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Abstract Creating student models for Intelligent Tutoring Systems (ITS) in novel
domains is often a difficult task. In this study, we outline a multifactor approach to
evaluating models that we developed in order to select an appropriate student model for
our medical ITS. The combination of areas under the receiver-operator and precision-
recall curves, with residual analysis, proved to be a useful and valid method for model
selection. We improved on Bayesian Knowledge Tracing with models that treat help
differently from mistakes, model all attempts, differentiate skill classes, and model
forgetting. We discuss both the methodology we used and the insights we derived
regarding student modeling in this novel domain.
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1 Introduction

Modeling student knowledge in any instructional domain typically involves both a high
degree of uncertainty and the need to represent changing student knowledge over time.
Simple Hidden Markov Models (HMM) as well as more complex Dynamic Bayes-
ian Networks (DBN) are common approaches to these dual requirements that have
been used in many educational systems that rely on student models. One of the first
quantitative models of memory (Atkinson and Shiffrin 1968) introduced the proba-
bilistic approach in knowledge transfer from short to long term memory. Bayesian
Knowledge Tracing (BKT) is a common method for student modeling in Intelli-
gent Tutoring Systems (ITS) which is derived from the Atkinson and Shiffrin model
(Corbett and Anderson 1995). BKT has been used successfully for over two decades in
cognitive tutors for teaching computer science and math. One of the main advantages
of the BKT approach is its simplicity. Within the specific domains where BKT is used,
this method has been shown to be quite predictive of student performance (Corbett
and Anderson 1995).

More complex DBN models of student performance have been developed for ITS,
but are infrequently used. For the Andes physics tutor, Conati et al. developed a DBN
that modeled plan recognition and student skills (Conati et al. 2002). It supported
prediction of student actions during problem solving and modeled the impact of hint
request on student skill transition from the unmastered to mastered state. The Andes
BN modeled skills as separate nodes and represented dependencies between them.
Because of the large size of the resulting network, parameters were estimates based
on expert belief. Recently, other researchers presented a machine learning approach to
acquiring the parameters of a DBN that modeled skill mastery based on three possible
outcomes of user actions: correct, incorrect and hint request (Jonsson et al. 2005).
This model was trained on simulated data.

Selecting a student model for a novel ITS domain can be challenging. It is often
unclear that underlying assumptions of any commonly used formalism will necessarily
hold true in the new domain. In domains where there is an absence of task analytic
research, there may be limited or no empirical or theoretical foundations for model
selection. Furthermore, more sophisticated user models may add computational com-
plexity, without greatly enhancing performance over simpler models. In these cases,
student models may be most effectively selected based purely on model performance.
Using this approach, many models may be subjected to comparison. Although the idea
of choosing a student model based on performance in predicting user knowledge is
not new (Corbett and Anderson 1995), there have been few systematic methodologies
described to assist researchers with this process. In this manuscript, we describe a
systematic approach to student model selection for an ITS in a novel domain. We
demonstrate the use of this approach to select models that are superior to the baseline
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formalism based on a set of permutations of key model variables. Finally, we show
that the resulting selected models perform well on external testing data unrelated to
the original tutoring system.

2 Background

2.1 Classical knowledge tracing

Bayesian Knowledge Tracing (BKT) is an established method for student modeling in
intelligent tutoring systems, and therefore constituted our baseline model. BKT rep-
resents the simplest type of Dynamic Bayesian Network (DBN)—a Hidden Markov
Model (HMM), with one hidden variable (Q) and one observable variable (O) per
time slice (Reye 2004). Each skill is modeled separately, assuming conditional inde-
pendence of all skills. Skills are typically delineated using cognitive task analysis,
which guides researchers to model skill sets such that an assumption of conditional
independence of skills is valid (Anderson 1993). As shown in Fig. 1, the hidden var-
iable has two states, labeled mastered and unmastered, corresponding to the learned
and unlearned states described by Corbett et al. (Corbett and Anderson 1995). The
observable variable has two values, labeled correct and incorrect, corresponding to the
correct and incorrect observables described by Corbett et al. (Corbett and Anderson
1995). Throughout this paper, we refer to this topology as the BKT topology.

The transition probabilities describe the probability that a skill is (1) learned (tran-
sition from unmastered state to mastered state), (2) retained (transition from mastered
state to mastered state), (3) unlearned (transition from unmastered state to unmas-
tered state), and (4) forgotten (transition from mastered state to unmastered state).
In all previously described implementations, BKT makes the assumption that there
is no forgetting and therefore Pretained is set to 1 and Pforgotten is set to 0. With this
assumption, the conditional probability matrix can be expressed using the single prob-
ability Plearned, corresponding to the ‘transition probability’ described by Corbett et al.
(Corbett and Anderson 1995).

The emission table describes the probability of the response conditioned on the
internal state of the student. As described by Corbett et al., the slip probability (Pslip)
represents the probability of an incorrect answer given that the skill is in the known
state, and the guess probability (Pguess) represents the probability of a correct answer
given that the skill is in the unknown state. Probabilities for the other two emissions
are not semantically labeled. Throughout this paper, we refer to the implementation of
BKT described by Corbett and Anderson in their original paper (Corbett and Anderson
1995) as “classical BKT”.

2.2 Key assumptions of classical Bayesian Knowledge Tracing

Three key assumptions of classical BKT, as it is typically implemented, may be prob-
lematic for developers of ITS in novel domains. These include: (1) the conceptu-
alization of the hidden states and observable values may be too simplistic because
only binary state representations of hidden and observable nodes are considered;
(2) classical BKT uses a no-forgetting paradigm—there is no transition from the
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Fig. 1 Hidden Markov Model representing a general formalism for Bayesian Knowledge Tracing

mastered to unmastered state; and (3) model parameters are typically estimated by
experts. A detailed explanation of each assumption and its potential disadvantages is
provided below.

2.3 Multiple-state hidden and observed variables

The BKT topology makes the assumption of a binary state observable node, which
models the observation of skill performance as correct or incorrect. Yet, most ITS
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typically detect at least one more type of action—hint or request for help. In classical
BKT, hints are considered as incorrect actions (Corbett and Anderson 1995), since the
skill mastery is based on whether the user was able to complete the step without hints
and errors. In other implementations of BKT, modeling of hint effect is considered
to have a separate influence, by creating a separate hidden variable for hints which
may influence the hidden variable for student knowledge (Jonsson et al. 2005), the
observable variable for student performance, (Conati and Zhao 2004), or both of these
variables (Chang et al. 2006).

The BKT topology also makes the assumption of a binary hidden node, which
models the state of skill acquisition as known or mastered versus unknown or unmas-
tered. This is a good assumption when cognitive models are based on unequivo-
cally atomic skills in well-defined domains. Examples of these kinds of well-defined
domains include Algebra and Physics. Many ill-defined domains like medicine are dif-
ficult to model in this way because skills are very contextual. For example, identifying
a blister might depend on complex factors like the size of the blister which are not
accounted for in our cognitive model. It is impractical in medicine to conceptualize
a truly atomic set of conditionally independent skills in the cognitive model that
accounts for all aspects of skill performance. Thus, development of a cognitive model
and student model in medical ITS presupposes that we will aggregate skills together.

Some researchers have already begun to relax these constraints. For example, Beck
and colleagues have extended the BKT topology by introducing an intermediate hid-
den binary node to handle noisy student data in tutoring systems for reading (Beck and
Sison 2004). Similarly, the BN in the constraint-based CAPIT tutoring system (Mayo
and Mitrovic 2001) used multiple state observable variables to predict the outcome of
the next attempt for each constraint. However, the CAPIT BN did not explicitly model
unobserved student knowledge.

From an analytic viewpoint, the number of hidden states that are supported by a
data set should not be fewer than the number of observed actions (Kuenzer et al. 2001),
further supporting the use of a three-state hidden node for mastery, when hint request
is included as a third observable state. Although researchers in domains outside of
user modeling have identified that multiple hidden-state models are more predictive
of performance (Seidemann et al. 1996), to our knowledge there have been no previous
attempts to test this basic assumption in ITS student models.

2.4 Modeling forgetting

Classical BKT does not account for memory decay and skill forgetting. And, in some
domains that have very large declarative knowledge requirements—this factor may be
significant in predicting performance, particularly in areas where training happens over
many cases and prolonged intervals. Very recently, other investigators have incorpo-
rated methods for representing memory decay, in an effort to enhance the prediction of
future readiness. In one theory-driven approach (Jastrzembski et al. 2006) research-
ers devised a forgetting parameter based upon the General Performance Equation
(Anderson and Schunn 2000)—which combines the power law of learning and the
power law of forgetting. They showed that they could achieve excellent prediction for
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populations, but not for individuals. This approach has the advantage of providing a
method for modeling forgetting over long time intervals based on a widely-accepted
psychological construct. However, the poor performance for predicting individual stu-
dent learning could be problematic for ITS student models. Another disadvantage of
this approach is that it cannot be easily integrated with formalisms that provide prob-
abilistic predictions based on multiple variables, in addition to time. It may be that
including the kind of memory decay suggested by Jastrzembski and colleagues into a
Bayesian formalism could enhance the prediction accuracy for individuals. In one of
our models, we attempt to learn the memory decay directly from individual students’
data.

2.5 Machine learning of DBN

Classical BKT is typically used in domains where there has been significant empirical
task analytic research (Anderson et al. 1995). These domains are usually well-struc-
tured domains, where methods of cognitive task analysis have been used successfully
over many years to study diverse aspects of problem-solving. Researchers in these
domains can use existing data to create reliable estimates of parameters for their
models. In contrast, novel domains typically lack sufficient empirical task analytic
research to yield reasonable estimates. In these domains, machine learning provides
an attractive, alternative approach.

Although some researchers have used machine learning techniques to estimate
probabilities for static student modeling systems (Ferguson et al. 2006), there have
been few attempts to learn probabilities directly from data for more complex dynamic
Bayesian models of student performance. Jonsson and colleagues learned probabilities
for a DBN to model student performance, but only with simulated data (Jonsson et al.
2005). Chang and colleagues have also used machine learning techniques. They note
that forgetting can be modeled with the transition probability using the BKT topology;
however, the authors set the value of Pforgotten to zero which models the no-forgetting
assumption used in classical BKT (Chang et al. 2006).

2.6 Model performance metrics

Student model performance is usually measured in terms of actual and expected accu-
racies, where actual accuracy is the number of correct responses averaged across all
users and expected accuracy is a model’s probability of a correct response averaged
across all users. For example, Corbett and Anderson used correlation, mean error and
mean absolute error to quantify model validity (Corbett and Anderson 1995). A disad-
vantage of this approach is that it directly compares the categorical user answer (correct
or incorrect) with numerical expected model probabilities. To avoid this direct compar-
ison, other researches have used a combination of two separate measures: (1) average
prediction probability and (2) average score of correctly predicted user actions (Zuker-
man et al. 1999; Kuenzer et al. 2001) or user action outcomes (Mayo and Mitrovic
2001). However, accuracy may not be the optimum metric for evaluating probabilistic
models, because accuracy assumes equal costs for false positive and false negative
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Fig. 2 ROC Curve and related performance metrics definitions

errors. Instead, Receiver-Operating Characteristic (ROC) curves have been advocated
because they make these tradeoffs explicit (Provost et al. 1998). Additionally, accuracy
alone can be misleading without some measure of precision.

Recently, the Receiver-Operating Characteristic curve (ROC), which is a trade-off
between the true positive and false negative rates (Fig. 2), has been used to evaluate
student models (Fogarty et al. 2005; Chang et al. 2006). Figure 2 (left) shows three
models in terms of their ability to accurately predict user responses. Models that have
more overlap between predicted and actual outcome have fewer false positives and
false negatives. For each model, a threshold can be assigned (vertical lines) that pro-
duces a specific combination of false negatives and false positives. These values can
then be plotted as sensitivity against 1-specificity to create the ROC curve. Models
with larger areas under the curve have fewer errors than those with smaller areas under
the curve.

Two advantages are immediately apparent. ROC analysis allows the researcher to
investigate the spectrum of tradeoffs among model errors. ROC analysis also permits
comparison of models with different numbers of observable values. However, ROC
analysis alone is not sufficient for model quality analysis, because models may show
no significant difference in ROC space. One potential method for addressing this
problem is the use of the trade-off between true positive error rate for actual outcome
(recall) and true positive error rate for model outcome (precision) in addition to the
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sensitivity-specificity trade-off. However, no prior research has directly tested the
validity and feasibility of such methods for student model selection. Figure 2 (bottom)
defines commonly used machine learning evaluation metrics based on the contingency
matrix. These metrics cover all possible dimensions: Sensitivity or Recall describes
how well the model predicts the correct results, Specificity measures how well the
model classifies the negative results, and Precision measures how well the model
classifies the positive results.

2.7 Summary of present study in relationship to previous research

In summary, researchers in ITS student modeling are exploring a variety of adapta-
tions to classical BKT including alterations to key assumptions regarding observable
and hidden variables states, forgetting, and use of empirical estimates. In many cases,
these adaptations will alter the distribution of classification errors associated with the
model’s performance. This paper proposes a methodology for student model com-
parison and selection that enables researchers to investigate and differentially weigh
classification errors during the selection process.

2.8 Research objectives

Development of student models in complex cognitive domains such as medicine is
impeded by the absence of task analytic research. Key assumptions of commonly
used student modeling formalisms may not be valid. We required a method to test
many models with regard to these assumptions and select models with enhanced per-
formance, based on tradeoffs among sensitivity, specificity and precision (predictive
value).

Therefore, objectives of this research project were to:

(1) Devise a method for evaluating and selecting student models based on decision
theoretic evaluation metrics

(2) Evaluate the model selection methodology against independent student perfor-
mance data

(3) Investigate effect of key variables on model performance in a medical diagnostic
task

3 Cognitive task and existing Tutoring system

The context for this work is an ITS for visual classification problem solving in a medical
domain. The SlideTutor System is one instantiation of our general Visual Classifica-
tion Tutoring (VCT) framework for ontology-driven tutoring of visual classification
problem solving (Crowley and Medvedeva 2006). SlideTutor provides tutoring in Der-
matopathology, and has been shown to significantly increase diagnostic accuracy of
pathology residents (Crowley et al. 2007). Classification problem solving is a com-
mon cognitive task that involves determining the class for an unclassified instance
by observing and interpreting features of the instance (Clancey and Letsinger 1981;
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Clancey 1984). In medicine, visual classification problem solving is an important
aspect of expert performance in pathology, dermatology and radiology.

Cognitive task analysis shows that practitioners master a variety of cognitive skills
as they acquire expertise (Crowley et al. 2003). Five specific types of subgoals can
be identified: (1) search and detection, (2) feature identification, (3) feature refine-
ment, (4) hypothesis triggering and (5) hypothesis evaluation. Each of these subgoals
includes many specific skills. The resulting empirical cognitive model was embedded
in the SlideTutor system. Like other model tracing cognitive ITS, SlideTutor deter-
mines both correct and incorrect student actions as well as the category of error that
has been made and provides an individualized instructional response to errors and hint
requests. The student model for SlideTutor will be used by the pedagogic system to
select appropriate cases based on student mastery of skills and to determine appropri-
ate instructional responses by correlating student responses with learning curves, so
that the system can encourage behaviors that are associated with increased learning
and discourage behaviors that are associated with decreased learning.

In this paper, we analyzed student models created for two specific subgoals types:
Feature-Identification and Hypothesis-Triggering. We selected these subgoals because
our previous research showed that correctly attaching symbolic meaning to visual cues
and triggering hypothesis are among the most difficult aspects of this task (Crowley
et al. 2003).

4 Methods

4.1 Student model topologies

We evaluated 17 different model topologies for predicting the observed outcome of
user action. For simplicity, only four of these are shown in Table 1. Network graphs
represent two subsequent time slices for the spatial structure of each DBN, separated
by a dotted line. Hidden nodes are shown as clear circles. Observed nodes are shown
as shaded circles. Node subscript indicates number of node states (for hidden nodes)
or values (for observable nodes).

Topology M1 replicates the BKT topology (Corbett and Anderson 1995), as
described in detail in the background section of this paper (Fig. 1) but does not set
the Pforgotten transition probability to zero. In this model, hint requests are counted as
incorrect answers.

Topology M2 extends the BKT topology in M1 by adding a third state for the hid-
den variable—partially mastered; and a third value for the observable variable—hint.
This creates emission and transition conditional probability matrices with a total of
nine probabilities respectively, as opposed to the four emission probabilities possible
using the BKT topology. In the case of classical BKT, this is simplified to two
probabilities for the transition matrix by the no forgetting assumption.

Topology M3 (Brand et al. 1997) extends the three state model in M2 by adding a
second layer of hidden and observable nodes to model the effect of time. This extension
allows us to include a logarithmic memory decay within the constraints of a Bayesian
student model. The second hidden node also contains three states, and the observable
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Table 1 Dynamic Bayesian Network (DBN) Topologies

Topology Graph network Description

M1 Q2

O2O2

Q2
BKT topology
Replicates topology used in most cognitive tutors
Observable values: {Correct, Incorrect}
Hidden states: {Mastered, Unmastered}

M2 Q3

O3O3

Q3
Three State Model
Extends BKT topology by adding third variable to both hidden and

observable nodes.
Observable values: {Correct, Incorrect, Hint}
Hidden states: {Mastered, Unmastered, Partially Mastered}

M3

Q3

O3O3

Q3

Q3

T16T16

Q3

Time Coupled Model
Extends three state model by adding second hidden layer and

observed variable for time. Time represented using 16 discret-
ized logarithmic intervals to represent learning within problem
and learning between problems.

Observable values: {Correct, Incorrect, Hint, Time interval}
Hidden states: {Mastered, Unmastered, Partially Mastered}

M4 Q3

O3O3

Q3
Autoregressive Model
Extends three state model by adding influence from observable var-

iable in one time slice to the same variable in the next time slice.
Observable values: {Correct, Incorrect, Hint}
Hidden states: {Mastered, Unmastered, Partially Mastered}

time variable includes 16 discretized logarithmic time intervals. We used a time range
of 18 h—the first 7–8 intervals represents the user’s attempts at a skill between skill
opportunities in the same problem and the remaining time intervals represent the user’s
attempts at a skill between skill opportunities in different problems.

Topology M4 (Ephraim and Roberts 2005) extends the three state model in M2 by
adding a direct influence of the observable value in one time slice to the same vari-
able in the next time slice. Therefore this model may represent a separate influence
of student action upon subsequent student action, unrelated to the knowledge state.
For example, this topology could be used to model overgeneralization (e.g. re-use of a
diagnostic category) or automaticity (e.g. repeated use of the hint button with fatigue).

All model topologies share two assumptions. First, values in one time slice are only
dependent on the immediately preceding time-slice (Markov assumption). Second, all
skills are considered to be conditionally independent. None of the models make an
explicit assumption of no forgetting, and thus Punlearned is learned directly from the
data.

4.2 Tools

We developed our own Matlab-based toolkit to retrieve student data from the database,
as well as to build, train and test the models. The models were implemented using
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Bayes Net Toolbox (BNT) for Matlab (Murphy 2001). Other researchers have also
extended BNT for use in cognitive ITS (Chang et al. 2006). Among other features, BNT
supports static and dynamic BNs, different inference algorithms and several methods
for parameter learning. The only limitation we found was the lack of BN visualization
for which we used the Hugin software package with our own application programming
interface between BNT and Hugin. We also extended Hugin to implement an infinite
DBN using a two time-slice representation. The Matlab–Hugin interface and Hugin
2-time-slices DBN extension for infinite data sequence were written in Java.

4.3 Experimental data

We used an existing data set derived from 21 pathology residents (Crowley et al. 2007).
The tutored problem sequence was designed as an infinite loop of 20 problems. Stu-
dents who completed the entire set of 20 problems restarted the loop until the entire
time period elapsed. The mean number of problems solved was 24. The lowest number
of problems solved was 16, and the highest number of problems solved was 32. The
20-problem sequence partially covers one of eleven of SlideTutor’s disease areas. The
sequence contains 19 of 33 diseases that are supported by 15 of 24 visual features of
the selected area.

User-tutor interactions were collected and stored in an Oracle database. Several
levels of time-stamped interaction events were stored in separate tables (Medvedeva
et al. 2005). For the current work, we analyzed client events that represented student

Table 2 Example of student record sorted by timestamp

User Problem name Subgoal type Subgoal name User Attempt # Timestamp Action
action outcome

nlm1res5 AP_21 Feature blister Create 1 08.05.2004
10:08:51

Incorrect

nlm1res5 AP_21 Feature blister Create 2 08.05.2004
10:09:08

Incorrect

nlm1res5 AP_21 Feature blister Create 3 08.05.2004
10:11:33

Correct

nlm1res5 AP_21 Hypothesis cicatricial
pemphigoid

Create 1 08.05.2004
10:25:57

Incorrect

nlm1res5 AP_21 Hypothesis lichen
sclerosus et
atrophicus

Create 1 08.05.2004
10:27:20

Correct

nlm1res5 AP_21 Feature fibrosis Hint 1 08.05.2004
10:37:34

Hint

nlm1res5 AP_21 Feature fibrosis Create 2 08.05.2004
10:38:17

Correct

nlm1res5 20020904G001 Feature blister Hint 1 08.05.2004
10:47:05

Hint

nlm1res5 20020904G001 Feature blister Create 2 08.05.2004
10:53:48

Incorrect

nlm1res5 20020904G001 Feature blister Create 3 08.05.2004
10:53:56

Correct
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behaviors in learning feature identification and hypothesis triggering, including three
outcomes: Correct, Incorrect or Hint request (Table 2).

During the study, all students received the same pre-test, post-test and retention test.
All tests were computer-based and had identical structure, including case diagnosis
and multiple-choice sections. In the Case Diagnosis Section, students had to apply all
required cognitive skills to make a diagnosis or differential diagnosis for a particular
case. In contrast, the Multiple-Choice Section contained 51 multiple-choice questions
to test student knowledge on different subgoals, including feature identification ques-
tions (post-test N = 12; retention-test N = 17) and hypothesis triggering questions
(post-test N = 21; retention-test N = 23).

4.4 Data partitioning and aggregation

Data partitions represent an additional dimension for selecting appropriate student
models. As part of our investigations, we explored the effect of different methods
of data partitioning on model performance for models that exceeded baseline per-
formance. The combined data from user actions and action outcomes from tutored
sessions were extracted from student records in our student protocol database into a
data hypercube (Table 2) with the following dimensions: user name, problem name,
subgoal type (Feature, Hypothesis), subgoal name, user action (Create, Hint), enumer-
ated attempts to identify each subgoal within the problem, timestamp, and user action
outcome (Correct, Incorrect, Hint). Since our tutoring system provided immediate
feedback, we excluded the user action “Delete subgoal x” from student modeling.

The data were partitioned or aggregated along three dimensions, as shown in
Table 3. First, we partitioned data by the number of user attempts to complete the
subgoal within the problem, considering (1) first attempt only or (2) all attempts. Sec-
ond, we partitioned data by subgoal class creating three groups: (1) data related to
learning of feature-identification, (2) data related to learning of hypothesis-triggering,
or (3) all data related to learning of either class. Third, we partitioned data by subgoal
instance considering: (1) each subgoal separately, or (2) all subgoals together. The total
number of datapoints refers to the user action outcomes used as input for the models.

4.5 Procedure for learning model parameters

Models were learned for each topology across every data partition. Inputs to the models
consisted of observed values and time node calculations from the data hypercube. Fol-
lowing completion of model training, each model-partition combination was evaluated
against student test data.

4.5.1 Observed values for models

All 4 model topologies use ACTION OUTCOME as an observed value (Table 2,
last column). All the topologies use CORRECT as correct outcome. Topology M1
uses INCORRECT and HINT as incorrect outcome; topologies M2, M3 and M4 use
INCORRECT as incorrect outcome and HINT as hint request. Topology M3 also
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uses the TIMESTAMP as a time node T16 (Table 1) observed value. The time node
input t_value represents a discretized time interval between the attempts. Due to the
asynchronous nature of the time coupled HMM, where t_value in the current state will
influence an answer in the next time slice, t_value was calculated using the formula:

t_valuet = ceil(log2(Timestampt+1 − Timestampt))

For example, for the last attempt to identify blister in case AP_21 (Table 2, row 3),
t_value = 12, based on Timestampt+1 = 08.05.2004 10:47:05 (Table 2, row 8) and
Timestampt = 08.05.2004 10:11:33 (Table 2, row 3). In this particular example, the
time interval reflects skill performance changes across two different cases.

4.5.2 Time series inputs to the models

Inputs to the models consisted of time series extracted from the hypercube. Let
us consider each possible action outcome value to be represented by (1=Correct,
2= Incorrect, 3=Hint). Based on the data sample in Table 2, the time series for
model topology=M1, for (Subgoal Class=Feature, Subgoal Instance=blister, All
Attempts) can be represented by the six Blister events as follows:

[2] [2] [1] [2] [2] [1]

where entries in square bracket represent the values for action outcome, because in
topology=M1 we consider hints to be incorrect actions. Using the same data partition,
the data for model topology=M2 or topology=M4 can be represented as:

[2] [2] [1] [3] [2] [1]

because in topologies M3 and M4 we consider hint as a separate action. Topology=M4
introduces a second dimension time observable into each event in the series based on
the interval between the current event and next event (see Sect. 4.5.1),

[2, 5] [2, 8] [1, 12] [3, 9] [2, 3] [1, 16]

As shown in the preceding section, the third attempt at blister results in a correct
outcome with a computed t_value=12.

4.5.3 Model training and testing

The model parameters were learned using the classic Expectation-Maximization algo-
rithm for DBN (Murphy 2001) with 10 iterations or until the logarithmic likelihood
increased less than one per million (0.001). Prior probabilities and conditional prob-
abilities were initialized using random values. Model testing was performed using
k-fold cross-validation method with k = 5. The tutored dataset was divided into 5
subsets: 4 subsets contain 4 students each and the 5th subset—5 students. We sequen-
tially advanced through the subsets, using 4 subsets for training and 1 for testing the
model. Each data point, a value of observed variable was used once for testing and 4
times for training.

Outputs of the model are probabilities for hidden nodes in the current time-slice
and all nodes in the subsequent time-slice. For validation purposes, trained models
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Fig. 3 Example of DBN visualization: model M3 for feature blister (two times slices)

were visualized using Hugin. Figure 3 shows an example of a learned model M3 for
Feature=blister. The left panel shows the probabilities for all hidden and observable
nodes in the second time slice.

4.5.4 Model validation

Models trained for Subgoal Class=All Data were tested for the two Subgoal Classes
(feature identification and hypothesis-triggering) separately. Models learned only on
tutored data were then evaluated against post-test and retention test data as an external
validation set.

4.6 Performance metrics

We compared performance of the resulting models using 3 evaluation metrics:

(1) Receiver-operating characteristic curve (ROC) was used to estimate model per-
formance as a trade-off between sensitivity and specificity. ROC curves have been
widely used to assess classification models (Fawcett 2003). The ROC curve esti-
mates the class discrimination ability of the binary classifier and is plotted as
fraction of true positives vs. false positives (or equivalently as sensitivity vs.
1-specificity) (Fig. 2) for discrimination threshold varying from 0 to 1. To create
a ROC curve we used an algorithm that exploits the monotonicity of the thres-
holded model (Fawcett 2003).
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To compare models, a two-dimensional ROC can be reduced to a single scalar
value representing expected performance (Fawcett 2003). The area under the
ROC curve (ROC AUC) is equivalent to a probability of how well the model dis-
tinguishes between two classes. In a statistical sense, ROC AUC shows the size of
the “overlap” of the classification distributions. An ROC AUC of 0.5 represents
a random classifier. The ideal model will have an ROC AUC of 1. ROC metrics
is dataset independent—models built on the datasets with different distribution
of positive (or negative) outcomes can be directly compared to each other.
The ROC AUC is equivalent to the Wilcoxon statistic (Hanley and McNeil 1982).
To determine which models should be considered for further study, we can use
the pairwise model comparison method described by Hanley and McNeil to test
if a model is more predictive than chance. In this case, the second model in the
Z test should have ROC AUC=0.5 and standard error=0 (Fogarty et al. 2005).
Significance of the Z test outcome is determined using a standard table. For
z-value ≥ 2.326, P ≤ .01.

(2) Precision-Recall Curve (PR) is used to express the trade-off between complete-
ness (Recall) and usefulness (Precision) of the model. The PR curve can be
obtained with the same threshold technique that was used for ROC curves. In
anology to ROC AUC, we can define the area under a PR curve as the PR AUC
(Davis and Goadrich 2006). The area under the PR hyperbolic curve for an ideal
model is equal to 1. Precision (Positive Predictive Value) (Fig. 2) depends on
the frequency of positive outcomes in the dataset. Therefore, the PR metrics is
dataset dependent.

(3) Residual—is a quantitative measure of goodness of fit. Residual is defined as the
difference between actual (observed) and estimated (predicted) value for numeri-
cal outcome (Moore and McCabe 2003). The residuals metric is used to measure
model performance as a whole rather than focusing on what the data implies
about any given model’s individual outcome. Residuals are generally inspected
using a visual representation. The residual plot shows residuals as a function of
the measured values. A random pattern around 0-value of residuals indicates a
good fit for a model. For an integrated measure of residuals for each model, we
calculated the norm of residual (NR) for each user using the following formula:

NR = √ ∑
(Fa − Fe)

2

where the summation is performed over all the subgoals, Fa is the actual success
rate− the number of correct answers averaged by subgoal for each user, and Fe
is an estimated success− the number of predicted correct answers averaged by
subgoal for each user. NR averaged across all users represents a quantitative
metric for each model. Better models have smaller residuals.

Figure 4 illustrates the use of these metrics on 3 abstract models X, Y and Z built on the
same data set. Models X and Y intersect each other in ROC (Fig. 4a) and PR (Fig. 4b)
spaces, while model Z does not dominate in either space. Figure 4C shows the graph
of PR AUC vs. ROC AUC. Here we see that model Z has the lowest AUR in both
ROC and PR space (Fig. 4c, bottom right) and can be excluded from further consider-
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Fig. 4 Performance metrics. (a) ROC curves, (b) PR curves, (c) 3-D performance metrics

ation. Models X and Y have no significant differences in PR-ROC AUC space. These
models can be separated using the residual metric (Fig. 4c, top right). Model Y has
the smallest residual, so it can be considered to be the best model for a given data set.

To use the binary ROC metric for model comparison, we limit our analysis to cor-
rect vs. other possible outcomes, since the final goal is to predict the correct answers
on post-test or retention test.

4.7 Statistical analysis

Using data obtained during tutoring, we performed statistical tests for ROC AUC, PR
AUC and residuals in Matlab at the 0.05 significance level. For tests of significance
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of factor differences, we first applied the Lilliefors test to evaluate the normality of
each parameter distribution and determined that the assumption of normality was not
met. Consequently, we used the Kruskal–Wallis test—a nonparametric version of the
classical one-way ANOVA that extends the Wilcoxon rank sum test for multiple mod-
els. The Kruskal–Wallis test uses the Chi-square statistic with (number of groups-1)
degrees of freedom to approximate the significance level, and returns a P-value for
the null hypothesis that all models are drawn from a population with the same median.
If a P-value is close to 0, then the null hypothesis can be rejected, because at least one
model median is significantly different from the other ones.

To analyze the performance of the models as individuals, we performed the Krus-
kal-Wallis test for all 3 evaluation metrics parameters without factoring the data to
determine that at least one model for each metric is significantly different from the
others. We then performed the follow-up Tukey–Kramer test for pairwise comparisons
of the average ranks of models. In Matlab, the Tukey–Kramer test function provides
a graphical output which was used to visualize the difference between models. Each
model in this graph is represented by a point with surrounding 95% confidence inter-
val. Two models are significantly different if their intervals are disjoint and are not
significantly different if their intervals overlap.

5 Results

We applied multi-dimensional performance analysis to select the best models trained
on the tutored data set. Models selected using this procedure were then validated on
post-test and retention test data.

5.1 Model assessment procedures

A result of this work is that we refined a process for step-wise model selection using
three performance metrics (ROC, PR and Residuals) to select the best model. The
resulting process is general and can be applied to other ITS student modeling. In
particular, this method may be useful in assessing potential student models in novel
domains where assumptions of existing student model formalisms for other domains
may not be valid.

Our general approach was to carry out model evaluation in two steps:

(1) Preliminary model selection ROC and PR curves, and AUC metrics were used as
an initial rapid screening method to eliminate models with performance inferior
to the baseline.

(2) Model performance comparison For each remaining model, we then computed
three performance metrics (ROC AUC, PR AUC, and Residuals) and compared
them using variables such as model topology or subgoal grouping as factor levels.

In the remaining subsections, we describe this approach in detail, showing the
results of each step for our data and model topologies.
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Fig. 5 Rejection of topology M4 during step one of model evaluation

5.2 Step one—preliminary model selection by ROC analysis

During preliminary model topology selection, we rejected the models with the lowest
AUC in both ROC and PR spaces. A total of seventeen (17) model topologies were
evaluated during this step, from which we rejected fourteen (14) models, leaving 3
topologies for further consideration. Figure 5 shows an example of the model rejection
process.

The figure depicts ROC curves (5A) and PR curves (5B) for model topologies M1,
M2, M3 and M4 for the same dataset which consists of Subgoal Class=All Data with
Number of Attempts=All (Table 3). Model topology M4 (Fig. 5, dashed line) can be
rejected, because it does not dominate in any area of the ROC or PR space, and the
AUC in both spaces is lower than the AUC of our baseline BKT model M1. M4 is
representative of all fourteen models that were rejected during this step.

Z -test shows that Model #31 is not significantly better than chance (P > .21) and
can therefore be excluded from further consideration (Table 4).

5.3 Step two—model performance analysis

In the second step, we compared remaining models using the three evaluation metrics
for each partitioning variable in succession.

Table 4 Z -test results for ROC
AUC for models in Fig. 5

Model Z -value P

8 2.368 < .01
18 6.411 < .001
30 8.487 < .001
31 .777 > .21
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5.3.1 Model evaluation

We evaluated models trained on different data partitions with respect to different fac-
tors: (1) Model Topology, (2) Subgoal instance Grouping, and (3) Number of Attempts.
For each of the models trained on a particular dataset, we obtained three performance
metrics: (1) ROC AUC, (2) PR AUC, and (3) Residuals. These measures were used to
determine the optimal combination of topology and partitioning factors. Analysis was
separately performed for feature identification and hypothesis-triggering because we
cannot directly compare data from these two separate skills. Additionally, we had a
strong a priori assumption that feature identification and hypothesis triggering might
be represented best by different models and, therefore, preferred to examine the models
separately.

Figures 6–8 show a comprehensive view of the computed metrics for models based
on tutored data only. Models are shown in three-dimensional ROC-PR-Residuals
space. Each model is labeled with its corresponding model number from Table 3.
For models that used All data for features and hypotheses (models 3, 13, 29, 8, 18,
and 30), we trained the models on all data, but computed separate metrics for testing
against feature data or testing against hypothesis data. These models are presented
using superscripts (F and H) in all figures. Figure 6 shows model performance sep-
arating models by 1st attempt (open triangles) versus all attempts (closed triangles)
partitioning factor. Figure 7 shows model performance separating models by each
instance (closed squares) versus all instances (open squares) partitioning factor. Fig-
ure 8 shows model performance separating models by topology, where M2 models
are represented by open circles, M3 models are represented by closed circles, and M1
models are represented by crosses.

Using this method, we can determine the relative benefit of a particular factor
selection across all models.

From Figure 6, it is clear that models using all attempts (closed circles) generally
perform better than models using only 1st attempts (open circles). These models have
higher PR AUC and ROC AUC. This appears to be true for both feature identification
and hypothesis triggering skills.

Figure 7 shows that models that use the each instance (closed squares) grouping
generally perform better than those with the all instance grouping (open squares).
This effect is very pronounced for hypothesis-triggering, but also observed for feature
identification.

Figure 8a demonstrates that M1 models are relatively closer to the origin in ROC
AUC—PR AUC space, indicating that they generally do not perform as well com-
pared to M2 and M3 models for feature identification. In general, M1 models for
feature identification appear to be much less stable to differences in the partitioning.
For example, M1 models 6 and 8F have very low ROC AUC and very low PR AUC,
and M1 models 1 and 3F have low PR AUC and residuals. However, topology does not
appear to be as important a variable in performance for hypothesis-triggering models,
as seen in Figure 8b.

123



A multifactor approach to student model evaluation 369

Fig. 6 Effect of number of attempts on model performance for Feature identification, (a) and Hypotheses-
triggering (b) skills

5.3.2 Model selection

Each of the three metrics provides useful information about the precision and discrim-
ination of the model. However, the relative priority of these metrics ultimately depends
on the goals of modeling. ROC AUC tells us about the models’ ability to discriminate
between student actions, and PR AUC tells us about the averaged precision of cor-
rectly identified user actions. Researchers may wish to balance these characteristics in
a different way for particular tutoring systems, domains or purposes. For example, if
a main objective of the tutoring system is to predict clinical competency after tutoring
with the highest possible precision, then PR AUC of the model takes precedence over
discrimination. However, if the main objective of the tutoring system is to influence
the behavior of the student during tutoring, then discrimination takes precedence over
precision.

For our domain and tutoring system, we have decided to weigh ROC AUC and PR
AUC metrics equally. The optimum model should discriminate well between classes
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Fig. 7 Effect of instance grouping on model performance for Feature identification, (a) and Hypotheses-
triggering (b) skills

of outcomes (high ROC AUC), but also predict outcomes correctly more often and
with greater determination (high PR AUC and low residuals). We considered Residuals
only when models could not be separated in PR and ROC spaces, based on signifi-
cant difference on a majority of the four comparisons (ROC and PR for both feature
identification and hypothesis triggering).

Another modeling choice that tutoring system authors must address is their toler-
ance for multiple models. In some cases, different skills may be modeled better using
different topologies or data partitions, but this can greatly add to the complexity of the
resulting system. We preferred, wherever possible to use a single model for feature-
identification and hypothesis-triggering in order to simplify the system requirements.

Comparison of multiple model factors is presented in Table 5. Analysis was per-
formed separately for feature identification (Table 5, columns 3 and 4) and hypotheses
triggering (Table 5, columns 5 and 6). Performance of models with topologies M2
or M3 exceeds performance of models with M1 topology, for ROC AUC (feature
identification) and PR AUC (feature identification and hypothesis triggering). Per-
formance of models for Subgoal Instance Grouping=Each exceeds performance of
models with Subgoal Instance Grouping=All, for ROC AUC (feature identification
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Fig. 8 Effect of model topology on model performance for Feature identification, (a) and Hypotheses-trig-
gering (b) skills

and hypothesis triggering) and PR AUC (feature identification and hypothesis trigger-
ing). Performance of models using Number of Attempts=All exceeds performance
of models using Number of Attempts=First, for ROC (hypothesis triggering) and
PR (feature identification and hypothesis triggering), and models using Number of
Attempts=First perform better on ROC AUC for feature identification.

Based on our analysis and modeling choices, we selected our final models as fol-
lows.

– Model Topology=M2 or M3.
– Subgoal Instance Grouping=Each.
– Number of Attempts=All.

Thus, we selected 4 models— #19, #27, #20, #28 (refer to Table 3 for details on model
dataset configurations), representing two models (M2 and M3) for hypothesis-trigger-
ing, and two models (M2 and M3) for feature identification. All four models use the
each instance grouping, and include all attempts.
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Table 5 Kruskal–Wallis test results for tutored data. Significant test results are marked in boldface type

Factor Metrics Feature identification Hypotheses triggering DF
P-value P-value

Model
topology

ROC AUC (M2,M3) > M1 < .001 (M2,M3) > M1 0.258 2

PR AUC (M2,M3) > M1 < .001 (M2,M3) > M1 < .001
Residuals M1 > (M2,M3) 0.011 M1 > (M2,M3) 0.098

Subgoal
instance
grouping

ROC AUC Each > All < .001 Each > All 0.003 1

PR AUC Each > All < .001 Each > All < .001
Residuals All > Each 0.703 Each > All < .001

Number
of attempts

ROC AUC 1st > All < .001 All > 1st 0.01 1

PR AUC All > 1st < .001 All > 1st < .001
Residuals 1st > All < .001 1st > All 0.005

Figure 9 depicts multiple comparisons of models based on the results of Tukey–
Kramer tests on tutored data. The figure compares performance of one of the two
selected models against all other models for each of the three performance metrics.
Models selected at the end of Step Two are shown with filled circles. Models used
for comparison (#19 for feature identification and #20 for hypothesis triggering) are
shown with black filled circle, and the other two selected models (#27 for feature iden-
tification and # 28 for hypothesis-triggering) are shown with grey filled circles. Lines
depict a 95% confidence interval around the selected models. The best models should
have the highest scores in ROC and PR spaces, and the lowest scores in Residuals
space. The models #19, 20, 27 and 28 that were pre-selected during the multifactor
analysis are among the best in ROC and Residuals spaces for both feature identifi-
cation and hypothesis-triggering. In PR space, they are the best models, significantly
better than most other models.

5.4 External validity of model selection using post-test and retention-test data

How well does this methodology perform in selecting models that are truly predictive
of student performance on the native task after tutoring? We compared models selected
using this methodology to post-test data obtained outside of the tutoring environment.
This data had not previously been used in model training or testing. The tutored data
set that we used for training the models and the post- and retention test data set were
not equivalent. Tutored data reflects student interactions with the system, while the
test data is obtained without any such interaction. Additionally, the volume of post-
and retention test data is much smaller.

Figures 10 and 12 show model performance for post-test and retention test respec-
tively. The models that we selected in the previous section (shown as closed circles in
all graphs) were among the highest performing models on both post-test and retention
test data.

On post-test data hypothesis-triggering data, model 20 has a relatively high PR AUC
and ROC AUC and relatively low residuals. Model 28 has a slightly lower ROC AUC
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Fig. 9 Tukey–Kramer test results on tutored data for individual models for Feature identification (a) and
Hypothesis-triggering (b). X-axis—model rank, Y-axis—model number. Filled black circles show models
selected on each subplot; filled gray circles show other models selected during multifactor analysis; black
open circles with dashed lines show models that are significantly different from selected model; light gray
open circles show models that are not significantly different from selected model

and PR AUC but equivalent residuals. The equivalent models for feature identification
also perform very well relative to other models. Model 19 has the highest ROC AUC
and high PR AUC, with the lowest residuals. Model 27 also has high PR AUC with a
somewhat lower ROC AUC, and low residuals. In ROC and PR spaces, Model 4 for
feature identification performs as well as Model 19, although its residuals are high.
Figure 11 illustrates the difference in residuals for models 4 and 19 on post-test data.
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Fig. 10 Comparison of selected models compared to other models in predicting post-test data for Feature
identification, (a) and Hypotheses-triggering (b) skills

Fig. 11 Residuals for (a) Model 4 and (b) Model 19 on post-test data for each student, where NR=norm
of residual for model

Figure 11 (a, b) shows the residuals—the difference between actual and estimated
success rates per student for Models 4 and 19. Norm of residual (NR) was calculated
using the formula from Sect. 4.6. Model 4 underestimates the student performance on
post-test with NR=2.72. Model 19 better fits the post-test data with NR=0.65.

123



A multifactor approach to student model evaluation 375

Fig. 12 Comparison of selected models compared to other models in predicting retention test data for
Feature identification, (a) and Hypotheses-triggering (b) skills

On retention-test hypothesis-triggering data, model 20 has high ROC AUC and PR
AUC and residuals in the lower range. Model 28 also has high ROC AUC and PR AUC,
although residuals are slightly higher. The equivalent models also perform well for fea-
ture identification, although not as consistently across all performance metrics. Model
19 exhibits the highest ROC AUC with the lowest residuals, but has a more average
PR AUC. The PR AUC is in the high range for Model 27, but ROC AUC is lower.

By comparing Figs. 6–8 against Figs. 10 and 12, the reader can determine the
relative performance of models from tutored data to validation data. On the whole,
performance metrics decrease for all models on the external data set, as would be
expected with a novel data set. It is interesting to note that performance is higher
on retention test-data when compared to post-test data. Another important difference
between performance metrics on tutored data as compared to external test data is that
there is more variation in performance on external test data, especially in ROC space.
This may reflect the relatively smaller size of the external test dataset when compared
with tutored training data. Models that perform best on the larger, more heterogeneous
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tutored data set may not have sufficient opportunity to demonstrate their strengths on
a smaller dataset.

6 Discussion

This study described the use of a multifactor approach to student model selection
for a complex cognitive task. Our findings have implications for student modeling of
diagnostic tasks in medical ITS. Additionally, the evaluation approach we describe may
prove generally useful for student model selection using machine learning methods.

6.1 Implications for student modeling of medical diagnostic tasks

Choosing a student modeling formalism for an ITS in a novel domain can be a diffi-
cult decision. On the surface, the structure of diagnostic reasoning seems unlike most
highly procedural tasks, which have been previously modeled. Diagnostic reasoning
requires an array of disparate cognitive skills such as visual search, feature recognition,
hypothetico-deductive reasoning, and reasoning under uncertainty. Vast declarative
knowledge representations are often brought to bear. The degree to which skills can
be broken down into their atomic and conditionally independent sub-skills may be
quite limited.

We entertained several approaches to implementing a student model for our task.
One approach we considered was to attempt to mirror this diagnostic and task com-
plexity within the student model. For example, student models based on Dynamic
Bayesian Networks (Conati et al. 2002) were appealing, because there is a long his-
tory of modeling medical knowledge with Bayesian networks. However, the size of
the knowledge spaces that we routinely work in would quickly prove intractable for
this method. The student model must evaluate with sufficient speed to make pedagogic
decisions while interacting with the student.

Another option we considered was to limit the model complexity by using a simpler
student modeling formalism already known to be highly effective in other domains,
such as classic Bayesian Knowledge Tracing. However, some assumptions underly-
ing the classical BKT approach seemed in conflict with our experience in cognitive
modeling for this domain.

As a result, we opted to modify classical BKT for our domain by evaluating a set
of models, that alter topology, assumptions and implementation specifics of classical
BKT. The key assumptions of classical BKT that we studied during this evaluation
process included: (1) the binary nature of the hidden and observed nodes, (2) the
use of first attempts only, (3) the atomicity of skill instances, and (4) the absence of
forgetting. Our data shows that adapting BKT proved to be more predictive in our
domain when compared with models that used the classical topology and assump-
tions. We also altered certain implementation specifics, including (5) we learned the
conditional probabilities directly from data rather than using expert estimations, and
(6) we attempted to predict student action (observable node) rather than knowledge
state (hidden node). In the following sections of the discussion, we suggest some rea-
sons why each of these factors may have improved performance in student modeling
of this complex cognitive task.
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6.1.1 Inclusion of additional hidden states and observed values

Our data supports the use of multiple hidden-state models for student modeling in
our domain. Models with three states consistently outperformed those with only two
states. Based on our evaluation data, we modified the BKT topology to include hint
actions as a third observed outcome in the model. In this approach, hints are considered
as a behavior distinct from correct and incorrect actions, but there is no separate node
for hints or help.

From a machine learning perspective, adding additional hidden states improves the
achievable likelihood of the model. This is because better agreement can be reached by
allowing for a different state at every time step. The interpretation of the “meaning”
of the hidden node states is very difficult (Murphy 2001), since hidden nodes may
have complex interdependencies. Taking this approach produces a model that is less
bounded by educational theory, but could have other advantages such as enhanced
predictive performance.

6.1.2 Modeling all attempts instead of only first attempts

Our data suggests that modeling multiple attempts within a problem is superior to mod-
eling only the first attempt. In classical BKT—the argument against use of multiple
attempts is that students who use these systems typically learn from hints between
attempts. Therefore, second attempts may provide little useful information. However,
we have found that learners in our domain often resist use of hints. Thus, second
and third attempts may yield valuable information—particularly because instances of
individual skills can be quite different across cases or problems.

6.1.3 Adjusting for non-atomicity of skills

There are two factors in cognitive modeling of medical tasks that make selection of skill
granularity a difficult problem. First, medical tasks such as visual diagnostic classifi-
cation often have many different classes of skills that may be learned differently. In our
case, we distinguish identification of visually represented features and qualities from
the exercise of the hypothetico-deductive mechanisms. Second, the enormous range of
potential instances of a given skill are difficult to encode into standard production rule
systems—which have led us to more general abstract rules that can function across all
instances (Crowley and Medvedeva 2006). Given these two inherent ways of subdi-
viding skills—at what level of granularity should student skills be modeled? Our data
suggests that differentiating both different skill classes (e.g. feature identification and
hypothesis-triggering), and instances of these classes may provide useful distinctions.

6.1.4 Modeling forgetting

We explicitly modeled the forgetting aspects using the coupled HMM topology M3.
This model was trained as all other models on the tutored data collected during the
4 h session. Performance of M3 models was comparable to M2 models on post-test
data. But, interestingly, M3 models performed better on retention test data than they
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did on post-test data. Our validation data provided only a one-week interval between
post-test and retention test. The relative advantage of the M3 models could be more
pronounced with longer time intervals. The benefit of explicitly representing time is
that such models could function variably across the long time spans that are needed
to develop expertise in such a complex task. Additional work is needed in this area to
determine the most predictive models over wider time ranges.

6.1.5 Predicting student actions as opposed to knowledge states

A fundamental difference in our resulting approach is to attempt to predict student
action outcome (observable node) rather than knowledge state (hidden node). The
benefit of this approach is that it gives us (1) more flexibility in designing pedagogic
approaches to student actions because requests for help can also be predicted in addi-
tion to correct and incorrect answers, and (2) a greater ability to compare models
directly because the predicted values relate to observable outcomes which can be
compared to other data such as test performance. Predicting competency in future
actions is particularly important in high-risk tasks such as medicine, nuclear power
plant management and plane piloting. ITS which simulate these tasks have the dual
responsibility of education and assessment.

6.1.6 Learning conditional probabilities directly from data

Our decision to emphasize prediction led us to use a machine learning approach to
determine prior and conditional probabilities for the student model. An additional fac-
tor in favor of this decision was that, unlike other ITS domains, very little is known
about the natural frequencies of these intermediate steps because there is little relevant
work on cognitive modeling in diagnostic reasoning.

6.2 Evaluation approach

The methodology we used to evaluate models is general and could be used by other
researchers to identify appropriate student models for their novel domains, systems,
or pedagogic approaches. The current state-of-the-art for student modeling is chang-
ing. More recent efforts have focused on using machine learning techniques to learn
model parameters as an alternative to expert estimation (Jonsson et al. 2005; Chang
et al. 2006). Machine learning approaches necessitate the development of method-
ologies for evaluating large numbers of potential models that result from this ap-
proach.

The overall evaluation approach was relatively simple. We tested all potential
model topologies on the complete dataset using the BKT topology as a baseline.
We eliminated models that did not perform as well as the baseline. Next, we investi-
gated other assumptions that we thought might be relevant in our domain, such as (1)
number of learning opportunities, (2) subgoal class and (3) subgoal instance. After
preparing datasets we selected metrics to access the models’ qualities for different
dataset configurations based on our dual goals of distinguishing student actions and
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predicting performance. We used three metrics: (1) Precision-Recall area under curve
(PR AUC), our measure of the models’ ability to predict, (2) Area under Receiver
Operating Characteristic curve (ROC AUC), our measure of the models’ ability to
discriminate different outcomes of user actions (three in our case), and (3) Resid-
uals, a measurement of the difference between test result and prediction. Based on
the metrics, best models were selected in the following way. For each factor/dimen-
sion of the dataset we selected one level of the factor whose models perform better.
An intersection of the best factor levels was used as the best configuration for the
models.

6.2.1 Tradeoffs

An inherent limitation to any student modeling within an ITS is that we do not know
when incorrect answers are slips and when correct answers are guesses. Classical BKT
takes the approach of empirically setting values in the confusion matrix of the HMM.
(Corbett and Anderson 1995; VanLehn and Niu 2001; Shang et al. 2001). Because slips
and guesses occur—no single model can predict student actions perfectly. There will
always be uncertainty resulting in lower values of ROC AUC and PR AUC metrics.

ROC AUC that is less than 0.85 is considered to be a noisy area where it is diffi-
cult to achieve sufficient discrimination from models. Because students slip and guess
with any action, it is simply not possible to achieve a perfectly discriminating model.
Although some models can be excluded early because their ROC AUC metrics are
very low, most models we have considered (and in fact most models we are likely to
ever consider) fall into this are between 0.7 and 0.81 ROC AUC. Therefore we need
to use other metrics to separate them.

Precision-Recall Area Under Curve (PR AUC) gives us an additional metric to
separate these models. In the context of our models, PR is a measure of the precision
of model performance in predicting the next student action. Precision itself is a widely
used measure, and can be directly compared to later performance (for example on
post-tests). PR AUC enables model choice within the limits of the inherent tradeoff
between precision and recall of a model. Different models may have the same ROC
AUC and different PR AUC, or may have the same PR AUC and different ROC AUC.
PR AUC alone is not a sufficient metric because it is very sensitive to the way data is
aggregated.

Because of the inherent limitations of each of these metrics, none of these metrics
should be considered in isolation. Rather, we consider them together to provide the
best balance in model evaluation. Each of these metrics gives us a slightly different
view—ROC AUC tells us about discrimination between student actions, and PR AUC
measures the precision around a predicted outcome. In fact, one can imagine weighing
one of these metrics more than the other depending on the goals the ITS developer
is trying to achieve. We ranked PR and ROC metrics equally, because we equally
valued the two characteristics of discrimination and precision. Both purposes were
equally important for us. This may not hold true for other researchers. In general—
PR is most important when a researcher’s goal is competency testing. ROC is more
appropriate for managing the student-system interaction. Both are important for case
recommendation.

123



380 M. V. Yudelson et al.

6.3 Conclusions

Alteration of some basic assumptions of classical BKT yields student models that are
more predictive of student performance. The methodology used to select these models
can be applied to other ITS in novel domains.

6.4 Future work

This project is part of our ongoing work to develop a scalable, general architecture
for tutoring medical tasks. The modified BKT model we selected has already been
implemented into the SlideTutor system and is now being used by students in our eval-
uation studies. In future work, we will test the ability of an inspectable student model
to improve student self-assessment and certainty on diagnostic tasks. Our pedagogic
model will use the modified BKT model to select cases and appropriate instructional
interventions.

An important finding of our work was that even the best models we evaluated
(e.g. Model #19 for features, ROC AUC=0.80; or model #20 for hypotheses, ROC
AUC=0.81) leave significant room for improvement. Future modeling work in our
laboratory will assess the potential benefits of slightly more complex models, focusing
on three specific areas: inter-skill dependencies, forgetting, and visual search.

Inter-skill dependencies move us away from another basic assumption of clas-
sical BKT—conditional independence of skills. Cognitive ITS usually model tasks
as a set of elemental sub-skills, in keeping with current theories of skill acquisition
such as ACT-R. But, many sub–skills in diagnostic tasks are difficult to model at
this level, and may require skill–skill dependencies in order to capture the inherent
complexity.

The current study suggests that time may be an important additional factor in this
skill acquisition process that should be included. Skill acquisition in this domain is
often accompanied by a concomitant increase in declarative knowledge. Students typ-
ically work on acquiring skills in specific areas of the domain periodically over the
course of many years. In future work, we will more carefully study the natural history
of forgetting as skill senescence and determine whether addition of a time variable to
our models improves prediction over longer time spans of ITS use.

Visual search is a critical component of this skill which we normally capture in our
ITS through use of a virtual microscope. To date, we have not included this informa-
tion in our models. But aspects of visual search may be extremely helpful in further
improving our prediction of feature learning. For example, variables such as gaze-time
and fixations per unit space could provide information about how well students are
attending to visual features as they work in the tutoring system. Inclusion of such fea-
tures may be guided by existing theories of skill acquisition, which include lower-level
cognitive processes such as perception and attention (Byrne et al. 1998).
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