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Abstract Collaborative Filtering (CF) computes recommendations by leveraging a
historical data set of users’ ratings for items. CF assumes that the users’ recorded
ratings can help in predicting their future ratings. This has been validated extensively,
but in some domains the user’s ratings can be influenced by contextual conditions,
such as the time, or the goal of the item consumption. This type of contextual infor-
mation is not exploited by standard CF models. This paper introduces and analyzes
a novel technique for context-aware CF called Item Splitting. In this approach items
experienced in two alternative contextual conditions are “split” into two items. This
means that the ratings of a split item, e.g., a place to visit, are assigned (split) to two
new fictitious items representing for instance the place in summer and the same place
in winter. This split is performed only if there is statistical evidence that under these
two contextual conditions the items ratings are different; for instance, a place may
be rated higher in summer than in winter. These two new fictitious items are then
used, together with the unaffected items, in the rating prediction algorithm. When the
system must predict the rating for that “split” item in a particular contextual condition
(e.g., in summer), it will consider the new fictitious item representing the original one
in that particular contextual condition, and will predict its rating. We evaluated this
approach on real world, and semi-synthetic data sets using matrix factorization, and
nearest neighbor CF algorithms. We show that Item Splitting can be beneficial and its
performance depends on the method used to determine which items to split. We also
show that the benefit of the method is determined by the relevance of the contextual
factors that are used to split.
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1 Introduction

Internet interconnects millions of on-line services offering a huge amount of informa-
tion, products and services (items). More notably, a single e-commerce web site can
offer up to millions of items from different categories. Hence, not surprisingly, when
a user is looking, for instance, for a book to read, or a tourism destination to visit, can
be overwhelmed by the sheer quantity of options to consider. As a matter of fact, users
may find difficult to discard irrelevant information, and find products tailored to their
specific needs.

Recommender Systems (RSs) have been proposed to address these problems.
They are powerful tools helping on-line users to tame information overload by pro-
viding personalized recommendations on various kinds of products and services
(Adomavicius and Tuzhilin 2005; Ricci et al. 2011). RSs have been successfully
applied to many domains, including books, movies, travel services, and many others
(Martin et al. 2011; Aldrich 2011). Collaborative Filtering (CF) is a common tech-
nique used for building recommender systems (Desrosiers and Karypis 2011; Koren
and Bell 2011). CF is a domain independent approach, and computes recommenda-
tions by leveraging a historical log of users provided explicit evaluations for items,
which are called ratings. CF assumes that the recorded ratings of a set of users can
help in predicting their unknown ratings.

This assumption is valid only to some extent. In fact, in some domains users’
preferences and interests can be relatively stable and can be modeled by users’ ratings.
However, in many situations the exact evaluation of an item can be influenced by
additional and varying factors, here named “contextual factors”. This is true especially
in certain domains, where, depending on the contextual situation, the consumption of
one item can lead to very different experiences (Adomavicius et al. 2005; Singh and
Bamshad 2007). For instance, visiting a beach in summer is strikingly different from
visiting it in winter. However, most RSs would not distinguish between these two
experiences, thus providing poor recommendations in certain situations.

The precise definition of what is context varies depending on the application area
(Bazire and Brézillon 2005). Here we adopt the definition of context introduced by
Dey, where “Context is any information that can be used to characterize the situation
of an entity” (Dey 2001). In this definition the entity is the experience of an item that
can be influenced by a contextual situation related to the state of the user (e.g., his
mood), the item (e.g., its current popularity), and the experience itself (e.g., the precise
time of the experience). These state variables describing the contextual situation are
called “factors”. Other popular contextual factors are: the weather, the location, the
time, the companion, the user goals, and the user mood.

Context aware recommender system are a natural evolution of personalization sys-
tems. Personalized RSs can build better user models and have higher rating prediction
accuracies than non personalized ones (such as suggesting the most popular item)
(Adomavicius and Tuzhilin 2005). When a CF system has enough user data it can
build a detailed user model (Fink and Kobsa 2000; Kobsa 2007), which gives better
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predictions of the future user’s preferences and behavior. Thus, personalization can
help to build more relevant and useful recommendations. Using contextual informa-
tion the system can tune its recommendations beyond personalization, i.e., it can adapt
the recommendations to a particular contextual situation.

In this paper we present Item Splitting, a rating prediction approach that enhances
the classical CF technique by taking into account a set of contextual factors and their
values, which we call contextual conditions. In this way the standard 2-dimensional
CF matrix is enriched with a context model comprising a set of factors related to the
user, the item, or the situation. In Item Splitting the ratings for some selected items
are split into two subsets according to the value of a contextual factor. For instance,
the ratings of the users that experienced and rated Venice beach in “winter” can be
separated from those given by the users who rated Venice beach in “summer” (here
the contextual factor is the season). For each split item, these two sets of ratings are
then assigned to two new fictitious items, e.g., Venice beach in winter and in summer.
This split is performed only if there is a statistical evidence that under these two
alternative contextual conditions the item’s ratings are different, i.e., users evaluate
the item differently. The underlying idea of Item Splitting is that the nature of an item,
from the users’ point of view, may change in different contextual conditions, hence it
may be useful to consider two different items.

Item Splitting was introduced in Baltrunas and Ricci (2009a), Baltrunas and
Ricci (2009b). Baltrunas and Ricci (2009a) provided the initial definition of the
approach and mainly investigated some variations of the algorithm that are related
to the splitting criteria. In Baltrunas and Ricci (2009b) we compared the proposed
approach to Reduction Based, a classical context aware CF approach proposed in
Adomavicius et al. (2005).

In this paper we provide a comprehensive evaluation of Item Splitting. We have
performed new experiments using the same real world data set used by Adomavi-
cius et al. (2005). This has enabled us to better compare Item Splitting with the
state of the art. Moreover, we illustrate how one can deal with missing contex-
tual information and we evaluate a solution of this problem that we have tai-
lored to Item Splitting. Furthermore, in addition to the prediction accuracy of
Item Splitting (MAE), we compute its precision/recall, and we measure how alter-
native contextual conditions change the top-k recommendations presented to the
user. This study shows that standard neighborhood and matrix factorization CF
models are inferior to Item Splitting. In fact, we show that if the considered
contextual conditions influence the item ratings, then Item Splitting can help to
improve the accuracy of CF, especially when used together with matrix factorization
techniques.

The rest of the paper is structured as follows. Section 2 discusses related work in
the field of recommender systems. Section 3 describes the details of our approach,
and gives the complexity analysis of the proposed algorithm. Section 4 provides the
experimental evaluation of the approach. It illustrates the experimental setup, and the
results of a first set of experiments where a small, real world, context-tagged data set
of ratings was used. Then the section presents the performance of Item Splitting on
additional data sets: a larger one, which exploits user demographic data as context,
and several semi-synthetical data sets with an injected rating dependency on context.

123



10 L. Baltrunas, F. Ricci

This analysis illustrates the different properties of the algorithm. Finally Sect. 5 draws
the conclusions of this research, and shortly points to our future work.

2 Related work

Context-aware recommender systems is a new area of research (Adomavicius et al.
2005; Singh and Bamshad 2007), and the techniques proposed so far have been classi-
fied into three groups: pre-filtering, post-filtering and contextual modeling (Panniello
et al. 2014; Adomavicius and Tuzhilin 2011; Adomavicius et al. 2011). We will briefly
illustrate them in the following.

Adomavicius et al. (2005) were the first to propose a pre-filtering approach, which
consists of exploiting context to discard irrelevant ratings, and use the remaining
ones to build a predictive model. They extended classical CF by adding to the stan-
dard dimensions of the users and the items new dimensions representing the selected
contextual factors. In their approach rating predictions and recommendations are com-
puted using segments of context dependent ratings. A segment is a set of rating data
tagged with a particular combination of contextual conditions, i.e., a segment could
contain all the ratings acquired when a movie was seen “in a theater in the weekend”.
When a target recommendation is requested only the rating data belonging to the seg-
ment containing the target context are used to generate rating predictions. The authors
use a hierarchical representation of the contextual factors, and the exact granularity
of the used contextual segments is searched (optimized) while trying to improve the
accuracy of the prediction. Another pre-filtering approach was explored in Singh and
Bamshad (2007). Here contextual information is used to alter the user model. More-
over, the authors do not use a fixed set of contextual attributes, as it was common
in previous approaches, but extract “contextual cues” from the data and use them to
pre-filter the user’s rating data.

Panniello et al. (2009) proposed and evaluated two different post-filtering methods
and compared them with the pre-filtering approach described above. The proposed
“Weight” method reorders the recommended items by weighting the predicted ratings
with their probability to be relevant in that specific context. The “Filter” method
discards recommended items that have a small probability to be relevant in a given
context. Recent empirical results indicate that there is no clear winner between pre-,
post-filtering and contextual-modelling methods and the best performing method is
application dependent (Panniello et al. 2009, 2014). Another post-filtering approach
was presented in Hayes and Cunningham (2004). This is a Case Based Reasoning
approach to music recommendation that uses a cascade architecture for re-ranking the
recommendation list depending on the current genre and artist information.

The most recent CARS techniques are model based: rating data are here used to fit
a regression model (Karatzoglou et al. 2010; Baltrunas et al. 2014). Tensor factoriza-
tion (Karatzoglou et al. 2010), an example of these approaches, extends the classical
two-dimensional matrix factorization problem to an n-dimensional version. The multi-
dimensional matrix (tensor) is factored into lower-dimensional representations, where
the user, the item and the contextual dimensions are represented with a factors vector.
It is worth mentioning that in Tensor Factorization the number of model parameters
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grows exponentially with the number of contextual factors (Karatzoglou et al. 2010).
This makes these approaches powerful but hard to manage, especially when only a
small data set is available and over-fitting can occur. A simpler approach, which scales
up better, is presented in Baltrunas et al. (2014). Here the authors rely on matrix factor-
ization, and introduce additional baseline parameters to model the interaction between
contextual conditions and items. For further details, overview and references to pre-,
post-filtering and contextual modeling approaches we refer the reader to Adomavicius
and Tuzhilin (2011).

Item Splitting, the method proposed in this paper, is close to Reduction Based
(Adomavicius et al. 2005). Both of them use data pre processing in order to modify
the training data, however, they have some notable differences. First of all, Reduction
Based uses a “wrapper like” approach to compute the best contextual segments (Kohavi
and John 1997). In fact, the accuracy of the underlying prediction method, which is
user-based collaborative filtering in their case, is tested using all the possible contextual
segments that contain a sufficient number of ratings. The algorithm searches for the
contextual segments where the model, trained using only the segment data, is more
accurate than when trained using the full set of data (non context-aware). Then, the
final prediction for a generic rating in a particular target context is computed using the
largest data segment that contains the target context and has the smallest prediction
error.

This is a very expensive approach, as there is an exponentially large number of
contextual segments, in the number of contextual conditions, and for each of them
one needs to build and test a predictive model. Conversely, Item Splitting uses a “filter
like” approach (Kohavi and John 1997), where each item and contextual condition
combination is tested as a candidate for a split using a simple measure such as infor-
mation gain, or chi square statistic. So Item Splitting computation has only a linearly
(in the number of items and contextual conditions) growing time complexity.

Another difference is that Item Splitting judges whether to split or not an item
independently from the other items. This is a more dynamic, and adaptive approach
that could give a benefit in those situations where only some item evaluations do depend
on the contextual factors. However, a potential problem for Item Splitting, which will
be discussed later on, is that it could overfit the data, as it is a more complex model
(higher capacity) compared to Reduction Based.

The last noteworthy difference is that, even though Item Splitting has been defined as
a pre-filtering approach, it uses always all the available ratings to compute a prediction.
Whereas Reduction Based confines itself only to the ratings belonging to the same
context segment of the target recommendation. Hence even if the target item rating to
predict is in a particular context, e.g., in summer, Item Splitting still uses the ratings
acquired in the other contextual conditions to build the predictive model. In fact,
the ratings of a split item in the non target context, for instance, in winter, are not
removed. This data is taken into account, and contributes to the estimation of all
the model parameters, in particular the factor vector of the users. Hence also the
user ratings in winter do influence the final prediction even if the target context is
summer.

Finally, we would like to mention that some other recent research works are based on
ideas similar to Item Splitting. For example, instead of splitting the items (Baltrunas
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and Amatriain 2009; Said et al. 2011) propose to split the users. Here the system
checks whether a user has different preferences in alternative contextual conditions,
and if this holds two fictitious users are generated. They report system prediction
accuracy improvements in music and movies RSs. In fact, Said et al. (2011) shows
that user splitting can be effectively exploited to tackle the Camra Challenge data set
(Adomavicius et al. 2010).

3 Method

In standard Collaborative Filtering (CF) ratings belongs to a two dimensional matrix
{rui }u∈U,i∈I , where U is the set of m = |U | users and I is the set of n = |I | items.
Ratings rui are ranging in a set of possible values, e.g., {?, 1, 2, 3, 4, 5} that includes
a special symbol for missing rating, rui = ?, to indicate that the evaluation of user u
for item i was not collected.

Our rating model extends the traditional CF model by assuming that each rating rui

is stored (tagged) together with some contextual information c(u, i) = (c1, . . . , ck),

c j ∈ C j , describing the conditions under which the user experience was collected.
Here, c j is a nominal variable, also called contextual factor, taking its possible values
(i.e., precise contextual conditions) in the finite set C j . For example, the weather con-
textual factor may take values in Cweather = {sunny, cloudy, raining, snowing}.
High level contextual conditions may be determined by processing lower level data
coming for instance from sensors. For example, a location resolver might ana-
lyze the time stamped user position described by the latitude and longitude, and
return the current user location as “home”, “work”, or “other” (Hussein et al.
2014).

Our proposed method identifies items having significant differences in their ratings
when tagged with different contextual conditions (see later the exact test criteria).
If an item i has this property, then our algorithm splits its vector of ratings ri =
(r1i , . . . , rmi ) (provided by users who evaluated that item) into two vectors, ric and ric̄ ,
thus providing the ratings for two new artificial items ic and ic̄. The split is determined
by the value c of one contextual factor j . The ratings of the first new item are those
acquired in the contextual condition c j = c, whereas the ratings of the second item
are those acquired in the condition c j �= c. Formally, ric = (r1ic , . . . , rmic ), such that
ruic = rui if c(u, i) = c, and ruic = ? otherwise. While ric̄ = (r1ic̄ , . . . , rmic̄ ), such
that ruic̄ = rui if c(u, i) �= c, and ruic̄ = ? otherwise.

We have defined an algorithm that sequentially considers all the items. For each
item it examines the contextual conditions c j = c that can be used to split the item.
Then it computes the score of that particular split: this measures to what extent the
ratings of the two new produced items have a (statistically significant) difference, e.g.,
with respect to their means. We introduce the notation t (i, c) to indicate the score,
or impurity, of the split generated by the contextual condition c j = c for item i . The
larger the score/impurity the stronger the ratings of the two new items, ic and ic̄, appear
to differ. The split with the largest score is selected, and if the score of this split is
larger than a threshold d, then the split is accepted and the original item is replaced in
the ratings matrix by the two newly generated items.
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Fig. 1 One Item Splitting according to a contextual condition gives rise to two new items evaluated in two
alternative contextual conditions

Figure 1 illustrates the splitting process performed on one item. Note that in a real
situation many of the original items are split. The algorithmic description of Item
Splitting is provided in Algorithm 1. Item Splitting takes as input a m × n rating
matrix {rui }u∈U,i∈I of m users and n items, and outputs a m × (n + l) matrix, where
l is the number of items that are split. The total number of ratings in the matrix does
not change, but 2l new items are created and l are discarded.

So far we have explained how Item Splitting uses contextually tagged ratings’ data
in the pre-processing step. After the new rating matrix is produced a rating prediction
model can be applied. In our experiments we used both matrix factorization, and user-
based CF. Then, in the testing phase, or when the algorithm is used to predict the rating
for a user-item pair (u, i), one must specify also the target contextual condition of the
prediction, i.e., a value c in some C j . If the item i was split with respect to any value
of the j-th factor, e.g., with respect to c′ ∈ C j , then the prediction is computed for
the the new generated item ic′ (ic̄′) if c = c′(c �= c′). If the item i was not split with
respect to the j-th factor then the original item i is considered for the prediction of rui

in the context c.
Finally, to build the recommendation list for a target user we applied the standard

approach (Adomavicius and Tuzhilin 2005). Namely, given a target context, first we
generate the rating predictions for all the items not yet experienced by the user in that
context. Then, we sort them according to the predicted rating value, and finally we
recommend the top-k items with the highest predicted ratings.

We note that to build context-aware recommendations we assume that the context
of the user (e.g., is watching a movie with a companion), of the item (e.g., there is
a discount for it), or of the situation (e.g., the current weather is “sunny”) is known.
We also notice that the system is able to build predictions for all the combinations
of user × i tem × context . As a matter of fact, building a single recommendation
list for a user could involve computing rating predictions using several contextual
conditions, as context itself depends not only on the user, but also on the item, or the
combination of both. For example, the distance of the user to the item will change
for each user × i tem pair. Therefore, for each user’s rating prediction the proposed
algorithm could in principle use different contexts. In particular we would like to note
that in Sect. 4.4 we will illustrate how an arbitrary change of a contextual condition
may affect the rating predictions and recommendations.
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Algorithm 1: Item Splitting
Input: Ratings data set, impurity criteria t , impurity threshold d
Output: Modified ratings data set
foreach item i do

for C j ∈ C1 . . . Ck do
for c ∈ C j do

Generate ric and ric̄ ;
Compute t (i, c);

cmax ← arg maxc{t (i, c)};
if t(i, cmax ) > d then

Modify data set by replacing i with ic and ic̄ ;

We also observe that in this paper we allow an item to be split only into two
items, i.e., using only one contextual condition. A more aggressive split of an item
into several items, using a combination of factors, could produce even more “spe-
cialized” items. In fact, in our initial experiments we tried splitting items using more
contextual factors. However, with the considered data sets we could not find fac-
tor combinations that significantly increased the performance of the basic method.
Therefore, we decided not to consider these more complex splits. By allowing more
complex splits we are also potentially increasing the data sparsity and the risk to
overfit the training data. Moreover, as it will be discussed in Sect. 3.3, if arbitrary
splits are allowed, then the time complexity rises from logarithmic to exponen-
tial.

Finally, we note that a user can in principle rate the same item in several contexts.
Therefore, the ratings vectors for items ic and ic̄ could overlap, i.e., there could be
users that have rated i twice but in different contextual conditions. We can deal with
this kind of Item Splitting, but in our experiments such occurrences are very rare (less
than 0.1 % for the considered data sets), and did not influence the performance of the
algorithm.

3.1 Splitting criteria

We conjecture that splitting an item could be beneficial if its ratings, in the two alter-
native contextual conditions defined by the split, are more homogenous than the full
set of ratings. Besides, we also conjectured that splitting could be useful if these two
new set of ratings have different properties, for instance, if the average rating for an
item in context c j = c is significantly larger than the average rating when c j �= c.
One way to determine whether an item must be split or not is to define an impurity
criteria t (Breiman et al. 1984). So, if there are some candidate splits c ∈ C , which
divide the ratings for i into two vectors rc and rc̄, we choose the split c that maximizes
the impurity t (i, c) over all the splits in C . A split is determined by selecting a con-
textual factor C j and a value c ∈ C j , partitioning the values in C j in two sets: {c},
and C j \ {c}. Thus, the space of all possible splits of item i is defined by the context
model C1, . . . Ck .
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We considered five impurity criteria: tmean, tprop, tI G , tchi and trandom .

– tmean(i, c) impurity criteria is defined using the two-sample t test and computes
how significantly different are the means of the ratings in the two rating subsets,
when the split c is used. The bigger the t value of the test is, the more likely the
difference of the means in the two partitions is significant.

tmean =
∣
∣
∣
∣
∣

μic − μic̄
√

sic/nic + sic̄/nic̄

∣
∣
∣
∣
∣

where μi is the mean rating of the item i, si is the rating variance of item i and ni

is the number of ratings that item i received.
– tprop(i, c) uses the two-proportion z test and determines whether there is a sig-

nificant difference between the proportions of high and low ratings in ric and ric̄ ,
when c is used. We consider two rating classes. A rating is defined as high if it is
4 or 5, and low if it is 1, 2 or 3 (Herlocker et al. 2004). For the data set with rating
scale from 1 to 13 (as in Adomavicius et al. 2005), we consider high the ratings
larger than or equal to 8. To test the difference between proportions we use the
two-proportion z test computed as:

tprop = pic − pic̄
√

p(1− p)(1/nic + 1/nic̄ )

where p = (pic nic + pic̄ nic̄ )/(nic + nic̄ ), pic (pic̄ ) is the proportion of high ratings
in ic(ic̄), and nic (nic̄ ) is the number of ratings in ic(nic̄ ).

– tI G(i, c) measures the information gain (IG), also known as Kullback-Leibler
divergence (Quinlan 1993), given by c to the knowledge of the item i rating class
(low or high):

tI G = H(i)− H(ic)Pic + H(ic̄)Pic̄

Here H(i) is the Shannon Entropy of the item i rating class distribution and Pic is
the proportion of ratings that ic receives from the item i .

– tchi (i, c) computes chi square test for proportions to determine if there is a signif-
icant difference between the proportions of high and low ratings in ic and ic̄. This
criteria is similar to tprop(i, c), however, it uses a different proportion statistic.

– trandom(i, c) is used as a reference baseline for comparing the behavior of the other
methods. It returns a random score for each split c.

3.2 Analysis of the method

In order to explain why Item Splitting is effective, we will provide here a theoretical
argument that illustrates how, under some assumptions, Item Splitting must improve
the rating prediction performance. Let us assume that the rating prediction algorithm is
the median of the target item’s ratings, i.e., we estimate the rating of a new user for the
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item i as the median of the collected set of ratings for i . Let us further assume that we
split the vector of ratings for item i into two vectors rc for contextual condition c, and
rc̄ for contextual condition c̄. Moreover, let us assume that the medians of the entries in
these two vectors are not equal, and this is supported by a statistical test. If the current
available rating data are representative of the missing ratings for item i , then estimating
the rating of a user for item i in context c (c̄) with the median of the ratings for i in the
contextual condition c (c̄) is expected to be more accurate than the median of the full
set of ratings for i . As significance test we could use the Mann Whitney test, which
could also be included among the already listed impurity measures. It assumes that
the samples are randomly taken from the population, independence within samples,
mutual independence between samples, and an ordinal measurement scale.

Clearly this argument is valid only when the median is used as rating prediction
algorithm. But, one can generalize this argument for a different predictor by using
cross-validation. Namely, one could test if the rating predictions (of different users)
made by an algorithm for an item i is more accurate when the new items ic and ic̄

are considered. If this is the case, then the split is expected to be beneficial also for
the unseen ratings for item i . But ensuring that Item Splitting is beneficial, i.e., by
using the above mentioned test, is very expensive. For each split one should retrain
the prediction model and evaluate the benefit (error reduction). Moreover, when using
more sophisticated methods, splitting a single item influences the rating predictions
for other items too. Therefore, splitting benefit should be cross-validated for all the
different combinations of items. For this reason we have followed a filter method where
a splitting criterion, independent from the prediction algorithm, is used to decided
wether to split or not.

3.3 Complexity of the Algorithm

As described in Section 3, Item Splitting eventually splits an item using a single
contextual dimension. Given n items, m users, k contextual dimensions and d distinct
values for each contextual dimension, the time complexity is O(nmkd). As it can be
seen in Algorithm 1, the execution time depends linearly on the number of items n in
the data set, the number of the ratings for each item and the number of possible splits
for each item. In fact, the algorithm first splits an item and then computes the statistic
for that split. Given a split, all the used statistics can be computed in a linear time with
respect to the number of ratings per item, and the maximum number of ratings is m,
that is the number of users. Also note that usually items are not rated by all the users,
moreover, some splits have not enough ratings to be evaluated and therefore are not
even considered.

The time complexity of a more general version of the Item Splitting algorithm, i.e.,
allowing an arbitrary split of an item into two sets, is exponential in the number of
values that the contextual dimension can take. The time complexity of such algorithm
is O(nmk2d). Since the algorithm splits the item in two subsets, the number of possible

splits using a single contextual dimension can not exceed 2d−2
2 splits, where d is the

number of different values of a contextual dimensions. Here, 2d − 2 is the number of
proper subsets of a set of cardinality d (i.e., excluding the empty set and the set itself).
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In practice Item Splitting performs reasonably well. On the two data sets that we
have used ( k = 5, d = 5, n = 192, m = 84 and k = 2, d = 3, n = 11K , m = 7K )
Item Splitting running time was less than 10 s using a desktop machine with 2.2 GHz
processor, and Python as implementation language. Observing that Matrix Factoriza-
tion (MF) (described later), which we implemented in the C programming language,
required approximately 1 min to be trained (on the larger data set), one can conclude
that Item Splitting does not add a significant overhead to the model learning execution
time (when data sets of the considered dimensions are used).

3.4 Missing context values

Real world ratings’ data sets tend to be incomplete, i.e., users rate a small minority of
the items. Moreover, the collected ratings are usually noisy, i.e., the rating of a user for
an item can be modeled as the sum of a quantity measuring the true user satisfaction
for the item plus an error term (Han et al. 2006). The noisy and incomplete nature of
contextual information is also due to the fact that the values of the contextual factors
are usually automatically collected by low level sensors (Dey 2001), or actively asked
to the user (Adomavicius et al. 2005). In many cases users do not respond to such
requests or, for sensors data, the communication link to the sensor could be unreliable,
and no or noisy information about the current contextual condition could be obtained.

Our prediction model relies on contextual factors and, therefore, it is important to
elaborate a solution to generate recommendations even if some contextual information
is missing. In data mining several approaches for dealing with missing values have
been proposed (Han et al. 2006). Such techniques are general and could be applied
in context-aware CF as well. The most common approach is to simply ignore the
tuple that contains missing data. However, in this valuable information is wasted only
because the value of a single contextual factor is missing. In fact, in some data sets
most of the ratings have some unknown contextual factors, i.e., they will be tagged
only with a subset of all the possible factors. Another popular solution for dealing
with missing values is to use the most common, or the most likely value, in place of
the missing one. The main limitation of this approach is the risk to bias the rating
prediction towards the value that is appropriate for the most common context.

Instead of relying on these general approaches, we have designed a technique that
is tailored to Item Splitting. As described earlier, when generating candidate items
with respect to a split, we assign a rating to one of the two newly introduced fictitious
items. The assignment of a rating to one of these two items depends on the value of
the considered contextual factor. If we miss such information, we propose to assign
the rating to both items. Then, this candidate split is evaluated as before. Note that if
we had used the approach mentioned earlier, i.e., guessing the more likely value of the
missing contextual factor, the rating would be assigned to only one of the two newly
generated items.

When a rating predictions must be computed for a target user-item combination,
there are cases where the full description of the target context is not known, i.e., the
values of some contextual factors may be unknown. In these cases, when making a
rating prediction for an item i in context (c1, . . . , ck), we first determine if the item i
ratings were split by the algorithm into two items, and what contextual factor C j was
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used to perform the split. If the ratings of i were split using C j , but we do not know
the current value of this contextual factor we predict the ratings for the two items that
resulted from the split of i and we return as final rating prediction the average of the
two predictions.

The evaluation of this approach for dealing with missing contextual values is pre-
sented in Sect. 4.5.

4 Experimental evaluation

This section illustrates the results of the experimental evaluation of Item Splitting. We
used two real world and some semi-synthetic data sets that we generated ad-hoc to test
the behavior of the proposed context-dependent CF algorithm under controlled condi-
tions. We start the Section by introducing our experimental setup. Sect. 4.1 compares
the performance of Item Splitting (with alternative splitting criteria) to Reduction
Based on a real world data set (movies). Section 4.2 uses another real world data
set that is considerably bigger, where user demographic information is used to split
items instead of a truly contextual condition. Note that, even though these are not truly
contextual factors, Item Splitting can exploit the additional information provided by
demographic data and its performance can be tested. In fact, to split an item one could
use any external information (factor) about the rating. In this example, for instance,
Item Splitting is checking whether males rate movies differently from females. In
fact, in many situations true contextual factors may have a larger influence on the user
evaluation for an item, compared to that produced by the gender or age features of
the user. For instance the climate of a place has a strong impact on the evaluation of
a travel, e.g., to India during the monsoon period. Therefore, benefits are expected to
be even greater if relevant contextual factors could be observed and used.

We evaluated the effect of using Item Splitting on two different rating prediction
methods (matrix factorization and knn), while splitting an increasing number of items.
Then in the following Sections we describe the usage of semi-synthetic data sets and
we analyze various properties of our algorithm vs. the classical Reduction Based
method. Section 4.3 shows the performance of our method when the influence of the
contextual factors on the ratings gradually increases. Section 4.4 shows how the top-k
recommendation list for a user changes when context changes. Section 4.5 analyzes
the performance of Item Splitting with an increasing number of missing contextual
factors. Finally, Sect. 4.6 concentrates on the precision/recall analysis of the proposed
method.

Datasets. We tested Item Splitting on two real world, and a number of semi-synthetic
context-dependent, data sets. In the first experiment we used the data set acquired
by Adomavicius at al. (2005). We removed the entries that were not tagged with
a full description of the contextual factors. Hence, in this data set we do not deal
with missing contextual information. After that pre-processing step we obtained a
data set containing 1,464 ratings of 84 users for 192 movies; hence a rather small
data set compared with other standard data collections used in CF research. The rat-
ings were collected during a period of 12 months (May’01–Apr’02) by asking college
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students to fill out a questionnaire on movies, using a rating scale ranging from 1 to
13, and to provide information about the context of the movie watching experience.
Precisely, in addition to the ratings, the authors recorded the information whether
the movie was watched on weekend or weekday, in a movie theater or at home and
with whom the user watched it. Moreover, the system registered additional informa-
tion that was not used in Adomavicius et al. (2005), such as, if the user would rec-
ommend this movie to a friend. In our experiments we used 5 contextual factors:
(a) “companion”, taking values in {friends, parents, girlfriend, alone, colleagues};
(b) “day of the week”, with values in {weekday, weekend, don’t remember}; (c) if
it was “opening weekend” {yes, no, don’t remember}, (d) how the user would “rec-
ommend it to a friend”, {Excellent, Good, Fair, Bad}; and (e) “year” when the movie
was seen {2000, 2001, 2002}.

We note that this data set and the contextual factors are slightly different from those
used in the original experiment (Adomavicius et al. 2005). Our data set has more
ratings and includes contextual factors that were not considered before; for instance,
the year when the movie was seen, and if the user would recommend this movie to a
friend. These differences were caused by some difficulties that we found in restoring
the original data from the back-up and in understanding what factor value (contextual
condition) corresponds to which question in the on-line questionnaire. We note this
only to warn the reader not to compare the experimental results here reported with
those in Adomavicius et al. (2005). The correct comparison with Reduction Based has
therefore been conducted on this data by us.

The second real world data set that we have used was provided by the Yahoo!
Webscope research project (Yahoo! Research Webscope Movie Data Set). It is a much
bigger data set than the previous one: it contains 221K movie ratings in the {1, 2, 3,
4, 5} scale, for 11,915 movies by 7,642 users. The Yahoo! data set contains user age,
and gender features. We used 3 age groups: users below 18 (u18), between 18 and 50
(18 to 50), and above 50 (a50). This feature plays the role of a contextual factor in
Item Splitting.

In order to control the influence of the contextual factors and analyze various prop-
erties of Item Splitting we also generated some semi synthetic data sets. Using the
original Yahoo! data set, for each rating we replaced the user’s gender feature with an
artificial contextual factor c ∈ {0, 1} that was randomly set to either 1 or 0. So, more
or less half of the ratings were tagged with c = 1 and the rest with c = 0. We used this
factor c for representing a contextual condition that may affect the rating. For instance,
it may represents the fact that the movie was rated after the user watched the movie
alone or with friends. Without any further modification, this factor has no effect on the
ratings because it is not correlated to the rating. Hence, in order to simulate an effect
on the rating, we randomly choose α ∗ 100 % items from the data set and then among
these items we randomly chose β ∗ 100 % of their ratings. For all these ratings we
increased (decreased) the rating value by one if c = 1 (c = 0). If the rating value was
already 5 (1), then we did not make any change. For example, if α = 0.9 and β = 0.5,
then the corresponding synthetic data set has 90 % the items’ profiles altered and for
each of these altered items 50 % of their ratings were altered. After this operation it
is clear that the factor c does have an impact on the rating: if it is 1, then the rating in
that situation tend to be higher than usual, while when c takes the 0 value the rating
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Fig. 2 Schematic example of the semi-synthetic data set generation procedure

tends to be smaller. We generated various semi-synthetic data sets varying the α and
β parameters. Thus, in these data set the contextual condition is more “influential” on
the rating value as α and β increase.

We must observe that one can imagine several alternative approaches for generating
an artificial context-dependent ratings data set. For instance, in our case the quantitative
influence of the context is fixed, i.e., the presence of this artificial contextual condition
has the effect of increasing by one the rating, and if it is not present the rating is
decreased by one. A different and still reasonable approach would consist of, for
instance, only raising the rating if the contextual feature is present, or by raising the
rating by a varying quantity. Notwithstanding these alternative options we believe that
the proposed method is valid and useful for performing a systematic analysis, which
could not be possible by using a standard data set where there is no control on the
effect of context on the ratings.

Figure 2 illustrates the generation procedure of the artificial data sets. To keep it
simple, in this figure we show the data as a list of tuples with gender and age feature.
Bold red font indicate changes from the last step of the data set generation. The leftmost
figure shows the initial Yahoo! data set, containing user ratings for the items, age and
gender information. In the middle it is shown how the gender feature is replaced with
the contextual factor c that takes the random values 1 or 0. The rightmost figure shows
the final step of injecting the rating dependency on this factor. We choose an α fraction
of the items and we modify a β fraction of ratings of those items. In the example shown
in Fig. 2 the rating for the movie “Totoro” was not changed, whereas the ratings for
all the other movies were modified according to the value of the factor c as described
above.

Prediction methods We computed rating predictions with three standard techniques:
user-based CF (KNN), matrix factorization (MF) and a non personalized prediction
computed as the item’s average rating (AVG). In KNN we used Pearson Correlation
as user-to-user similarity metric, moreover, when making a rating prediction for a user
we considered only the neighbors that have rated the target item and have co-rated a
minimum of 6 items with the target user (Berkovsky et al. 2007). Matrix factoriza-
tion uses gradient descent matrix-factorization as provided by Timely Development
(Timely Development Implementation). We used a single validation set to find the
best parameters for the two CF methods. KNN uses k = 30 nearest neighbors both for
the Yahoo! data and the synthetic one. MF uses 60 factors and the other parameters
were set to the same values optimized for the Netflix data set. It might not be the best
setting, but all the system variants that we compared used the same settings.

123



Experimental evaluation of context-dependent 21

Fig. 3 MAE of the compared contextual pre-filtering methods—real world movie recommendation data
set

Evaluation Measures To evaluate the described methods we used time independent
5-fold cross-validation (Campos et al. 2014) and measured Mean Absolute Error
(MAE), precision and recall (Herlocker et al. 2004; Shani and Gunawardana 2011).

The usage of precision and recall in recommender systems needs some clar-
ifications. These measures can be only estimated since to compute them pre-
cisely one would need the ratings (relevance) of each item and user combinations
(Herlocker et al. 2004). Usually there are thousands of candidate items to recommend
(11K in our case) and just for a tiny fraction of them we know the true user’s eval-
uation (typically less than 1 %). Herlocker et al. (2004) proposed to estimate these
measures by computing the prediction just for the user × i tem pairs that are present
in the ratings data set. Moreover, they consider items worth recommending (relevant
items) only if the user rated them 4 or 5, when the rating scale is {1, 2, 3, 4, 5}, and 8
and greater, if the scale is from 1 to 13. After training the models on the train set, we
computed these measures on the full test set (of each fold).

4.1 Performance on contextually-tagged data

The first experiment was conducted on the movie data set provided by Adomavicius
et al. (2005). In the original experiment the authors used KNN prediction and reported:
precision, recall, and F measure of their Reduction Based method. Moreover, they used
MAE for the segments’ selection. In our evaluation we have used MF and we have
used MAE in the optimization (training) step, both for building our model and for
testing the predictions. We have choosen MF as it usually outperforms KNN (Koren
2008) and it is now considered the state of the art method for CF predictions (Koren
et al. 2009).

Reduction Based and Item Splitting are compared to a baseline MF method that does
not take into account contextual information in Fig. 3. Note that all the three methods
ultimately use the same prediction method, namely MF and the only difference here
relates to the pre-filtering step of the input data. Here, Item Splitting uses the various
impurity criteria discussed in Sect. 3.1, whereas Reduction Based determines the
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Fig. 4 Distribution of chi-square statistics for items with possible splits

segments of the data where contextual information is useful to improve MAE as
described in Sect. 2. We see that both context-aware CF systems (Reduction Based
and Item Splitting) have a better prediction accuracy compared to the context-free
approach. The only exception is observed when item splitting uses the random splitting
criteria; but this was expected. We note that in this data set the best performing method
is Item Splitting with Tmean as splitting criteria; it improves the baseline prediction by
9 %. The second best performing method is Reduction Based that improves the context
free method by 7.8 %. The improvement obtained with Reduction Based confirms
the validity of this method. Other Item Splitting versions, i.e., with other impurity
measures, outperform the context-free method as well. However, they provide slightly
smaller improvement: Tprop 7.6 %, TI G 7.16 %, Tchi 6.18 %. Note that three best
performing methods have very similar accuracy.

For the Tprop, Tmean and Tchi methods we split the item if the test statistic was
greater than 4. This threshold approximately corresponds to the 0.05 level of statistical
significance. The exact values are: 3.84 for chi-square with 1 degree of freedom, 4.03
for t test. A better tuning of these parameters could further improve the performance.

Figure 4 shows the distribution of chi-square statistics for each item in the training
set. We assigned an item to a histogram bin by looking at the maximum value of the
statistic. In other words, among all the possible splits of an item we report the one
with the highest chi-square statistic. For example, imagine that the item i could be
split using the contextual conditions c1 and c2, and such splits would produce the chi
square statistics 0.01 for c1, and 30.1 for c2. In such case we would add item i to the
last bin of the histogram.

Note that we did not split the items with few ratings. In particular, no split is
performed if this would generate items with less than 5 ratings. Applying this rule to
the original 192 items, only 58 of them could be split. This number can be computed by
summing up all the values of the histogram bins except the first (containing items with
chi square statistics lower than 3.84). This suggests that Item Splitting cannot achieve
an optimal performance on this data set not because there is no split that partitions
the ratings in two significantly different sets of ratings, but because many items do
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Table 1 Rating statistics for
different demographic groups

Male Female u18 18 to 50 a50

#ratings 158,507 52,224 45,084 157,844 7,803

mean 4.03 4.23 4.17 4.06 3.99

not have enough ratings to be split. In fact, when there are enough ratings for an item
the chi square statistics tends to be larger than 3.84, the threshold that we used in our
experiments to decide whether to split or not.

4.2 Evaluation on data containing demographic information

In the second experiment we analyzed the algorithm performance on the bigger Yahoo!
data set. Initially, we made a general statistical analysis of the data. We used the two-
proportion z test (as described above) and measured if the ratings of the two genders,
or the ratings of different age groups, show statistically significant differences. For the
Yahoo! data set the biggest statistical difference was obtained for the gender attribute
(z-score 25.8), i.e., males and females do rate (on average) the items differently. For
instance, females rate on average higher than males. A summary of the Yahoo! data
statistics is showed in the Table 1.

The two-proportion z test statistics shows that different demographic groups rate
movies differently. However, the difference in the means of the ratings are small.
Moreover, when user-to-user CF makes a rating prediction it scales the rating according
to the user mean. Therefore, such differences in the means can be captured by the
underlying CF algorithm. For example, KNN incorporates the average user rating into
the prediction step of the algorithm. In this data set Reduction Based can not find any
segment that improves the prediction accuracy of the baseline approach. Therefore,
its prediction accuracy is the same as any standard method that is not using contextual
pre-filtering.

Conversely, when using Item Splitting with tI G criteria pre-filtering slightly
improves the performance of MF. When splitting 1 % of the items with the high-
est impurity the MAE computed for the whole data set is decreased by 0.1 %. The
change is small, because most of the predictions in the test data set are not affected by
this pre-filtering technique since a small amount of items are split. When more items
are split we observed a decrease in the overall performance. This can be explained
by the fact that there is no strong functional dependency between the gender, or the
age features, and the rating. In this situation Item Splitting produces a rather arbitrary
split and it is not effective. Moreover, splitting items makes data more sparse and the
computation of item-to-item correlation, which is used in KNN, could become unre-
liable. We also measured the performance of the other proposed split criteria on the
full data set. MAE of MF increased: 0.3 % for tprop, 0.3 % for tsi ze, 0.3 % for tmean ,
0.05 % for trandom . In conclusion, Item Splitting has a small effect when applied to
the gender and age features in the Yahoo! data set and the only splitting criteria that
improved the accuracy in the full data set, as mentioned above, is tI G . Conversely, we
will show in the next section that when the dependency from the context is stronger
then Item Splitting becomes beneficial.
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It is worth noting that for a small set of items, such as the romantic story “Chocolate”,
there is a significant difference in the average ratings of men and women. The average
male rating was 4.2 (60 ratings) while the average female rating was 4.8 (83 ratings).
Hence, for the reasons mentioned above, we conjectured that when predicting ratings
for such items it could be beneficial to use Item Splitting. Hence, to better study the
effect of Item Splitting using different split criteria we computed the rating prediction
MAE only on the items that were actually split. We split an increasing percentage of
items, selecting those with the highest impurity. We compared the rating prediction
accuracy using the split data set with that obtained for the same ratings using the
original data set (not split). The results for various impurity criteria on the Yahoo! data
set are shown in Fig. 5.

Item splitting improves the performance of the non-personalized AVG method
(original-AVG vs. split-AVG in the figures), when using tmean , and tprop. When 1 % of
the items with the highest impurity are split (the first data point in the shown curves)
the improvements are as follows: -0.2 % for tI G , 1.1 % for tprop, 1.0 % for tmean , and
0.4 % trandom (not shown in the figure). The improvements are small, because gen-
der and age do not significantly influence the prediction. We also observed that KNN
was negatively affected by Item Splitting (when using both, tI G and tprop) and MAE
increased. We conjecture that this can be due to the reduction of the number of ratings
in the target item profile when splitting is applied. We initially optimized the number
of nearest neighbors (k parameter) to 30. But, after the splitting the target item has a
smaller number of ratings (the average size of an item profile is 19 ratings) and KNN
will find it more difficult to select neighbors of the target user, hence will tend to use
all the users that have rated the target. Conversely Item Splitting is strongly beneficial
when used together with MF. When splitting 1 % of the items with the highest impurity
the improvements are as follows: 5.6 % for tI G , 0.4 % for tprop, 0.7 % for tmean , 0.9 %
for trandom . Here notably the best performance is achieved by tI G that measures the
information brought by the contextual factor to the knowledge of the rating and uses
a very different heuristic from all the other criteria.

4.3 Varying the impact of the contextual factor

Since the movie ratings data set considered in Sect. 4.1 is rather small, for better
understanding the potential of Item Splitting in larger contextually-tagged rating data
sets we tested our approach on the semi-synthetical data described at the beginning
of Sect. 4. We used the semi-synthetical data sets generated with fixed β = 1.0, and
varying α ∈ [0.1, 0.9]. That is, we varied the proportion of items that are affected by
the artificial contextual factor, but, if an item is affected, then all its rating (β = 1.0) are
increased or decreased according to the value of the contextual factor. The larger is α

the more influential is the artificial contextual factor on the data set. Figure 6a compares
the MAE of MF for three different splitting criteria on the full set of test items. This
figure shows how α impacts on the system prediction accuracy. The different curves
are obtained by splitting the items if the p-value of tmean and tprop tests are lower than
0.05 and when tI G is greater than 0.18. We note that in the previous experiment with
Yahoo! data set these values produced the split of 5 % of the items.
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(a)

(b)

(c)

Fig. 5 MAE of different prediction methods using Item Splitting with various impurity criteria and per-
centages of split items—Yahoo! data set - test data are obtained considering only the items that are split

Figure 6a shows that in these context-dependent data sets increasing the value
of α, i.e., increasing the proportion of the items whose ratings are affected by the
contextual factor, the overall MAE increases too. So this dependency of the ratings
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(a)

(b)

Fig. 6 MAE of Item Splitting for different proportions (α) of items whose ratings are influenced by the
artificial contextual factor (a). MAE computed only for the ratings belonging to the items that were actually
split using tI G (b)

from a contextual factors plays the role of noise added to the data, even if this is
clearly not noise but a simple functional dependency from a hidden variable. In fact, it
is hidden for a standard MF CF method since MF cannot directly access this factor by
construction. Hence, it cannot exploit the additional information brought by this factor
and cannot effectively deal with its influence. Conversely, using Item Splitting, which
exploits the dependency of the ratings from the contextual factors, we can improve the
performance of MF (if α > 0.3) using all the three mentioned splitting criteria. Note
that the three splitting criteria have different behaviors when α increases. tmean and
tprop decrease the error also when α is small, however, when α > 0.5 tI G outperforms
the other two splitting methods. Using tI G the error is reduced substantially, if more
and more items’ ratings are influenced by the contextual factor.

Finally, Fig. 6b shows the system MAE computed only for the test ratings belonging
to the items that were actually split using tI G . The figure shows that for these items
Item Splitting is more and more effective with increasing values of α, i.e., when more
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items are influenced by the artificial contextual factor. We observed that MF benefits
from Item Splitting for all the values of α. When α is small the differences are small,
however, when the contextual factor becomes more influential, then the pre-processing
performed by Item Splitting pays off. The behavior of KNN is different, as it was noted
before for the original Yahoo! data. This method benefits from Item Splitting only when
α is rather larger, i.e., α > 0.4.

The non monotonic behavior that we observe in Fig. 6 could be determined by
a number of factors influencing the outcome of the experiment. First of all, in this
experiment we are measuring the performance of the method on several different test
sets, as an increasing number of items are affected by the context as α increases. This
is a first factor influencing the observed fluctuations. Moreover, since increasing α

we perturb an increasing amount of data, this could act as a noise component that
decreases the recommendation accuracy. However, the context-aware methods can
also benefit from this data dependency to improve the recommendation accuracy.
Hence, a mixture of interplaying positive and negative effects can cause the observed
fluctuation of MAE depending on α.

4.4 Effect of context on the recommendation list

The majority of previous works on context-aware recommender systems used con-
textual information to improve the accuracy of rating prediction (Adomavicius et al.
2005; Singh and Bamshad 2007). However, to our best knowledge nobody analyzed
how much the context actually impacts on the recommendation list presented to the
user, and if these changes are actually noticeable. We made an off-line experiment
where we simulated a context change, and computed its effect on the recommendation
list. Imagine, for instance, that the user is presented with a recommendation list in a
day with good weather. But suddenly the weather turns bad. We would like to know
if, and to what extent, the recommendation list would change.

To evaluate the amount of change in the recommended items we used again the
semi-synthetic data sets with an increasing proportion of modified ratings: α = 0.1
and β = 0.1;α = 0.5 and β = 0.5;α = 0.9 and β = 0.9. Similarly to what we
did in the previous experiments with semi-synthetic data sets, we used two contextual
factors: the user age feature, and the artificial contextual factor c. For rating prediction
we used MF, and Item Splitting was using tI G with threshold equal to 0.01. We first
computed the rating prediction for each user × i tem pairs, with the target artificial
contextual factor c = 1 and then we built their top-K recommendation lists, varying K
from 3 to 5000. Then, to simulate a context change, we set the target context c = 0, we
built a second top-K recommendation list and we compared these two recommendation
lists.

The obtained results for a sample of 200 randomly chosen users are shown in Fig. 7.
Here the overlap of two top-K recommendation lists, for two alternative contextual
conditions, is measured as the size of the intersection of the two lists divided by K .

When α = 0.5 and β = 0.5 approximately 25 % of the ratings are affected by
the artificial contextual condition. In this situation the top-5 recommendation lists
produced for two alternative contextual conditions overlap by 80 %, which corresponds
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Fig. 7 Average overlap of the recommendation lists produced for two alternative contextual conditions,
varying K, the size of the recommendation lists

Table 2 Item splitting performance with an increasing fraction of missing contextual values - semi-
synthetic data set generated with α = 0.9, and β = 0.9

Missing values 0 % 20 % 40 % 60 % 80 % 100 %

MAE 0.706777 0.804095 0.880746 0.925491 0.932382 0.930368

to a change of 1 item out of 5. Note that in practice recommendation lists offered by
true deployed systems do not contain more than 10 items. Therefore, the results for
bigger recommendation lists are mentioned here just for sake of completeness. The
results shown here indicate that, even in the data sets where context has a minor
impact (α = 0.1 and β = 0.1), the recommendation list is changing as the contextual
condition changes. Moreover, as expected, the higher is the impact of the contextual
factor the bigger is the change. Hence, for instance, in top-3 recommendation lists,
for the data set α = 0.9 and β = 0.9 (81 % of affected ratings), all the recommended
items will change if the contextual factor changes too.

This comparison does not take into account how accurate the predictions are. How-
ever, our previous experiments confirmed, that on average when taking into account
contextual information, the prediction accuracy improves. Hence, we believe that the
users would notice the changes in their recommendations and would benefit from a
context-aware recommender system. The final assessment should be done in a user
study and it is part of our future work.

4.5 Dealing with missing contextual values

In this section we evaluate the performance of Item Splitting with a varying number of
missing contextual values. We performed this analysis using the semi-synthetic data
set generated with α = 0.9, and β = 0.9. Starting from this data set we created new
data sets by gradually increasing the fraction of the values of the artificial contextual
factor that were set to unknown. We used the method described in Sect. 3.4 to deal
with this situation. Table 2 summarizes the results.
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The accuracy of Item Splitting drops when the amount of known information about
the contextual condition is reduced. We want to notice that the accuracy is not a
linear function of the amount of missing information. When 60 % of the contextual
information is missing, the accuracy is approximately as low as the context free predic-
tion. When all the values of the contextual factor are missing Item Splitting performs as
the baseline predictor that does not take into account context. This could be explained
by looking more carefully at how Item Splitting deals with missing values. In fact,
if many contextual values are missing in an item rating data, then the algorithm does
not split it. This happens because Item Splitting, when is deciding whether to split or
not an item using a contextual factor, if it finds a rating with missing value for the
contextual factor, then it assigns the rating to both the two newly introduced candi-
date items. Hence, if many of the ratings for an item are missing their value of the
contextual factor, then the two candidate items are almost identical (contain the same
ratings) and therefore the original item is not split. In conclusion, in our experiments
Item Splitting benefits from contextual information if at least half of the contextual
factor values are present.

4.6 Precision and recall analysis

To understand the effect of Item Splitting on the precision and recall of a recommender
system when context does influence the ratings, we used again the semi-synthetical
data sets described earlier. The baseline method is still MF and it is not exploiting any
contextual information. This baseline is compared to Reduction Based (Adomavicius
et al. 2005), and Item Splitting. Figure 8 shows the results of this comparison on
nine semi-synthetic data sets. When computing precision and recall we considered an
item as worth recommending if its predicted rating is greater or equal to 4. In these
experiments Item Splitting actually splits an item if IG is larger than 0.01.

As we expected, the smaller is the impact of the contextual factor (i.e., small α and
β) the smaller is the improvement obtained by the context-aware methods (Reduction
Based and Item Splitting). We recall that α is the percentage of items that are affected
by the artificial contextual factor and β is the percentage of each item’s ratings that are
affected. In fact, Item Splitting improves the performance of MF (No Context) in four
cases: α ∈ {0.5, 0.9}, β ∈ {0.5, 0.9}. Hence an improvement is observed if at least
25 % of the ratings are affected by the contextual factor. The highest improvement in
precision, 9.9 %, is observed when α = 0.9, β = 0.9, i.e., when most of the items and
most of the ratings are influenced by the artificial contextual factor.

Reduction Based increases precision by 1.3 % only when α = 0.9, β = 0.9, i.e.,
only when the artificial contextual factor has the highest influence on the ratings, and
90 % of items are modified. We note that in Adomavicius et al. (2005) the authors
searched for the best contextual segments by optimizing MAE. Here, we search for
the best segments by directly optimizing precision or recall. More precisely, to con-
duct this experiment, Reduction Based here first searches for the contextual segments
where precision is improved (using a particular split of train and test data). Then,
when making a rating prediction, if this is for an item-user combination belonging to
one of the found (good) segments, then it uses only the ratings data in the segment,
while if the item-rating belongs to one contextual segment where no improvement
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(a)

(b)

Fig. 8 Precision and recall comparison of contextual pre-filtering methods using MF

with respect to the baseline can be found, then it uses all the ratings data. Note that in
all the three data sets with α = 0.5, β ∈ {0.1, 0.5, 0.9} Reduction Based has a similar
performance to the baseline (MF). In these cases it does not find any good segment
(using the artificial factor).
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Fig. 9 Precision/recall curves for two data sets

Precision/Recall curve Finally, we show here the precision/recall curves for the three
considered rating prediction methods. As previously, Item Splitting uses IG with
threshold equal to 0.01. The best segments for Reduction Based were found by
optimizing precision. The results are shown in Fig. 9 for α = 0.9, β = 0.5, and
α = 0.9, β = 0.9. We actually performed other experiments with α = 0.9 and
β = 0.1, but we obtained similar results, therefore they are not presented here. Each
curve was computed by varying the threshold at which a recommendation list is gener-
ated. For example, all the methods obtained the highest precision when recommending
the items with predicted rating equal or larger than 5. Note that the ground truth is
that a recommendation is relevant if the user rated the item 4 or 5. In order to compute
the precision and recall curves we generated recommendation lists composed by the
items with predicted ratings larger than nine thresholds: {1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5,
5}. Note, that in the experiment illustrated in Fig. 8, the recommendation threshold
was 4, i.e., the recommendation list for a user is composed by the items with pre-
dicted rating larger of equal to 4. Recall is clearly 1 when the system recommends
all the items, i.e., with predicted rating 1 or higher. At this level of recall precision is
larger than 70 %. This is due to the high proportion of items with high rating in the
data set.

Recommender systems usually try to maximize precision rather than recall, since
the user is mostly interested in a small number of good recommendations rather than
in knowing all the relevant items. Even at recall level 0.01, the system may still
recommend too many items for the user.

The curves for all the three methods flat when approaching precision 0.97. At
this point the system recommends only the items with predicted rating 5. This is
the maximum possible predicted rating for MF and the precision can not be further
improved. We also observe that Item Splitting achieves a higher maximum precision
compared to the other methods. When α = 0.9 and β = 0.9, Item Splitting has
its highest precision 7 % larger than the baseline method. The improvement when
α = 0.9 and β = 0.5 is 2.7 %. This experiment gives valuable insights into the
behavior of Reduction Based. We see that for each predicted rating threshold used
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to determine the recommended items, i.e., those in the set {1, 1.5, 2, 2.5, 3, 3.5,
4, 4.5, 5}, Reduction Based has the largest recall among the considered prediction
methods. The highest precision obtained by Reduction Based is close to that of Item
Splitting and it is larger than the precision of the baseline by 6.1 %, when α = 0.9
and β = 0.9, and by 1.3 %, when α = 0.9 and β = 0.5. But, the precision/recall
curve of Reduction Based is always below that of Item Splitting. In conclusion we
note that both methods outperform the baseline CF which does not take context into
account.

5 Conclusions and future work

In this paper we have provided a comprehensive evaluation of a new contextual pre-
filtering technique for CF that is called Item Splitting. Based on the assumption that
certain items may have different evaluations in different contexts, we proposed to
use Item Splitting to cope with this situation. We have compared Item Splitting with
a state of the art context-aware approach, Reduction Based, which searches in the
space of possible context segments in order to find those segments where pre-filtering
improves the baseline prediction (Adomavicius et al. 2005). We have found that,
despite the increased data sparsity, Item Splitting is beneficial when one can find a
contextual factor that separates the item ratings into two more homogeneous rating
groups. However, if no contextual factor is influential, then the proposed technique
obtains just a minor decrease of the prediction error on the split items, and sometimes
it even produces a minor increase of the error in the full data set.

We have also shown that Item Splitting outperforms Reduction Based when MF is
used as rating prediction method for CF. Moreover, Item Splitting is more time and
space efficient and could be used with larger context-enriched data sets. In this work
we have shown, that Item Splitting would significantly change the recommendation
list when the contextual conditions change. Smaller changes of the recommendation
list are observable even when the context has a minor impact on the ratings.

Item splitting can be extended in several ways. For instance one can try to split the
users (not the items) according to some contextual factor. This would represent the
preferences of a user in different contexts by using various parts of the user profile
(micro profiling) (Baltrunas and Amatriain 2009). Another interesting problem is
to find a meaningful item splitting when a contextual factor has continuous values,
such as for the time or the temperature factors. Here, a splitting cannot be easily
predefined but must be determined by carefully setting thresholds in the continuous
space. Finally, Item Splitting could ease the task of explaining recommendations. In
fact, recommendations can be made for the same item in different contexts. In these
cases the contextual condition on which the item was split could be mentioned as a
justification for the recommendation. For example, if the system recommends to go to
a museum instead of a beach, then it can mention that this suggestion is motivated by
the fact that it is raining; assuming that the weather contextual factor was used to split
the ratings of the visit to the museum and to the beach. This may open an interesting
an important area or research, where context-aware recommendations are supported
and enriched by context-aware explanations.
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