
User Model User-Adap Inter (2007) 17:71–91
DOI 10.1007/s11257-006-9020-7

O R I G I NA L PA P E R

Personalizing influence diagrams: applying online
learning strategies to dialogue management

David Maxwell Chickering · Tim Paek

Received: 1 November 2005 / Accepted in revised form: 29 June 2006 /
Published online: 13 December 2006
© Springer Science+Business Media B.V. 2006

Abstract We consider the problem of adapting the parameters of an influence dia-
gram in an online fashion for real-time personalization. This problem is important
when we use the influence diagram repeatedly to make decisions and we are uncer-
tain about its parameters. We describe learning algorithms to solve this problem.
In particular, we show how to modify various explore-versus-exploit strategies that
are known to work well for Markov decision processes to the more general influ-
ence-diagram model. As an illustration, we describe how our techniques for online
personalization allow a voice-enabled browser to adapt to a particular speaker for
spoken dialogue management. We evaluate all the explore-versus-exploit strategies
in this domain.

Keywords Personalization · Influence diagrams · User-model adaptation · Planning ·
Dialogue management · Speech recognition

1 Introduction

Statistical and probabilistic methods for user modeling have become increasingly
popular due in part to two advantages they afford over the traditional knowledge-
base approach: first, they provide a natural quantitative framework for representing
uncertainty about user modeling, and second, they can be trained quickly on user
data (Zukerman and Albrecht 2001). Probabilistic graphical models, such as Bayes-
ian networks, have been successfully applied to infer user goals in several domains
(e.g., Albrecht et al. 1998; Horvitz et al. 1998). In this paper, we describe learning and

D. M. Chickering (B) · T. Paek
Microsoft Research,
One Microsoft Way, Redmond, WA 98052, USA
e-mail: dmax@microsoft.com

T. Paek
e-mail: timpaek@microsoft.com

72 D.M. Chickering, T. Paek

inference algorithms for a particular graphical model, the influence diagram, which is
a generalization of a Bayesian network. The model represents both the environment
and preferences of a user to help make decisions. Influence diagrams can either be
constructed by an expert (typically with the aid of a decision analyst), or learned
from data. As described by Heckerman (1995), supervised learning techniques for
“ordinary” Bayesian networks apply easily (i.e., with little modification) to learn the
structure and parameters of an influence diagram.

As an influence diagram is used over time, we would like to use the resulting
observed data to improve the model. This is particularly important when starting out
with a “baseline” influence diagram that is constructed (either from data or from an
expert) to reflect the behaviors and preferences of a general population of users; when
that model is used repeatedly by a particular user, the model should adapt to better
reflect the specific behaviors and preferences of that user. Online adaptation is also
important when we are generally uncertain about the parameter values and/or when
the domain can be changing over time (i.e., there is concept drift).

In this paper, we consider scenarios where we use an influence diagram to make
repeated decisions that maximize the long-term expected utility of a particular user
over time. Our problem is similar to the classic n-armed bandit problem in the
sense that if we always “exploit” our current knowledge to maximize immediate
reward, we may never learn about the specific behaviors of the user that can lead
to alternative strategies that may be superior in the long term. Each “pull” of a
bandit, however, corresponds in our problem to deriving optimal actions within
an influence diagram. For this reason, we call our problem the Bandit-ID (Influ-
ence Diagram) problem. In most cases, identifying the optimal set of actions to
take in a Bandit-ID problem is intractable due to the uncertainty in the model
parameters.

Markov decision processes (MDPs) have traditionally been used to model
domains in which we need to deal with an explore-versus-exploit tradeoff. An MDP
is a special case of an influence diagram in which there is repeated structure used
to make a sequence of identical (state-dependent) decisions. In this paper, we will
apply some of the same strategies used to learn MDPs to come up with new
algorithms for online personalization of influence diagrams. Online algorithms for
learning MDPs exist (see Boutilier et al. 1999), but these algorithms rely on the
repeated structure of state-transition probabilities that does not generally occur
in an influence diagram. Although there may be influence-diagram extensions to
some of these MDP learning algorithms, these extensions are not obvious, and
we believe this is the first treatment of online personalization in the more general
setting.

There are three main contributions of this paper. First, in Sect. 3, we present
the details of the Bandit-ID problem. Second, in Sect. 4, we describe a number
of standard explore-versus-exploit strategies found in the MDP literature, and we
describe how they can be implemented and used to solve Bandit-ID problems.
Finally, we describe results from a real-world user-modeling problem that is modeled
as a Bandit-ID problem. In particular, in Sect. 5 we describe an influence diagram
that controls a speech-enabled web browser that adapts to the user, and in Sect. 6 we
compare the various explore-versus-exploit strategies in this domain.

Personalizing Influence Diagrams 73

2 Background

In this section, we provide background material relevant to the rest of the paper. We
denote a variable by an upper case token (e.g., A, �) and a state or value of that
variable by the same token in lower case (e.g., a, θ). We denote sets of variables with
bold-face capitalized tokens (e.g., A, �) and corresponding sets of values by bold-face
lower case tokens (e.g., a, θ).

An influence diagram is a graphical model used to make a sequence of one or more
decisions. The model is defined over a domain consisting of three types of variables:
decision variables D, chance variables U, and value variables V. The influence dia-
gram also contains a single utility function futil(V) that is a deterministic function of all
of the value variables. An influence diagram contains a set of parameters � that char-
acterize the conditional distributions of the non-decision variables. In particular, the
diagram defines the probability distribution p(U, V|D, �) via the local distributions
stored within the non-decision nodes:

p(U, V|D, �) =
∏

X∈U∪V
p(X|Pa(X), �X)

where Pa(X) denotes the set of parents for node X, and where �X denotes the subset
of parameters in � that define the local distribution of X. Note that the parent set
Pa(X) can contain decision nodes from D. Parents of a decision node D are the nodes
that will be observed at the time decision D is made.

Our definition deviates from the traditional definition of an influence diagram (see,
e.g., Howard and Matheson 1981) because we allow there to be multiple value nodes
that are not necessarily deterministic. Our use of multiple stochastic value nodes is
simply an optimization to allow efficient representation of a factored utility function
(e.g., the utility is the sum of all the values nodes), and has been used by other research-
ers such as Tatman and Shachter (1990) and Lauritzen and Nilsson (2001). In Fig. 1,
we show an example of such an influence diagram. The circular nodes represent the
chance variables, the square nodes represent the decision variables, and the diamond
nodes represent the value variables.

If the parameters � of an influence diagram are known with certainty, we can
apply well-studied inference techniques to “solve” for the optimal sequence of deci-
sions represented in that diagram (e.g., Howard and Matheson 1981; Tatman and
Shachter 1990; Shachter and Peot 1992; Cooper 1993).1 In particular, correspond-
ing to each setting θ of the parameters is an optimal policy P(θ) that prescribes,
for each decision node in the influence diagram, what the best choice is as a func-
tion of the values of the observed variables. In practice, the policy P(θ) is not con-
structed explicitly, but rather as each decision needs to be made, an inference algo-
rithm is run to determine the best action to take. For example, given any set of
observations O = o, where O ⊂ {U ∪ V ∪ D}, we run the inference algorithm to
determine the value d for decision node D ∈ D that maximizes E(futil(V)|O = o,
D = d).

1 We note that many algorithms that “solve” an MDP (such as value iteration) are particular
instances of inference algorithms that take advantage of the repeated (and sometimes infinite)
structure of an MDP.

74 D.M. Chickering, T. Paek

Fig. 1 An example of an
influence diagram. The
parameters of the model are
not shown

3 The Bandit-ID problem

For the Bandit-ID problem, we assume that the parameters of the influence diagram
are not known with certainty, but rather that we have a probability distribution p(�|·).
The goal is to maximize the long-term utility of using the model in an online fashion.
As described in Sect. 1, the Bandit-ID problem is relevant when we have an influence
diagram, perhaps with known parameters, that reflects a population of users, and we
would like to adapt that model to a particular user. In this case, we express the uncer-
tainty about how the particular user deviates from average using the probability dis-
tribution p(�|·); if the parameters of the population model are themselves uncertain,
we can introduce further uncertainty by increasing the variance of this distribution.

We assume that the influence diagram is going to be used repeatedly, and we call
each use of the influence diagram a trial. For example, consider an influence diagram
used to help a person make a sequence of decisions about how to get home from
work. Using the model we might decide to take a detour instead of the highway, and
after making this decision, we need to decide which detour to follow. In this example,
the trial corresponds to a single trip home. Note that a trial in a Bandit-ID problem,
which can involve multiple decisions, corresponds to a single pull in the n-armed
bandit problem.

After each trial, we update the parameter distribution p(�|·) given the resulting
observed values (e.g., it took an hour to get home and there was above-average traffic
on the particular detour). We use Di, Ui, and Vi to denote the decision, chance, and
value variables, respectively, in the ith trial. We use Dn = ∪n

i=1Di to denote the union
of all decision variables up through the nth trial; we use Un and Vn to denote the
corresponding unions for the chance and value variables, respectively.

As shown by Heckerman (1995), learning the parameters of an influence diagram
from observed trial data is a straightforward extension to the problem of learning
the parameters of a Bayesian network; the only significant difference is that the joint
distribution of interest in an influence diagram is one that is conditioned on a set of
decisions. By making the standard assumptions for learning Bayesian networks (see
Heckerman 1996) we can compute the posterior distribution

Personalizing Influence Diagrams 75

p(�|Un, Dn, Vn)

in closed form, and use this distribution to choose the policy for the next (n + 1) trial.
In particular, we can extract the MAP parameter values θ̂ from this distribution, and
as shown by Heckerman (1996) for Bayesian networks, these values render the next
trial independent of the past data:

p(Un+1, Vn+1|Dn+1, Un, Dn, Vn) = p(Un+1, Vn+1|Dn+1, θ̂)

What this means is that after n trials, we can identify the (locally) optimal policy for
trial n + 1 by performing the well-known inference algorithms under the assumption
that the parameters are known to be equal to their MAP values.

What makes the Bandit-ID problem challenging is that, as with the well-studied
n-armed bandit problem (see, e.g., Berry and Fristedt 1985), we are faced with the
classic “explore versus exploit” problem from planning algorithms: if we are only
interested in maximizing our expected return on the next trial, it is easy to see that the
optimal policy is to “exploit” our knowledge and take actions that result in the highest
expected immediate reward; that is, simply set the parameters to their MAP values
and solve the resulting (parameterized) influence diagram. Given k > 1 remaining tri-
als, however, it may be better to “explore” by experimenting with sub-optimal actions
in order to gain more information about uncertain parameters.

4 Explore-versus-exploit strategies for selecting actions

In this section, we describe a number of heuristic strategies that can be applied to the
Bandit-ID problem to hopefully yield high long-term utility. In Sect. 6, we compare
all of these strategies in our real-world application.

4.1 Thompson

The first strategy, originally due to Thompson (1933), is the Thompson strategy which
prescribes that in each trial, policies are chosen stochastically according to the prob-
ability of being optimal. Wyatt (1997) applied the Thompson strategy to a variety of
bandit problems and showed that it is superior to many other simple explore-versus-
exploit strategies found in the reinforcement-learning literature. Dearden et al. (1998)
applied the Thompson strategy for action selection in a model-free reinforcement-
learning problem, using a Bayesian approach to Q-learning. Dearden et al. (1998)
recognized that although deriving the probability that each decision is optimal may
be difficult, sampling decisions according to this distribution is simple.

We now describe the insight of Dearden et al. (1998), and show how the Thompson
strategy is particularly easy to implement within the Bandit-ID setting. Recall from
Sect. 2 that if the parameter values θ of an influence diagram are known, then we
perform optimally at each step by simply performing the unique optimal policy P(θ)

in each trial. It follows that the probability any particular policy P is optimal is equal
to the total probability mass over the set of parameters that result in P being optimal.
This means that by simply sampling the parameters from the posterior distribution
and solving the resulting influence diagram, we are selecting policies based on the
probability that they are optimal. Furthermore, it is particularly easy to sample from
p(�|·) when the variable-specific parameter distributions are modeled as Dirichlet or

76 D.M. Chickering, T. Paek

normal-Wishart distributions, which are the standard choices for discrete and continu-
ous variables, respectively, when learning Bayesian networks. In short, the Thompson
strategy repeats the following steps:

1. Sample an instance of the model parameters θ from their posterior distribution.
2. Solve the resulting influence diagram to determine the best policy.
3. Update the parameter distribution given the observed data.

Note that although the Thompson strategy implicitly imposes a distribution over the
actions we take, we never need to construct this distribution explicitly. The randomness
of the algorithm comes entirely from sampling the model parameters because once
these parameters are known, the optimal actions are well defined through inference
in the model.

4.2 Interval

The second strategy is the interval-estimation strategy—or Interval for short—of
Kaelbling (1993), which Wyatt (1997) found to consistently outperform all other strat-
egies on bandit problems. The strategy calculates a 95% confidence interval around
the expected utility of each action, and then chooses the action with the highest upper
bound. We can implement this strategy in a Bandit ID in a similar fashion as the
Thompson strategy, except that instead of sampling the parameters once, we sample
them many times and collect the resulting expected utilities for each action. With
these samples, we construct an empirical distribution over the expected utilities, and
choose the action with the highest bound on the 95% confidence interval. In our
experiments, we used only 20 samples because we wanted the strategy to be able to
run in real time and because 20 samples worked just as well as 100 samples.2

4.3 Exploit

The Exploit strategy uses the MAP values of the posterior distribution to parameterize
the model. After solving the influence diagram at each step, we simply perform the ac-
tion that maximizes the immediate reward. With this strategy we adapt the parameter
distributions as we observe data, but we make decisions based on the MAP values only.

4.4 Epsilon

The Epsilon strategy is the same as Exploit, except that with some probability ε, we
choose a non-optimal action uniformly at random. We used ε = 0.1 in our experi-
ments; this value is known to perform well on other explore-versus-exploit tasks (see,
e.g., Sutton and Barto 1998).

4.5 Boltzmann

In the Boltzmann strategy, we again use the MAP values of the posterior distribution
to parameterize the model. The Boltzmann strategy is to sample actions according to
the following Gibbs distribution:

2 To get the upper bound, we used the second-highest utility value in the sample. Technically, this is
the upper bound on the 90% confidence interval, but the strategy was indistinguishable from using
the 95% confidence interval when we used 100 samples.

Personalizing Influence Diagrams 77

p(choose a) ∝ eU(a)/T

where U(a) is the expected utility of action a, and where T is a temperature param-
eter that is decreased over time. For high values of T, the strategy chooses actions
almost uniformly; as T decreases, the strategy converges to the Exploit strategy. For
our experiments, we started T = 1600 and then decreased to 1 by dividing in half on
each iteration. For more discussion on this strategy, see Kaelbling et al. (1996).

5 Browser application

In this section, we describe how we used a Bandit ID to facilitate user-model per-
sonalization for a voice-enabled browser called Accessibility Browser. The browser
functions just like any other web browser, except that it responds to speech commands
and can engage in a repair dialogue if it does not understand an utterance. We used
the Microsoft Speech API (SAPI) as the speech-recognition engine.

We instrumented Accessibility Browser to respond to 20 commands. 17 of these
commands had no arguments:

1. ADD-TO-FAVORITES: Adds the current page to the favorites list.
2. FORWARD: Moves forward in the history list.
3. BACK: Moves back in the history list.
4. FONT-DOWN: Decreases the font size.
5. FONT-UP: Increases the font size.
6. HOME: Moves to the home page.
7. PAGE-DOWN: Scrolls down one screen.
8. PAGE-UP: Scrolls up one screen.
9. READ: A text-to-speech engine reads the page out loud.

10. REFRESH: Reloads the current page.
11. SCROLL-DOWN: Continuously and slowly scrolls down.
12. SCROLL-UP: Continuously and slowly scrolls up.
13. STOP: Stops scrolling.
14. SHOW-FAVORITES: Brings up a window with the favorites list. Each link in

the list is labeled with an integer.
15. HIDE-FAVORITES: Removes the window with the favorites list.
16. SHOW-NUMBERS: Adds a number next to every link, button, and edit box on

the page.
17. HIDE-NUMBERS: Removes the numbers that were added from

SHOW-NUMBERS.

The remaining three commands are active when either the numbers are showing after
a SHOW-NUMBERS command, or when the the window with the favorites list is
being shown. These commands take an integer argument, and specify an action to be
taken on a numbered item:

1. CLICK-N: Performs a click on the named button.
2. FILL-N: Move focus to the named edit box.
3. GOTO-N: Navigate to the named link.

78 D.M. Chickering, T. Paek

Each command has one or more English phrases that we specify in a grammar file
that is used by SAPI. For example, we can activate the BACK command by saying
either “back” or “go back”. The grammar file also allows us to specify that the com-
mands with arguments have integer arguments, and thus SAPI can recognize “go to
fourteen” as mapping to the GOTO-N command with argument value 14.

When the user speaks into a microphone, the speech signal is sent to SAPI, and
SAPI returns a number of speech features. Of significant importance is the top-n list
returned by SAPI: the API returns a sorted list of commands with corresponding
confidence scores. For example, suppose the user says “font up” in a noisy environ-
ment. SAPI might return the list FONT-UP, FONT-DOWN, PAGE-UP, and BACK,
with corresponding confidence scores of 0.8, 0.4, 0.3, and 0.1 (confidence scores are
not probabilities). Due to the fact that there are multiple ways of issuing the same
command, the top-n list can contain duplicate commands. For example, BACK might
be both the first and second command in the top-n list due to “back” and “go back”
being the two most likely recognitions according to SAPI.

When the user first issues a spoken command to the browser, the system analyzes
the speech features returned by SAPI and makes a decision between three different
actions: it can perform the Ignore action (which is appropriate when background noise
is sent to SAPI), it can perform the DoTop action, which means that it proceeds with
the top command in the top-n list, or it can engage in a repair dialogue. There are two
choices for the first-round repair: the browser can perform a Repeat repair, where it
asks the user to repeat the command, or the browser can perform a Confirm repair,
where it presents the user with a list of the likely commands with corresponding
integers. The confirmation list always contains the elements “none of the above” and
“I didn’t say anything” as the last two choices.

If a repair dialogue is initiated by the system, the user must issue another com-
mand. In the case of a Repeat he repeats the same command again, and in the case of
a Confirm he names the appropriate integer. After processing the second command,
the browser once again analyzes the resulting speech features and decides between
taking the DoTop action or continuing the repair dialogue. If the original repair was
Confirm, and if the best SAPI recognition is the integer corresponding to “none of
the above” or “I didn’t say anything”, then taking the top action in the second step
results in an apology to the user. If the browser decides to engage in a second repair,
it must perform a dialogue-terminating action after processing the next command.
After analyzing the speech features it can either perform a DoTop action, or it can
perform a Bail action in which the dialogue ends with an apology.

We implemented Accessibility Browser using a Bandit ID to decide what actions to
take in each step of the dialogue process described above. In related research, spoken-
dialogue researchers have noted that speech interaction entails sequential decision
making that can be modeled as an MDP (Young 2000; Singh et al. 2002). If user inten-
tion is included as an unobservable variable, then that decision making is modeled
as a partially observable MDP (Roy et al. 2000). We found an influence diagram to
be a more natural model choice for a number of reasons. First, because users are not
likely to put up with long dialogues, the interaction was naturally finite and very short
in length (at most three steps in our implementation). For example, asking a user to
repeat a command 10 times before acting is not going to be acceptable. Second, the
nature of the interaction at each time step varied significantly. As we show below, both
the variables for predicting success and the overall behavior of the reward function
were different in each step. Third, we found important relationships among variables

Personalizing Influence Diagrams 79

Fig. 2 The influence diagram used for Accessibility Browser. We omit edges directed into the decision
nodes

that were not Markovian; in particular, we found that the second-stage variables did
not render the third-stage variables independent of the first-stage variables (see Fig. 2).
Finally, for repair dialogues in general, the set of actions that are appropriate at each
time step may be varied. For example, we did not deem it appropriate for the browser
to ignore the user after engaging in a repair. Our approach also differs from previous
work in that we adapt the policy in an online fashion for personalization, as described
in the previous section, so that the system can be customized to individual users.

5.1 Learning the baseline model

In this section, we describe a novel supervised-learning technique for automatically
constructing a baseline influence diagram for making decisions about what action to
take in each step of the dialogue system described above. Our goal was to create a
general model that includes speech features that are useful for working with a wide

80 D.M. Chickering, T. Paek

variety of voices. In Sect. 6, we then show how the reinforcement learning techniques
from Sect. 4 can be used to adapt the parameters of this model to a particular user.

We generated synthetic training data for the supervised-learning task using several
text-to-speech (TTS) voices to dictate commands. We varied all the possible param-
eters of these voices (such as pitch, rate, and volume) and added to each utterance
various levels and types of noise (such as crowd chatter and computer fans). From
the simulation we generated roughly 20,000 dialogue sessions, where each session
proceeded as follows. First, we randomly selected one of the possible commands,
where “no command” was included as a possibility, and then “rendered” that com-
mand3 with a random TTS voice (and parameters) with noise added, whereupon the
speech engine recognized the utterance and generated SAPI events. If “no command”
was selected, only the noise was generated. Next, we chose the action to perform at
random: either Ignore, DoTop, Repeat or Confirm. If the action was not a repair, we
recorded whether or not the system got the right command and ended the dialogue
session. Otherwise, we proceeded to the next time step and rendered the appropriate
utterance (for a Confirm, the voice would dictate the appropriate integer). As pre-
scribed by the dialogue definition in the previous section, this process continued until
at most three total interactions were made.

For each dialogue session, we recorded on the order of 45 speech features per time
step (the number of features recorded depends on the time step), for up to 134 speech
features for those sessions that lasted three steps. In the appendix, we list the details
of all the features we used.

After logging all of our synthetic data, we learned the structure and parameters
of an influence diagram for this domain using a version of the WinMine Toolkit
(Chickering 2002). In particular, we first learned a decision tree for predicting imme-
diate success or failure, at each time step, as a result of performing a DoTop or—in
the case of the first time step—Ignore. For the learning process, the leaves in each of
these trees contained independent multinomial distributions with Dirichlet parame-
ter priors. Each of the three success/failure trees defined the function of the value
node at each time step: for each context (i.e., for each leaf), the expected value of a
DoTop or Ignore (first step only) is the probability of success times V(success) = 100
plus the probability of failure times V(failure) = −100. These specific maximum and
minimum values are important only for defining the range of possible values for a
repair action, which was a user-configurable constant in our system; for repair actions,
the corresponding value V(repair) was equal to this constant, regardless of the values
of the chance nodes. After identifying the variables that were predictive of success
in each time step, we eliminated all other variables from consideration. Finally, we
learned a Bayesian network among all the (predictive) chance variables, the only
constraint being that variables in time-step i could not be predictors of previous time
steps. Once again, we learned decision-tree distributions for the local distributions in
the Bayesian network. For the discrete variables, the leaves contained multinomial
distributions with Dirichlet parameter priors, and for continuous variables, the leaves
contained Gaussian distributions with normal-Wishart parameter priors. We did not
learn any structure among the chance variables in the first time step, as these variables
are always observed.

In Fig. 2, we show the structure of the influence diagram that resulted from our
learning procedure. For readability, we leave implicit the “information arcs” that are

3 For those commands with multiple phrases, we chose the phrase for the selected command randomly.

Personalizing Influence Diagrams 81

directed into the decision nodes. As mentioned above, we provide the details for all
of these variables in the appendix. Briefly, from the figure, the “Rule” variables are
discrete with values corresponding to the possible commands; for example, Top Rule
(2) is the command corresponding to the highest-ranked recognition from the top-n
list in the second step. In the case of a confirmation, the highest-ranked recognition
might be “two”, in which case the value for Top Rule (2) is the command whose
text was listed in the second position in the confirmation list. The “Score” variables
are corresponding continuous variables whose values are the confidence scores from
SAPI. For example, Second Score (1) is the confidence score of the second item in
the top-n list returned by SAPI in the first dialogue step. The “Ambiguity” variables
indicate the number of distinct rules in the top-n list. The top three “Event” variables
in the figure, whose definitions are given in the appendix, are useful for determin-
ing whether a sound event was simply background noise. Finally, Max Redundant
Rule (2) indicates the cardinality of the most frequently occurring command in the
top-n list.

The decision nodes in the model are represented in Fig. 2 as the squares on the
left. The values of these nodes are the actions allowed at each step of the dialogue as
described above. The value nodes are represented as the middle diamonds in Fig. 2.
Finally, the total utility of an entire dialogue session is defined as the sum of the value
nodes in the dialogue, except that if a time step was not entered (due to performing
a DoTop or Ignore action), the corresponding value node did not contribute any
value.

In Fig. 3, we show the decision-tree distribution for the node Utility(1). The his-
togram in each leaf node denotes, from top to bottom, the values for p(failure),
p(repair), and p(success). Note that the probability of the “repair outcome” is either
zero or one, depending on whether or not a Repair action was taken. Assuming
V(repair) = −75 (the value we use in the next section), we get the expected utilities
from this tree by summing the products of each probability and the corresponding
utility of −100, −75, and 100, respectively. For example, the top-most leaf in the
figure, whose probabilities are 0.83, 0, and 0.17, has a corresponding expected util-
ity of −66 = −100 × 0.83 − 75 × 0 + 100 × 0.17. We see that the most important
predictor of success in the first step of the dialogue is the value of the decision.
Interestingly, we see that when predicting the success or failure from performing
an Ignore action, the most informative check to make is whether or not the second
rule in the top-n list corresponds to HIDE-NUMBERS; it turns out that if this is
true, an Ignore action is much more likely to succeed. Examining the tree follow-
ing the DoTop action, we see that the same test is important for determining the
success of a DoTop; if the test is true, the DoTop action is much less likely to suc-
ceed. From this we can conclude that HIDE-NUMBERS often occurs as the second
command in the top-n list when there is either no command or a hard-to-recognize
command.

In Fig. 4, we show the conditional probability distribution for chance node Score
Mean (3), which is the average confidence score for the commands in the top-n list.
The leaf nodes in this tree contain Gaussian distributions over the score. In the figure,
the text within each leaf node designates the range between (1) the mean plus one
standard deviation and (2) the mean minus one standard deviation. For example, the
top-most leaf node contains the text “0.766 to 0.974”, which results from a Gaussian
distribution with a mean of 0.87 and a standard deviation of 0.104 (that is, 0.766 = 0.87
−0.104 and 0.974 = 0.87 + 0.104).

82 D.M. Chickering, T. Paek

Fig. 3 The conditional probability distribution defining Utility(1). The histogram in each leaf node
denotes from top to bottom: p(failure), p(repair), and p(success). To get the expected utility, we
multiply these numbers by −100, −75, and 100, respectively, and then sum

Personalizing Influence Diagrams 83

Fig. 4 Decision-tree distribution for the chance node Second Score (2)

5.2 Inference in the baseline model

As described in Sect. 2, we can run inference algorithms to solve for the optimal
actions within a parameterized influence diagram. Intuitively, the process works as
follows. When a user issues a command, all of the step-one variables are instantiated
in the influence diagram. We can look up the total expected value for both the actions
DoTop and Ignore directly from the decision tree for Utility(1) because, due to the fact
that the dialogue terminates after these actions, the total value is equal to the step-one
utility. To evaluate the expected value for each of the repair actions, however, we need
to reason about what the future chance nodes might be; depending on the values of
these chance nodes, we might make different decisions in the later steps.

84 D.M. Chickering, T. Paek

Most of the standard inference algorithms described in the literature for solving
influence diagrams require that the conditional distributions of the chance nodes are
either all “complete tables” (i.e., all variables are discrete and there is a separate
multinomial distribution for each possible combination of the parent values) or all
conditional Gaussian distributions (i.e., all variables are continuous and are modeled
as a linear functions of their parents). Because our influence diagram contains a com-
bination of discrete and continuous variables, and because all conditional distributions
are decision trees, we used a forward sampling approach instead.

For any dialogue step i, the inference algorithm works by, for each di, setting the
decision node Di = di and then repeatedly sampling the chance nodes for dialogue
step i+1, recursively solving for the best action in dialogue step i+1. For each sample,
we collect the total utility, and we choose the action di that maximizes the average
total utility among the samples. Note that whenever di is not a repair action, inference
does not proceed to the next step. Because inference dominates the run time of the
algorithm, and because we need the application to interact with a human in real time,
we were careful to choose the minimum number of samples that were needed for the
algorithm to converge. We found that by using 120 samples for dialogue step two and
60 samples for dialogue step three, the results of inference were the same as when
many more samples were made.

Note that with our inference scheme, the time spent sampling at time step i is
proportional to the number of nodes in that time step, and that the total number of
samples needed grows exponentially with the number of utility nodes. For models with
many more utility nodes, we might need to revise our inference strategy. For example,
we could discretize all of the continuous variables, use table distributions, and then
apply one of the standard inference algorithms as described in Sect. 2. Alternatively,
we might use only one sample for dialogue steps larger than some fixed number of
repair iterations into the future.

5.3 Personalizing the baseline model

The baseline model described above was learned using a diverse set of voices; the
personalization problem is to adapt the model parameters to maximize utility for a
particular user. We thus have precisely the Bandit ID problem described in Sect. 3,
with the baseline influence diagram as our initial model. In the next section, we apply
all of the reinforcement learning algorithms described in Sect. 4 to solve this problem.

6 Experiments

We compared the performance of the various explore-versus-exploit strategies from
Sect. 4 within the Bandit-ID framework for the Accessibility Browser. Our goal was
to determine how well each of the strategies would personalize the baseline model to
a particular voice. Because the baseline model was learned using over 20,000 training
sessions, the variances on the resulting parameter distributions were very small; to
model our uncertainty about the baseline parameters for a particular voice, we reduced
the equivalent-sample size in each distribution to five. This allowed the strategies to
adapt the model parameters in a reasonable number of dialogue sessions.4

4 We chose the value five because it worked well for adapting quickly to our own voices.

Personalizing Influence Diagrams 85

In addition to the strategies from Sect. 4, we included results from the following
two default strategies:

– DoTop simply executes the top action recognized by SAPI at each step. Results
from this strategy show how well the browser works without any repair dialogue.

– Baseline uses the MAP parameter values that result from the learning process
described in Sect. 5.1, and does no adaptation of those parameters. Results from
this strategy show how well the browser works without any personalization.

We evaluated how well the strategies adapted to individual voices as follows. We
chose a set of 75 voices on which to run our experiments. In particular, we took the
5 TTS voices, then we chose 5 pitch settings and 3 rate settings to produce 75 voices
overall.5 For each voice, we ran a sequence of 1000 dialogue sessions, where for each
session we chose a random command (“no command” was again one of the options).
We added crowd-chatter noise to make the recognition task challenging. In order to
be able to compare the different strategies using the same data, we pre-recorded the
SAPI variables that would result from every possible action that a strategy might
use. For example, suppose a random command was “go back”. We would render this
speech using the given voice, and then record the resulting values for the SAPI fea-
tures. Then, in anticipation of some learning strategy asking for a confirmation, we
rendered the appropriate speech response (e.g., “two”) and recorded the resulting
SAPI features. We continued this process until we had the observed SAPI features
corresponding to any sequence of actions that could result from a strategy. We applied
each strategy to the 1000 dialogue sessions for each voice, using the data appropriate
to the actions that the strategy used. The strategies adapted the model to each voice
as appropriate, and we kept a running total of the utility for each dialogue session in
the sequence.

In Fig. 5, we show the average total reward for each of the different strategies,
where the average is taken over the 75 voices; the error bars represent the cor-
responding standard errors. We performed paired t-tests to asses the significance
of the differences among the algorithms. Thompson was significantly better than
Interval (t(74) = 7.17, P < 0.0001 two-tail), Interval was significantly better than
Exploit (t(74) = 9.41, P < 0.0001 two tail), Exploit and Boltzmann were not signifi-
cantly different, Boltzmann was significantly better than Baseline (t(74) = 4.06, P <

0.0001 two-tail), Baseline was (not too significantly) better than Epsilon (t(74) = 1.88,
P = 0.06 two-tail), and Epsilon was significantly better than DoTop (t(74) = 2.77, P <

0.01 two-tail).
There are some interesting observations to make from these results. First, Thompson

attained significantly more utility than all other strategies, and in particular, it attained
significantly more utility than the Interval strategy. This was somewhat surprising,
given that Interval simply performs Thompson multiple times to determine what ac-
tion to take. Evidently Interval is being too optimistic about the utility of its actions;
we expect that by taking the upper bound of a narrower confidence interval, Interval
will improve. A second interesting observation is the difference between Baseline and
DoTop. This difference represents the added utility that we get by using the influence

5 These test voices were a strict subset of the voices used to train the baseline model. We selected the
particular voices based how natural they sounded; we wanted to simulate as closely as possible how
the strategies would work for a real human voice.

86 D.M. Chickering, T. Paek

Fig. 5 Average total reward for each of the strategies

diagram to allow for repair dialogues. Finally, the difference between Thompson and
Baseline represents the added utility that we get from personalizing the influence
diagram to a particular voice.

To better understand the significance of the observed differences in utility, con-
sider a simplified utility model where we either get a utility of 100 if we succeed
or a utility of −100 if we fail. Under this model, the average total reward from
DoTop, Baseline, and Thompson correspond to success rates of 81%, 84%, and 90%,
respectively. Thus, we can interpret our results under this model as gaining 3% in our
success rate as a result of using the influence diagram, and gaining an additional 6%
in our success rate as a result of personalization. The true success rate of Baseline and
Thompson are much higher than 84% and 90%, respectively, because these strategies
result in successful command executions with low utilities. For example, the utility of a
successful command execution after two repair actions is −50. Nonetheless, we believe
the simplified utility model is useful for understanding our results.

In Fig. 6, we show a different view of our results. In particular, we plot the average,
over all 75 voices, of the running average total reward as a function of the dialogue
session. For example, consider the value of the Thompson curve above the kth dia-
logue session. For each of the 75 voices, we tracked the running average, over the
first k sessions, of the total utility obtained by the Thompson strategy; what is plotted
in the figure is the average, over the 75 voices, of this running average. To keep the
figure simple, we omitted the corresponding error bars for each of the 1000 points.
The figure shows a pronounced upward trend in all of the personalization strategies
(i.e., all strategies other than Baseline and DoTop), and it suggests that the models
will all continue to improve with more sessions.

In summary, our results show that Thompson was the best explore-versus-exploit
strategy for personalizing influence diagrams in this domain, and that significant utility
was gained by performing that personalization.

Personalizing Influence Diagrams 87

Fig. 6 Running average as a function of the iteration number

7 Conclusion

In this paper we introduced the Bandit-ID problem, which is the problem of adapting
the parameters of a particular user model, the influence diagram, to a specific user.
We described a number of strategies from the MDP literature, and we showed how to
implement these strategies in our user-modeling scenario. We provided experimental
results from a real-world user-modeling system that compare the various strategies,
and our results suggest that significant differences between these strategies may occur
over the long run. The Thompson strategy for personalization resulted in the high-
est total reward, and personalization improved total reward significantly over the
non-personalized baseline model.

A natural next step for this research is to perform a user study to assess to what
degree real users prefer these adaptive methods. Anecdotally, we have found that
users prefer the browser instrumented with the Thompson method to one instrumen-
ted with the DoTop method. Unless the user speaks very clearly, certain commands
often get misunderstood by the speech recognizer, and the adaptive methods learn
quickly to engage in disambiguating confirmations. DoTop, on the other hand, will
often perform the wrong action in such situations, and un-doing these actions is
distracting and time consuming. In fact, we chose the confirmation utility of −75
based on our own tolerances for dialogue repairs versus the negative utility resulting
from wrong actions.

There are many other interesting directions in which we can extend this work.
To evaluate the various strategies, we concentrated on an empirical comparison. For
a more theoretical evaluation, researchers have considered the “regret” or relative
loss an agent receives for executing an exploration strategy instead of behaving opti-
mally from the start, as determined retrospectively. Performance bounds for regret

88 D.M. Chickering, T. Paek

have been developed for N-armed bandit algorithms under various assumptions (e.g.,
Berry and Fristedt 1985; Auer et al. 1995; Auer 2002), as well as for MAP estimation
algorithms in general (Kakade and Ng 2005). It would be interesting to study the
competing strategies in this framework.

Appendix

Following are all of the features that the supervised learning algorithm used to build
the baseline influence diagram. The term Rule in a feature name refers to the user
command, and the term Token refers to the user utterance. For example, if the user
says “go back”, the Rule will be BACK and the Token will be “go back”.

A. Dialogue Features

1. Turn: The current dialogue step.
2. Has Confirm: Whether or not a confirmation has been performed anytime in the

previous turns.
3. Number Of Repairs So Far (i): Number of repairs so far up to turn i.
4. Number Of Confirms So Far (i): Number of confirmations so far up to turn i.

B. Automatic Speech Recognition (ASR) Features (repeated for each turn i)

1. {Top|Second|Third} Rule (i): Rule that occupies the {first|second|third} position
in the top-n list.

2. {Top|Second|Third} Token (i): Token that occupies the {first|second|third} posi-
tion in the top-n list.

3. {Top|Second|Third} Score (i): Confidence score that occupies the {first|sec-
ond|third} position in the top-n list.

4. Number of False Recognitions (i): Number of passes through SAPI’s word lattice
that fail to recognize a phrase.

5. Number of Interference Events (i): Number of times SAPI raised an event indi-
cating that the recognition might have been compromised by a particular audio
distortion type.

6. Most Common Interference Event (i): Most common type of audio-distortion
event type raised by SAPI.

7. Number of Stream Start Events (i): Number of times an audio stream start point
is detected.

8. Number of Stream End Events (i): Number of times an audio stream end point
is detected.

9. Number of Stream Released (i): Number of times a stream is rejected as an
audio stream.

10. Number of Sound Start Events (i): Number of times any sound start point is
detected.

11. Number of Sound End Events (i): Number of times any sound end point is
detected.

12. Number of Phrase Start Events (i): Number of times a phrase is detected from
an audio stream.

Personalizing Influence Diagrams 89

13. Number of Audio Change Events (i): Number of times audio classification is
changed.

14. Maximum Redundant {Rule|Token|Combined} (i): The cardinality of the most
frequently occurring {rule|token|both}.

15. Maximum Frequency Of Redundant {Rule|Token|Combined} (i): The cardinal-
ity of distinct {rule|token|both} that repeat.

16. Score Count (i): Number of items in the n-best list
17. Score Sum (i): Sum of all the confidence scores.
18. Maximum Score (i): Maximum confidence score.
19. Minimum Score (i): Minimum confidence score
20. Score Range (i): Difference between the maximum and minimum confidence

scores.
21. Score Median (i): Median confidence score if any.
22. Score Mean (i): Arithmetic mean of the confidence scores.
23. Score Geometric Mean (i): Geometric mean of the confidence scores.
24. Greatest Consecutive Difference(i): Greatest difference between any two con-

secutive confidence scores, if there are two or more confidence scores.
25. Score Variance (i): Variance of the confidence scores.
26. Score Stdev (i): Standard deviation of the confidence scores.
27. Score Stderr (i): Standard error of the confidence scores.
28. Score Mode (i): Mode of the confidence scores.
29. Mode Frequency (i): How frequently the mode occurs.
30. Score Skewness (i): Skewness of the distribution of confidence scores.
31. Score Kurtosis (i): Kurtosis of the distribution of confidence scores.
32. Ambiguity (i): Whether rules of the current n-best list are all the same, the top

two are the same, or other.

C. Pairwise Features (defined only for i = 2 and i = 3)

1. Index of Top Rule In Previous (i): The position of the current top rule in the
previous n-best list, if any.

2. Index of Top Rule In First Slice(i): The position of the current top rule in the
first-turn n-best list, if any.

3. Index of Top Token In Previous (i): The position of the current top token in the
previous n-best list, if any.

4. Index of Top Token In First Slice (i): The position of the current top token in the
first turn n-best list, if any.

5. Score More Than Previous (i): Whether the average confidence score is greater
than the previous average confidence score.

6. Gap Between Top Scores (i): Difference between the current top confidence
score and the previous top confidence score.

7. Gap Between Top Scores With First Slice (i): Difference between the current top
confidence score and the first-turn top confidence score.

References

Albrecht, D., Zukerman, I., Nicholson, A.: Bayesian models for keyhole plan recognition in an adven-
ture game. User Model. User-Adapted Interaction, Special Issue Machine Learning User Model.
8(1–2), 5–47 (1998)

90 D.M. Chickering, T. Paek

Auer, P.: Using confidence bounds for exploitation-exploration trade-offs. J. Machine Learn. Res. 3,
397–422 (2002)

Auer, P., Cesa-Bianchi, M., Freund, Y., Schapire, R.: Gambling in a rigged casino: the adversarial
multi-armed bandit problem. In: In Proceedings of the 36th Annual Symposium on Foundations
of Computer Science, pp. 322–331. IEEE Computer Society Press, Los Alamitos, CA (1995)

Berry, D., Fristedt, B.: Bandit Problems: Sequential Allocation of Experiments Chapman and Hall,
London (1985)

Boutilier, C., Dean, T., Hanks, S.: Decision-theoretic planning: structural assumptions and computa-
tional leverage. J. Aritif. Intell. Res. 1, 1–93 (1999)

Chickering, D.M.: The winmine toolkit. Technical Report MSR-TR-2002-103, Microsoft Redmond,
WA (2002)

Cooper, G.F.: A method for using belief networks as influence diagrams. In: Heckerman, D.,
Mamdani, A., (eds.), Proceedings of the Ninth Conference on Uncertainty in Artificial Intel-
ligence, Washington, DC, pp. 55–63. Morgan Kaufmann (1993)

Dearden, R., Friedman, N., Russell, S.: Bayesian Q-learning. In: Proceedings of the Fifteenth National
Conference on Artificial Intelligence, pp. 761–768. Madison, WI (1998)

Heckerman, D.: A Bayesian approach for learning causal networks. In: Hanks, S., Besnard, P. (eds.),
Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, Montreal, QU.
Morgan Kaufmann (1995)

Heckerman, D.: A tutorial on learning Bayesian networks. Technical Report MSR-TR-95-06,
Microsoft Research (1996)

Horvitz, E., Breese, J., Heckerman, D., Hovel, D., Rommelse, K.: The lumiere project: Bayesian user
modeling for inferring the goals and needs of software users. In: Proceedings of the Fourteenth
Conference on Uncertainty in Artificial Intelligence, pp. 256–265. Madison, Wisconsin (1998)

Howard, R., Matheson, J.: Influence diagrams. In: Readings on the Principles and Applications of
Decision Analysis, Vol. II, pp. 721–762. Strategic Decisions Group, Menlo Park, CA (1981)

Kaelbling, L.P.: Learning in Embedded Systems. The MIT Press, Cambridge, MA (1993)
Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: a survey. J. Artif. Intell. Res.

4, 237–285 (1996)
Kakade, S.M., Ng, A.Y.: Online bounds for bayesian algorithms. In: Saul, L.K., Weiss, Y., Bottou,

L. (eds.), Advances in Neural Information Processing Systems, Vol. 17, pp. 641–648. MIT Press,
Cambridge, MA (2005)

Lauritzen, S.L., Nilsson, D.: Representing and solving decision problems with limited information.
Manage. Sci. 47(9), 1235–1251 (2001)

Roy, N., Pineau, J., Thrun, S.: Spoken dialogue management using probabilistic reasoning.
In: Proceedings of ACL-2000, pp. 93–100. Hong Kong, China (2000)

Shachter, R., Peot, M.: Decision making using probabilistic inference methods. In: Proceedings of the
8th Annual Conference on Uncertainty in Artificial Intelligence, pp. 276–283. San Mateo, CA,
Morgan Kaufmann Publishers (1992)

Singh, S., Litman, D., Kearns, M., Walker, M.: Optimizing dialogue management with reinforcement
learning: experiments with the njfun system. J. Artif. Intell. Res. 16, 105–133 (2002)

Sutton, R., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press (1998)
Tatman, J.A., Shachter, R.D.: Dynamic programming and influence diagrams. IEEE Trans. Syst. Man

Cybernet. 20(2), 365–379 (1990)
Thompson, W.R.: On the likelihood that one unknown probability exceeds another in view of the

evidence of two samples. Biometricka. 25, 285–294 (1993)
Wyatt, J.: Exploration and Inference in Learning from Reinforcement. PhD thesis, University of

Edinburgh (1997)
Young, S.: Probabilistic methods in spoken dialogue systems. Philos. Trans. Roy. Soc. (Ser A) 358(1769),

1389–1402 (2000)
Zukerman, I., Albrecht, D.: Predictive statistical models for user modeling. User Model. User-Adapted

Interact. 11(1), 5–18 (2001)

Personalizing Influence Diagrams 91

Authors’ vitae

Max Chickering has been working in the Machine Learning and Applied Statistics group of Microsoft
Research and is now with Microsoft Live Labs. He is interested in practical applications of machine
learning algorithms. Max received his PhD in computer science from the University of California at
Los Angeles, and he received his Bachelors in computer science from the University of California at
Berkeley.

Time Paek is a researcher in the Machine Learning and Applied Statistics group at Microsoft Research.
Tim received his M.S. in Statistics and Ph.D. in Cognitive Psychology from Stanford University, and his
B.A. in Philosophy from the University of Chicago. His primary research focus is on spoken dialogue
systems. With a keen interest in enhancing deployed systems, he has pursued research in the following
areas: dialogue management, user modeling, personalization, machine learning and human–computer
interaction.

	Personalizing influence diagrams: applying online learning strategies to dialogue management
	Abstract
	Introduction
	Background
	The Bandit-ID problem
	Explore-versus-exploit strategies for selecting actions
	Thompson
	Interval
	Exploit
	Epsilon
	Boltzmann
	Browser application
	Learning the baseline model
	Inference in the baseline model
	Personalizing the baseline model
	Experiments
	Conclusion
	References

