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Abstract We propose a user model to support personalized learning paths through
online material. Our approach is a variant of student modeling using the computer
tutoring concept of knowledge tracing. Knowledge tracing involves representing the
knowledge required to master a domain, and, from traces of online user behavior,
diagnosing user knowledge states as a profile over those elements. The user model is
induced from documents tagged by an expert in a social tagging system. Tags identified
with “expertise” in a domain can be used to identify a corpus of domain documents.
That corpus can be fed to an automated process that distills a topic model represen-
tation characteristic of the domain. As a learner navigates and reads online material,
inferences can be made about the degree to which topics in the target domain have
been learned. We validate this knowledge tracing approach against data from a social
tagging study. As part of this evaluation, we match the predictions of the knowledge-
tracing model to individual participant responses made to individual question items
used to test domain knowledge.
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1 Introduction

The Web has become a primary resource for individuals to learn, in a self-directed
manner, about science, technology, and medicine, often with the aim of eventually
solving significant problems in areas such as personal health or gaining competence
in emerging technical fields (Fox and Fallows 2003; Fox and Jones 2009; Horrigan
2006; Lenhart 2009). Social web systems, in particular, from tagging systems to social
networks have additionally afforded the opportunity for large groups of people to
curate and collaborate around content. For the self-directed learner who seeks to mas-
ter available expert knowledge, one problem would be finding such pools of online
expertise within such systems, and a second would be the problem of focusing atten-
tion on things that need to be learned rather than things that the user already knows.
Recent work (e.g., Noll et al. 2009) has started to focus on the problem of identifying
“expert” users and “expert” sets of knowledge from the social Web. Here, we focus
on developing an approach that we argue is on the path to solving the second problem
of personalized learning paths through online material: We propose a variant of stu-
dent modeling using the computer tutoring concept of knowledge tracing (Anderson
et al. 1990; Corbett and Anderson 1995). Knowledge tracing involves representing
the knowledge required to master a domain, and, from traces of online user behavior,
diagnosing user knowledge states as a profile over those elements.

Personalization in the domain of education is epitomized by human one-on-one
tutoring, in which a student’s attention is guided through a course of content and
practice based on a tutor’s expert understanding of the subject matter and the tutor’s
understanding of the student’s current state of learning. This extreme form of per-
sonalized learning can yield up to two standard deviations of improvement relative to
less-personalized classroom instruction (Bloom 1984). Sophisticated computer-based
tutors have been able to achieve levels of personalization and learning outcomes com-
parable to human tutors in some domains (Corbett 2001), but these require considerable
knowledge engineering efforts (Aleven et al. 2009). In contrast, the Web can provide
cheap access to knowledge, but offers very little in the way of guiding a learner’s
attention to material that best suits their current state of learning while simultaneously
maximizing their progress to achieving expert command of the subject matter.

As noted above, a core element of what makes an Intelligent Tutoring System (ITS)
“intelligent” is its ability to accurately diagnose students’ knowledge and adapt instruc-
tion accordingly. Most of these student models have been hand-crafted by considerable
person-hours of knowledge engineering effort, and the focus is often on the modeling
of procedural cognitive skills (Corbett 2001). There are, however, approaches (e.g.,
Foltz et al. 1999; Kakkonen et al. 2005) that have automatically induced a semantic
representation of a domain (e.g., introductory psychology) from a given corpus of
documents, used that to diagnose student task performance (e.g., writing an essay),
and provided feedback and recommendations that ultimately improved learning.

In this paper, we aim to develop a diagnostic student model that is induced from
documents tagged by an expert in a social tagging system. Expert tags can be used to
identify a corpus of domain material. That domain content can be fed to an automated
process that distills a representation of the topics characteristic of the domain (Rosen-
Zvi et al. 2004; Steyvers et al. 2006). As a learner navigates and reads online material,
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inferences can be made about the degree to which topics in the target domain have
been learned. We test this knowledge tracing approach against data from a social tag-
ging study summarized in Nelson et al. (2009). As part of this evaluation, we match
the predictions of the knowledge-tracing model to individual participant responses
made to individual question items used to test domain knowledge in the Nelson et al.
study. To do this, we couple the domain topic model with a variant of psychometric
measurement techniques (Pirolli and Wilson 1998). More specifically, our approach
to building a framework for modeling user learning within a novel subject domain
includes the following tasks:

— Building a Topic Model to Represent User Knowledge States: We employ a topic
modeling approach based on Latent Dirichlet Allocation (LDA) (Blei et al. 2003)
in order to induce the latent topics inherent in the subject domain. We utilize a
corpus consisting of documents (Web pages) drawn from a social tagging system
as well as documents browsed by users. Knowledge of the domain can be repre-
sented as the possession of different degrees of latent ability with respect to each
of these underlying latent topics.

— Developing the Measurement Framework: Given topical information about the
domain and observed data from users, we demonstrate how we can construct a
measurement model capable of inferring the users’ knowledge profiles across top-
ics. Specifically, we utilize data from Web browsing traces and from patterns of
observed responses to test tasks as inputs into this model. We present variations
on this model that incorporate differing assumptions about the factors underlying
individual learning differences.

—  Testing the Framework: Finally, we test the predictive power of the different model
variations against the observed pre- and post-test data from a study on e-learning
(Nelson et al. 2009) using the social annotation system SparTag.us (Hong et al.
2008). In this model-based analysis, we explore the relative power of these models
in predicting individual learning gains and explaining the increased group perfor-
mance of users of the SparTag.us system with access to the annotations of an expert
‘friend’. By comparing variations of the model that do or do not include topical
information, we demonstrate how the inclusion of this information increases the
overall predictive power of the measurement framework.

The development of student models in ITSs has led to a deeper understanding of
learning in a variety of domains (e.g., Anderson 1984, 1993). An ancillary purpose
for the development of our knowledge tracing methodology has been to gain a deeper
understanding of learning from social tagging systems. In such systems, tags produced
by experts presumably provide more efficient navigation cues for learners to follow.
One of our aims is to provide evidence to support such an hypothesis through analyses
derived from application of the knowledge-tracing model.

2 Background
2.1 Social tagging

The rise and proliferation of social web systems has led to an explosion of content
ripe for consumption. Photo-sharing sites such as Flickr offer instant access to liter-
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ally billions of images (Champ 2009), and the video-sharing site YouTube currently
claims to serve 3 billion videos each day (YouTube 2012). Social bookmarking sites,
such as delicious, Digg, and StumbleUpon have become conduits for the sharing of
particularly rich content by allowing users to annotate content across the Web for
themselves and for others. The success and power of these sites stems, in part, from
the fact that while the individual act of bookmarking a website or other resource
is fairly simple, the aggregate value created by the community as a whole can be
enormous.

One effect of the cooperative sharing of annotations, such as tags, is the emergence
of folksonomies (Golder and Huberman 2006). Folksonomies are vocabularies of tag
labels which evolve through consensus in social systems to be similar to the engi-
neered keyword vocabularies used to categorize library books (Robu et al. 2009). In
both emergent folksonomies and constructed library keyword vocabularies, there are
implicit expectations that the organizational structures and labeling can enhance user
navigation. Browsing tools such as Mr. Taggy (Kammerer et al. 2009) have demon-
strated that folksonomies can be leveraged to help users navigate social web systems
by providing feedback and context for user queries. This contextual information is
especially helpful for users who are searching for information in a novel domain and
unaware of which keywords to utilize in search, a problem commonly referred to as
the “vocabulary problem” (Furnas et al. 1987).

While these annotations are useful on their own, another emerging byproduct of this
collective activity is the network of interaction which is formed by users annotating
common resources, using common annotations, and forming connections with one
another. Unsurprisingly, recent approaches at navigating these systems have followed
many of the same information retrieval and ranking paradigms which have seen suc-
cess in web search. FolkRank (Hotho et al. 2006), for instance, extends the popular
PageRank algorithm for ranking web pages based on link structure (Brin and Page
1998); it treats delicious as a triadic graph connecting users, resources, and tags and
uses the structure of this graph to rank any of these elements against a user query. Other
prior work in this area has built on the HITS algorithm (Kleinberg 1999), an approach
developed around the same time as PageRank which identifies two types of important
entities, hubs and authorities. Noll et al. (2009), for instance, ranks users according to
expertise in a particular domain utilizing the SPEAR (SPamming-resistant Expertise
Analysis and Ranking) algorithm which builds on HITS. Abel et al. (2009), use an
variant called SocialHITS which extends the notion of hubs and authorities to users,
tags, and resources.

The effectiveness of these graph-based approaches in identifying expert users or
relevant content has been explored across a diverse set of social systems such as email
networks (Campbell et al. 2003; Zhang and Ackerman 2005), Q&A Forums (Zhang
et al. 2007), e-Commerce sites (Yin et al. 2009), and Social Networks (Gayo-Avello
and Brenes 2010; Weng et al. 2010; Loizou and Dimitrova 2012). In conjunction
with appropriate user models, such approaches can power what Gena et al. call social
adaptive systems (Gena et al. 2012), or systems which combine user and social data to
improve personalization. Together, the previous research in the area of mining these
networks has demonstrated that there is great potential for harnessing a vast amount
of content from such systems to support individual users on the web.
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2.2 SparTag.us

The SparTag.us social annotation system is a tool that allows users to annotate and
collect paragraphs of interest from pages on the Web. Annotations are made either
through highlighting of content or through the Click2Tag interface which allows users
to tag pages and paragraphs easily by clicking directly on the words being read, as illus-
trated in Fig. 1. Once pages have been annotated, SparTag.us also copies the annotated
paragraphs into a system-created notebook, along with the URL of the page.

What makes the system social is the ability not only to view one’s own notebook of
annotations, but also to subscribe to the notebook of another user by designating that
user as a ‘friend’. Figure 2 shows a portion of what a user might see when looking at
the notebook of a friend. In this figure, we see the annotated paragraphs displayed in
the main window, with tags displayed underneath each paragraph to which they are

General Information about Naples

The largest city of Campania, Naples is the third most populated city in Italy
(after Rome and Milan), with over a million inhabitants, and is the most
important industrial center and trading port for the South. The city spreads
along the West coast of the gulf, at the innermost point of the Bay of Naples,
between Vesuvius and the Phlegrean Fields. The city has 2500 years of
history and incorporates "different Naples™ the primitive Greek nucleus; the
Greek -Roman city; the medieval city; the Swabian and then Aragonese city,
finally the city of the XIX and XX century which extends until the boundaries of
Campi Flegrei. :
lichan: AVI12008 [ save |[ delete | Campania Naples Italy
2008 AVI Swabian Aragonese products modes SparTag.us

Fig.1 SparTag.us allows for in situ highlighting and tagging of content, thus lowering the interaction costs
for the production of annotations
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Fig. 2 The SparTag.us notebook allows users to store annotated paragraphs as well as a tag cloud created
from tags generated by the user
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applied. In addition, on the right we see a tag cloud which displays the most common
tags, with font size corresponding to the relative frequency of a given tag.

While SparTag.us was originally introduced as a low-effort system for tagging web
content (Hong et al. 2008), these social features provided additional benefits by allow-
ing for the sharing of expertise through annotations stored in notebooks. In prior study
(Nelson et al. 2009), it was demonstrated that the presence of these social annota-
tions when learning in a new domain had a significant effect on learning gains. In
the following sub-sections, we will review the SparTag.us social reading experiment,
describe how we applied a topic model to the content foraged and produced during the
experiment, demonstrate how data from the experiment can be fitted to the variations
of the proposed model, and evaluate the predictive power of these models. We will
see that predictions generated by the measurement framework closely match observed
data from the study and that insights generated from model predictions can help to
explain differences in learning gains made by study participants.

2.3 The SparTag.us social reading study

Nelson et al. (2009) performed a study of SparTag.us aimed at testing the efficacy of
the system. The study also tested the ancillary hypothesis that the availability of social
tags produced by an expert would enhance self-directed learning. In and of itself,
SparTag.us was not found to produce improved learning relative to commercial off-
the-shelf tools (a standard browser and office suite configuration). However, learning
was improved when a set of expert tags were made available through the SparTag.us
interface.

2.3.1 Experimental conditions: contrasts of interfaces and the availability
of expert annotations

The Nelson et al. (2009) study involved 18 participants solicited from various sources,
including company interns and a local university. All participants had no previous
experience with the SparTag.us tool, and six of the participants reported having some
education in computing. The participants used Web resources to explore the complex
domain of “Enterprise 2.0 Mashups” (roughly the intersection of “Enterprise 2.0” and
“Web 2.0 Mashups”. This choice of domain required participants to find and synthe-
size information from many web pages in order to learn enough to answer questions
on the topic, as there was no single, centralized source of information on the domain
area at the time of the study.
Participants were randomly assigned to three conditions:

“Without SparTag.us” (WS), where participants had access to the Web and tradi-
tional note-taking tools such as a word processor or a pen and paper.

— “SparTag.us Only” (SO), where participants had access to the Web and the Spar-
Tag.us Web annotation system.

— “SparTag.us with Friend” (SF), where participants had access to the Web and to
SparTag.us, as well as the annotations of an ‘expert’ friend named ‘mjones’, whose
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notebook had been algorithmically constructed in order to provide pointers to key
content.

These groups were intended to provide some simple contrasts (rather than a more
complex factorial design experiment). The contrast of learning effects in SO v. WS
groups would provide a test of improvements effected by the SparTag.us interface
itself over the benchmark commercial off-the-shelf tools in the WS condition. The
contrast of learning effects in the SF v. SO conditions would provide an indication of
improvements effected by the availability of expert annotations in the SF condition
over the control SO condition.

2.3.2 Learning tasks, procedures, and tests

Participants in all three groups were asked to find and read material in order to write
reports on Enterprise 2.0 Mashups. The core study procedure involved: (1) aknowledge
pretest, (2) learning in the domain area, (3) a knowledge posttest, and (4) essay writ-
ing. Participants were given a brief written statement of learning objectives, instructing
them to read from any sources and take notes as they felt appropriate regarding the
definitions, standards, benefits, issues, and examples relating to the topic area. Partici-
pants had one hour of unsupervised learning, with a break for lunch, and then 50 more
minutes of learning. Sessions were logged, including URLSs visited, content scrolling,
and words written. The questions for the writing tasks and tests were solicited from
experts, and additional detail about these and other aspects of the experimental setup
and procedure is given in Nelson et al. (2009).

The pretest and posttest were designed to assess domain-specific knowledge about
“enterprise 2.0 mashups.” Two lists of 20 true-false questions were created, and each
list was used as a pretest for half the participants in each group and as a posttest for
the other half. The true-false questions were elicited from experts. Each list of 20
questions was designed to have an even distribution of easy and hard questions about
enterprise mashups, as rated by 100 raters of varying expertise recruited via Amazon
Mechanical Turk. Both tests were taken without access to tools or resources.

2.3.3 Summary of learning gains across conditions

Nelson et al. (2009) focused on a comparison of learning gains across the three groups
(WS, SO, SF). For each subject, the learning gain was calculated according to the
following metric:

. Posttest score — Pretest score
Gain =

Max score — Pretest score

Table 1 shows the main result of Nelson et al. (2009). An analysis of covariance
was used to tease out the effects of non-experimental background variables correlated
with learning. This analysis of covariance showed that the SF group had significantly
greater gains than the SO group and the WS group. The difference in learning gains
between the WS and SO groups was not found to be statistically significant. The details
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Table 1 Mean learning gain

scores in the Nelson et al. (2009) Learning gains

study of SparTag.us Mean SD
SF 0.46 0.22
SO 0.13 0.32
WS 0.27 0.23

of the statistical contrasts can be found in the original Nelson et al. (2009) report. This
analysis suggests that the SparTag.us interface itself provided no detectable impact
on learning relative to the commercial-off-the-shelf tools, but there was a learning
improvement effected by the availability of the expert annotations.

It should be noted that Nelson et al. (2009) reports groupwise statistical compari-
sons, and no detailed analysis of individual differences in background knowledge or
learning were carried out. One aim of the current paper is to use a knowledge tracing
model to drill down on the source of the learning gain effects observed in the groupwise
comparisons.

2.4 Intelligent tutoring systems

As of the fall of 2008, over 4.6 million students were taking at least one online course,
which represented a 17 % increase over the same period in the previous year (Allen and
Seaman 2010), and this type of structured coursework represents only a small portion
of the web-based learning that is occurring around the world. This growth speaks to
the many benefits of web-based learning technologies over traditional pedagogical
methods, some of which are detailed in Brusilovsky and Peylo (2003), such as the
ability to facilitate learning for individuals without access to a classroom and to be
accessed regardless of a user’s computing platform. ITSs, in classroom situations, have
enjoyed a great amount of success in improving learning within specific domains. By
2003, 1400 schools across the country were already using the Cognitive Tutor system
developed by Carnegie Learning, and the company has documented many accounts
of significant improvements in algebra education as a result (PACT 2005).

In order to successfully deliver and adapt content for a learner, an ITS typically uses
three primary components: knowledge of the domain (expert model), knowledge of the
learner (student model) and knowledge of teaching strategies (futor model) (Hartley
and Sleeman 1973). A wide range of knowledge representation techniques have been
used measure knowledge and learning in expert and student models, including seman-
tic networks (e.g., Carbonell 1970), case-based reasoning (e.g., Han et al. 2005),
Bayesian networks (e.g., Conati et al. 2002), and production systems (e.g., Anderson
et al. 1990). The ability to build accurate expert and student models and to adapt
teaching strategies accordingly is the heart of what makes these systems “intelligent”
(Shute and Psotka 1996). However, the creation of these models requires consider-
able person-hours of knowledge-engineering effort. It has been estimated that every
hour of ITS instruction requires effort of about 200-300 hours of development time
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(Murray 1999, 2003). More recently, authoring tools have been developed that have
successfully reduced this ratio to 50-100 hours of development per hour of instruction
(Aleven et al. 2009). For crucial, widely deployed courses (e.g., algebra) such level of
effort to produce such high learning gains is quite cost-effective.

Of course, it would be prohibitive to develop an ITS for every nontrivial learning
task facing users in their everyday lives, at home or at work. If we can obviate the need
for this type of explicit knowledge-engineering effort and make it possible to generate
self-tutoring systems for a wide variety of domains, there is great potential for these
types of systems in helping people to educate themselves using the Web. Assuming
that we have some sort of annotated corpus of documents containing knowledge of
a particular domain, we need methods of automatically inducing student and expert
models. Some approaches (e.g., Foltz et al. 1999; Kakkonen et al. 2005), to e-Learning
applications have used Latent Semantic Analysis (LSA, Landauer and Dumais 1997)
or Probabilistic Latent Semantic Analysis (PLSA, Hofman 1999) to induce the latent
topics represented in a domain. LSA- and PLSA-based approaches are capable of
automatically inducing a semantic representation of a domain from a curated corpus
of documents and have been used in applications such as essay grading or summari-
zation. We employ a similar approach based on fopic models induced by LDA from
social web resources.

2.5 LDA-based topic models

Our approach employs LDA (Blei et al. 2003) to induce an expert model of the topics
in a domain. Each user’s state of learning can be represented as a set of fopic ability
parameters. Each of these topic ability parameters is associated with a topic in the
expert model and represents the degree of learning of that topic. Individual differences
in efficiency of learning can be represented by learning rate parameters. These ability
and learning rate parameters are induced from observed Web browsing behavior and,
when available, responses to test questions.

The LDA topic model is a type of generative probability model that assumes that
documents are produced as a probabilistic mixture of topics, where these topics are
composed of probabilistic mixtures of words. Specifically, an LDA topic model is a
type of three-level hierarchical Bayesian model (Blei et al. 2003). The LDA-based
topic model assumes the existence of a latent structure, L, which represents the gist of
a set of words (e.g. a document), g, as a probability distribution over some T topics.
Each topic is, itself, a probability distribution over words, where words can be asso-
ciated with one or more topics. The probability model for the ith word in a document
conditional on the gist of the document can be specified as:

T
P (wilg) = > P (wilz) P (zilg) ()

i=1

where w; is the probability that word w will occur at position i in a document cor-
pus, and z; is the topic of the ith word. The stochastic process for generating the
ith word-token in a particular document involves selecting a topic z; based on the
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Documents Topics Documents
—_— 2 P(zlg)
== | P(wz)| & |Document distribution

P(wlg) @ 2 over topics
3 g Topic
g Probability distribution = | dist.
over words over
words

Fig. 3 A matrix representation of the Topic Model

conditional distribution of topics given the gist of the document, and then word w; is
selected based on the conditional distribution of words given topic z;. Thus, in essence,
P(z;]g) reflects the prevalence of the topic z; within a document, and the conditional
probability P(w;|z;) is the prevalence of a word w; within that topic.

Using the bag-of-words assumptions, the text can be re-arranged as a Word-Doc-
ument co-occurrence matrix containing probabilities as in Fig. 3. This representation
assumes a matrix with rows corresponding to a vocabulary of W (distinct) words in the
collection, columns corresponding to documents, and individual cells containing the
probability of a word occurring in a document. This resulting Word-Document matrix
is assumed to be the product of a matrix of the probability of words within topics and
a matrix of the probability of topics within documents. An observed Word-Document
matrix is viewed as the result of stochastic draws using the probabilities depicted in
Fig. 3.

3 Knowledge tracing based on topic models
3.1 Latent topics and user knowledge states

Probabilistic approaches to semantic representations, particularly those based on
Bayesian approaches, have arisen as the result of rational analyses of cognition
(Anderson 1990; Steyvers et al. 2006). Rational analysis is a framework in which
it is heuristically assumed that human cognition adapts to the problems posed by the
environment. Topic category judgments are viewed as prediction problems, and these
can be guided by statistical inferences made from the structure of the environment,
especially the linguistic environment. The structure of the topic model is motivated in
part by consideration of the role of associative semantic memory in the formation of
documents (Griffiths et al. 2007). Topic models have been used to predict many mem-
ory and linguistic phenomena in cognitive psychology. The statistical properties of the
topic model representation have been shown not only to match the natural statistics
of human language, but also to account for issues such as polysemy and asymmetry
in ways that are hard to account for in spatial representations. In fact, the LDA-based
topic model has been shown to out-perform LSA in predicting word association and
a variety of other linguistic processing and memory tasks (Griffiths et al. 2007).

In our model, we utilize the topic model as a means of characterizing the underlying
semantic spaces prevalent in a domain. Figure 4 presents a schematic representation of
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User Knowledge State
8,=knowledge strength for user jin topic k

Topic knowledge strength

7
]
Caone D
S

wj=proportion of topic k
mixed in question j

Fig. 4 A user knowledge state is represented as a profile over topics. A question tests a mix of topic
knowledge

"ga Initial
g Knowledge
State
Topics
rx=weight of topic k
- attended by user i
'E,, ‘/ Topics
M m et
Topics
% Updated
& Knowledge
State
Topics

Fig. 5 Notional model of knowledge tracing based on Topic Modeling. A user’s knowledge profile is
modified by the mix of topics that they read about while browsing. This paper focuses on establishing the
predictive power of a Topic Model fit to pretest measures of initial knowledge states, estimates of topic
knowledge based upon online reading history, and posttest measures of updated knowledge states

the relationship between the knowledge state of a user and performance on a test item.
Itis assumed that each item requires that knowledge characterized by some mixture of
topics be retrieved from the user’s memory. This is represented in Fig. 4 by the links
from the topic nodes to the question node. The knowledge state of a user, in turn, can
be represented at any given point as different degrees of latent ability or strength with
respect to the various topics, represented by the size of the bars in Fig. 4. The first
task for the model is to induce an initial strength-of-knowledge profile from a user’s
observed responses to pre-test questions about the subject domain.
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Figure 5 presents a schematic representation of assumptions about learning which
are built into the model. It is assumed that each user starts the learning process with an
initial knowledge profile, as described above, which represents his or her knowledge
across topics. Reading about each of these topics while browsing the Web updates this
knowledge profile. The task for the model is to induce the topics read by the user from
the online traces of his or her individual browsing behavior and to relate this to other
measurements of the changes in the user’s knowledge state.

3.2 Item response models

Below, we report on an evaluation of a knowledge tracing model based on topic models
induced by LDA. The evaluation was performed using a measurement model based
on Item Response Theory (IRT). Item Response Theory provides a method for infer-
ring a user’s ability with respect to some area of knowledge from the user’s pattern
of responses to a set of test items (questions). The fundamental assumption in IRT is
that given some latent trait 6 being tested by a test item, the probability of a correct
response to that item is a function of an individual’s 6 score (Kline 2005). While
traditional IRT models assume that tests evaluate a single 6 characteristic, it is often
more realistic to interpret these test items as evaluating a mix of topics. The exten-
sion of these models to multiple dimensions has been demonstrated to be effective in
accounting for simultaneous testing of multiple latent traits.

These multi-dimensional models can be split roughly into two types: non-com-
pensatory models, where sufficient knowledge of all latent traits characterized by a
test item is required to achieve a correct response, and compensatory models, where
it is assumed that a high degree of ability with respect to one latent trait can make
up for a lack in another (Junker 1999). In our model, we utilize the latent topics in
the domain as a representation of the latent traits to be tested; due to the presence of
overlap between these topics, we adopt a compensatory model, where it is assumed
that knowledge of some topics can make up for a lack of knowledge in others.

In addition, we adopt some additional assumptions about learning which have been
shown to be consistent with a broad-class of theories (Pirolli and Wilson 1998). We
assume that knowledge content (and thus latent ability) grows monotonically with
respect to each of these topics and in discrete quanta through interaction with the envi-
ronment. Thus, we assume that a user’s knowledge within a domain only increases;
for simplicity, we ignore the effects of forgetting and of “throwing away” inconsistent
bits of information.

3.3 Measurement model for the Nelson et al. (2009) SparTag.us study

Using the topic model, one can construct a set of semantic topics against which users
and test items can be measured. In order to use these topics to measure and predict
changes in states of topic knowledge as a function of learning, we need to integrate
the semantic information given by the topic model with a version of the item response
model (Pirolli and Wilson 1998) described above. We characterize the elements com-
prising the situation to be modeled below:
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— A sset of M individuals, indexedi =1, 2, ..., M.

— Asetof N testitems on which individuals have been tested, indexed j =1, 2, ...,
N

— Asetof T topics derived from the test items and documents read by the individuals,
indexedk=1,2,...,T.

— Asetof (M x N) test item responses indexed Y;; corresponding to the observed
responses of each of the M individuals to each of the N test items.

Each response from an individual i to a test item j is coded binomially, as follows:

Vo — 1, if participant i answers test j correctly
Y710, otherwise

As is common in item response models for binomial data, we define the probability
of a correct response using a logistic function.

Pr(Yij=1|§i,le,Pij)= @)

1+ e—f(éi,lbj,pij)

where the terms are defined as follows:

—  6; represents the set of ability parameters for each individual i: some of these
parameters will be estimates of latent knowledge or ability and some will capture
learning ability.

— w; represents the distribution of topics which need to be accessed when answering
a particular test item j.

— pij represents the relevance of reading performed by an individual i to the mix
of topics involved in answering test item j (a measure of precision-relevance of
reading to the test item).

—  fis alinear function combining the parameters relevant to Y;;.

This definition has the property that the log-odds formulation:

Pr (Yij = 116, w;, ,Oij)

Pr (Yij = 016;, w;, Pij)

log =f (éi, TI)j»,Oij) 3)

can be fit using generalized linear modeling techniques.
The ability parameters that we will estimate for each individual i will include

— Latent Knowledge or Ability: A set 61, ..., 6;1 of parameters which represent the
strength of knowledge of an individual i with respect to each of the 7 topics.

— Overall Learning Rate: A parameter corresponding to the rate at which an indi-
vidual learns material across the subject matter domain. Below, in our first model
(Model 1), we will assume a single learning rate parameter 9y that is uniform across
users (i.e. all users learn at the same rate). In our second model below (Model 2), we
will use learning rate parameters 6;o which are assumed to vary across individuals
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(i.e. each individual learns at his or her own rate). Model 1 is more parsimoni-
ous than Model 2 (having fewer parameters), however, Model 2 has the benefit of
yielding individualized estimates of learning, which is usually what is needed in
knowledge tracing in ITSs.

In order to define the mix w; of topics involved in producing a correct answer to
a question j, we define w i as the proportion of question j which corresponds to
knowledge about topic k, where

T
k=1

To define the amount of reading p;; performed by an individual i that is relevant to a
test item j, we first define a topic specific reading parameter r;; to be the proportion
of words read by the individual i which were assigned by the topic model to the topic
k, where

T
Z rig =1
k=1

This reading parameter for each individual and topic can be estimated by aggregating
the topic distributions as estimated by the topic model for each of the documents read
by that individual. Because individuals may not read all of the words on a given web
page, by estimating rj; in this way, we make the implicit assumption that content
pertaining to topics are uniformly distributed within a page. By looking at the overall
distribution of reading that individuals performed with respect to each topic and the
mix of topics tested by each item, we can define how the precision-relevance of the
individuals’ reading to a particular test item using the formula

0, ifitem j is on the pretest

_ ]
Pij > rikwjk, ifitem j is on the posttest

k=1

Thus, the parameters w j; are determined using the topic model, and the parameters
pjk are determined by incorporating the reading data. We then estimate latent abilities
with respect to topics and learning rates of individual users by using generalized linear
model estimates of éi.l

I we developed models that used fotal amount of reading per topic, rather than the proportion of reading
per topic, but those models yielded results virtually identical to the models reported here. Specifically, the
AIC goodness-of-fit metric for all models except for Model 1 are identical whether one uses “proportion
read per topic” or “total read per topic”. For Model 1, the AIC for the “proportion read” model is AIC =
853.72 which is marginally better than the “total read” AIC = 858.71. For Model 2, the shift from “propor-
tion read per topic” to “total read per topic” changes the ;¢ learning rate estimates, although the estimates
are highly correlated at r = 0.92. All other Model 2 parameter estimates are identical. Interestingly, the
“total read” Model 2 6;( learning rate estimates are negatively correlated, with total words read, r = —0.54,
which suggests a diminishing returns to reading about a specific topic.
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4 Modeling latent topics in the social reading dataset
4.1 Document corpus

In order to produce the topic model, we drew content from a document collection
consisting of the following:

—  Documents read during learning (Web pages): Each participant’s Web browsing
session was logged, including URL’s visited, content scrolled over, and words writ-
ten. The text of each visited page was later captured and stored in the database. In
total, the 18 participants visited N = 1,759 Web pages, with 1,146 distinct URL’s,
as some URL’s were visited by multiple participants. Each participant viewed an
average of 97.7 pages per session and a median of 99.5 pages per session.

—  Documents produced after learning (Essays): Participants were informed prior to
the learning task that they would be asked to complete two essay tasks afterwards.
All participants had access to the Web and their notes (through either SparTag.us or
other note-taking tools depending on condition) during the writing period. Both
essays from each of the 18 participants were included, for a total of N = 36
documents.

—  Documents in the ‘expert’ notebook (Web pages): The notebook of the simulated
friend ‘mjones’ consisted of annotations comprising a tag cloud, a list of URL’s,
and a set of paragraphs, with the goal of crafting clear and succinct pointers to key
content using social sources. The list of pages to be annotated were derived from
20 tags associated with the top 100 annotated URL’s from a delicious query for
the search term “enterprise mashup”, which provided the target tag cloud. Each
of these tags was then entered into a Google search, and a subset of the returned
URL’s chosen by an expert were stored in a notebook and then manually tagged
using Sparlag.us in order to provide the annotations. The resulting notebook
thus simulated tags and annotations on N = 22 distinct Web pages, which were
included in the document collection. As delicious tags are user-assigned, it should
be noted that these tags may not have appeared in the documents themselves.

—  Documents associated with the test questions (Web pages): Because of the short
length of the test items (each was a single sentence), modeling the mix of topics
associated with each question required elaboration with additional relevant text.
Thus, for each of the test items, we algorithmically identified ten Web pages con-
taining data relevant to answering that question. Drawing on the term-expansion
approach used in Bernstein et al. (2010), noun phrases were extracted for each
statement (or an expert-substituted ‘true’ version for false statements) using the
Stanford Part-of-Speech Tagger” and entered as a query into the Yahoo! BOSS
Search Engine.? The top ten results for each of the 40 test items (N = 400) were
captured and the text parsed for inclusion in the document collection.

2 http://nlp.stanford.edu/software/tagger.html.
3 http://developer.yahoo.com/search/boss/.
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4.2 Inducing the topic model

For each document in the dataset, all text was passed through a stemmer and stop-
word filter built on the public domain NLTK toolkit.* To develop the topic model, we
utilized a standard methodology which we describe below—for additional informa-
tion, please cf. (Griffiths et al. 2007). The stemmed and filtered documents were then
transformed into a word-token vector, which mapped each individual token to a dis-
tinct vocabulary word, and a document-token vector, which mapped each token to the
document in which it originally occurred. The final word-token and document-token
vectors contained 3,115,628 individual tokens, mapped to D = 2,217 documents and
W = 48,418 distinct vocabulary words. LDA was performed using Gibbs Sampling
via the MATLAB Topic Modeling Toolbox 1.3.2.° The sampling algorithm was run
for 500 iterations with hyperparameters o = 7/50 and g = 200/W, values which have
been chosen based upon exploration in previous studies involving topic modeling on
similar document corpora (Griffiths et al. 2007).

A common method for choosing the number of topics is by calculating the per-
plexity, which is a standard measure for estimating the performance of a probabilistic
model (c.f., Blei et al. 2003; c.f., Rosen-Zvi et al. 2004). Essentially, for a model
trained on a set of training data, the perplexity is a measure of how well the model
generalizes to a different set of test data. Specifically, if the model assigns a high
likelihood to the data encountered in the test data, this will result in a lower perplexity
value, which indicates greater generalization performance. While model perplexity
decreases monotonically as T increases, we also seek to minimize 7T in order to avoid
over-fitting. Thus, the optimal value of T is chosen where the graph “bends”.

Using such a perplexity-based approach, we initially chose 7' = 100 as our ‘optimal’
number of topics. However, initial exploration revealed that the relative sparsity of our
item response data required the use of a much smaller number of topics in our analysis.
The response data for the M = 18 participants and N = 40 test questions yielded a
total of 720 responses, which represent the main dependent variables to be predicted
by the model. Fitting the data to our first model (Model 1) entails the estimation of
(M x T) + 1 parameters, while the second model requires even more, meaning that
we had to limit the number of topics in our analysis to 7 = 5 in order to preserve
degrees of freedom. However, given more data points to fit, there is no reason why
this same approach would not work with a greater number of topics. While the topics
generated using 7 = 5 were statistically distinguishable from one another, we do not
present them in detail here, as the coarse nature of these topics makes them difficult
to interpret semantically.

4 http://nltk.org/.
3 http://psiexp.ss.uci.edu/research/programs_data/toolbox.htm.
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5 Applying the measurement framework and comparing model variations
5.1 Model 1: individual differences in background and common learning rates

In our first model, which we refer to as Model 1, we include a separate latent ability
parameter for each individual on each topic and we assume a single learning rate
parameter across all individuals. Thus, for any individual i, we define the linear func-
tion f described above as

f(éi,li)j,mj) = 60ppij +Onwj1 + -+ OiTw;T 9

In other words, this model assumes that all users acquire topic knowledge at the same
rate, 0, with no individual differences. Because of the limited set of response data,
we used a topic model with just 7 = 5 topics. It should also be noted that through
this paper we fit learner parameters as fixed effects. A more appropriate method, given
sufficient data, would be to treat learner parameters as random coefficients to be esti-
mated (cf., the multidimensional random coefficients multinomial logit model, Pirolli
and Wilson 1998).

Figure 6 presents a plot of individual background knowledge profiles. These are
estimated based on the overall fit of the model to the data. Participants (1...18) are
plotted along the x-axis, topics (1...5) along the y-axis, and the strength of background
knowledge is in the z-axis. Even with just 5 topics, it is clear that there is a large amount
of variation in background knowledge with respect to the different topics.

Figure 7 presents the predicted performance (dashed line) on a hypothetical Post-
Test item as a function of the precision, p;; of relevant reading (x-axis) performed
by a user. The learning rate estimated in the logistic regression of Model 1 was 6, =
3.36. One can observe how the probability of a correct response increases from about
Pr(Y;; = 1) = 0.5 (which is the baseline guessing rate, up to Pr(Y;; = 1) = 1.0 as the
relevance of the read material to the test question increases to a precision of p = 1.0.
Circles plot the expected probability correct values of p;; for the N= 360 posttest
observations in the dataset.

Fig. 6 Profile of background knowledge across users (x-axis) with respect to topics (y-axis). 0;; is an
estimate of topic knowledge strength produced by fitting to Model 1
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Fig.7 The predicted performance on a hypothetical Post-Test item as a function of the precision of relevant
reading (x-axis) performed by a user. The learning rate estimated in the logistic regression of Model 1 was
©0 = 3.36. One can observe how the probability of a correct response increases from about Pr(Y;; = 1)
= 0.5 (which is the baseline guessing rate, up to Pr(Y¥;; = 1) = 1.0 as the relevance of the read material to
the test question increases to a precision of p = 1.0

Using the parameter estimates from Model 1 of user knowledge states, 6;;, the
estimated learning rate, 6, and the mix of topics and the observed users’ reading
relevant to each test item, we can check how well the predicted response rates fit the
observed performance. Figure 8 plots pre-test scores predicted by Model 1 against the
observed scores. Each point plots the aggregate score observed for each participant
(max =20) as a function of the the aggregate number of correct responses predicted for
that participant. The predicted Model 1 response rates in Fig. 8 are based solely on the
background knowledge estimates (Fig. 7) for individual users. The correlation between
predicted and observed pretest scores is r = 0.95, 1 (16) = 12.017, p <« 0.00001

Figure 9 presents a similar plot of the observed post-test scores as a function of the
predicted scores. In this case, the predicted scores include not only the background
knowledge, but also the effects of learning from reading. The correlation between
predicted and observed posttest scores is r = 0.91, #(16) = 8.544, p < .00001.

Figure 10 presents observed learning gains as a function of the predicted learning
gains, where the learning gains are calculated as described in Sect. 2.3.3. Each point
in Fig. 10 corresponds to an individual user. The correlation between predicted and
observed learning gains is r = 0.51, #(16) = 2.3621, p = .03.
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5.2 Model 2: individual differences in background plus differences in learning rates
Whereas Model 1 assumed that all users learned at the same rate from browser mate-

rials, the second model (Model 2) included a separate learning rate parameter for each
individual user. In this model, f is specified as
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where the learning rate parameter 6, was free to vary across users i.
Figures 11 and 12 present scatter plots of the observed pretest and posttest scores
against the Model 2 predictions for those scores. Figure 13 presents a scatter plot of
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the observed learning gains against those predicted by Model 2. A visual comparison
of Fig. 13 for Model 2 to the analogous plot for Model 1 in Fig. 10 suggests much more
accurate predictions by Model 2. The learning gains predicted by Model 2 have a high
correlation with those observed (Fig. 11), r = 0.95,7(16) = 12.4026, p < .00001.

Model 2 provides additional insight into the increased learning efficiency of the
SF group (with the ‘expert’ tags). Here, we note that instead of measuring efficiency
in the amount of time required to learn a certain amount, we measure efficiency and
learning rates in terms of the amount of text browsed.The learning rates (Fig. 14) for
the SF group were generally higher than the other two groups [marginally significant,
F(1,16) =3.92, MSE = 23.19, p = .06].

These differences in learning rates reflect some general observations about the read-
ing performed by users in the different groups. Figure 15 shows that the SF group, with
access to the “expert” tags, read less overall. Figure 16 shows that the SF group read
materials that were more relevant to the post test items they encountered. In general,
the data suggest the SF group showed a greater efficiency in reading higher precision
materials as a function of browsing interaction.

Model 2 appears to provide more accurate predictions than Model 1, but it also uses
more parameters to do so (at a loss of degrees-of-freedom of residuals). To compare
the goodness-of-fit of the models, taking into account the complexity (degree-of-free-
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dom), we constructed the analysis of deviance presented in Table 2, which compares
Models 1 and 2, along with several variants that we discuss below.

In an analysis of deviance, alternative nested models are ordered form fewest param-
eters to most M, M,, ..., 2M,,. For each model the associated residual deviance of
the data from the model is calculated, devy, devs, ...dev,(lower deviance means
better fit). The degrees-of-freedom of the residuals of the models will decrease as the
number of model parameters increases, df; > df; > --- > df,. The differences in
deviance (dev, minus dev,_1) will asymptotically be distributed as a x? distribution
with residual degrees of freedom df;, minus df,,_1. The models in the rows of Table 2
are arranged from top to bottom in order of increasing complexity (from fewest param-
eters to most). Table 2 reports the residual deviance and residual degrees-of-freedom
for each model. Also, each row reports the change in d. f. and change in deviance
for a model in comparison to the model in the row above (columns 5 and 6). The
penultimate column reports the significance of the improvement in model fit over the
model in the prior row as assessed by x 2 test.

The analysis of deviance comparison of Model 1 and Model 2 is not significant
(shown in the last row and penultimate column of Table 2), suggesting that one can
gain parsimony while retaining predictive power by assuming a uniform learning rate
among subjects. However, Model 2 is still useful as it provides additional insight
into why the participants in the SF group (those with access to ‘expert’ annotations)
learned more efficiently than those in other groups. as shown in Fig. 12. In addition,
in practice, it is useful to have individual knowledge and learning parameters to drive
the instruction in an e-learning system (e.g., Corbett et al. 1995).

5.3 Models 3-5: no topic model
To assess the contribution of the LDA topic modeling, we compared Models 1 and 2
to three variations of the model which did not involve topic information.

—  Model 3: This model assumes that individuals differ only with respect to a single
background ability parameter (i.e. only a single background ability parameter 6;
was estimated for each user). In other words, this background ability parameter
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simply captures the overall propensity of an individual to know about “enterprise
2.0 mashups”. In this model, we do not estimate any parameters corresponding to
the reading performed or its relevance to the test item. In other words, no learn-
ing is assumed. for each individual, this model predicts a uniform likelihood of a
correct response across all pre-test and post-test items.

—  Model 4: This model assumes that individuals differ with respect to background
ability, 6;, and assumes a single parameter A, which is added to capture overall
learning effects as a result of reading between pre-test and post-test. Unlike the
learning rate parameters in Models 1 and 2, the A learning effect is not sensitive
the particular reading histories of individuals. This learning parameter is assumed
to be uniform across all subjects. . In other words, A simply captures the overall
“treatment effect” of being exposed to the availability of reading materials.

— Model 5: This model assumes individual background ability parameters, 6;, and
learning parameters, A;, which represent individual differences in the amount of
information learned between pre-test and post-test. Again, this learning parameter
is not associated with the particular reading histories of individuals. Each individ-
ual has a different prior background ability, and a different propensity to learn.
However, the model is not sensitive to anything specific about what is read.

As shown in Table 2, there is a significant improvement in model fit as one goes from
Model 3, which assumes that individuals differ only with respect to a single back-
ground ability parameter 6;, to Model 4 by including a uniform pre-test to post-test
learning effect A. The analysis of deviance indicated that there was no further signif-
icant improvement made by assuming individual pre-test to post-test learning effects
A;(i.e. going from Model 4 to Model 5).

5.4 Summary of model comparisons

Overall, good fits are achieved by a model (Model 1) that includes estimates of indi-
vidual user background knowledge of topics and a learning rate parameter that is
uniform across users. Increasing the complexity of the model to include individual
differences in learning rates (Model 2) provides insights concerning the efficiency of
learning for subjects provided with expert tags. The models based on topic models
(Models 1-2) fit significantly better than those not involving topic models (Models
3-5). It is worthwhile noting the AIC (Akaike Information Criterion) scores (Table 2)
would suggest that Model 4 provides a parsimonious best fit to the data, but that model
simply captures individual differences in background ability and a single “treatment”
effect of exposure to the Web. Such a model would not be very useful in providing
individualized user-model adapted instruction.

6 General discussion
Assessing users’s knowledge states is a critical component in developing web-based

technologies to support automated e-learning systems. In this paper, we have described
a framework for automatically inducing semantic topics represented in a domain, for
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assessing knowledge states across multiple topics, and for assessing learning from
browsing histories. Using data from an existing study of learning with a social tagging
system (Nelson et al. 2009), we have demonstrated that topic models can form the
basis of knowledge tracing.

As the item response data available were limited and we were forced to work with
a small number of topics, future work includes applying this approach to larger data
sets and in other e-learning systems in order to ensure its extensibility. A related area
for future investigation is understanding why our model still yielded such high predic-
tive accuracy given the small number of topics and whether a fine- or coarse-grained
model actually yields better results. In addition, substantial work is required to develop
this into a practical e-learning system. Such work includes determining a method of
automatically identifying expert taggers (Noll et al. 2009)and automated methods for
providing feedback (Foltz et al. 1999; Kakkonen et al. 2005).

An additional challenge related to assessment is in the automatic generation of
test items for arbitrary knowledge domains. It is possible that this challenge could be
addressed by leveraging user data from other sources; recent work has demonstrated
that seeding user models using data from other social web systems for the purposes of
personalization may be a promising approach (Abel et al. 2012; Shapira et al. 2012).
As these challenges are surmounted, there is great potential for e-learning systems to
tap the vast amounts of socially data available in systems similar to delicious in order
to provide guidance for novice learners.

By applying this measurement framework to data from the social reading study, we
gained additional insight into the learning effects experienced by users of the Spar-
Tag.us social annotation system. Our model was able to accurately predict not only the
individual learning gains, but also helped to explain the learning differences between
the groups in the study. In particular, our application of the measurement frame-
work suggests that the efficacy of the SparTag.us system appears to lie in improving
the precision of material that users read by providing access to expert ‘signposts’ to
important content.

We utilized an analysis of deviance approach to compare model variations in order
to find a version of the model which maximized both predictive power and degrees of
freedom. We found that Model 1, which incorporated topical information but assumed
that users all learned at the same rate, was able to predict post-test performance with
a high degree of accuracy. Assuming individual differences in learning rates (Model
2), however, provided additional insight into the greater efficiency of learning for
subjects provided with expert annotations. The results of this model-based analysis
suggest that these types of learning improvements can be detected and predicted by
this combination of topic modeling and psychometric measurement.

6.1 Discovering knowledge in social systems
Various approaches have been used to algorithmically discover expertise in social sys-
tems. In the case of social tagging applications, specifically, many of these approaches

(Hotho et al. 2006; John and Seligmann 2006; Noll et al. 2009) have leveraged the
graph structure of these systems, utilizing users, resources, and tags as nodes and the
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connections between them (a resource receiving a certain tag, for example) as edges.
Other approaches, such as Budura et al. (2009) have utilized probabilistic language
models to represent expertise based on the tags used by a particular user in the system.

Probabilistic language models have also been used to identify expert people or
resources in other social information systems, in particular those in which users are
generating documents rather than simply annotating them. Some of these methods
(e.g., Balog et al. 2006; Petkova and Croft 2006) have adapted generative probabilis-
tic language modeling techniques in order to model potential experts in an enterprise
using documents associated with them and matched them with a particular search
query. Mimno and McCallum (2007), for example, applied a variation of the topic
model to academic papers in order to extract an author’s areas of expertise and match
him or her (as a reviewer) with a particular paper.

Different social systems and knowledge sharing goals may call for different com-
binations of these approaches. In this volume, for example, Kim and El Saddik (2012)
present a review of how several graph-based, language-based, and other techniques
can be applied to the same goal of recommending communities of interest based on
user tags. Given a task setting an the appropriate combination of approaches for the
identification of expert users or documents, such resources could provide the inputs
into an automated e-learning system built on the framework described in this paper.
By modeling users through flexible latent topics rather than rigid semantic networks,
we can easily identify new resources, characterize their gist, and decide which ones
will best fill topical gaps in knowledge for learners.

6.2 Applications of this work to intelligent tutoring systems

In this paper, we have described a framework for inducing the semantic topics in a
domain and using them to assess the knowledge states of users learning in this domain
while browsing Web-based resources. With the exception of the expert-formulated test
items, our measurement framework was applied in a situation in which the domain
corpus was generated entirely using resources available in social information systems.
We have shown this framework to be capable of accurately predicting learning gains
and post-test performance for subjects in the SparTag.us social reading study and that
the inclusion of topic information significantly increases the predictive power of these
models.

6.3 Limitations

Topic models, though useful, are limited in several ways in their ability to represent
knowledge and expertise. Many ITSs focus on the representation of cognitive skill in
domains such as algebra (Koedinger et al. 1997) or programming (Corbett et al. 1995).
Such cognitive skills are procedural knowledge (Anderson et al. 2004) of how to do
things, such as moving symbols in an equation or writing syntactically correct code
that iterates through a list. Topic models, however, have been used in psychological
models of declarative knowledge such as subject matter facts and concepts. In theories
such as ACT-R (Anderson et al. 2004), procedural knowledge is represented in one
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form (production rules) and declarative knowledge in another (semantic networks of
chunks). For semantically rich domains that require mastery of large amounts of both
declarative knowledge and procedural knowledge, topic models might focus on the
declarative part, and complement other representations that focus on the procedural
part. A related limitation is that this approach does not account for information which
must be learned in a particular sequence, as the model treats all topics identically.

6.4 Future work

SparTag.us and the Nelson et al. (2009) study were not originally motivated by an
eventual goal of developing an e-learning system. However, the system actually pro-
vides behavioral and content traces that are sufficient to do knowledge tracing. Two of
the significant things done by hand in the Nelson et al. (2009) study include the identi-
fication of “expert” tags and documents, and the construction of test items. As we have
noted throughout, there are a number of techniques (e.g., Noll et al. (2009)) emerging
for expert-finding in social tagging systems. Test items themselves may be difficult
to construct, but Foltz et al. (1999) have demonstrated that free-form essays can be
automatically graded using Latent Semantic Analysis, and a similar scoring function
might be built on top of LDA. It remains to be demonstrated that the kind of Web-based
e-learning system sketched here could achieve the one- to two-sigma gains achieved
by some ITSs, but what we are proposing has a significant “economic” advantage
over current ITSs: whereas current ITSs require substantial knowledge engineering,
the Web-based model proposed here involves automatic induction of expert models
and user models based on crowd wisdom in social tags.
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