table 3.

3 Measuring accuracy

We start our comparison of recommendation techniques with an analysis that relies on
the typical accuracy measures used in the literature. Using a four-fold cross-validation
procedure, the splits (75 % training data and 25 % test data) were created by randomly
distributing the ratings of each user into four bins. We determined the most typical
measures to assess the accuracy of the predictions (MAE, RMSE) and the accuracy of
the recommendation lists (precision, recall, F1, nDCG, MRR, Area under Curve, each
with various list lengths). Table 4 shows some of the results for the MovieLens400k

6 We did not use the officially released MovieLens datasets because we were not able to retrieve content
information for all movies. The largest MovieLens dataset we used in our experiments had about 1 million
ratings. For this sample, we could, however, not run the simulation experiment using theUser-kNNmethod
within reasonable time. To make our research comparable to previous works, we report the other accuracy
results for the official MovieLens1M release and a Netflix Prize sample in the Appendix.
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Table 4 Accuracy metrics for the MovieLens400k dataset

Algorithm RMSE P@10(TS) R@10(TS) P@10(All) R@10(All) nDCG

Funk-SVD 0.809 0.426 0.799 0.071 0.117 0.874

FM (ALS) 0.814 0.425 0.798 0.093 0.148 0.872

FM (MCMC) 0.846 0.415 0.784 0.035 0.051 0.857

SlopeOne 0.855 0.411 0.780 0.028 0.045 0.854

User-kNN 0.856 0.411 0.781 0.036 0.065 0.856

Koren-MF 0.861 0.407 0.777 0.023 0.041 0.848

Rf-Rec 0.862 0.407 0.776 0.039 0.072 0.848

Item-kNN 0.863 0.407 0.777 0.030 0.057 0.849

WeightedAvg 0.893 0.407 0.776 0.030 0.058 0.848

ItemAvgP 0.925 0.407 0.777 0.030 0.058 0.849

BPR – 0.367 0.722 0.129 0.290 0.794

PopRank – 0.353 0.709 0.083 0.178 0.790

CB-Filtering – 0.345 0.698 0.021 0.038 0.774

P@10 andR@10 denote precision at list length 10 and recall at 10, respectively. (TS) denotes ameasurement
variant that includes only elements with known ground truth; (All) corresponds to a setting in which all
ranked items are considered
Bold values indicate the highest or lowest value in a column which is statistically significantly different
from the others (if one exists)

dataset.7 Wewill not report all detailed numbers here as for example the rankmeasures
followed the trend of precision/recall and the MAE is strongly related to the observed
RMSE values.

3.1 Prediction error

The results obtained for theRMSEmeasure are shown in the second column of Table 4.
For the last three rows in the table, no numbers are given as these algorithms were
only used to rank items.

The results with respect to the RMSE are not particularly surprising and are gen-
erally in line with results from literature, e.g., from the LensKit or MyMediaLite
frameworks (Gantner et al. 2014; Ekstrand et al. 2011). The MF approach Funk-SVD

significantly (p < 0.05) outperformed all the other recommendation schemes and the
recent Factorization Machines (ALS) technique yielded comparable accuracy results.
The rather simple SlopeOne technique worked quite well and was as good as the com-
putationally more expensive User-kNN scheme. The Factorization Machines (MCMC)

variant was, however, better than these more traditional schemes (p < 0.05). The
Koren-MF method performed, somewhat surprisingly, worse than many of the tradi-
tional methods for this comparably small but dense dataset.

7 The best results are printed in bold face, in case the numbers were significantly different from all other
results (p < 0.05 with Bonferroni correction). Throughout the paper we used paired two-tailed Student’s
t-tests with a p= 0.05 significance level. In most tests, p< 0.01 holds but we report p< 0.05 for consistency
and because this is the most common significance level in the literature.

123



What recommenders recommend... 437

The prediction error measured by the RMSE for the other, often much sparser
datasetswas inmany cases in linewith the results fromMovieLens400k. The following
additional observations could be made for the different algorithms. The exact data can
be found in the Appendix.

– The Funk-SVD method significantly outperformed most of the strategies on all of
the bigger datasets with manually tuned parameters and has comparably high accu-
racy on all datasets except Yahoo!Movies. On this dataset, which is sparser than
MovieLens400k but in contrast to the bigger datasets has almost as many items as
users, the number of features of the Funk-SVD method had to be strongly increased
to about 200 factors to obtain acceptable RMSE values.

– Factorization Machines (ALS) constantly led to a very low prediction error on all the
datasets in terms of RMSE. The ALS strategy, which requires more hyperparameter
tuning, as discussed in Sect. 7.1.2, is always (significantly) better than the MCMC

configuration. On the small and sparse Yahoo!Movies, HRS and BookCrossing
datasets, Factorization Machines (MCMC) only led to mediocre accuracy results.

– Compared to the other MF algorithms, the Koren-MF scheme generally works
well on the smaller datasets and produced the most accurate predictions on the
Yahoo!Movies, Mobile Games and HRS datasets.

– SlopeOne works in general reasonably well for the larger datasets from MovieLens
and Netflix and for the small Yahoo!Movies dataset. On the tiny datasets from the
hotel, book and mobile game domains, its accuracy was, however, lower or only on
a par with the baseline strategies.

– Rf-Rec consistently produces results in the middle of the spectrum with respect to
the RMSE although sometimes it can compete with the best (HRS dataset) or even
beat all other strategies (Yahoo!Movies). Compared to SlopeOne its performance is
better on the smaller datasets.

Overall, the detailed ranking of the algorithms is not always consistent across the
datasets. This confirms the findings reported by Adomavicius and Zhang (2012) or
Lee et al. (2012) who showed that dataset characteristics like size, sparsity, and rating
distributions can affect the recommendation accuracy. Some general observation can,
however, be made. Matrix factorization techniques can, as expected, always be found
among the best-performing techniques, in particular when the datasets reach a certain
size and density. Furthermore, the ALS variant of the Factorization Machines approach
is consistently better than its MCMC counterpart. Finally, kNN methods are never
among the top-performing techniques. There is, however, no single technique that
works best across all datasets.

3.2 Precision and recall

A detailed discussion of applying precision and recall to recommendation scenarios
is given by Herlocker et al. (2004). We measured precision and recall in two different
ways that are reported in the literature. The difference is how we deal with items
in the recommendation lists for which the ground truth is not known. Probably the
more common way is to only rank items for which the ground truth is known in the
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test set (TS). We denote these measurements as precision (TS) and recall (TS), see
column three and four in Table 4. The alternative is to consider all items in the catalog
and then count the “hits” in the resulting top-n lists. In our work, we denote these
measurements as precision (All) and recall (All). The results can be found in the fifth
and sixth column of Table 4. For large item catalogs in which the user’s ratings are
unknown for the vast majority of them, this will, however, lead to very small values
for precision (All) and recall (All). In these cases, the protocol variant for precision
and recall suggested by Cremonesi et al. (2010) could also be applied, which measures
the position of a relevant item in a fixed-size list of random irrelevant items. Using the
measurement method by Cremonesi et al. (2010) leads to relative algorithm rankings
that are similar to those that we obtained when using precision (All) and recall (All),
which is why we stick to the more common All variant in this paper.

In our measurements for the MovieLens dataset we considered a ranked item to be
“relevant”, when it had a five-star rating, i.e., the highest possible value. Using other
thresholds for determining relevance—e.g., considering those items as relevant whose
ratings are above a user’s average rating or above the global average rating—did not
lead to different results.

3.2.1 Precision/recall (TS)

When looking at the results for the more typical measurement, which only ranks items
with known ground truth, we see that all algorithms except the content-based method
were able to place most of the few items from the test set rated by the user with
five stars on top of the recommendation list and outperformed the PopRank baseline.
Overall, the precision and recall values also followed the inverse trend of the RMSE
measure and both Funk-SVD and Factorization Machines (ALS) were again statistically
significantly (p < 0.05) better than the other algorithms. The results for BPR were
lower than those for Funk-SVD and the kNNmethods. Similar results are reported on the
website of the MyMediaLite framework.8 We also measured the nDCG (normalized
discounted cumulative gain) as a ranking criterion. The results were strongly related
to the precision and recall (TS) values.

3.2.2 Precision/recall (All)

With this variant of measuring precision and recall the results are quite different. This
time Funk-SVD and Factorization Machines (ALS)were not only significantly better than
most of the other algorithms but the differences were also larger than when measured
with precision/recall (TS). Additionally, none of the other algorithms except for BPR

were able to outperform the PopRank baseline. This observation is in line with the
results reported, e.g., by Cremonesi et al. (2010), where popularity-based ranking was
reported to be a hard-to-beat baseline when using their specific measurement method.
More importantly we see that BPR, which is designed to optimize a ranking criterion,
achieved values which were nearly twice as high as Funk-SVD. Also, the MCMC variant

8 http://mymedialite.net/examples/item_recommendation_datasets.html.
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of Factorization Machines is significantly worse than its ALS counterpart. Therefore,
the ranking of the algorithms when using precision/recall (All) is not consistent with
the ranking by RMSE.

Many of the results obtained for the other datasets were in line with those reported
inTable 4.Using precision (TS) and recall (TS), the differences between the algorithms
are often quite small and the algorithms usually beat the PopRank baseline. On the very
small datasets like BookCrossing, MobileGames and in particular HRS, the results
for all algorithms are almost the same and each algorithm manages to place the few
relevant items in the test set on top of the recommendation list. The exception are the
kNN methods that performed significantly worse on very small datasets, which can be
explained by the lack of viable neighborhoods. Again, the nDCG follows the same
trend as precision (TS) and recall (TS).

When looking at precision (All) and recall (All), for most datasets BPR was sig-
nificantly better than all the other techniques. Similar to the MovieLens dataset,
Factorization Machines (ALS) often leads to a significantly higher ranking accuracy
than most other strategies. Again, PopRank significantly outperforms almost all other
techniques on this measure and is a hard-to-beat baseline on all datasets. The size and
the density of the data can, however, have an impact on the performance of the algo-
rithms and in particular on the very sparse hotel dataset, the Item-kNN and Koren-MF

strategies were better than BPR and Factorization Machines (ALS).

3.3 Discussion and further analysis

Our results show that while there is no consistent ranking of the algorithms across
the datasets in terms of the RMSE, some general trends can be observed as discussed
above. Matrix factorization approaches are, not surprisingly, typically among the best
performing techniques. The differences between the highest scoring algorithms can,
however, be tiny, e.g., on the MovieLens dataset the difference in the RMSE between
Funk-SVD and FM (ALS) is only 0.005.

The same holds for the precision and recall values when only items with known
ground truth are considered (TS variant). However, the ranking of the algorithms can
change drastically when a different form of determining precision and recall is used
that ranks all items (ALL variant). Using this setup, in particular the learning-to-rank
method BPR by far outperforms most other techniques.

While the accuracy differences can be comparably small, the anecdotal example
presented earlier on in Table 1 indicates how different the top-10 lists for the same user
can be when various algorithms are applied. These differences are one of the main
motivations of our work and before we report the detailed results of our analysis of
popularity, coverage and concentration biases, we will briefly quantify how different
or similar the top-10 lists generated by the algorithms actually are.

To that purpose, we have conducted an experiment in which we computed recom-
mendation lists for all users and calculated the overlap of items at the first 10 positions
between algorithms. Table 5 shows the results for three techniques. They indicate that,
e.g., for Funk-SVD the overlap with the results produced by other algorithms is com-
parably low, except for the FM (ALS)method, where the agreement is as high as 40 %.
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Table 5 Most similar algorithms based on overlap of algorithms in top-10 lists on the MovieLens400k
dataset

Funk-SVD Item-kNN BPR

FM (ALS) 0.403 ItemAvgP 0.640 PopRank 0.199

ItemAvgP 0.214 Rf-Rec 0.554 FM (ALS) 0.092

Weigh.Avg 0.201 Weigh.Avg 0.481 Funk-SVD 0.058

SlopeOne 0.196 SlopeOne 0.407 Koren-MF 0.046

User-kNN 0.190 User-kNN 0.369 Rf-Rec 0.035

Item-kNN 0.188 FM (ALS) 0.271 FM (MCMC) 0.032

FM (MCMC) 0.174 Funk-SVD 0.188 CB-Filtering 0.028

Rf-Rec 0.159 PopRank 0.084 ItemAvgP 0.026

PopRank 0.097 FM (MCMC) 0.075 SlopeOne 0.026

BPR 0.058 BPR 0.024 Weigh.Avg 0.024

Koren-MF 0.044 Koren-MF 0.010 User-kNN 0.024

CB-Filtering 0.019 CB-Filtering 0.009 Item-kNN 0.024

When compared, for example, with the classic nearest-neighbor methods, only about
2 out of 10 items would be recommended by both algorithms on average. Again, the
Factorization Machines approaches seem to lead to different results, depending on the
applied optimization technique.

For the Item-kNN method, on the other hand, there are quite a number of other
algorithms that produce similar results. Somewhat surprisingly, the ItemAvgPmethod,
which simply recommends items based on the average ratings, ends up recommending
the same set of items in two thirds of the cases.

BPR generally tends to recommend items that are not typically recommended by
the other algorithms. The average overlap is mostly far less than 10 % except for the
PopRankmethod. The fact that the overlap of BPR and PopRank is at about 20% actually
means that BPR on average includes 2 items in the top-10 list which are among the
10 most popular ones in the whole dataset. Compared to Funk-SVD and Item-kNN, BPR
therefore focuses more on popular items.

Finally, according to our analysis, the content-based CB-Filtering method seems to
recommend completely different items than all other methods and the overlap with
other methods is always smaller than 5 %.

Since PopRank works very well for the precision (All) and recall (All) measures
and often produces similar recommendations to BPR, our assumption is that the other
algorithms that performwell on thismetric also have a tendency to recommend popular
items. We will analyze this aspect in the next section.

4 Popularity bias analysis

Although recommending only popular items is reported to be a strong baseline with
respect to precision and recall in offline evaluations, e.g., by Cremonesi et al. (2010)
and Steck (2011), the focus on popular items might be in contrast to the application
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goal, e.g., to recommend items from the long tail in order to boost sales of new and
niche products. At the same time, real-world studies like the one reported by Jannach
and Hegelich (2009) show that recommending popular items does not always lead to
the desired sales or persuasion effects. The recommendation of only popular items can
in addition lead to limited system-wide diversity and coverage, as reported in the next
section, and to undesired blockbuster effects (Fleder and Hosanagar 2009; Prawesh
and Padmanabhan 2011). In the following, we will first analyze the popularity bias of
different algorithms. We then show that recommendation accuracy—using precision
(All) and recall (All)—can be easily increased when an additional popularity bias is
introduced.

4.1 Analysis of the popularity of the recommended items

The Merriam-Webster Dictionary defines popularity as the “state of being liked,
enjoyed, accepted, or done by a large number of people”. The typical way of measur-
ing item popularity in the RS literature is to count the number of ratings for each item.9

This measure covers part of the definition, but the existence of many ratings does not
necessarily imply that people actually liked or enjoyed an item. An analysis on the
MovieLens1M (ML) dataset and the Netflix (NF) dataset reveals that the number of
existing ratings and the average absolute rating are only weakly correlated, i.e., about
0.36 for the ML dataset and 0.26 for NF.

In this work, we therefore additionally measure the average rating of an item as
another popularity indicator. The limitation of this measure is that it does not tell us if
the item is really liked by a large number of people as it can, in the extreme case, be
based on one single rating. Nonetheless, the measure can help us to determine if some
algorithms tend to concentrate on highly-rated and (in comparison with the number
of ratings) probably less-known (niche) items.

To evaluate potential popularity biases, we proceeded as follows.We created top-10
recommendation lists for all users in the test set with the different algorithms and then
looked at the results from two different perspectives as described above. We report
the overall results for the MovieLens400k dataset as well as for the much sparser
Yahoo!Movies dataset in Table 6. In the following we will focus our discussion on
the MovieLens400k dataset. The detailed results for the other datasets are given in the
Appendix.

4.1.1 Average rating value

For this measurement, we calculated the average rating that the items in the recom-
mendation lists received from all users. The results show that many of the algorithms
generated recommendation lists whose items were on average rated above 4.1 (on the
1-to-5 scale) by the community, i.e., on average the recommendations were higher
rated than the global average of 3.8. By design, ItemAvgP (4.47) represents an upper
bound as it recommends the items with the highest average rating. Furthermore, we

9 In addition, “external” and application-specific measures like sales numbers or box office figures could
be used.
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Table 6 Average popularity of the recommended items

Algorithm Avg. rating (ML) Avg. nb of
ratings (ML)

Avg. rating (YM) Avg. nb. of
ratings (YM)

ItemAvgP 4.47 470 12.40 22

Rf-Rec 4.46 593 12.08 121

WeightedAvg 4.43 469 11.96 22

SlopeOne 4.42 336 11.29 14

User-kNN 4.38 394 10.56 20

Item-kNN 4.37 463 11.70 25

FM (ALS) 4.34 813 11.08 402

Funk-SVD 4.30 595 11.25 61

FM (MCMC) 4.14 353 11.01 30

Koren-MF 4.17 357 11.37 73

PopRank 4.04 1547 9.29 944

BPR 3.86 854 9.51 735

CB-Filtering 3.79 314 9.12 75

Bold values indicate the highest or lowest value in a column which is statistically significantly different
from the others (if one exists)

can see that some of the algorithms (Rf-Rec,WeightedAvg and SlopeOne) exhibit a quite
strong tendency to recommend items with a high average rating.

The kNN techniques are similar with respect to the average rating of their recom-
mendations (4.37 and 4.38) which is again quite high. Among the matrix factorization
approaches, the ALS-variant of Factorization Machines focuses mostly on high-rated
items (4.34) and is significantly (p < 0.05) different from the MCMC (4.14) variant
in that respect. We will analyze and discuss the differences between these two vari-
ants in more depth later on in Sect. 7.1. The Koren-MF technique also recommends
significantly lower rated products as the MF approaches Funk-SVD and Factorization

Machines (ALS).
For algorithms that are not optimized or designed for low RMSE values [CB-

Filtering (3.79) and BPR (3.86)] the average item rating is comparably low and at about
the level of the global average. These algorithmsmight therefore potentially have a ten-
dency to recommend controversial items. The average rating of items recommended
by PopRank is about 4. This indicates that there also exist a number of well-known
blockbuster movies, which are, however, not necessarily considered to be top-rated.

On theYahoo!Movies dataset, somebut not all trends are the same.BPR,CB-Filtering
and PopRank, for example, again recommend items that are on average rated about as
high as the dataset’s global average rating of 9.5 (of 13) which is significantly lower
than all other algorithms. Some algorithms however exhibit a different behavior than on
the MovieLens dataset. The ALS configuration of the Factorization Machines strategy
and the User-kNN methods, for example, did not focus as much on highly rated items
as for the MovieLens data. Also, the User-kNN algorithm recommends significantly
lower rated items than the Item-kNN strategy, which was not the case for MovieLens.
The Koren-MF method, in contrast, has the strongest popularity bias on this dataset
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Fig. 1 Distribution of recommendations (= being in the top-10 of a recommendation list) for all items
sorted by average item rating and grouped into 32 bins with 30 items each. On the x-axis, we show the
individual bins (grouped items) ranked by their average rating in increasing order. The y-axis shows the
relative frequency of a the grouped items appearing in a recommendation list (MovieLens400k dataset)

among the matrix factorization techniques. It recommends significantly higher rated
items than, e.g., the other MF approach FM (ALS) and is on a par with Funk-SVD, which
was not the case for the MovieLens data. This in general indicates that the popularity
bias (using the average community rating as a proxy) for some methods can vary
across datasets. We will analyze the popularity behavior of the Koren-MF method in
more detail in Sect. 5.2.

The results for the other datasets can be found in theAppendix and aremostly in line
with what was reported before. There are, however, some exceptions. For example, on
the smaller datasets the SlopeOne and kNN algorithms recommend, on average, items
that are lower rated than on the larger datasets. For the kNN strategies, one explanation
can be that is hard to find a sufficient number of good neighbors on small datasets.

To obtain a more detailed picture of the observed popularity bias, we sorted the 963
items of the MovieLens400k dataset according to their average rating and organized
them in bins of 30 items. Figure 1 shows the distribution of the recommendations for
the five algorithms with the most distinctive characteristics.

The following observations can be made. Funk-SVD and Factorization Machines

(MCMC) recommended mainly items with a high rating. However, also low-rated items
are sometimes recommended. All algorithms not shown in Fig. 1 but listed in Table
2 have a distribution similar to Funk-SVD but with an even more pronounced concen-
tration on items that have the highest average ratings. CB-Filtering by design does not
take the average rating into account and recommended also lower-rated items. BPR
showed a similar distribution and the item popularity seems to be more important than
the average rating, as will be discussed in the next section. The distribution of PopRank
is jagged since in general it only recommends a handful of different items. These are
scattered over the bins, which indicates that there are some movies that were seen and
rated by many people even if they are not considered to be among the best movies.
For the Yahoo!Movies dataset the distribution of items by rating can be seen in Fig.
2. Since the dataset is sparser than MovieLens, the graphical representation appears
more uneven. However, the overall trend is quite similar for all algorithms.

4.1.2 Number of ratings

Next, we determined the popularity of the top-10 recommended items based on the
number of ratings for each item in the dataset. PopRank by design had the highest
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Fig. 2 Distribution of recommendations (= being in the top-10 of a recommendation list) for all items
sorted by average item rating and grouped into 34 bins with 30 items each. On the x-axis, we show the
individual bins (grouped items) ranked by their average rating in increasing order. The y-axis shows the
relative frequency of a the grouped items appearing in a recommendation list (Yahoo! dataset)
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Fig. 3 Distribution of recommendations (= being in the top-10 of a recommendation list) for all items
sorted by popularity (number of ratings) and grouped into 8 bins with 120 items each (MovieLens400k
dataset)

average popularity since it only recommends blockbusters. For these items, about
1,550 ratings per item were available in the dataset. However, also BPR showed a
strong popularity bias with 854 ratings per recommended item, as well as Factorization
Machines (ALS) with 813 ratings. These three strategies recommended significantly
more popular items than all other algorithms (p < 0.05). On the other end of the
spectrum, some algorithms do not seem to focus on recommending often rated items.
User-kNN (394 ratings), Factorization Machines (MCMC) (353 ratings), SlopeOne (336
ratings), and CB-Filtering (314 ratings), recommended on average the most items from
the long tail. As shown in Table 3, the average number of ratings per item in the
catalog was 420. Methods like Rf-Rec (593) and Funk-SVD (595) were somewhere in
themiddle of these extremes. An interesting aspect is that Factorization Machines seem
to recommend quite different itemswhen a different optimizationmethod is used. Even
though there are also slight differences with respect to accuracy measures—ALS is
always slightly better—the difference in the popularity bias is significant.

We repeated the distribution analysis mentioned above and sorted the items with
respect to the number of ratings assigned to them.Wemade the following observations
(Fig. 3). BPR and Factorization Machines (ALS) very often recommended items from
the bin of the most popular items and almost never picked unpopular items. When
looking at the particular distribution for BPRwe can see that the item popularity seems
to be directly related with the chance of being recommended. This is further discussed
later on in Sect. 7.2. A number of algorithms including Koren-MF, Funk-SVD and the
kNN methods often recommended the most popular items but also picked many items
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Fig. 4 Distribution of recommendations (= being in the top-10 of a recommendation list) for all items
sorted by popularity (number of ratings) and grouped into 9 bins with 120 items each (Yahoo! dataset)

from the other end of the spectrum. Popularity did not play a role for CB-Filtering.
PopRank by design recommended only from the most popular bin.10 Overall, with
respect to their capability of recommending niche items, SlopeOne and User-kNN seem
to be advantageous. However, these figures should only be used as rough indicators,
in particular as the number of actually recommended items varies strongly across the
algorithms, as examined in the next chapter, and the histogram for Koren-MF or RF-Rec
are based on a small number different items that were actually recommended.

Figure 4 shows the results of the same experiment for the Yahoo!Movies dataset.
An even stronger focus of BPR and Factorization Machines (ALS) on popular items
can be observed. Another general trend that can be noticed is the increased tendency
of some algorithms, e.g. Item-kNN, User-kNN and SlopeOne, to recommend unpopular
items that were rated by comparably few users (see Table 6). The results of the aver-
age recommendation popularity on the other datasets can be found in the Appendix.
Similar to the findings on the MovieLens and Yahoo data, we observe a comparably
strong popularity bias of BPR and Factorization Machines (ALS). Also, the Koren-MF

recommends quite unpopular items on the smaller BookCrossing, HRS and Mobile
Games datasets, which will be discussed further in Sect. 5.2.

Note that the measurements reported here were made with algorithm parameter
settings that were tuned to achieve the highest accuracy. Later on, in Sect. 7, we will
revisit popularity bias aspects and investigate to which extent changing the algorithm
(hyper-)parameters has an effect on the observed biases, in particular for the Funk-

SVDmethod and the Factorization Machines variants, which can exhibit quite different
biases. Furthermore, we will present two algorithmic approaches to help to reduce the
popularity bias of selected algorithms in exchange for small accuracy losses.

4.2 Biasing algorithms for higher precision

The measurements so far as well as observations from the literature suggest that—
depending on how the measurement is done—biasing an algorithm to recommend
mostly popular items can be a simple strategy to achieve high accuracy and to
outperform existing techniques (Herlocker et al. 2004; Steck 2011). In practice, rec-
ommending mostly popular items can be of little value as shown, for example, by

10 Not shown in Fig. 3.
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Table 7 Effects of an artificial popularity bias on precision and recall strategies TS (only items with known
ratings in the test set) and All (all items in the test set)

Algorithm P@10(TS) R@10(TS) P@10(All) R@10(All)

PopRank 0.356 0.640 0.053 0.098

Funk-SVD 0.415 0.705 0.057 0.065

Funk-SVD, p = 100 0.416 0.568 0.098 0.117

Funk-SVD, p = 200 0.384 0.319 0.114 0.138

Funk-SVD, p = 300 0.314 0.121 0.103 0.117

The algorithm only recommends items that were rated by at least p users in the training set
Bold values indicate the highest or lowest value in a column which is statistically significantly different
from the others (if one exists)

Cremonesi et al. (2010) or the real-world study by Jannach and Hegelich (2009).
The assessment of an algorithm based on such accuracy measures might therefore be
strongly misleading.

To illustrate the effects of introducing an artificial popularity bias on accuracy
measures, we conducted a simple experiment using the MovieLens100k dataset. We
used the well-performing Funk-SVD algorithm to rank the items for the test users.
However, before evaluating the ranked list we applied a trivial post-processingmethod
which consisted of filtering out unpopular items and only retained items that were rated
by at least p users. The results of this procedure are shown in Table 7.

The results indicate that a focus on popular items can indeed increase the accuracy,
at least when using the precision (All) and recall (All) metrics, which rank all items
and not only those for which the rating is known. The results deteriorate again when
the threshold value is set too high. Techniques that integrate the general popularity
of an item in a more elaborate way—as BPR seems to do—might lead to even better
results.

We repeated the experiment on the Yahoo!Movies, on the MovieLens400k and the
larger MovieLens1M datasets. The results are shown in the Appendix and are similar
in the sense that removing unpopular items increases the accuracy for precision (All)
and recall (All). The difference for these datasets is that the threshold value regarding
the minimum number of ratings has to be set higher. In addition, beating the PopRank

baseline is often quite hard on these datasets when using these measures.
In contrast, when using precision (TS) and recall (TS), the accuracy values decline

when unpopular items are filtered out. Therefore, thismetricmight bemoremeaningful
in application domains where a too strong focus on popular items is risky or unwanted.
Still, the applicability of this metric variant for domains where only unary ratings are
available is limited as no explicit ground truth about the non-relevance of items exists.

5 Catalog coverage and concentration bias analysis

In the previous section, we have analyzed the potentially undesired effect of algorithms
to recommend mostly popular items. If the goal of a recommender system is to guide
users to the “long tail” of items or to niche products, a related question is how many
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of the items in the catalog are actually ever recommended to users. Examples where
such long tail effects could be observed for commercially deployed recommenders are
reported byDias et al. (2008) and Zanker et al. (2006). In the literature, the correspond-
ing measure is often called catalog coverage or aggregate diversity (Adomavicius and
Zhang 2012). In this section we will take a deeper look at the item space coverage and
concentration effects of the algorithms.

5.1 Catalog coverage

Table 8 shows the catalog coverage of the different algorithms for theMovieLens400k
and the Yahoo!Movies datasets. To calculate these numbers, we again created top-10
recommendation lists for all users and counted howmany different items ever appeared
in these lists.

The results show that the catalog coverage can be quite different across the tested
algorithms. Looking at theMovieLens dataset, we see that some algorithms placemost
of the 963 items at least once in a top-10 list, e.g., BPR and CB-Filtering recommend
significantly (p < 0.05) more items than all other techniques. Some algorithms, such
as such as Koren-MF, Rf-Rec and WeightedAVG, in contrast only use a fraction of the
whole item space for their recommendations. Again, these differences between the
algorithms would go unnoticed if only accuracy measures were considered.

On theYahoo!Movies dataset, algorithms such asKoren-MF and Rf-Rec again recom-
mend a very small number of items from the catalog. However, some other algorithms
like Factorization Machines (MCMC) which covered a broad spectrum on MovieLens
focus on only a few items on Yahoo!Movies. This indicates that dataset characteristics
can at least for some algorithms have an influence on the behavior of the algorithms
with respect to catalog coverage. The influence of such characteristics on accuracy
were examined, for example, by Adomavicius and Zhang (2012) and Lee et al. (2012).

Table 8 Catalog coverage
(number of overall
recommended items) for
MovieLens400k and
Yahoo!Movies

Bold values indicate the highest
or lowest value in a column
which is statistically
significantly different from the
others (if one exists)

Algorithm NbRec (of 963, ML) NbRec (of 1,041, YM)

CB-Filtering 896 936

BPR 865 590

FM (MCMC) 597 29

Funk-SVD 425 650

FM (ALS) 286 105

User-kNN 268 560

SlopeOne 122 442

Item-kNN 68 502

PopRank 57 34

WeightedAvg 49 16

Rf-Rec 42 23

Koren-MF 37 22

ItemAvgP 37 16
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The results for the other datasets can be found in the Appendix. They show that
only BPR and the content-based technique consistently cover almost the whole item
space. The coverage results for the kNN approaches and various matrix factorization
techniques are quite different as can already be seen in Table 8. Some techniques like
Funk-SVD, for example, generally lead to a comparably good coverage on all datasets,
whereas Koren-MF consistently recommends only very few items to everyone. For
other methods like the FM (MCMC), SlopeOne and kNN algorithms, finally, the coverage
seems to be dataset dependent.

5.2 Concentration bias analysis

Looking only at catalog coverage numbers might not be informative enough because it
does not tell us how often each of the itemswas recommended. An alternative proposal
was made by Zhang (2010), where the idea was to rely on known concentration
measures to capture inequalities with respect to how frequently certain items are
recommended to users.

The measurement method is as follows. For each user in the test set a recommenda-
tion list is created. Then, for each recommended itemwe count howoften it is contained
in a top-n list. The items are then sorted according to their frequency of appearing in
a list and grouped in bins of a given size, e.g., of size 30. For the MovieLens400k
dataset, which comprises 963 items, each bin therefore holds about 32 items.

Figure 5 shows the four bins (out of the 30 existing ones) that comprise those 120
items which have been recommended most frequently within the top-10 lists. The
figure can be interpreted as follows. When considering the BPR method—the leftmost
columns in each bin on the x-axis—we see that around 30 % of the recommendations
consist of the 30 most often recommended items, i.e., the items contained in the
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Fig. 5 Distribution of recommendations (= being in the top-10 of a recommendation list) for the first 120
most often recommended items (grouped into 4 bins with about 30 items each; MovieLens400k dataset)
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right-most bin. About 20 % of the recommendations consisted of items in the second
bin—the thirty-first to the sixtieth most often recommended items—and so forth.

While the BPR method, Factorization Machines (MCMC) and also the CB-Filtering

algorithm seem to recommend quite a number of different items, most of the items
were still recommended very seldom. Even for the BPR technique, which has an almost
complete catalog coverage, about 70 % of the items were taken from the 120 most
often recommended items, i.e., from one of the first four bins.

An equal distribution across all items is of course unrealistic since there are, e.g.,
badmovies that barely anyone likes. However, many of the other algorithms, which are
subsumed under “Other” in the figure, recommended the 30 items from the first bin to
all users in the test set in 96 % (or more) of the cases, i.e., almost all recommendations
were concentrated in one bin. The non-personalized and popularity-based methods
recommended the same to everyone (except the items the user had already seen before).
However, also the Koren-MFmethod and the Item-kNN technique fall into this category.
The User-kNNmethod as well as Factorization Machines (ALS)were more diverse, with
88 % of the recommendations being drawn from 60 different items.

Comparing the different algorithms only with the visual representation shown in
Fig. 5 can be complicated. For that reason, we also calculated the Gini coefficient to
determine the inequality with respect to how often certain items are recommended
(Zhang 2010). The Gini coefficient (or Gini index) can take values between 0 and 1,
where 0 is an equal distributionof frequencies and1 corresponds tomaximal inequality.
A more detailed explanation is given in the Appendix. Applying the Gini coefficient
calculation to the frequency data organized into bins as shown in Fig. 5 led us to the
Gini values shown in Table 9.

On the MovieLens dataset, BPR and CB-Filtering have the weakest concentration
bias and recommend quite a number of different items. Compared to CB-Filtering, the
Gini index of BPR is however significantly lower (p < 0.05). Many other techniques,
including the often very accurate Funk-SVD and Factorization Machines (ALS), concen-
trated their recommendations on a small set of items as was expected from the data in
Fig. 5.

Table 9 Gini index for
algorithms on the
MovieLens400k and
Yahoo!Movies datasets

Bold values indicate the highest
or lowest value in a column
which is statistically
significantly different from the
others (if one exists)

Algorithm Gini (ML) Gini (YM)

BPR 0.73 0.94

CB-Filtering 0.74 0.77

FM (MCMC) 0.81 0.98

Funk-SVD 0.91 0.88

FM (ALS) 0.94 0.98

User-kNN 0.95 0.88

SlopeOne 0.97 0.93

Item-kNN 0.98 0.91

Other 0.98 0.98
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Fig. 6 Distribution of recommendations (= being in the top-10 of a recommendation list) for the first 120
most frequently recommended items (grouped into 4 bins with 30 items each, Yahoo! dataset)

We again take theYahoo!Movies dataset to analyze if the observations regarding the
concentration bias can also be made for other datasets. Table 9 lists the Gini values and
Fig. 6 shows the 120most often recommended items grouped into 4 bins with 30 items
each. Compared to the results for MovieLens400k, the BPR algorithm produced much
less diverse recommendations on the Yahoo!Movies dataset and the Gini index was
correspondingly higher. This effect can be attributed to the very strong popularity bias
of BPR for this dataset as shown in Fig. 4. Similarly, theMCMCvariant of Factorization
Machines had a much higher tendency here to recommend the same items. In contrast,
the kNN methods and SlopeOne had a slightly lower tendency to concentrate their
recommendations and had correspondingly lower Gini index values on this dataset.

The concentration index of the algorithms on the other datasets is reported in the
Appendix. On the smaller datasets the Gini index is comparably low for BPR, SlopeOne
and the kNN methods, and they are the only four algorithms that consistently recom-
mend a considerable amount of different items. For the other algorithms, the Gini
index is often between to 0.95 and 0.99 as the algorithms pick their recommendations
from the first few bins as discussed above. The fact that the differences between the
algorithms are often small on an absolute scale is caused by the nature of the measure.
In general, the absolute numbers should be interpreted with care—remember that an
equal distribution is usually not desirable—and combined with the number of items
that ever appear in the recommendation lists.

5.3 Discussion and analysis

5.3.1 General observations

The differences between the algorithms in terms of the RMSE can be very small as
shown in Sect. 3. For the two best-performing techniques Funk-SVD and Factorization
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Machines (ALS) on theMovieLens400k dataset, the difference was, for example, below
0.01 and the range of RMSE values for the next six techniques was between 0.84 and
0.86. The analysis of catalog coverage and concentration effects shows, however, that
differences between the algorithms can be huge. If, for example, the application goal
is to make long tail recommendations or to point customers to different areas of the
item catalog, the choice should not be based on accuracy considerations alone.

For the MovieLens400k dataset, Funk-SVD performed well in all the considered
dimensions when compared with the other techniques. Still, there might be business
scenarios in which even more “diversity” in the recommendations is desired. For
example, Adomavicius and Kwon (2012) analyze the trade-off between accuracy and
what they call “aggregate diversity” and propose techniques that help to substantially
increase the system-wide diversity.11 while sacrificing accuracy only to a small extent.
One general goal therefore lies in the development of approaches to balance different
objectives in the sense of multi-objective optimization. Later on, in Sect. 7, we will
discuss different approaches to deal with such trade-off situations.

5.3.2 Algorithm analysis

The different matrix factorization based techniques Funk-SVD, Koren-MF and the Fac-

torization Machines to some surprise behaved quite differently with respect to how
many different items they recommend. Since some of the observed phenomena are
consistent across different datasets and parameterizations, the reasons for these dif-
ferences have to be the specific ways the algorithms learn their models and how they
generate the predictions.Wewill discuss some of these algorithms that exhibit a strong
concentration bias in this section.

For example, in the simplified form that does not include the neighborhood model,
the learned prediction function of Koren-MF has the following form (Koren 2010):

r̂u,i = μ + bu + bi + pᵀ
u qi (1)

The overall rating prediction r̂u,i consists of the global rating average μ, a user bias
bu , an item bias bi and the inner product of the latent factor vectors p

ᵀ
u qi . In contrast,

in the Funk-SVD method, which does not exhibit a strong concentration bias, the user
and item bias terms, as well as the global rating average, are not part of the prediction
method.

In order to better understand the concentration tendency of Koren-MF, we first
looked at the specific movies that the algorithm typically recommends. As already
indicated in Table 6, the average rating of these movies across all users in the dataset
is generally high. To validate this observation, we also looked at the average commu-
nity rating for these movies on the IMDb platform and found that they are typically
above 8 (on the 10 point scale) and very often part of IMDb’s top-50 list. The most

11 This concept of system-wide diversity must not be confused with user-perceived diversity or objective
measures to determine the diversity of individual recommendation lists as discussed, e.g., by Pu et al. (2011)
or Ziegler et al. (2005).
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often recommended items, for example, included movies like “Casablanca”, “The
Shawshank Redemption”, “Rear Window”, or “The Godfather”.

This observation indicates that the average item rating is of particular importance for
the recommendations of Koren-MF. We therefore considered the relative importance
of the different factors in Eq. 1. The analysis revealed that the latent factor part pᵀ

u qi
is on average less than half as high as the item bias bi (the quotient pᵀ

u qi/bi being on
average at 0.42). The user bias is irrelevant here, as it is static across items for each
user. This in turn indicates that for this algorithm the user-specific part can be less
relevant than the general quality assessment of the community.

The concentration tendency of some other algorithms can be explained in a sim-
ilar way as they base their recommendations mainly on the average item rating
(WeightedAvG, ItemAvgP) or on the most frequently assigned rating (Rf-Rec).

The average item rating alone howevermight not fully explain the strong concentra-
tion bias, e.g., of the Koren-MF method. We therefore investigated if some algorithms
have a tendency to recommend items that are generally liked by most users without
much controversy, which in some sense can be considered as a lower level of person-
alization. To validate this assumption, we looked at the rating variance for the different
algorithms as ameasure towhich extent items are perceived controversially by the user
community. Specifically, we calculated the rating variance per item in the training set
and then averaged these variance values for the items in the top-10 recommendation
lists.

Table 10 shows the results. The highest variance can be observed for the BPR,
CB-Filtering and PopRank methods. The fact that the PopRank algorithm recommends
very controversial items indicates that blockbuster movies, which are known and rated
by many people, are not necessarily regarded as high quality. The other extreme is
ItemAvgP, which recommends the items with the highest average rating in an unper-
sonalized way. Also, the rating variance of Koren-MF (and SlopeOne) is lower than for
the MF approach Funk-SVD.

Table 10 Average rating
variance of recommended items
in top-10 lists (MovieLens400k)

Algorithm Rating variance

BPR 0.848

CB-Filtering 0.836

PopRank 0.787

FM (MCMC) 0.758

FM (ALS) 0.661

Funk-SVD 0.656

User-kNN 0.594

Koren-MF 0.562

Item-kNN 0.557

Slope-One 0.541

Rf-Rec 0.537

WeightedAvg 0.525

ItemAvgP 0.473
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Another observation made in this section was that the two Factorization Machines

variants (ALS and MCMC) can lead to quite different results in terms of the concen-
tration bias even though they are only different in terms of the optimization procedure.
Generally, the reason for theworse performance but lower concentration of theMCMC
variant might be attributed to the regularization parameter λ. This parameter is used
to prevent model overfitting and can be set manually in the ALS variant while MCMC
lacks this parameter because of its auto-tuning abilities. This might sometimes lead to
more ill-fitted choices of λ for MCMC, which results in worse RMSE values than for
ALS, but at the same time leads to less concentration. We will analyze the underlying
reasons and discuss the differences in detail in Sect. 7.1.2, where we report the results
of an experimental analysis in which we systematically varied the regularization para-
meter λ.

Overall, recommending high-quality items—e.g., movies from IMDb’s top-250
list—cannot generally be considered a bad strategy. Again, the specific application
domain and recommendation goals should be taken into account when deciding on an
algorithm. For a movie enthusiast, for example, recommendations from IMDb’s top
list might provide valuable reminders, but could be of little value when the goal is to
discover new items.

6 Simulating popularity reinforcement effects

Recommendation service providers on online platforms are typically interested in the
long-term effects of the service on user satisfaction or sales. Unfortunately, measuring
such effects is difficult. Even when conducting A/B tests for a couple of weeks, it
might be difficult to determine how much of the observed effects on the business can
actually be attributed to the recommendation service. The effects of a recommender
on the customers’ behavior can, as mentioned, be that they explore different parts
of the item spectrum. However, due to the discussed popularity and concentration
biases, certain RS can also lead to decreased diversity of the recommendations and to
blockbuster effects.

In order to assess the effect of different recommendation strategies on the diver-
sity of recommendations, we conducted an experiment to simulate possible popularity
reinforcement effects. The main idea is to start with a given rating database and incre-
mentally add new (artificial) ratings to it as would happen on a real web platform.
The assumption is that the selection of which items are actually bought and rated by
the customers is to some extent determined by the deployed recommendation service.
The simulation for each recommendation algorithm proceeded as follows.

1. Use the current rating database and create a top-10 list for every user.
2. Assume that users only buy and rate items from this list and create one additional

rating per user for one randomly chosen item in his top-10 list. Take this rating
value according to the overall distribution of the different rating values in the
dataset.

3. After one new rating for each user has been generated, add all new ratings to the
dataset.
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Fig. 7 Simulation results: Gini index of the rating distribution in the dataset and the number of recom-
mended items for each algorithm on MovieLens400k

We repeated this procedure 50 times to simulate the evolution of the rating database
over time. At each iteration, we measured (a) the concentration of the ratings on items
in the (growing) dataset with the help of the Gini index and (b) the number of different
items that were recommended in this round. To calculate the Gini index for the dataset,
we sorted the items based on their number of ratings in the database and organized
them in bins similar to the experiment in Sect. 5.

Figure 7 shows the development of bothmeasurements. It can be seen that the effects
on the twometrics strongly vary depending on the chosen recommendation algorithm.
Regarding the concentration effects (see the upper part of Fig. 7) the algorithms roughly
fall into three categories.
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– PopRank, RF-Rec, and BPR belong to the first category. When those algorithms were
applied, the Gini index strongly increased over time.

– User-kNN, CB-Filtering and Factorization Machines (MCMC) are techniques that
were able to increase the diversity of the rating distribution and correspondingly
lower the Gini index. However, after about 30 iterations, the diversification stabi-
lized for CB-Filtering or slightly increased again for the User-kNN method.

– The last category consists of all other algorithms. For these algorithms, the con-
centration index only slightly increased over time.

The chosen simulation strategy artificially amplifies the concentration effects when
compared to a real scenario. Still, we can at least see that there are strong differences
between the algorithms, which we see as an indication that such effects can also be
observed in reality and should be taken into consideration when deciding on a certain
recommendation strategy.

The development of the number of recommended items is plotted on the lower part
of Fig. 7. Again, three major groups can be identified. CB-Filtering and BPR initially
recommended almost every item in the dataset at least once and this did not change
over time. Funk-SVD, User-kNN and both Factorization Machines variants started with
a medium number of recommendations but were then able to considerably diversify
their spectrum. The rest of the algorithms only recommended a smaller part of all
available products and we see only a slight increase over time.

Combining the results of both the Gini index and the number of recommended
items, some observations seem to contradict each other at first glance. Funk-SVD, for
example, in the beginning only recommended about a third of all the products then
later on almost all of them. Still, the Gini index indicates that the popularity of only
certain items increases. These two observations do, however, not contradict each other,
since the overall product spectrum can increase while the popularity of only certain is
amplified. This does not necessarily result in more recommendations of the popular
items. Following these considerations, both CB-Filtering and BPR covered nearly all
products. On the one hand, CB-Filtering led to a decreased concentration in the dataset
over time while, on the other hand, BPR boosted popular items even more.

We repeated the popularity reinforcement experiments on the data from
Yahoo!Movies. For many algorithms the results remain the same but the simulation
also led to some differences compared to the MovieLens data. As seen in Fig. 8, while
the absolute values of the Gini index were higher, the algorithms Rf-Rec, PopRank and
BPR concentrated the ratings in the dataset faster than onMovieLens. Additionally, the
Gini index of Factorization Machines (ALS) increased faster, while the MCMC variant
diversified more quickly. Interestingly, Funk-SVD behaved differently and diversified
this dataset. Finally, WeightedAvg, ItemAvgP and Koren-MF initially started to focus on
a subset of items, but after about 10 iterations increased their spectrum again. This is in
contrast to the MovieLens dataset, where these three algorithms lead to a continuous
increase of the Gini index.

Looking at the number of recommended items over time it can be seen that BPR

initially recommended about half of the items in the catalog and afterwards started
narrowing its focus. Funk-SVD on the other hand covered almost all the items after a
few iterations and broadened its spectrum even faster than on the MovieLens dataset.
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Fig. 8 Simulation results: Gini index of the rating distribution in the dataset and the number of recom-
mended items for each algorithm on Yahoo!Movies

Recommenders that only recommend from a small set of items, such as the baseline
methods and Koren-MF, showed the same behavior here as on the MovieLens dataset.

6.1 Discussion

Overall, we can again observe that the analyzed recommendation strategies can have
quite diverse effects on the popularity development of the item space despite being
often similar when compared on the basis of accuracy measures. The measurement on
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the Yahoo!Movies dataset also shows that the reinforcement characteristics of most
algorithms are generally consistent across different datasets.

However, for some algorithms like Funk-SVD and BPR the concentration tendency
seems to be dependent on dataset properties such as size and sparsity, which was
already discussed in the concentration bias analysis in Sect. 5.2. Specifically, note that
the characteristics of the MovieLens and Yahoo!Movies datasets are quite different in
terms of size, sparsity, and the initial distribution of ratings in the dataset, where the
latter aspect can be seen from the higher Gini index at the beginning of the simulation
for the Yahoo!Movies dataset (0.664 vs. 0.490). On the sparse Yahoo!Movies dataset,
BPR leads to an initial slight increase of the already high concentration of the ratings
but then soon reaches a relatively stable level as was observed for theMovieLens data.
One explanation why some algorithms likeWeightedAvg, ItemAvgP or Koren-MF do not
further increase the Gini index on the Yahoo!Movies dataset could be that a peak level
of rating distribution has already been reached because the curves seem to flatten out
much sooner for Yahoo!Movies than for MovieLens (see Fig. 7).

6.2 Limitations

The chosen simulation approach clearly leads to an overestimation and over-
amplification of the concentration and blockbuster effects because we assume that
new ratings are only provided for items appearing in the top-10 lists. Alternative
settings in which we only draw every nth element from the recommendations are cer-
tainly possible. In the context of this work our major interest is, however, not in the
actual effect size, but rather whether measurable differences between the algorithms
can be observed. Generally, we see the proposed simulation method as a complemen-
tary approach to estimate the effects of different algorithms in offline experimental
settings.

7 Dealing with the biases: algorithmic approaches

In this section, we will discuss possible strategies to deal with undesired recommen-
dation biases and present novel algorithmic approaches that can be used to reduce the
biases of certain algorithms without compromising too much on accuracy.

In principle, several approaches are possible when observing an undesired recom-
mendation bias, including the following:

1. Exploring algorithmic alternatives for the given application setting or dataset and
choosing a technique that does not exhibit the undesired behavior can avoid the bias
problem altogether. The observations made in the previous sections can serve as a
basis for adopting this strategy and making better-informed decisions by knowing
the potential biases of each algorithmic approach.

2. When optimizing the algorithm parameters for a given application scenario or
dataset, multiple metrics should be taken into consideration instead of one single
(accuracy) measure. What an algorithm recommends can depend on how it is
parameterized or how strongly it is optimized for accuracy. Subsequently, in Sect.
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7.1, we will report the results of two experiments in which we varied typical
hyperparameter settings for two algorithms andmeasured their impact on accuracy
and other quality measures.

3. By considering the reasons for the biases of individual recommendation tech-
niques, algorithmic approaches could be employed that are capable of balancing
existing trade-offs (e.g., accuracy vs. catalog coverage). Different strategies are
possible to achieve this goal:

– First, changing the inner workings of a given algorithm can avoid a certain
bias. In Sect. 7.2 we show how to modify the sampling strategy of BPR to
balance accuracy and the algorithm’s popularity bias.

– Second, applying a post-processing scheme or pipelined hybrid approach can
be used to modify the outcomes of a given recommendation technique in order
to mitigate or even remove potentially undesired biases. In Sect. 7.3 we present
a novel and generic post-processing approach for bias reduction that can be
applied to a number of recommendation schemes.

7.1 Analyzing the effects of hyperparameter settings

Most modern recommendation techniques depend on carefully tuned model-learning
parameters (hyperparameters) to achieve optimal accuracy and to, e.g., avoid overfit-
ting. For the accuracy measurements reported in Sect. 3, we have consequently tuned
the different parameters to minimize the RMSE.

In this section, we will analyze to which extent different settings for typical hyper-
parameters influence quality factors other than accuracy, using Funk-SVD and FM (ALS)

as examples. Specifically, in case when an algorithm has an undesired bias after opti-
mizing for the RMSE, one approach could be to vary hyperparameter settings in a way
that the bias is reduced while at the same time accuracy can be maintained.

The analysis for FM (ALS) furthermore helps us obtain a deeper understanding of the
observed differences between the FM (ALS) and the FM (MCMC) variant in the previous
sections.

7.1.1 Effects of varying the number of training steps (Funk-SVD)

When we optimized the hyperparameters for the algorithms explored in this work, we
observed that on the MovieLens data the accuracy of the Funk-SVDmethod reached its
optimum after about 40–60 training rounds (gradient descent iterations). Generally,
the number of training rounds is directly related with the computation time needed
to generate the model. Therefore, when looking solely at the RMSE, one might be
tempted to parameterize the algorithm with about 50 training steps to achieve a good
RMSE and comparably low computational costs. However, additional tests revealed
that other quality factors are influenced by the chosen number of training steps as well.

To obtain a deeper understanding of this phenomenon, we systematically varied the
number of training steps and determined their effect on the metrics used in this paper,
i.e., the RMSE, theGini index, the catalog coverage (the number items appearing in the
top-10 lists), and the average item popularity (measured as the average rating count of
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Fig. 9 Trade-off between accurracy, diversity,Gini index, coverage andpopularity dependingon the number
of training steps for Funk-SVD. Diversity = (Intra-List Similarity)−1 with an offset of −2 to better fit the
chart

the recommended items). In addition,wemeasured the “content-based” diversity of the
top-10 lists using the inverse Intra-List-Similarity measure (Ziegler et al. 2005) based
on the cosine similarity of TF-IDF vectors using IMDb plot summaries, analogous
to the CB-Filtering recommender. Figure 9 visualizes the results when varying the
number of training steps. We stopped increasing the number of training steps when
all metrics began to flatten out.

Varying the number of training iterations significantly influences all shownmetrics.
For example, at 50, 100, and 150 training steps their values are significantly different
(p < 0.05) to each other. When looking at the RMSE, we see that the best value is
obtained after about 50 to 60 iterations and slightly increases due to overfitting when
more iterations are done (Ekstrand et al. 2011). When using 60 training rounds, the
Gini index is, however, quite high and the number of recommended items is low, i.e.,
the algorithm exhibits a comparably strong concentration bias. At the same time, the
popularity bias approaches its peak when the optimal number of iterations is used in
terms of the RMSE, which to some extent confirms that recommending more popular
items can be a good strategy to achieve accuracy as discussed by Cremonesi et al.
(2010) and Steck (2011). The inverse ILS measure, finally, reaches a local minimum
when the best value for the RMSE is chosen, i.e., the lists are not very diverse in terms
of the content descriptions. Further increasing the number of training rounds leads
to a lower concentration and a slightly lower popularity bias. At the same time, the
ILS-based diversity increases.

Depending on the specific application goals, it might therefore be appropriate to
allow some level of overfitting in favor of the other quality factors, e.g., to avoid a too
strong concentration bias. As a side note, varying the number of latent factors beyond
a certain threshold on this dataset did not lead to strong variation with respect to the
different quality characteristics.
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7.1.2 Effects of varying the regularization level (Factorization machines)

To explore if the observations from the previous section also apply for other algorithms,
we varied the number of training steps in the FactorizationMachines FM (ALS)method.
We focused on this algorithm as the ALS and MCMC variants led to quite different
results as shown, e.g., in Tables 6 or 8, with respect to popularity aspects. Technically,
the difference between the variants mainly lies in the fact that the MCMC version
automatically tunes its hyperparameters whereas the ALS variant requires that suitable
parameters are determined, e.g., through manual tuning (Rendle 2012). Therefore, if
the parameters are properly chosen, the ALS variant should lead to similar results as
the MCMC variant.

However, varying the number of training steps for the FM (ALS) method in con-
trast to Funk-SVD did not have a notable impact on accuracy or other quality factors,
except for cases where a very small number of training iterations was done and the
recommendations were unusable.12

Since the ALS and MCMC variant are very similar with respect to their inner
workings, another hyperparameter—the regularization parameter λ used to penalize
model overfitting—had to be responsible. In an additional set of experiments, we
therefore varied λ from 0.2 up to 40 for the ALS method. To obtain the best accuracy
values as reported in Table 4, we used λ = 15. Generally, lower values for the penalty
factor λ induce a higher risk of overfitting.

Figure 10 shows the results of the experiments, in which again significant changes
(p < 0.05) for the metrics were measured, e.g., at λ = 0.2, 10, and 40, except for
diversity and average popularity from λ = 15 upwards, where the curve either flattened
out or the variance became too high. Many of the trends observed in the previous
experiment can also be observed for FM (ALS), even though we are altering a different
parameter.

The best RMSE values are achieved with λ somewhere around 10 and 15. Further
reducing the penalty factor leads to a small increase of the prediction error but at the
same time to a reduction of the concentration bias as, e.g., the number of recommended
items strongly increases. At the same time, the popularity bias decreases. Similar to
the previous experiment with Funk-SVD, the ILS-based diversity reaches a minimum
when the accuracy is highest.

The results obtained with the non-parameterizable MCMCmethod for the different
metrics are plotted at the right hand side of Fig. 10with cross-hair symbols. TheRMSE
value for the “auto-tuned” MCMC is slightly worse than when a manual optimization
is done as was reported in Table 4. At the same time, MCMC leads to quite different
values in the other quality dimensions when compared to the values obtained with
an accuracy-optimized ALS version. Note however, that the MCMC and ALS variant
lead to quite similar values when λ is chosen somewhere between 0.5 and 2. This
analysis therefore suggests that the differences between the two algorithm variants

12 This observation also applies for FM (MCMC).
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Fig. 10 Trade-off between accurracy, diversity, Gini index, coverage and popularity depending on the
regularization value (λ) for FM (ALS). Diversity = (Intra-List Similarity)−1 with an offset of−2 to better
fit the chart. On the far right: comparison with auto-regulating FM (MCMC)

which were observed in previous sections depend on the chosen algorithm parameters.
Specifically, the MCMC method—depending on the dataset characteristics—seems
to sometimes end up with more extreme values for the regularization parameter and
correspondingly either “underfitted” or overfitted models. This in turn might explain
the strong and unexpected concentration bias of the MCMC method, e.g., for the
Yahoo!Movies dataset reported in Table 8.

7.1.3 Discussion

Overall, our experiments show that the choice of the algorithm hyperparameters not
only impacts accuracy but can also have a strong influence on which types of items are
actually recommended. Avoiding overfitting effects, e.g., through larger values for λ or
a limited number of optimization steps, is a common feature to obtain high prediction
accuracy. However, according to our experiments, a measurable reduction of potential
concentration and popularity biases can be achieved with only small compromises on
accuracy, e.g., by allowing a certain level of overfitting. As a result, when optimizing
for accuracy, one should keep an eye on other possibly relevant quality factors as
otherwise the algorithms could exhibit unwanted biases. In some instances, however,
hyperparameter tuning might be too time-consuming or the algorithm may not be
adjustable to the desired extent. When this is the case, other remedies, such as post-
processing or a look into the inner workings of the algorithm, might be better suited
to address the problem. In the following sections, we will describe such an algorithm
modification and a post-processing scheme designed to lower undesired biases when
hyperparameter tuning fails.
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7.2 Balancing accuracy and the popularity bias by algorithm adaption

Instead of using alternative algorithms or parameterizing them according to the desired
goals, one can try to understand which specific characteristics of an algorithm lead to
a biased behavior and design a variant of the algorithm that avoids the biases.

For example, Adamopoulos and Tuzhilin (2014a) recently proposed an alternative
neighborhood selection scheme for the classic user-kNN method. Their observations
were that (a) using the most similar neighbors might often lead to obvious recommen-
dations with which the user is already familiar and (b) at the same time there could be
potentially relevant items the close neighbors do not know either. Similar to our work,
they measured catalog coverage, aggregate diversity and the Gini index to quantify the
biases of the algorithms. Their experiments showed that with their probabilistic neigh-
borhood selection method the biases could be reduced while accuracy was maintained
at a high level.

In the next section, we present an algorithmic variant for BPRwhich aims to achieve
comparable goals and which is also based on the adaptation of the inner workings of
an algorithm.

7.2.1 An adaptable sampling strategy for BPR

In Sect. 4, we observed a strong bias of BPR to recommend popular items, which in
turn led to high values in terms of precision and recall (All).

Analysis To understand the possible reasons for the bias of BPR, we have to look
into the internals of themethod. Figure 11 shows the bootstrapping-based optimization
procedure of the original algorithm.

BPR accepts a set of implicit feedback statements DS of the form (u, i, j) where
(u, i, j) means that user u prefers item i in favor of item j , e.g., because u purchased
item i but not item j . The idea of the original algorithm is to optimize the set of model
parameters Θ in a gradient descent procedure by randomly sampling tuples (u, i, j)
from DS .

The problem of the popularity bias originates from the non-uniform distribution of
implicit feedback statements across the items, i.e., there will be a lot more positive
feedback signals for the popular items. Therefore, a random sampling strategy across
all ratings (line 4 in Fig. 11) will lead to the effect that a high number of the sampled
(u, i, j) tuples will refer to items i that are highly popular. On the other hand, the
randomly sampled items j are more likely to be from the long tail of unpopular

Fig. 11 Learning algorithm of
BPR (Rendle et al. 2009)
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Fig. 12 Sketch of the idea to counter-bias the sampling process of the positive items i of BPR. The x-axis
represents the item popularity. On the y-axis, we show the distribution of the item popularity (solid line) as
well as the shape of a function φ used to sample the items i (dashed line). Popular items are sampled more
infrequently

items. As a result the uniform sampling of (u, i, j) tuples will often contain (popular,
unpopular) item pairs, which steer the algorithm in favor of recommending the popular
items. Therefore the popularity of an item directly increases the chances of being
recommended, as previously discussed in Sect. 4.1.

Proposed approachWe propose to extend BPRwith amodified distribution function
φ to determine how the tuples (u, i, j) are sampled. In the original proposal by Rendle
et al. (2009), the items i are drawn randomly from the set of items that the user u has
interacted with (e.g., purchased). The items j are sampled randomly from all items for
which no interaction by u is known. In our proposed extension to BPR, a non-uniform
sampling with a distribution φ can be used to bias the sampling process of the items i
and j based on their popularity, respectively. The general idea is to focus the sampling
on tuples (u, i, j) where i is less popular and j is more popular. Learning from those
tuples counteracts the popularity-bias, because it focuses on less popular items that
could be good recommendations than on the more popular ones.

Figure 12 shows the idea of how to sample the items i . On the one hand, the solid
curve resembles the general long tail shape of the popularity of the available items
in terms of the number of existing ratings per item. On the other hand, the dashed
line sketches the shape of a monotonously decreasing distribution function φ used
to sample the items i . Items with higher popularity are therefore sampled with lower
probability. This focuses the training phase on preference relations (u, i, j) with less
popular items i that are more discriminative as they are less related to the most popular
items in the database.

Various types of distribution functions for φ can be chosen. In our experiments, we
used (the right half of) a normal distribution and varied the strength of the counter-
bias by changing the breadth of the distribution function. A narrower distribution of φ

therefore means that less popular items are sampled for i . We also tried other function
types like exponential decay or sigmoid-shaped functions, which led to comparable
results.

As stated above, the same idea can be applied to bias the selection of the items j in
the (u, i, j) tuples. However, tomitigate the popularity bias in this case the distribution
function φ has to favor the more popular items when selecting the j elements.13 The

13 Compared to the sampling function shown in Fig. 12 for i , a corresponding function for j would have
to be flipped horizontally.
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intuition behind this choice is that sampling (u, i, j) tuples where the user liked an
item i more than a generally popular item j are more informative in our context as
they help us better learn the user’s preference for off-mainstream items.

7.2.2 Experimental evaluation

We made measurements both on the MovieLens400k and the Yahoo!Movies dataset.
In the results reported here, we show the effect of changing the breadth of φ, i.e., the
probability of selecting popular and unpopular items as i in the (u, i, j) tuples.

Procedure Our specific procedure to sample items and vary the breadth of the
distribution was as follows. The items from which i can be chosen are contained in a
list Lu and correspond to the rated items of a given user. The elements of LA

u are sorted
by popularity in ascending order and the cardinality of Lu is denoted as |Lu |. We use
a normal distribution that has a mean of μ = 0 and a standard deviation σ = |Lu |

ω
for

the distribution function φ, as seen in Eq. 2. The parameter ω determines the breadth
of the normal distribution.

φ(ω) = N
(
0,

( |Lu |
ω

)2
)

(2)

With this distribution φ(ω) the index of the sampled item from Lu is determined,
which is the absolute rounded value of the random variable X , see Eq. 3.

Xidx (ω) = �|X (ω)|� with X (ω) ∼ N
(
0,

( |Lu |
ω

)2
)

(3)

The selected item is i = LA
u (Xidx (ω))which is the (Xidx (ω)+1)’th item of the list

(see Eq. 3). Increasing the size of ω means that we move the selection more towards
the unpopular items. Values for ω that are smaller than 1 lead to a more uniform
selection of items. In case the calculated index is outside of the boundaries of the list,
Xidx (ω) ≥ |Lu |, we repeat the sampling. For the item j, the selected item accordingly
is j = LD

u (Xidx (ω))with LD
u being the list of items sorted by popularity in descending

order. This ensures sampling from the more popular items.
Observations In Fig. 13, we show how the different quality measures change for the

adaptable sampling of i in relation to the original sampling strategy of BPR. The zero
level of the x-axis of Fig. 13 corresponds to the values achieved using BPR’s original
sampling strategy; on the y-axis, we report the relative differences (in %) obtained for
the specific measures when varying ω compared to the results of the unmodified BPR

technique.
In our analysis, we contrast the accuracy measures precision and recall with the

popularity and concentration measures used in the previous sections of the paper.
Our first observation is that precision and recall (TS) are not strongly affected when a
different sampling strategy for i is applied. However, the values of precision and recall
(All)—as expected given the observations in Sect. 4.2—change significantly when ω

is varied.
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Fig. 13 Varying the sampling bias for i on the MovieLens dataset. Higher values on the x-axis indicate
that less popular items are sampled for i in the (u, i, j) triples in the learning phase. The y-axis shows the
relative change of the different metrics compared to the original BPR strategy

When increasing the value for ω, we see that both the accuracy and the biases
decrease. The accuracy values decrease, however, at a much lower rate as the biases.
Atω = 1.2, for example, the accuracy is about 5% lower than the original BPRmethod.
In contrast, the average popularity of the items that are recommended is about 10 %
lower. At ω = 1.5, another slight drop in terms of accuracy occurs. The reduction of
the Gini index is considerably stronger and close to 10 %. Increasing ω even further
leads to a substantial drop in precision and recall (All) because too unpopular items
are sampled in the learning phase. A value of 1.2 for ω would therefore represent a
good compromise on this dataset.

When repeating the measurement on the Yahoo!Movies dataset, we obtained very
similar results. The only difference was that higher absolute values for ω led to a
stronger decrease of the biases in exchange for only light accuracy deterioration
(Fig. 14). On this dataset, the value 1.5 could be a reasonable choice for ω in this
setting.

Discussion Generally, the proposed biased sampling method allows us to balance
accuracy, popularity, and concentration biases of BPR. Furthermore, we can observe
that the biases can be reduced to some extent without compromising too much on
accuracy.14 The choice of a suitable value for ω depends on the specific application
setting and the characteristics of the data.

Further improvements to the proposedmethod are possible, e.g., through the choice
of a different sampling function. In addition, we could change the sampling strategy
for j as well and bias it toward the (unrated) popular items as mentioned before.
The rationale of this strategy is that BPR will increasingly learn that these popular

14 Note that even after a 10 % drop with respect to recall (All), BPR would still be the best-performing
technique in our comparison in Sect. 3.
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Fig. 14 Varying the sampling bias for i on the YahooMovies dataset. Higher values on the x-axis indicate
that less popular items are sampled for i in the (u, i, j) triples in the learning phase. The y-axis shows the
relative change of the different metrics compared to the original BPR strategy

items are not preferred by some users and as a result push other, comparably less
popular items up the list, simply because no “negative” preference for these items
was encountered during the training phase. An experimental analysis using different
values for ω when sampling j revealed that similar effects can be achieved compared
to when the sampling of i was biased as described above.

Recently, Pan et al. (2015) proposed an alternative approach to improve the inner
workings of the original BPR algorithm of Rendle et al. (2009) by learning confidence
values for the interactions from heterogeneous implicit feedback. In contrast to our
work, theydidnot change the sampling strategybut extended theminimization function
of the original algorithm with confidence terms. Also, they focus only on predictive
accuracy and do not take diversity or concentration metrics into account.

7.3 Adjusting relevance scores based on user-specific biases

Most algorithms used in our evaluation—including all MF approaches—are not
designed to optimize a rank criterion like BPR but rather focus on rating predictions, or
more generally, relevance scores. These relevance scores are then used to sort the items
and determine the personalized recommendation lists. Several of them, as presented
in Sect. 4, unfortunately exhibit a comparably strong bias toward popular items when
optimized for the RMSE.

7.3.1 General idea of score adjustments

As shown in the previous section for BPR, one way to deal with the problem is to look at
how the algorithms work internally and try to adapt them. However, such an approach

123



What recommenders recommend... 467

requires in-depth knowledge about each algorithm and leads to algorithm-specific
adaptations.

In this section, we therefore propose a more general approach in which we take
the RMSE-optimized user specific relevance scores produced by some algorithm as a
starting point and adjust them in a post-processing step to remove or reduce potential
biases.One simpleway to achieve, e.g., a lower averagepopularity of the recommended
items, is to increase the relevance score for the unpopular items, which means they
would appear higher up in the recommendations list. If, for example, the original rating
prediction (relevance score) for a comparably unpopular item was “4.1”, one could
change this value to “4.2” to push it further up the list. Likewise, a rating of “4.2”
for a popular movie like “Titanic” could be slightly lowered.15 Such an adjustment
has, however, to be done with care in order not to promote recommendations that are
irrelevant for the user.

In the following, we present an optimization-based approach that determines suit-
able user-specific adjustments for the given relevance scores that help to balance
possibly existing conflicting goals (accuracy vs. popularity bias). The design of the
method is based on the following two key considerations.

1. The general goal is to keep the adjustments small. Furthermore, large deviations
from the original relevance score should be penalized as they will hurt accuracy.
The magnitude of the adjustments to be computed should be parameterizable.

2. The optimization procedure should take the user’s original rating bias into account
when the adaptations are made. If the user, for example, has a general tendency to
give high ratings to popular movies, then the adjusted ratings should reflect these
preferences. In the case of a blockbuster loving user, the adjustment for a popular
movie like “Titanic” should be positive, compared to a negative penalty for users
who did not give high ratings to blockbusters. In other words, the optimization
procedure should try to align the bias of the recommendation list with the user’s
preference bias.

7.3.2 Technical approach

We call the general post-processing strategy presented here Personalized Bias Adjust-

ment (PBA), since the method can be used to adjust the relevance scores produced by
any rating prediction algorithm to achieve or avoid a desired bias and at the same time
takes each user’s existing preference profile into account.

Technically, given a rating prediction r̂ui produced by an algorithm like Funk-SVD,
our goal is to determine a suitable offset value xui that is (a) large enough to move
an item up or down in the recommendation list and (b) small enough so that it does
not lead to a strong loss in accuracy. The resulting prediction function for the adjusted
rating r̂ ad jui is given in Eq. 4.

r̂ ad jui := r̂ui + xui , xui ∈ R (4)

15 Changing the rating prediction by small amounts is usually sufficient to push an item several places up
in the recommendation lists.
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Instead of simply increasing the relevance score for unpopular items and decreasing
the score of popular ones, PBA aims to create an item ranking that reflects the possibly
already existing (popularity) bias in each user’s profile. In the following, we will focus
on popularity biases. In principle the proposed scheme can, however, also be applied
to deal with other forms of biases.

Determining the user’s biasWe assess a user’s potential tendency to generally like
or dislike popular items by considering both the general popularity of the items that
the user has rated as well as the specific ratings provided by the user.

The user bias (UBpop) for user u and the set of items I trainu rated by u is calculated
in our approach as

UBpop(u, I trainu ) :=
∑

i∈I trainu

(
rui · pop(i)

)
|I trainu | (5)

where pop(i) is a function that quantifies the popularity of the item i , e.g., based on
the number of existing ratings for the item in the training set. If a user consistently
gives high ratings to popular items, UBpop will result in a higher value than in cases
where the user, for example, gave high ratings to items of low general popularity.

Measuring recommendation list popularity characteristics In the next step of our
PBA approach, we have to assess the potential bias in the recommendation list, when
it is ordered according to the relevance scores produced by the underlying algorithm.
This estimate of the list bias (LBpop) is done in the same way as it was done for the
user profile. The difference is that we are now considering the predicted relevance
scores for the unseen items as a basis for our assessment and not the user’s ratings.

Equation 6 shows the calculation scheme. The parameters are the set of items I recu

recommended to user u as well as the given relevance scores R̂u .

LBpop(u, I recu , R̂u) :=
∑

i∈I recu

(
r̂ui · pop(i)

)
|I recu | , ∀i ∈ I recu ∃r̂ui ∈ R̂u (6)

Adjustment step Given a set of rating predictions produced by some algorithm, the
calculated values forUB and LB can be quite different due to the bias that is introduced
by the algorithm. The PBA algorithm tries to make these possible deviations smaller
and thereby adjusts the bias. ConsideringUB in the adjustment step ensures that these
changes take the user’s general preferences into account.

For a given user u the adjustment offsets for each item in the recommendation list
are denoted as the vector xu . The proposed PBAmethod will search for suitable values
for each xui in xu in an iterative optimization procedure. In each optimization round,
the value of LB ′, i.e., the remaining bias, has to be re-assessed after the adjustment as
shown in Eq. 7.

LB ′
pop(u, I recu , R̂u, xu) :=

∑
i∈I recu

((
r̂ui + xui

) · pop(i)
)

|I recu | , ∀i ∈ I recu ∃r̂ui ∈ R̂u

(7)
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Matching user and list biases To assess the alignment of UBpop and LB′
pop, an

error or distance measure is needed. A straightforward approach would be to define
the error e as the squared difference of the scores, i.e., e = (LB ′

pop − UBpop)
2.

However, optimization would in most cases lead to large values in the offset vector
xu and correspondingly poor accuracy results because the preservation of the original
rating prediction values is not part of our optimization goal.

In the PBA strategy, we therefore punish larger values in xu through a regularization
factor. The resulting optimization function of PBA is shown in Eq. 8.

min
x

((
LB ′

pop(u, I recu , R̂u, xu) − UBpop(u, I trainu )
)2

︸ ︷︷ ︸
Matching list
and user biases

+ λ ·
∑

xui∈xu

(
x2ui

)
︸ ︷︷ ︸

Regularization

)
(8)

We chose a simple gradient descent approach to solve this minimization problem.
To estimate the step width for each gradient descent step we calculated the partial
derivatives of the optimization function, which can be found in the Appendix.

7.3.3 Experimental results

Weapplied the PBAmethod to the prediction output of Koren-MF and FM (ALS), because
these algorithms exhibited popularity biases ranging among the highest on most of
the datasets (considering algorithms that work with relevance scores). Figures 15 and
16 show the results of applying the PBA method to the output of these algorithms.
The figures show the relative change of different metrics in comparison to the val-
ues that were measured for the raw prediction output of each respective underlying
algorithm.

We used the same parameterization of the PBA method for both experiments. We
fixed the PBA parameter γ = 0.05 as a learning rate and varied the regularization factor
λ between 0.45 and 0.01. On the one hand, despite the different prediction output of
the underlying algorithms, the PBA method was able to adjust the popularity bias of
the recommendations in a quite similar form. On the other hand, the post-processing
of Koren-MF displays a slightly more unstable behavior than the strictly monotonous
trends seen in FM (ALS). This can be attributed the fact that Koren-MF concentrates very
heavily on a small group of items that is to some degree determined by the random
initialization values of its features. This in turn can lead to varying absolute results,
e.g., with respect to the average number of ratings of each recommended item, even
when executed on the exact same data twice.16

Our first general observation is that the predictive accuracy of the algorithms in
terms of the RMSE, precision (TS), and recall (TS) is more or less unaffected when
the post-processing method is applied. This means that even though quite different
and less popular items are recommended, no significant deterioration in terms of these

16 While the absolute values can vary on each run even when the same data is used, the existence of the
biases is not affected by the random initialization.
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Fig. 15 Results after post-processing of the Koren-MF predictions via the PBA method. The y-axis
shows the change of each respective performance metric after the application of the PBA method. The
x-axis displays the values for the regularization factor λ

Fig. 16 Results after post-processing of the FM (ALS) predictions via the PBAmethod. The y-axis shows
the change of each respective performance metric after the application of the PBA method. The x-axis
displays the values for the regularization factor λ

common accuracy measures are observed. At the same time, the Gini index decreases,
which means that the concentration on certain items is avoided.

Anothermetric that is not included in the charts is the aggregated number of different
items that the respective algorithm included in the top-10 lists. We omitted this metric
from the charts because of the large differences between the absolute value for the
original and the post-processed output. Koren-MF, for example, only recommended
53 different items in the top-10 lists for all users in the test set. After post-processing
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via PBA, this number increased up to 578 items. The detailed results can be found in
Tables 22 and 23 in the Appendix.

When looking at precision and recall (All), we can observe that these values also
drop when larger adjustments are done, i.e., when the adjustment penalty factor λ

decreases. This trade-off is, however, expected given the observations throughout this
paper regarding the correlation between the popularity bias of the recommendations
and these measures.

In conclusion the results for the PBA show that it is possible to adjust relevance
scores of rating prediction-based algorithms via post-processing so that the popularity
bias of the recommendations can be reduced. The fact that the same parametrization
(for γ and λ) is suitable for different algorithms indicates that the post-processing is
relatively robust and not strongly dependent on specific characteristics of the input
data provided by the underlying algorithms.

Overall, the proposed method allows us to adjust the level of the desired biases
and balance popularity and accuracy depending on the requirements of the application
domain.

8 Research limitations

The research presented in this paper is based on offline experimental designs using
historical data andwe use various quantitativemeasures as proxies to assess the quality
of the recommendation lists generated by different algorithms. The general limitations
of such research designs therefore apply as we, for example, cannot assess if the
generated recommendations are suitable for a certain contextual situation of the user
or how they are actually perceived by users in a given domain.

Regarding the used datasets, due to the computational complexity of the kNN- and
similarity-basedmethods, we performedmany of our experiments on sample sizes that
are considerably smaller than recent ones like the Netflix dataset with its 100 million
ratings. The largest dataset we used was a 7 million rating sample from the Netflix
dataset for which we also crawled content information. Since the main observations
regarding, e.g., accuracy, were not largely different on this dataset, we are confident
that the findings reported in this paper apply also for larger datasets.

Furthermore, we mainly relied on movie rating data to illustrate our findings. We
repeated the experiments on a number of datasets from other domains as described
above. While the results are often similar, the used datasets are comparably small.

As for the evaluated algorithms, we aimed to cover a variety of approaches which
range from nearest-neighbor methods to recent matrix factorization and learning-
to-rank techniques. The analysis of novel and further optimized techniques like the
learning-to-rank method proposed by Shi et al. (2012) or different versions of the
highly-accurate SVD++ method by Koren (2008) is part of our future work.

While the two strategies we introduced to counter the popularity bias on ranking-
and rating-based algorithms achieve their goal to some extent, they are not able
to reshape the overall recommendation characteristics of the applied algorithms.
Also, adapting the new sampling approach for BPR and the general post-processing
strategy—tested for Koren-MF and FM (ALS)—to other algorithms needs further experi-
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mentation. In addition, choosing suitable parameters for the popularity/accuracy-trade-
off cannot solely be assessed through offline metrics, but requires online studies to
verify their impact in real-world situations.

Finally, our work focused only on a small set of possible quality criteria and poten-
tial biases of different techniques. Depending on the application domain, many other
objectively measurable factors may be important for the success of a system, including
in particular the freshness of the items or the consideration of certain contextual para-
meters. An example for a domain where in our view the aspect of freshness might be
crucial is news recommendation or the recommendation of items on video streaming
platforms and online music services.

9 Relation to previous works

9.1 Limitations of accuracy metrics

Prediction and ranking accuracymetrics are the dominating evaluationmeasures in the
research literature on recommender systems and impressive advancesweremade in the
last decadewith respect to further improving algorithms in this direction (Jannach et al.
2012b). It is, however, also established knowledge in the community that optimizing
algorithms solely for accuracy on historical data can be insufficient or misleading
when trying to assess the effectiveness or true quality of different recommendation
approaches (Adomavicius and Tuzhilin 2005; Konstan and Riedl 2012; McNee et al.
2006). First, it is not always clear if using an algorithm that was optimized, e.g., in
terms of the RMSE, based on historical data is optimal with respect to the application-
specific goals and metrics, which in the e-commerce sector could be increased sales,
customer retention, or click-through rates (Garcin et al. 2014; Linden et al. 2003).
A few works exist that try to assess to which extent “offline” accuracy is related to
the system’s effectiveness in the real world, e.g., by Dias et al. (2008), Garcin et al.
(2014) and Jannach and Hegelich (2009), or to the perceived usefulness of a system in
laboratory studies, e.g., by Cremonesi et al. (2013b) and Ekstrand et al. (2014). Some
of these studies suggest that at least in some application domains like mobile games
or news recommendation, content-based methods are the most effective ones in terms
of the business metric (Jannach and Hegelich 2009; Kirshenbaum et al. 2012) while
the user study reported by Cremonesi et al. (2013b) indicates that offline accuracy is
not always a reliable predictor for the perceived usefulness of a system.

The work presented in our paper is motivated by these problems that can arise
when algorithms are only evaluated in terms of accuracy. In the first part of the paper,
we therefore benchmark different algorithms in terms of their accuracy as done in
quite a number of papers in the literature, e.g., by Breese et al. (1998), Cremonesi
et al. (2010), Ekstrand et al. (2011) or Lee et al. (2012). Our work is different from
some of these previous works in that we include state-of-the-art algorithms of different
families and compare two variants of precision and recall from the literature. We also
analyze the relation of accuracy to other quality factors with datasets from different
domains. Going beyond accuracy measures, our work specifically tries to identify
potentially existing intrinsic biases in the algorithms, which would make some of
them less suitable for specific recommendation tasks than others.
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9.2 Alternative quality metrics

A number of proposals for complementary quality measures and bias analyses were
made in the past few years. Fleder and Hosanagar (2009), for example, mention the
negative effects a popularity bias can have on the sales diversity in the form of a
“blockbuster effect”. Such effects can even by exploited by users to influence the
recommendation system with malicious intent (Prawesh and Padmanabhan 2011). In
general, recommending the most popular items instead of “long tail” items represents
a comparably safe strategy in terms of accuracy as discussed, e.g., by Cremonesi et al.
(2010) or Steck (2011), but can lead to low effectiveness in terms of the business
goals (Jannach and Hegelich 2009). The specific shortcomings of popularity based
approaches in domains where item consumption is limited by quotas was recently
discussed by Cremonesi et al. (2013a). Generally, recommending popular items can
be of unsatisfactory utility for the user, and the analysis by Zhang and Hurley (2010)
suggests that a majority of the users would prefer the (additional) recommendation
of niche items and more diverse recommendations than a popularity-biased algorithm
would produce.

The existing popularity biases in recommendation algorithms are often attributed to
the phenomenon thatmore ratings exist for themore popular items, too few ratings exist
for the niche items, and that the ratings are not missing at random (Park and Tuzhilin
2008; Said et al. 2013a; Zhang and Hurley 2010). A typical countermeasure in the
literature is to try to increase the “novelty” or “serendipity” of the recommendations
by biasing the algorithms toward the long tail. In such cases, the level of novelty of
an item is measured in terms of its popularity (Vargas and Castells 2011).

Concentration biases are addressed in the literature, e.g., by Adamopoulos and
Tuzhilin (2014a),Adomavicius andKwon (2012) orZhang et al. (2009).Concentration
effects can be the result of an existing popularity bias but there can be other reasonswhy
an algorithm only covers a smaller part of the item spectrum. Similar to Adomavicius
andKwon (2012) andZhang et al. (2009)weuse theGini index and the number of items
appearing in top-n lists of the user population (“aggregate diversity”) as measures to
assess the extent of the concentration biases. One advantage of using the Gini index is
that the resulting curve cannot be influenced too much by including an item only once
in a recommendation list (Zhang et al. 2009), which is why we rely on both measures.

Generally, our work continues this existing line of research on popularity and con-
centration biases. In contrast to some existingworks, we try to approach the problem in
amore comprehensive andmulti-dimensionalway as advocated, e.g., byAdamopoulos
(2013) or Said et al. (2012). We not only compare and analyze existing biases across a
range of various algorithms and datasets using different popularity and concentration
measures, visual distribution plots, and a simulation experiment, but furthermore ana-
lyze the reasons for the underlying biases for selected algorithms, determine the role
of hyperparameter settings, and finally propose possible algorithmic countermeasures.

A number of other possible quality measures were proposed in the literature which
are considered to be potentially relevant for user satisfaction. The measures include,
for example, diversity, serendipity, familiarity, novelty, unexpectedness, or the costs of
bad recommendations (Adamopoulos and Tuzhilin 2014b; Bradley and Smyth 2001;
Celma and Herrera 2008; Chau et al. 2013; Javari et al. 2014; Murakami et al. 2008;
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Said et al. 2013a; Vargas and Castells 2011; Ziegler et al. 2005). In contrast to the
biases analyzed in our work, many of these quality estimates cannot easily be captured
through objective metrics and furthermore require the existence of time-stamps or
other meta-information. Intra-List Similarity (ILS) is an example of a frequently used
diversity measure in the literature (Ziegler et al. 2005). Whether or not the measure
is actually related to the diversity that is perceived by the users is not fully answered
as suggested by Ekstrand et al. (2011) or Ge et al. (2013). The assessment of such
quality factors is usually done through laboratory studies, for which Pu et al. (2011)
proposed an evaluation framework that addresses multiple subjective quality factors.
In our work, we focus on objectively quantifiable measures that can be used to further
our discussion about popularity and concentration biases.We only show exemplarily in
Sect. 7.1 that also a popular measure like Intra-List-Diversity can be strongly affected
by the chosen hyperparameter settings.

9.3 Multi-metric algorithm evaluation and optimization

In the last sections of our work we focused on possible ways of mitigating the
potentially existing biases and discussed different technical approaches including
hyperparameter tuning and trade-off optimization. In the literature, a number of related
approaches have been proposed in recent years and many of them try to increase the
intra-list diversity or the aggregate diversity of the recommendations, thereby reducing
the concentration bias. Technically, these works are either based on new algorithmic
approaches or on variations of existing ones and either focus on increasing the diversity
in exchange for accuracy when recommending items (Bradley and Smyth 2001; Said
et al. 2013b; Zhang and Hurley 2008, 2010; Zhang et al. 2012; Zhou et al. 2010) or
applying a post-processing strategy to the results generated by an accuracy-optimized
method (Adomavicius and Kwon 2012; Niemann and Wolpers 2013). Our work con-
tinues these lines of research in different ways.We systematically explore the effects of
hyperparameter tuning of modern factorization-based approaches in different dimen-
sions, which to our knowledge has not been done in the literature before.

Adomavicius and Kwon (2012) propose to decrease the concentration bias by
systematically re-ranking the item lists generated by an underlying recommendation
technique and their results show that measurable improvements in terms of the aggre-
gate diversity can be achieved with only a limited compromise on accuracy. Similarly,
Zhang et al. (2012) propose a framework for music recommendation that mixes the
recommendation lists of different algorithms. By combining the lists of both accuracy-
and diversity-optimizing recommenders they achieve a lower concentration bias at the
price of a slight reduction in accuracy. Both of these methods are similar to our Per-

sonalized Bias Adjustment strategy in the sense that we post-process the outcomes of
an underlying algorithm. One major difference of our method is, however, that we do
not assume that there is a “global” level of a given quality factor as there are, e.g., users
who simply prefer popular items while others like niche items as well. Taking the indi-
vidual user preferences into account when optimizing the recommendations in more
than one dimension to our knowledge has only been proposed before by Jambor and
Wang (2010), where the goal is to increase the number of long tail recommendations
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with limited accuracy losses. In their work, the linear optimization based scheme is
incorporated in the core recommendation algorithm. Our post-processing scheme can,
in contrast, be applied to any underlying and optimized rating prediction algorithm
and uses a computationally more efficient gradient descent optimization procedure.

10 Summary

The comparative evaluation of recommender systems in academia is largely dominated
by offline experimental designs and accuracy metrics, even though it appears to be
established knowledge for quite some time that focusing on one single family of
metrics has various limitations. Specifically, some algorithms may have certain biases
with respect to which items they recommend and only looking at prediction accuracy
can be insufficient when the goal is to determine the most promising algorithm for a
given application scenario.

In the paper, we have first analyzed several state-of-the-art recommendation algo-
rithms in terms of their predictive accuracy across different datasets. While there was
no consistent “winner” in terms of the RMSE across all datasets, we could observe
that the differences between different techniques are sometimes quite small. In the
subsequent sections we could then show through a series of experiments that despite
these often comparably minor differences with respect to accuracy, the algorithms can
be quite different in terms of what they include in the top-n recommendation lists and
that they can exhibit certain possibly undesired biases. The observations reported in
this work should therefore help providers of recommendation services to decide in a
better-informed way which algorithm is right for their specific use case depending on
the desired level of, e.g. accuracy or item popularity.

Based on our observations, we then discussed possible ways of dealing with such
biases, which include the use of multi-metric measurements during hyperparame-
ter tuning as well as algorithmic approaches to balance possibly existing trade-offs
between accuracy and other quality measures.

Overall, while offline analyses cannot replace real-world A/B tests or user studies,
our work aims to provide a better understanding of some of the characteristics of state-
of-the-art recommendation techniques. Furthermore, we see our results as evidence for
the importance multi-metric evaluation approaches in which the choice of the selected
evaluation measures should be determined by the specifics of the application goals.

Appendix

Gini index

The Gini index can be derived from the Lorenz curve, which is a cumulative distrib-
ution function as shown in Fig. 17. The diagonal corresponds to an even distribution.
The higher the deviation of the Lorenz curve from the diagonal, the stronger is the
unevenness of the distribution. The Gini index measures the strength of the inequality
of a distribution and can be calculated as twice the difference between the area below
the diagonal and the area below the curve (Zhang 2010).
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Fig. 17 An example of a Lorenz
curve. The Gini index is
proportional to the area between
the diagonal and the curve
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In our application setting, we calculate how often each item was included in a top-
10 list, sort the items according to their popularity in increasing order and group them
into n bins x1, ..., xn , each containing 30 items.

For such a discrete distribution, theGini indexG can be computed using the formula

G = 1

n

(
2qn
pn

− 1

)
− 1 (9)

where pn is the cumulative sum of the first n bins, i.e.,

pn =
n∑

i=1

xi (10)

With qn , we weight each xi according to its rank position, i.e.,

qn =
n∑

i=1

i · xi (11)

To normalize G, we divide it by Gmax = 1 − (1/n) to finally obtain Gnorm

Gnorm = n

n − 1
· G (12)

Results for other datasets

Table 11 reports statistics for the datasets used in our evaluations. Tables 12, 13, 14, 15,
16, 17 and 18 show the corresponding results for the evaluatedmetrics (notation: P10T
= Precision@10 (TS), R10A = Recall@10 (All), etc.). Furthermore AvgR denotes the
average rating and AvgP the average popularity of the top-10 recommended items.
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Div is the diversity in terms of inverse ILS and NbRec the overall number of different
items recommended by the algorithms. In each column, the highest value is highlighted
in case the observed difference is statistically significant (p < 0.05) when compared
to the other algorithms. Due to its high computational complexity, we did not test
the user-KNN method for the 7 million Netflix and 1 million MovieLens dataset. The
content-based algorithm could only be benchmarked on datasets for which content
information was available.

Artificial popularity on other datasets

Tables 19, 20 and 21 show the results of the artificial popularity bias experiment (see
Sect. 4.2) for the three datasets MovieLens400k, MovieLens1M and Yahoo!Movies
on the precision and recall strategies All (all items in the test set) and TS (only items
with known ratings in the test set). The algorithm only recommends items that were
rated by at least p users in the training set.

Detailed results for the PBA algorithm

Tables 22 and 23 show the detailed results for the PBAmethod when applied to the out-
put of Koren-MF and FM (ALS) respectively. As before the table headers are shortened

Table 19 Effects of an artificial popularity bias on Movielens400k

Algorithm P@10(TS) R@10(TS) P@10(All) R@10(All)

PopRank 0.354 0.709 0.083 0.178

Funk-SVD 0.426 0.797 0.068 0.103

Funk-SVD, p = 100 0.425 0.788 0.078 0.122

Funk-SVD, p = 200 0.422 0.754 0.089 0.141

Funk-SVD, p = 300 0.416 0.710 0.094 0.150

Funk-SVD, p = 400 0.410 0.664 0.100 0.160

Funk-SVD, p = 500 0.403 0.596 0.105 0.170

Table 20 Effects of an artificial popularity bias on MovieLens1M

Algorithm P@10(TS) R@10(TS) P@10(All) R@10(All)

PopRank 0.710 0.549 0.173 0.084

Funk-SVD 0.785 0.580 0.069 0.033

Funk-SVD, p = 100 0.769 0.572 0.130 0.059

Funk-SVD, p = 200 0.786 0.551 0.136 0.061

Funk-SVD, p = 300 0.785 0.524 0.142 0.064

Funk-SVD, p = 400 0.783 0.493 0.147 0.066

Funk-SVD, p = 500 0.781 0.459 0.155 0.070

Bold values indicate the highest or lowest value in a column which is statistically significantly different
from the others (if one exists)
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Table 21 Effects of an artificial popularity bias on Yahoo!Movies

Algorithm P@10(TS) R@10(TS) P@10(All) R@10(All)

PopRank 0.582 0.970 0.072 0.326

Funk-SVD 0.589 0.980 0.014 0.049

Funk-SVD, p = 100 0.547 0.680 0.039 0.139

Funk-SVD, p = 200 0.530 0.593 0.054 0.199

Funk-SVD, p = 300 0.502 0.503 0.064 0.258

Funk-SVD, p = 400 0.472 0.441 0.073 0.316

Funk-SVD, p = 500 0.451 0.391 0.077 0.335

Funk-SVD, p = 600 0.421 0.334 0.079 0.323

Bold values indicate the highest or lowest value in a column which is statistically significantly different
from the others (if one exists)

Table 22 Results for the PBA strategy when applied to the Koren-MF algorithm on the Movielens400k
dataset

λ RMSE P10T R10T P10A R10A AvgP Gini NbRec

0.50 0.865 0.405 0.774 0.040 0.054 552 0.976 95

0.45 0.865 0.406 0.775 0.041 0.057 550 0.975 104

0.40 0.864 0.406 0.775 0.042 0.059 566 0.975 110

0.35 0.865 0.406 0.775 0.043 0.061 593 0.974 123

0.30 0.865 0.405 0.774 0.042 0.060 578 0.973 143

0.25 0.865 0.406 0.775 0.040 0.052 518 0.971 167

0.20 0.865 0.405 0.774 0.040 0.056 545 0.965 221

0.15 0.865 0.406 0.774 0.040 0.055 546 0.958 274

0.10 0.865 0.405 0.774 0.038 0.051 517 0.937 363

0.05 0.866 0.405 0.775 0.034 0.041 466 0.891 478

0.01 0.867 0.405 0.774 0.030 0.036 430 0.827 578

(P10T = Precision@10 (TS), etc.). Furthermore AvgP denotes the average popularity
of the top-10 recommended items and NbRec the overall number of different rec-
ommendations. The column λ shows which value was used for the regularization
variable to produce the results in the corresponding row. The first row (with the λ

value left blank) contains the raw output of the underlying algorithm unaltered by the
PBA method.

Partial derivatives for the PBA algorithm

To minimize the optimization goal of the PBA algorithm (see Eq. 8) via a gradient
descent strategy we have to calculate the partial derivatives of the minimization func-
tion to estimate the step width. The derivative for a specific xui can be calculated as
follows:
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Table 23 Results for the PBA strategy when applied to the FM (ALS) algorithm on the Movielens400k
dataset

λ RMSE P10T R10T P10A R10A AvgP Gini NbRec

– 0.814 0.427 0.797 0.094 0.148 816 0.941 285

0.50 0.814 0.426 0.797 0.093 0.145 812 0.939 303

0.45 0.814 0.426 0.797 0.093 0.147 813 0.938 301

0.40 0.814 0.426 0.797 0.093 0.145 811 0.938 307

0.35 0.814 0.426 0.797 0.092 0.145 807 0.937 320

0.30 0.814 0.426 0.797 0.092 0.145 806 0.934 328

0.25 0.814 0.426 0.796 0.092 0.144 803 0.932 346

0.20 0.814 0.426 0.797 0.091 0.142 794 0.926 377

0.15 0.814 0.426 0.797 0.089 0.139 781 0.915 423

0.10 0.814 0.426 0.797 0.086 0.132 752 0.892 501

0.05 0.815 0.426 0.796 0.078 0.115 681 0.839 624

0.01 0.816 0.425 0.797 0.060 0.084 562 0.757 731

∂

∂xui

((
LB ′

pop(u, I recu , R̂u, xu) −UBpop(u, I trainu )
)2 + λ ·

∑
xui∈xu

(
x2ui

))

= ∂

∂xui

((
LB ′

pop(u, I recu , R̂u, xu) −UBpop(u, I trainu )
)2)

+ ∂

∂xui

(
λ ·

∑
xui∈xu

(
x2ui

))
(13)

with the first part being reducible in the following way

∂

∂xui

((
LB ′

pop(u, I recu , R̂u, xu) −UBpop(u, I trainu )
)2)

= 2 · pop(i)

|I recu | ·
(∑

j∈I recu

(
r̂u j · pop( j))

|I recu | −
∑

j∈I trainu

(
ru j · pop( j))

|I trainu |

)
(14)

and the latter part being reducible to

∂

∂xui

(
λ ·

∑
xui∈xu

(
x2ui

))
= 2λxui (15)

Thus, the combined derivatives form the following assignment rule for each gradient
descent step:
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xnui ← xn−1
ui − γ

(
pop(i)

|I recu | ·
(∑

j∈I recu

(
r̂u j · pop( j))

|I recu |

−
∑

j∈I trainu

(
ru j · pop( j))

|I trainu |
)

+ λxui

)
(16)
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