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Abstract Recommender systems represent a class of personalized systems that
aim at predicting a user’s interest on information items available in the application
domain, operating upon user-driven ratings on items and/or item features. One of the
most widely used recommendation methods is collaborative filtering that exploits the
assumption that users who have agreed in the past in their ratings on observed items
will eventually agree in the future. Despite the success of recommendation methods
and collaborative filtering in particular, in real-world applications they suffer from
the insufficient number of available ratings, which significantly affects the accuracy
of prediction. In this paper, we propose recommendation approaches that follow the
collaborative filtering reasoning and utilize the notion of lifestyle as an effective user
characteristic that can group consumers in terms of their behavior as indicated in
consumer behavior and marketing theory. Emanating from a basic lifestyle-based
recommendation algorithm we incrementally proceed to the development of hybrid
recommendation approaches that address certain dimensions of the sparsity problem
and empirically evaluate them providing further evidence of their effectiveness.

Keywords Recommender systems · Collaborative filtering · Personalization ·
Lifestyle

1 Introduction

In many occasions in our everyday life, we become active seekers or passive receivers
of information in order to make selections, choices or purchase decisions. However,
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our experiences and knowledge often do not suffice to process and evaluate the vast
amount of available information. This information overload problem becomes even
greater in the age of easily accessible digital information. It is a common practice to
reduce the information processing workload by exploiting the experiences of friends,
colleagues, family, or professionals (Resnick and Varian 1997). Malone et al. (1987)
observed the “social filtering” process followed by employees in an organizational
context to prioritize e-mail messages sent by colleagues who had some form of per-
sonal or organizational relationship to them. Goldberg et al. (1992) used the term
“collaborative filtering” in Tapestry, an e-mail filtering system, to denote that “people
collaborate to help each other perform filtering by recording their reactions to docu-
ments they read.” Resnick and Varian (1997) coined the term “recommender systems”
for systems where “people provide their recommendations which the system then
aggregates and directs to appropriate recipients.” Nowadays, recommender systems
have expanded their scope and the approaches utilized to produce the recommenda-
tions and refer to systems that “produce individualized recommendations as output or
have the effect of guiding the user in personalized way to interesting or useful objects
in a large space of possible options” (Burke 2002).

Recommender systems have proven very useful in several domains such as movies
(Alspector et al. 1997; Good et al. 1999), news (Resnick et al. 1994; Maybury 2001),
and e-commerce product recommendation applications, including successful commer-
cial systems such as Amazon.com and eBay (Schafer et al. 2001). Recommendation
methods operate upon user ratings on observed items and/or item features making
predictions concerning users’ interest on unobserved items. However, in most cases in
particular in real-world applications, the ratio of rated items to the total of available
items is very low. The absence of a sufficient amount of available ratings significantly
affects recommendation methods reducing the accuracy of prediction. The sparsity
of ratings problem is particularly important in domains with large or continuously
updated list of items as well as a large number of users. The sparsity problem may
occur when either none or few ratings are available for the target user, or for the
target item that prediction refers to, or for the entire database in average. Differ-
ent treatments are required and different prediction techniques must be employed
depending on the sparsity conditions, making the selection of an appropriate approach
a cumbersome task. Current personalization approaches are limited in the sense that
they address specific aspects of the above problem (Herlocker and Konstan 2001;
van Setten et al. 2002).

Along these lines we propose recommendation approaches that utilize the notion
of lifestyle as a user characteristic that can be effectively exploited to overcome the
sparsity problem. Indeed, consumer behavior theory suggests that lifestyle is a sig-
nificant predictor of consumer’s behavior. In adaptive and recommender systems
literature, the value of personality traits and in particular lifestyle as personalization
feature has been acknowledged (Ardissono and Goy 2000; Brusilovsky 2001) but it
has been considered in very few studies (Krulwich 1997; Ardissono et al. 2001). In the
present research, the proposed algorithmic implementations manage different aspects
of the sparsity problem (in different conditions) and are finally integrated into a single
personalization strategy.

The present research is applied on the domain of digital interactive television
advertisements. The task of personalizing interactive advertisements is considered as
recommending audiovisual information items concerning products, services, or infor-
mation to individual viewers (users). The advances in digital interactive television
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technology (Milenkovic 1998) including set-top boxes with the ability to store and
process data, content, and interactive applications enable the development and appli-
cation of personalization methods and techniques in this context.

The rest of the paper is organized as follows. In the next section, a review of
the relevant literature is presented while in Sect. 3, the notion of lifestyle is intro-
duced and existing lifestyle segmentation methods are discussed. In Sect. 4, an initial
recommendation approach as a direct implementation of existing lifestyle segmenta-
tion methods is presented. In Sect. 5, the basic recommendation algorithm based on
lifestyle is presented as well as two more hybrid approaches that extend the above
algorithm beyond high-sparsity conditions. In Sect. 6, a meta-learning hybridization
technique, which presents item-level sensitivity is proposed. In Sect. 7, the proposed
approaches are aggregated into a personalization strategy that operates upon a given
set of sparsity conditions and outputs the appropriate recommendation approach,
while in the last section of the article conclusions and future research directions are
discussed.

2 Recommendation approaches

The recommendation task refers to the prediction of a user’s interest for a specific
information item (e.g., books, movies, music, products). The user and the item the pre-
diction refers to are indicated as the target user and the target item, respectively. The
recommendation process takes as input an expression of users’ interest on observed
items and/or item features and typically machine learning techniques are applied to
make predictions of interest for unobserved items. The personalization effect is then
visualized using various techniques, in accordance to the characteristics of the appli-
cation domain, such as presenting a ranked list of relevant items, recommending the
top-n relevant items, or providing navigation support by ordering the relevant items
(Hollink et al. 2006).

Recommender systems can be classified upon different features, such as the type
of data utilized in the recommendation process, the data acquisition mechanism, the
output produced, and so on. However, of primary importance are the recommenda-
tion approaches, which in combination with domain characteristics (such as the user’s
goal or task, or the available interaction mechanisms) significantly affect the design
choices in the implementation of a recommender system.

2.1 Collaborative and content-based filtering

The original recommendation approach that paved the way for recommender systems
research is collaborative filtering (CF). CF is based on the assumption that users who
have agreed in the past in their subjective evaluation on observed items (as expressed
through their ratings) will eventually agree in the future (Resnick et al. 1994). Given
the target user’s ratings, the idea is to trace relationships or similarities between the
target user and the remaining of the users in the database. The ratings on the target
item provided by the “similar” users are summarized and directed to the target user.
CF is characterized by its independence from item features which makes it applicable
to almost any type of content.

Recommender systems approaches were merged with content-based filtering
(CBF), an information retrieval technique that makes predictions upon the assumption
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that a user’s previous preferences or interests are reliable indicators for his/her
future behavior. CBF performs a selection of items relevant to the ones that the
user has found interesting in the past and therefore requires the analysis of the con-
tent into features. CBF is typically applied upon text-based documents or in domains
with structured data (Balabanovic and Shoham 1997; Pazzani 1999). For example,
CBF has been utilized in book recommendation tasks (Mooney and Roy 2000), using
features such as title, author, or theme, and in Web-page recommendations (Pazzani
1999) where the more informative words are extracted (using the tf-idf weight) and
utilized as features.

Collaborative filtering presents a number of advantages over CBF which make
it a suitable filtering approach for several domains. CF enables the filtering of any
type of content (such as videos, music, or advertisements) that cannot be analyzed in
features by automated processes (Balabanovic and Shoham 1997). Even in content
types where the analysis into features is feasible, content-based predictions cannot
reflect the quality and taste (Herlocker et al. 1999), authoritativeness or respect-
fulness (Resnick et al. 1994), or “aesthetic quality” (Balabanovic 1997) of the item
whenever this is necessary. Furthermore, CBF restricts the spectrum of recommenda-
tions within the boundaries of the user’s current interests (Balabanovic and Shoham
1997). CF can provide recommendations concerning content that the user may have
not considered in the past but has been found interesting by “similar” users. In
terms of predictive performance, CF has been shown to produce more accurate pre-
dictions in the movie recommendation domain (Alspector et al. 1997; Basu et al.
1998). However, it must be noted that in domains with well-structured content, CBF
undoubtedly provides useful recommendations in particular when the user presents
an idiosyncratic behavior and therefore “similar” users may not exist (Smyth and
Cotter 2000).

Content-based and CF approaches rely upon some form of user’s expression of
interest on items or item features. However, such interaction data may not always be
available as for example at the initiation of the system usage where no interaction
has occurred. Therefore, for such cases it may be necessary to separate the predic-
tion process from the availability of user-driven interaction data and utilize existing
knowledge in the domain exploiting other sources of data. A knowledge-based (KB)
approach, may exploit knowledge concerning the item features, for example that
product “x” belongs in a certain product category, functional knowledge concerning
the mapping between a user’s need and item(s) that may satisfy this need, or user
knowledge. An example of a KB approach is the restaurant recommender EntreeC
proposed by Burke (2002), which also combines CF for recommendations. In this
system, a user may submit restaurants that he is familiar with or a set of criteria
and the system returns similar restaurants. A semantic network contains a number
of “cuisines”, which is one of the content features. Relevant restaurants are returned
according to their inverse distance from the user-defined restaurant. KB recommender
systems remain rare in the field of recommender systems, mainly because of the need
of knowledge acquisition, which introduces an additional complexity in the design of
a recommender system. KB approaches, which have been extensively used in user
modeling applications, can be marginally classified as a recommendation technique
due to the additional complexity and exploitation of additional data sources (other
than ratings) required.
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2.2 Hybrid approaches

In order to exploit the advantages of available recommendation methods several
hybrid approaches have been proposed, in their vast majority concerning combina-
tions of CBF and CF (Balabanovic 1997; Claypool et al. 1999; Cotter and Smyth 2000;
Schwab et al. 2000), or extending the two methods by demographics-based predic-
tions (Pazzani 1999), while few of them utilize KB techniques (e.g., Burke 2002). A
significant part of research in hybrid recommender systems concerns the techniques
that can be used to combine the approaches since they may significantly affect the
prediction outcome.

Burke (2002) classifies hybridization techniques into seven classes: weighted where
each of the recommendation approaches makes predictions which are then combined
into a single prediction; switching where one of the recommendation techniques is
selected to make the prediction when certain criteria are met; mixed in which predic-
tions from each of the recommendation techniques are presented to the user; feature
combination where a single prediction algorithm is provided with features from differ-
ent recommendation techniques; cascade where the output from one recommendation
technique is refined by another; feature augmentation where the output from one rec-
ommendation technique is fed to another, and meta-level in which the entire model
produced by one recommendation technique is utilized by another.

Each of the individual recommendation methods discussed above (CBF, CF, KB)
can prove useful under certain conditions while their combinations may exploit their
individual advantages. Among these methods, CF provides a reliable method to serve
as a platform for the development of a personalization approach, which can be ex-
tended by other approaches optimizing the overall performance. In the following
section, we review and compare CF methods and techniques, aiming to develop new
methods that address their limitations and manage the effect on their predictive
performance.

2.3 Collaborative filtering approaches

In CF, users are profiled by their ratings on the available items and can be represented
by a user × item table, where each cell contains a user’s rating on an item or is blank if
the user has not observed or has not provided his/her rating for the specific item. User
ratings can be collected either implicitly or explicitly. Implicit acquisition methods
include the monitoring of user’s interactive behavior, such as the browsing activi-
ties, page viewing time, and so on. Explicit acquisition methods refer to the direct
request for provision of ratings. For example, Amazon.comTM (www.amazon.com)
and citeseer.org (www.citeseer.comp.nus.edu.sg/cs) request users to provide their rat-
ings on read books or papers/articles on a one-to-five numerical scale. Ratings can
also be requested explicitly upon icons [e.g., “thumbs-up”/“thumbs-down” or “smil-
ing faces” as in Syskill and Webert (Pazzani and Billsus 1997)]. Besides the above
ratings-based profiling, more sophisticated techniques may handle explicit qualitative
user preferences for the development of user models (Domshlak and Joachims 2006).

Collaborative filtering approaches can be distinguished into two major classes:
memory-based and model-based (Breese et al. 1998). Memory-based approaches
operate upon the entire database of users in order to find the most similar to
the target user and weight their recommendation according to their similarities.
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The fundamental algorithm of the memory-based class is the nearest–neighbor (NN),
which can be divided into three steps (Resnick et al. 1994):

(a) Measurement of similarities between the target and the remaining users in the
database. Several similarity measures can be utilized to trace relationships be-
tween users, such as Spearman rank correlation (where similarities are computed
upon rankings rather than ratings), mean squared difference (dissimilarity mea-
sure), or cosine vector similarity. However, Pearson correlation coefficient is
typically used since it was empirically found to produce more accurate, or in the
worst case equivalent results (Breese et al. 1998; Herlocker et al. 1999, 2002).

(b) Selection of the neighbors (most similar users) who will serve as recommenders.
Two techniques have been employed for neighborhood selection: the thresh-
old-based selection (Shardanand and Maes 1995), where users whose similarity
exceeds a certain threshold value are considered as the neighbors of the target
user, and the top-n technique in which a predefined number of n best neigh-
bors is selected (Resnick et al. 1994). According to Herlocker et al. (2004), the
threshold-based selection with threshold value equal to zero has been shown to
preserve high levels of accuracy and coverage (the number of items for which
prediction can be made).

(c) Prediction based on the weighted average of the neighbors’ ratings, weighted by
their similarity to the target user.

The main advantage of the NN algorithm is that it can incorporate the most recent
data since the above process is performed upon a request for prediction. Therefore,
the NN algorithm is mostly suitable for domains where user preferences or inter-
ests change rapidly, or with continuous updates in the available items. However, the
computational cost increases at prediction time as all users are examined for their
relationship to the target user. In order to deal with the scalability problem some
form of heuristics that select only a subset of the users (Hill et al. 1995; Schafer et al.
2001) or other dimensionality reduction techniques can be employed.

In contrast to memory-based algorithms, model-based approaches build a model
that generalizes the relationships between users or items and when prediction is
requested apply the model to the target user’s data. Representative model-based
approaches include clustering, dimensionality reduction, and classification methods.
Clustering aims at grouping users into clusters in order to exploit common behavior
within clusters (Aggarwal et al. 1999; Breese et al. 1998; Pennock et al. 2000). Dimen-
sionality reduction methods cluster users (Goldberg et al. 2001) or both users and
items (Ungar and Foster 1998; Hoffman and Puzicha 1999; Hoffmann 2004) in order
to reduce dimensionality and improve performance. Classification methods aim at
classifying users into either of two classes labeled, for example, “like” and “dislike”
(Basu et al. 1998; Billsus and Pazzani 1998; Breese et al. 1998). Other approaches trace
item-to-item relationships—instead of user-to-user relationships—and create a model
for the recommendation of items similar to the target one (Sarwar et al. 2000, 2001).

2.3.1 Comparison of collaborative filtering algorithms

Nearest–neighbor CF is “generally accepted to be the most effective mechanism” (Good
et al. 1999) and can serve as a suitable and reliable base algorithm for the recommen-
dation task. As Hoffmann (2004) explains “memory-based methods have reached this
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level of popularity, because they are simple and intuitive on a conceptual level while
avoiding the complications of a potentially expensive model-building stage.”

The advantages of NN algorithms can be analyzed on several dimensions:

(a) They are fairly accurate. Following the review presented above, they are more
accurate than most of the model-based approaches (Herlocker et al. 2002). This
has been confirmed by empirical findings comparing NN algorithms to Bayes-
ian modeling methods, in particular for non-binary ratings (Breese et al. 1998),
association rules (Sarwar et al. 2001) or other clustering methods (Schafer et al.
2001) as well as classification methods (Basu et al. 1998; Good et al. 1999).

(b) They are intuitive at a conceptual level (Hoffmann 2004), easily analyzed and
are the standard benchmark for the evaluation of other approaches (O’Mahony
et al. 2002).

(c) In computational terms, they are a robust choice for the recommendation
task (Middleton 2002), they are able to accommodate noisy training examples
(Mitchell 1997), new data can be added easily and incrementally (Pennock et al.
2000), while they are capable of incorporating the most up-to date information
concerning the user preferences (Schafer et al. 2001), in contrast to model-
based approaches which need to rebuild the entire model when new data are
introduced into the system (new users or new interaction data). In addition,
they can be fairly accurate with a few training examples (Webb et al. 2001;
Burke 2002).

The above advantages render the NN algorithm as an attractive CF approach. How-
ever, it inherits the intrinsic limitations of CF algorithms based on their founding
principle to exploit like-minded users’ opinions in the recommendation task, as
discussed in the next section.

2.3.2 Limitations of CF algorithms

The most important drawback in CF algorithms is the sparsity problem, which refers
to the low ratio of rated items to the total of available items. In general, recom-
mender systems users rate only a small fraction of the available items, since they
are not willing to invest time and effort to rate items (Aggarwal et al. 1999). Even
in systems where ratings are collected implicitly, the vast amount of available items
and the requirement that users have actually observed and reviewed an item makes
the collection of a sufficient number of ratings a hard task. For example, sparsity
levels at the MSWeb site dataset which accounts visits in various Microsoft pages is
98.4%, at the Nielsen’s TV network viewing dataset 95.1% and at the EachMovie
movie recommendation system 97.1% (Breese et al. 1998). The purchase data of the
e-commerce site Fingerhut Inc., present 99.9% sparsity level (Sarwar et al. 2000) and
the research movie recommendation system MovieLens 93.6% (Resnick et al. 1994;
Herlocker et al. 2002).

In model-based algorithms, the sparsity problem affects the reliability and accuracy
of prediction since the model is built upon few data points, while some model-based
algorithms cannot operate on missing data. In NN algorithms, significantly affects
the measurement of similarities, which is the most important step in the prediction
process (Sarwar et al. 2001). It is also important to underline that sparsity refers to the
entire database and can also affect the prediction on users who have rated a sufficient
number of items. Indeed, if the sparsity level in the entire database is high, then few
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items would have been rated in common with the remaining of the users. This problem
is also significant at the initial stages of use, where very few items have been rated by
the users.

Two other problems are related to the number of ratings provided by the users, both
underlying the inability of CF systems to operate in “cold start” situations. The new
item or first-rater problem, that occurs when a new item is introduced in the database,
which has not been rated before by any of the users. Then CF algorithms fail to make
a prediction. The second problem is the new user problem that occurs when a new
user is introduced in the system. Since no ratings for the specific user are available,
similarities cannot be computed and prediction cannot be made. In particular at the
initiation of the system both new user and new item problems occur and any algorithm
based on user ratings fails to make predictions.

On the other hand, CBF does not directly suffer from the sparsity effect, since
predictions are made independently from the number of ratings provided by the
remaining of the users in the database (besides the target user). However, the quality
of prediction is affected by the number of items rated by the target user while CBF
cannot make prediction for new users introduced to the system (new user problem).

Combined predictions based on both CF and CBF may partially address the spar-
sity problem, though they still fail to operate when the “new user” problem occurs
and certainly at the initiation phase of the system. In such cases, a combination of
CF/CBF and a rating-independent approach (such as KB) may prove efficient. Also,
clustering and dimensionality reduction approaches aim to manage the sparsity effect
by grouping users and/or items in dense subspace of the user × item matrix.

It must be noted that the development and the applicability of an integrated
approach that deals with the above problems depends on the application domain
and the ability to analyze content into features (in order to apply CBF), the existence
of functional knowledge (in order to apply KB), and the ability to collect sufficient
interaction data (in order to apply CF).

In the following section, we introduce the concept of lifestyle as a user characteris-
tic that can influence the development of a recommendation approach that manages
the sparsity problem.

3 Exploiting lifestyle segmentation methods

To address the limitations described above, we turn our focus on traditional marketing
and consumer behavior theory to identify concepts and personalization approaches
that remain unexploited in the recommender systems literature.

3.1 Lifestyle segmentation

In marketing theory and practice products or services are targeted to consumers
by applying target marketing techniques (Belch and Belch 1995) represented by the
segmentation-targeting-positioning (STP) process (Kotler 1994). Following the STP
process, marketers first divide the market into homogeneous groups of consumers
(market segmentation), select one or more appropriate market segments that best
serve their objective (targeting), and decide the strategy to position the product in the
selected segments (positioning) (Kara and Kaynak 1997). Markets can be segmented
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on different bases such as geographic, demographic, socioeconomic, or behavioral
attributes (Gunter and Furnham 1992).

One of the most effective and popular segmentation methods is lifestyle segmenta-
tion (Vyncke 2002), which groups consumers according to their lifestyles. Lifestyle is
defined as the patterns in which people live and spend their time and money (Gunter
and Furnham 1992). It represents the central notion in the Consumer Behavior Model
(Hawkins et al. 1998) which suggests that consumers’ actual and desired lifestyle (i.e.,
the way they would like to think and feel about themselves) are translated into
daily behaviors including purchase and consumption behavior. Lifestyle is affected
by a number of external (culture, subculture, demographics, social status, reference
groups, family, and marketing activities) and internal factors (perception, learning,
memory, motives, personality, emotions, and attitudes). Lifestyle can be quantified
through psychographic research that measures constructs revealing attitudes, values
and beliefs, interests and activities, demographics, media consumption, and product
usage rates. The measurement of these constructs and the application of clustering
techniques upon these data lead to the lifestyle segmentation. The clustering process
also provides a set of classification rules, which can be applied to consumers’ demo-
graphic and media consumption data to classify them into the lifestyle segments.
Subsequently, the product usage rates attached to the description of the segments are
used to infer the preferences of consumers and target products accordingly. A number
of consumer research companies and advertising agencies have performed general
lifestyle studies but the “most popular psychographic research” (Hawkins et al.
1998) is VALS, which has been developed in 1978 by SRI International (http://www.
sri-bi.com/vals) and revised to VALS2 in 1989. It divides the American population
into eight distinct value and lifestyle patterns, in other words, groups (or segments) of
people with homogeneous lifestyle behavior.

Besides marketing theory and practice, lifestyle data have been also exploited in
related fields such as Customer Relationships Management (CRM). The combination
of transactional data and additional data (such as lifestyle data) from external sources
has been used in CRM for the extraction of business knowledge through analytical
techniques (analytical CRM) such as OLAP and Data Mining (Arndt and Gersten
2001). However, lifestyle data exploitation in CRM mainly concerns the analysis of
user characteristics, behavior, and needs providing support to operational activities
rather than performing automated recommendations in on-line environments.

3.2 Lifestyle in personalization research

In personalization research, personality traits (such as lifestyle) have been acknowl-
edged as potential personalization factors (Brusilovsky 2001), but lifestyle has not
been adequately studied to date, except in a few cases, such as SeAN (Ardissono
et al. 2001) and Lifestyle Finder (Krulwich 1997). However, both systems limit the
exploitation of lifestyle to the classification of users in lifestyle segments. In a com-
mercial setting, one of the well-known cases is the Angara company (no longer in
existence) that delivered anonymous personalization by classifying Web site visitors
into lifestyle segments without requiring the monitoring of user’s interactive behavior
on the specific site. The company has been delivering personalized content even to
first-time visitors by retrieving user-related data from cookies previously placed by
one of the company’s data partners. This solution is extremely practical and applicable
for first-time visitors of a Web site but it also requires classificatory data (monitored
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by the cookies) and the maintenance of a huge database of profiles (in fact Angara
maintained a database of 150 million anonymous profiles).

In research indirectly involving personality or behavioral factors, Pennock et al.
(2000) propose a Personality Diagnosis (PD) algorithm, based on the assumption
that there is an association between how people rate items and their personality type
(modeled as a latent variable). Other approaches aim at clustering users assuming
that behavioral relationships exist among them (Breese et al. 1998; Ungar and Foster
1998). Besides the fact that such approaches are not concerned with the notion of
lifestyle per se, another major difference is that they rely upon available data and are
therefore affected by the sparsity problem, while the personality factor upon which
clusters are developed is not specified.

In contrast, lifestyle is a meaningful behavioral predictor that can group users of
recommender systems concerning the filtering of a wide range of products and ser-
vices. In order to exploit the lifestyle factor we propose a number of personalization
algorithms, which are presented in the remainder of the paper in an incremental level
of personalization (segment-level, user-level, item-level), as follows:

First, a segment-level personalization approach called “segmentation-based” is pro-
posed that refers to the classification of the target user into a predefined segment
exploiting existing knowledge. A typical example of related work is the stereotypical
approach (Rich 1979, 1983) where users are classified into stereotypes and inferences
about his/her future behavior are drawn from the description of the stereotype itself.

Second, a set of user-level approaches are proposed (the “lifestyle,” “hybrid,” and
“integrated”) whose predictive performance improves compared to each other. Algo-
rithms in this class are based on the dynamic development of a “personal” neighbor-
hood for each user. For example NN or clustering approaches (Breese et al. 1998)
belong in this class.

Third, an item-level approach is proposed, called “best-item,” where the target item
is also taken into account. For example, item-to-item approaches or approaches that
cluster both users and items (Ungar and Foster 1998) take into account the similar
items to the target one. Besides CF, content-based approaches consider the features
that describe an item in order to make a recommendation and therefore can be
classified as item-level.

4 Segment-level personalization

The development of target user’s neighborhood based on similarities computed upon
few ratings may lead to the erroneous selection of actually “bad” neighbors as “good”
ones and vice versa. The idea underlying the use of lifestyle is that the above risk
may be avoided by developing for each target user a “lifestyle” neighborhood. Since
people can be discriminated upon their lifestyles (Chaney 1996), and consumers found
in the same lifestyle segment present similar behavior, the members of a “lifestyle”
neighborhood can be considered as reliable recommenders to each other. As a result,
the identification of similar users in terms of their lifestyle, will restrict the search
space to users that present this form of similarity (lifestyle), avoiding the effects of
misleading similarity computations. A direct implementation of this reasoning is to
classify users into existing lifestyle segments.

More specifically, a segmentation-based approach is proposed that can be divided
into a classification and prediction step, described below.
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4.1 Classification step

In traditional marketing approaches users can be classified into lifestyle segments on
the basis of psychographic variables measured through appropriate questionnaires.
However, forcing all users of a personalized system to fill in such questionnaires is
rather difficult and annoying (Balabanovic and Shoham 1997; Kobsa et al. 2001).
On the other hand, lifestyle segments are typically described by some form of static
data that change infrequently, such as demographics and/or media consumption data
(Hawkins et al. 1998), which also serve the role of classificatory data. Thus, a straight-
forward approach is to utilize the above users’ data for the classification task depend-
ing on their availability in the application domain.

An alternative approach is based on the assumption that members of a lifestyle
segment present similar behavior within the segment and differentiated behavior
between the segments and therefore their behavioral data (ratings) may be utilized
for the classification process. In order to develop the classification model for this
classification approach we need a labeled training set consisting of users with known
membership in the lifestyle segments. This can be achieved by having a portion of the
population fill-in the psychographic questionnaire and classified accordingly. The sam-
ple’s on-line behavior (ratings) is coupled with their respective labels and a learning
algorithm is employed to produce the classification rules. The rules are then continu-
ously applied to the above interaction data for each individual, so that the segment to
which the user belongs can be dynamically determined and re-assessed if needed. As
the amount of data that are being monitored for each user increases (through usage),
updated classification rules are developed and applied, thus adjusting the classification
into clusters.

Each of the above classification approaches presents its own advantages/
disadvantages. The first one (based on static data) is completely independent from
the availability of behavioral data (ratings) but requires the collection of users’ static
data. The second classification approach (based on ratings) presents the advantage
of exploiting lifestyle segments without requiring the collection of additional data
(besides ratings) from each user but only psychographic data from a portion of the
population. The selection of the appropriate approach depends on the amount and
type of data available in the application domain.

4.2 Prediction step

Assuming the classification of users into lifestyle segments, the prediction task can
rely on the assumption that lifestyle segments represent well-discriminated clusters of
users (a basic assumption for the development of the clusters). Then, two prediction
strategies can be employed:

• Expert-driven prediction, which directly exploits the classification of users into
lifestyle segments. Indeed, the human expert (marketer) pre-assigns stereotypical
behavior to the members of each segment (based on marketing data and/or experi-
ence), exploiting the acquisition of the class label (lifestyle segment membership)
of the users.

• Center-based prediction. A more dynamic type of prediction utilizes the behavior of
segment members to infer a characteristic and representative behavioral pattern
for each segment. The central tendency (also known as the centroid) for each
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segment can be easily formulated by aggregating all users’ preferences in a single
vector by averaging the ratings assigned to each item by all users. In the binary
ratings case, this can be implemented by selecting the most frequently observed
class (‘0’ or ‘1’) for each item, while in the numerical ratings case the center of
the segment is the vector containing the mean rating for each item available (Hair
et al. 1998)

Both prediction strategies work at the cluster (segment) level and depend on the
quality of the lifestyle segments as well as on the expert’s quality (expert-based pre-
diction). Their main difference is that the expert-based prediction does not rely on the
ratings of the segment members, while the opposite holds true for the center-based
approach. In addition, the utilization of the first classification approach described in
the previous section (based on static data) and the application of an expert-based pre-
diction is completely independent from rating availability and therefore it addresses
the cold start problem. Empirical results from previous research indicate that the
expert-based approach described above outperforms the base case of non-person-
alized recommendations while the center-based prediction outperforms the expert-
based prediction for both numerical and binary ratings with Bayesian Networks used
for the classification task (Lekakos and Giaglis 2004).

The segmentation-based prediction described above may be used at the initial
phases of a recommendation system and refined through the application of a more
dynamic prediction strategy.

4.3 Limitations of the segment-level personalization

The utilization of existing lifestyle segmentation methods leads to a number of
limitations that affect the performance of the segmentation-based approach:

(a) The isolation of the prediction process within the lifestyle segments may ignore
behaviorally similar users that can be found in other segments.

(b) The proprietary nature of lifestyle segments. Lifestyle segments are developed
by marketing/consumer research companies or organizations that withhold their
rights of use. As a consequence, this restricts the accessibility to detailed data
for further elaboration or validation (Gunter and Furnham 1992; Beatty et al.
1998; Mowen and Minor 1998). Although lifestyle segments have proven very
useful in marketing practice, they cannot be fully explored due to the limited
availability of relevant data and information. For example, in the segmentation-
based approach, we would have gained much in prediction accuracy if we were
able to extract from raw data smaller lifestyle groups (clusters) rather than the
“large” lifestyle segments that are commercially available.

(c) The sparsity problem affects the performance of the segmentation-based
approach, when ratings are used for the classification of users in the segments,
affecting the classification process both at the training phase (development of
classification rules) and at the application of the rules on sparse datasets.

Separating the personalization process from the use of lifestyle segments and
taking into account the closeness or similarity between the target and the remain-
ing of the users (ignored in the segment-level approach) would lead to more dynamic
and eventually more accurate predictions.
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5 User-level personalization

In order to achieve user-level personalization avoiding the classification of users into
static lifestyle segments, we measure “lifestyle” similarities directly among all avail-
able users (in a CF manner) and develop a dynamic “personal” neighborhood for
each user. Similarity measurement should be performed on the basis of some type
of suitable user data that expresses the user’s lifestyle. The identification of the “life-
style” data that may serve our objective is discussed in the next section followed by the
presentation of three “user-level” personalization approaches. The first one (called
“lifestyle”) avoids the direct use of lifestyle segments, and serves as the basis for two
improved versions (called “hybrid” and “integrated,” respectively) that manage the
sparsity effect by combining the advantages of the lifestyle and the NN approaches.

5.1 Lifestyle data

The lifestyle data that will be used for the measurement of similarities should be life-
style indicators, i.e., they should be associated with the membership of a user into a
lifestyle segment. This expresses our confidence in the marketing concept of lifestyle
as a predictor of human behavior. They should also be independent from the avail-
ability of ratings in order to reduce the sparsity effect and sould be easily collectable
in the application domain.

Previous empirical findings suggest that user demographics (Krulwich 1997) in
combination with other user data such as hobbies (Ardissono et al. 2001) or customer
credit data in the banking domain (Peltier et al. 2002) may be used for the classification
into lifestyle groups. Other empirical findings in the domain of interactive television
advertisements suggest that demographics and television program preferences data
are significant indicators of a user’s lifestyle (Lekakos and Giaglis 2005) while they
satisfy the second requirement above. Furthermore, they can be easily collected in
the domain of interactive television either off-line (at the subscription to the service)
or—in the case of demographics—through the use of electronic forms provided by
the personalized system (Bozios et al. 2001). Television program preferences may be
monitored through the set-top box (provided that we also know who is watching).

In order to confirm the significance of the above attributes as lifestyle indicators
we performed statistical analysis (multinomial logistic regression) on a sample
of 502 consumers (with known lifestyle segments). The extracted lifestyle
attributes are the demographics “age,” “marital status,” and “education” along with
the consumer’s preferences on eight program genres: “Documentaries,” “Cartoons,”
“Football/basketball/volleyball games,” “Video clips,” “Domestic comedy series,”
“Discussions/interviews,” and “News.” These attributes have been measured (among
others) in a psychographic questionnaire (answered by the sample of 502 consumers)
used by the local subsidiary of the multi-national consumer research company AGB
for the classification of consumers into the lifestyle segments. The above attributes
meet our requirements as lifestyle indicators and they will be used in the development
of lifestyle approach where their effectiveness will be ultimately evaluated.

5.2 The lifestyle approach

The above attributes are encoded as binary variables valued either “0” when a user
has stated that he/she does not like the specific program category or as “1” if a user has
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stated that he/she likes it. Encoding uniformly the above attributes as binary variables
we are able to profile each user by attribute-value pairs and compute “lifestyle” simi-
larities directly among the users. While several similarity measures can be applied on
binary variables the Pearson correlation coefficient is selected since it has been used
in the measurement of similarities upon demographic data (Pazzani 1999) as well as
for consistency reasons with the NN algorithm that will be used for the evaluation
of the proposed approach. The “lifestyle” approach (Lekakos and Giaglis 2006), is
described by the following steps:

1. Measure similarities between the target and the remaining users based upon
data associated with their lifestyle by applying the Pearson correlation coefficient
formula (1):

w(i, j) =
∑

k (Ii,k − Ii)(Ij,k − Ij)
√

∑
k

(
Ii,k − Ii

)2 ∑

k

(
Ij,k − Ij

)2
, (1)

where Ii,k and Ij,k, refer to kth lifestyle indicator available in common for the ith

(target user) and jth users, and Ii and Ij to the corresponding means.
2. Formulate the target user’s neighborhood, based on the similarity measures

described in step 1, by selecting users who score above a certain threshold.
3. Predict the target user’s rating on the target item by aggregating lifestyle neigh-

bors’ ratings weighted by the lifestyle similarities developed at step 1. Aggregate
the target user’s preferences into a prediction for the target item by applying Eq. 2
(Resnick et al. 1994; Hill et al. 1995; Shardanand and Maes 1995):

Ri,p = Ri +
∑m

j=1 w(i, j)(Rj,p − Rj)
∑m

j=1 |w(i, j)| , (2)

where—identically to the prediction formula of the NN approach—Ri,p is the rating to
be predicted for user i and for item p, Ri is the mean of the ratings of user i for all
items that user has provided his/her ratings, the weight w(i, j) is the similarity measure
between user i and j and Rj,p is the rating of user j for item p and Rj is the mean of
ratings of user j in a neighborhood of size m.

The lifestyle approach is independent from the availability of ratings at the most
important step of the above process (Sarwar et al. 2001) where similarities are com-
puted. However, in order to make predictions at the third step above a number of
ratings are required, similarly to the NN algorithm. It can be easily observed that the
main difference between the lifestyle and the Pearson-based NN approach (that we
will refer to as Pearson-based hereafter) is at the first step of the proposed method
where lifestyle indicators, instead of ratings, are used for the computation of sim-
ilarities. This step results into different neighbors and different weights indicating
the importance of each neighbor’s rating utilized in the prediction formula. Thus,
the prediction accuracy of the proposed approach depends of the validity of the
hypothesis that lifestyle neighbors are more reliable than ratings-based neighbors
in sparsity conditions. The validity of this hypothesis will be examined in the next
sub-section.
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5.2.1 Empirical evaluation of the lifestyle approach

The objective of the empirical evaluation is to measure the predictive accuracy of the
lifestyle approach in comparison to the Pearson-based approach at different sparsity
levels. In order to avoid underestimating the predictive performance of the Pearson-
based approach for its comparison to the lifestyle approach, we carefully tuned the
algorithm’s parameters. Besides the first and third steps of the Pearson-based predic-
tion process where standard formulas (Pearson correlation and prediction formula
(2)) are applied, the selection of the threshold value in the second step of the prediction
process is a crucial parameter for the development of the target user’s neighborhood.
For this choice we followed the suggestions by Herlocker et al. (2004) using (in both
approaches) a threshold value equal to zero and we confirmed this suggestion through
experimentation on the dataset used in our empirical research. The two algorithms
(lifestyle and Pearson-based) differ only in the use of the “lifestyle” data following
the same algorithmic reasoning, implementation, and evaluation and therefore the
differences in their performance can be attributed in the use of these data.

The sample used in our experiment consists of 37 individuals drawn from our
research group, including academic (19%), research (73%), and technical staff (8%),
consisting of 62.2% males and 37.8% females, aged 18–24 (10.8%), 25–34 (67.6%),
35–44 (18.9%), and 45–54 (2.7%). The users were shown 65 advertisements selected
from seven product categories (food and drink, fast moving consumer goods, com-
puter and technology, family and home, books and magazines, public services, finance
and investment, and autos). Users were asked to provide their overall evaluation for
each advertisement in a form of a rating in a one-to-five scale. It must be noted that
an advertisement may be liked because of the creative part, the featured actor, the
music theme, its entertaining nature, or because the consumer is interested in the
advertised product (similarly to the movie domain where users might favor a movie
due to the theme, the actors, the director, etc.). However, in CF we are interested in a
rating as an expression of the user’s “overall taste” on an item independently from the
factors that may affect this subjective evaluation (Harter 1996 showed that as many
as 80 factors may affect this evaluation). Finally, participants filled-in a questionnaire
providing their demographic and TV program preferences data as required by the
lifestyle algorithm.

Both algorithms are tested upon the same set of users under a leave-one-out
cross-validation technique, which is the recommended technique for the compara-
tive evaluation of learning algorithms upon small samples (Cawley and Talbot 2003).
This method replicates the error estimation process n times for a sample of size n by
considering each user in the original sample as the test set (target user) and the
remaining sample of size n − 1 as the training set.

In order to manage the sparsity effect, a certain number of randomly selected
ratings are removed following the experimental design for the empirical analysis of
CF algorithms introduced by Breese et al. (1998) who describe a set of experimental
protocols, called Given 2, Given 5, Given 10, and “All-but-one.” The Given n protocol
involves the random selection of 2, 5, or 10 votes (corresponding to “n”) from each
test (target) user as the observed ratings, which are then used to predict the remaining
ratings. The observed ratings are indicated as the training set of items and the rat-
ings to be predicted as the test set of items for each target user. The various “given”
protocols examine the performance of the algorithms when relatively little is known
about the target user. The “All-but-one” protocol measures the performance of the
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Table 1 Overall performance
of the algorithms

Given 2 Given 5 Given 10

Lifestyle 1.1639 0.8265 0.7850
Pearson 1.1857 0.8416 0.7942
t-value −5.917 −3.818 −1.946

(p) (<0.0001) (0.000) (0.054)

algorithms when as many as all-but-one ratings are considered available, representing
in fact a non-sparsity condition and therefore it is beyond the scope of our empirical
evaluation.

The algorithms’ prediction error is measured using the Mean Absolute Error
(MAE), which is the average difference between the predicted and the actual rating
value and is commonly used for evaluating the predictive performance on numer-
ical ratings (Shardanand and Maes 1995; Breese et al. 1998; Claypool et al. 1999;
Herlocker et al. 2002; Melville et al. 2002). We are interested in predicting a rating for
all advertisements rather than selecting the top-n of them because this may lead to the
exclusion of certain advertisements (that may be prioritized by other factors such as
campaign objectives or specific market conditions). Therefore, MAE is considered as
an appropriate measure for our evaluation task (Herlocker et al. 2004). Differences in
MAEs are compared using paired t-tests (in all cases presented below the normality
requirement is met).

In order to cross-validate the results we replicated the experiment for each protocol
and the averaged results are depicted in Table 1.

The above results confirm that lifestyle approach gives lower error levels at the
Given 2 and 5 protocols at 95% significance level and at 90% significance level for
the Given 10 protocol. It must be noted that the 90% confidence level has been
statistically used for comparison purposes by Breese et al. (1998).

The lifestyle approach—although significantly better—is also affected by the num-
ber of available items due to the mean rating value that is used in the prediction
formula (in both the lifestyle and the Pearson-based approach). It is straightforward
that the mean value of very few ratings cannot reliably depict the actual mean value
as it would have been derived from several ratings. The mean value of the available
ratings for the target user significantly affects the final prediction, since it serves as
the estimation of the neutral rating of the target user.

5.3 A hybrid approach

In this section, we propose a hybrid recommendation mechanism that utilizes the
lifestyle approach to make predictions upon the (eventually few) available ratings for
the items unobserved by the target user, populating his/her rating vector.
A similar—in principle—approach has been followed by Good et al. (1999) in the
movie domain, where personal information filtering (IF) agents acting as virtual users
make predictions on the basis of item features (rather than user-related lifestyle data).
An analogous approach has been proposed by Sarwar et al. (1998) in the news domain
where a single rating agent evaluates the quality of news articles participating in a CF
recommendation.

In the proposed hybrid approach, a new user representation is introduced, called
“pseudo-user” (Melville et al. 2002), consisting of the original ratings provided by
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the target user and the ratings predicted by the application of the lifestyle approach.
The substitution of the original target user by the pseudo-user leads to an increase
in the number of overlapping ratings with the remaining of the users in the database.
In addition, the pseudo-user contributes in the final prediction for any target item
(i.e., any of the target user’s missing ratings) by the rating predicted by the lifestyle
approach. The target user and his/her corresponding pseudo-user are perfectly corre-
lated (correlation coefficient = 1) and therefore we use an amplified weight (>1) to
strengthen the pseudo-user’s contribution in the prediction (underlying the fact that
the pseudo-user is the most “similar” to the target user in the database).

More specifically, if the target user t has provided his/her ratings for k items
{Rt,1, Rt,2, . . . , Rt,k} in a total of n items, then the steps of the approach can be
described as follows:

Lifestyle Prediction

1. Measure similarities between the target and the remaining users upon lifestyle
data.

2. Formulate the target user’s neighborhood, by incorporating all users whose
similarity’s level exceeds a certain threshold (typically threshold = 0).

3. Predict the n − k ratings {Lt,1, Lt,2, . . . , Lt,n−k} for the target user using Eq. 2
weighting the contribution of each user according to his/her similarity to the tar-
get user.

Pseudo-user formulation

4. Introduce in the target user’s neighborhood a new user, the pseudo-user, whose
rating vector is defined as follows:

Rt,i =
{

Rt,i, if rating for item i has been provided by the user,
Lt,i, if item i has not been rated by the user.

Pearson-based prediction

5. Measure similarities between the pseudo-user and the remaining of the users using
the Pearson correlation. Assign the respective weights to each of the users and
an increased weight to the pseudo-user (in order to strengthen its contribution to
the final prediction).

6. Formulate the target user’s neighborhood by selecting users above a certain
threshold.

7. Produce the prediction by the Pearson-based prediction formula (Eq. 2) for the
neighbors selected in step (6) and weights computed in step (5).

The increase in the number of overlapping ratings between the target and the remain-
ing of the users in the database (through the introduction of the pseudo-user) leads to a
more accurate estimation of similarities. In addition, users with no ratings in common
with the target user that were excluded from the prediction process are now evalu-
ated as potential neighbors. However, the final prediction depends on the amount of
ratings available for the target item that remains unchanged after the application of
the hybrid approach. It is clear that the notion of pseudo-user can be easily extended
to all of the users in the database providing a dense user × item table which addresses
both problems above, as discussed in the next section.
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5.4 An integrated approach

Exploiting further the notion of pseudo-user, we extend its utilization beyond the
target user. More specifically, the extended hybrid approach (which we will call “inte-
grated” approach hereafter), exploits the prediction of the “missing” ratings for each
and every user in the data set, formulating a new pseudo-user matrix rather than a
single pseudo-user vector

The prediction process closely follows the steps of the hybrid approach described
above (Sect. 5.3). More specifically, the lifestyle prediction process (steps one to three
above) is repeated for each user with missing ratings, leading to completely dense
pseudo-user × item matrix, which is then utilized for the Pearson-based prediction
of the original target item (steps five to seven above). However, the lifestyle pre-
diction error is transferred and eventually magnified through the application of the
Pearson-based prediction process in the integrated approach. Therefore, the effect of
massive substitution of all users by their respective pseudo-users remains to be inves-
tigated. The main hypothesis to be tested is that the integrated approach significantly
outperforms the Pearson-based approach.

5.4.1 Empirical evaluation of the integrated approach

The experimental design utilizes once again the “Given” protocols, upon the sparse
user × item matrix. Furthermore, we extend the number of given ratings beyond the
Given 2, 5, and 10 ratings. Specifically, the performance of all algorithms discussed
so far is measured upon 2, 5, 10, 15, 20, 25, 30, 35, and 50 ratings, since our aim as
well as our expectations concerning the integrated approach is that it outperforms the
lifestyle one beyond high-sparsity conditions.

In Table 2, the MAEs for each of the approaches are presented as well as the
p-values (in parentheses) of the respective paired t-tests indicating the significance of
differences (p < 0.05) between the integrated and the rest of the approaches.

The results suggest that the integrated approach is significantly better than the
Pearson-based, as well as than all approaches examined so far (besides the Given
2 protocol). All approaches increase their performance as more items are added in
the training test confirming the theory-driven expectation concerning the sparsity
effect upon the performance of a learning algorithm. In contrast to the hybrid and
lifestyle approaches, the integrated approach firmly outperforms the Pearson-based in
the range of 5–35 available ratings, while the improvement is decreased for 50 ratings.

Table 2 Comparison of the integrated approach to the Pearson-based, lifestyle, and hybrid
approaches

Pearson Lifestyle Hybrid Integrated

G2 1.1071 (0.010) 1.1053 (0.142) 1.1044 (0.185) 1.1048
G5 1.0056 (0.0001) 0.9881 (0.0001) 0.9805 (0.0001) 0.9783
G10 0.9333 (0.0001) 0.9286 (0.0001) 0.9249 (0.0001) 0.9057
G15 0.906 (0.0001) 0.9059 (0.0001) 0.9077 (0.0001) 0.8776
G20 0.8859 (0.0001) 0.8884 (0.0001) 0.8894 (0.0001) 0.8556
G25 0.8679 (0.0001) 0.8653 (0.0001) 0.8713 (0.0001) 0.8309
G35 0.8352 (0.0001) 0.8381 (0.0001) 0.8437 (0.0001) 0.8081
G50 0.7784 (0.045) 0.7867 (0.006) 0.7903 (0.004) 0.7687
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Table 3 Comparison of the
integrated and Pearson-based
approaches on the second
dataset (p-values of t-tests in
bold indicate significant
differences)

Protocol Pearson Integrated p-value

G2 1.249416 1.248323 0.69
G5 1.114178 1.08379 0.01
G7 1.086942 1.055267 0.002
G9 1.026026 1.003755 0.009
G12 0.987844 0.97229 0.011
G16 0.981885 0.963503 0.004
G23 0.920992 0.910384 0.092

In addition, a second experiment has been performed that evaluates the predictive
performance of the integrated approach compared to the Pearson-based (Table 3).
The sample in this experiment consists of 34 individuals-employees in a commercial
firm. 42.2% of the sample is males and 58.8% females aged 15–34 (17.6%), 35–44
(44.1%), 45–54 (23.5%), and 55–64 (14.7%). Their studies (educational level) include
high school (26.5%), higher education (35.3%), and university/postgraduate studies
(38.2%). The sample was shown a set of 30 advertisements (subset of the set of the
65 advertisements) and the evaluation methodology was identical to the one used in
the previous experiment. Given the fewer number of items used in this experiment,
instead of considering 2, 5, 10, 15, 20, 25, 35, and 50 items available for each user we
selected 2, 5, 7, 9, 12, 16, and 23 items that correspond to the sparsity levels of the
previous experiment. This enables us to facilitate the interpretation of the results and
compare the behavior of the integrated approach in the two experiments.

The above results indicate that the behavior of the integrated approach closely
follows the incremental performance observed in the previous experiment outper-
forming the Pearson-based approach for all protocols with the exception of “given2”
and “given23” protocols where no statistically significant differences are found.

The improved performance of the integrated approach is mainly based on the
increase in the density of the ratings matrix. Thus, other implementations of the inte-
grated approach that populate the ratings matrix may lead as well to predictions with
improved accuracy. Indeed, one of the advantages of the integrated approach is that
it can accommodate any algorithm (or variation of the lifestyle and/or Pearson-based
algorithms) that operates upon ratings and may eventually have a positive impact on
the performance of the integrated approach. For example, one alternative implemen-
tation of the integrated approach is to compute prediction using the Pearson-based
approach in order to populate the ratings matrix and produce the final prediction by
a second application of the Pearson-based on the dense matrix (Table 4)

Table 4 Comparison of two
variations of the integrated
approach

Integrated Integrated p-value
(Lifestyle–Pearson) (Pearson–Pearson)

G2 1.1048 1.1063 0.20930
G5 0.9783 0.9909 0.00001
G10 0.8980 0.9012 0.02185
G15 0.8776 0.8717 0.00001
G20 0.8556 0.8481 0.00001
G25 0.8310 0.8256 0.00694
G35 0.8082 0.8020 0.11239
G50 0.7691 0.7682 0.59684
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The above results indicate that we can gain improvements in the accuracy—
equivalent to the ones produced by the use of lifestyle data in the integrated approach.
One clear advantage of using repetitively the Pearson-based algorithm is that we do
not need to collect additional lifestyle data. However, using the Pearson-based algo-
rithm significantly reduces the coverage (i.e., the number of items that prediction can
be made for) of the prediction, particularly in high sparsity conditions (such in the
“given 2” or in the “given 5” protocols). It can be easily observed that it is highly
unlikely to find enough users with overlapping ratings (in particular in real-world
systems with a vast amount of available items). In contrast, the integrated approach
based on lifestyle data overcomes this problem (providing 100% coverage) since it
does not have to measure similarities upon ratings.

It must be noted that the application of the integrated approach may increase the
computational cost of the prediction process up to O(n2m), for n users and m items.
However, this cost (that refers to the computation of similarities between all pairs of
users), may be transferred to an off-line phase since lifestyle data change infrequently
and therefore there is no practical need to perform these computations at prediction
time. Thus, the cost at prediction time can be reduced to O(nm) which is even less
in the case of the hybrid approach (O(m)) since all computations refer to the target
user (i.e., we develop one pseudo-user rather than all pseudo-users). In cases of very
large databases dimensionality reduction methods can be incorporated in the inte-
grated approach—as a preprocessing off-line step—in order to deal with large number
of users and/or items. Scalability problems are typically addressed by Latent Semantic
Indexing (LSI) (Sarwar et al. 2001), Principal Component Analysis (PCA) (Goldberg
et al. 2001), probabilistic Latent Semantic Analysis (pLSA) (Hoffman and Puzicha
1999; Hoffmann 2004), attribute selection methods (Moore and Lee 1994), or simply
by a heuristic selection of a subset of users (in the case of large number of users).

6 Item-level personalization

The integrated approach is designed to manage the sparsity effect exploiting the behav-
ior the lifestyle and Pearson-based approaches: the former performs better when
fewer ratings are available while the latter is more accurate as the number of avail-
able ratings increases. The integrated approach utilizes firstly the lifestyle algorithm
to make the original predictions and the Pearson-based for the final prediction on
the populated ratings matrix. However, as more user-driven (actual) ratings become
available and consequently less lifestyle predictions are required, the sparsity effect is
reduced and the predictive performance of the integrated approach approximates the
performance of the Pearson-based approach. The usefulness of the lifestyle approach
may be further extended beyond the boundaries of high-sparsity conditions.

6.1 The best-item approach

A careful investigation of the performance of the lifestyle and Pearson-based
approaches throughout all protocols, on an item-by-item basis, reveals that the relative
performance of the two algorithms is inconsistent with their averaged performance.
For example, in low-sparsity levels where the Pearson-based outperforms the lifestyle
approach on average, for certain items and users the lifestyle algorithm produces
more accurate predictions.
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Table 5 Performance of the “optimum” best-item compared to the lifestyle, Pearson-based, and
integrated approaches

Lifestyle Pearson Integrated Best-item t-test t-test
(Best-item/Pearson) (Best-item/integrated)

G2 1.1053 1.1071 1.1048 1.0980 t = −30.369 t = −11.7951
(p < 0.0001) (p < 0.0001)

G5 0.9881 1.0056 0.9783 0.9678 t = −24.502 t = −6.972
(p < 0.0001) (p < 0.0001)

G10 0.9286 0.9333 0.9057 0.8787 t = −24.132 t = −10.764
(p < 0.0001) (p < 0.0001)

G15 0.9059 0.9060 0.8776 0.8658 t = −23.347 t = −3.59273
(p < 0.0001) (p = 0.004)

G20 0.8885 0.8859 0.8556 0.8536 t = −17.874 t = 0.59633
(p < 0.0001) (p = 0.2773)

G25 0.8653 0.8680 0.8310 0.8268 t = −16.431 t = −0.8625
(p < 0.0001) (p = 0.1970)

G35 0.8382 0.8352 0.8082 0.7943 t = −15.478 t = −2.179
(p < 0.0001) (p = 0.018)

G50 0.7867 0.7785 0.7688 0.7347 t = −18.553 t = −6.368
(p < 0.0001) (p < 0.0001)

Thus assuming a hybrid approach, which we call “best-item” hereafter that based
on the performance history of the two above algorithms (i.e., the “base” algorithms) is
able to predict and apply on a specific target item the best performing one, the average
accuracy is expected to improve. In order to examine the validity of this hypothesis,
we measure the performance of the “optimum” best-item approach where for any
given target item both lifestyle and Pearson-based predictions are computed and the
more accurate one is selected (as the output of the “best-item”). The averaged pre-
diction results (on the sample of 37 users) are compared to the performances of the
approaches discussed so far (Table 5).

The results suggest a rather impressive accuracy of the best-item approach com-
pared to the Pearson-based, while compared to the integrated approach it presents
significantly improved performance besides the cases where 20 and 25 ratings are
available. However, the most important observation concerning the behavior of the
best-item approach is that it continues to increase its difference with the Pearson-
based approach in low-sparsity conditions (G35 and G50 protocols), in contrast to the
approaches proposed so far.

We further examined the best-item’s performance on the MovieLens dataset
(www.movielens.org) that contains a million ratings provided by 6,040 users for about
4,000 movies whose titles and production year are also available. Each user has rated
at least 20 and on average 166 movies in the one-to-five rating scale. In the absence
of lifestyle data in the MovieLens dataset, we evaluated the best-item approach using
as base algorithms the Pearson-based and a content-based algorithm. The content-
based algorithm is based on the computation of similarities between movies using the
cosine vector similarity measure as described by Karypis (2001). Additional features
for the movies (genre, cast, director, writing credits, producers, and keywords) for
the content-based implementation were collected by a web crawler from the Inter-
net Movie Database (IMDb) website (www.imdb.com). We computed content-based,
Pearson-based, and best-item predictions and measured the mean absolute errors for
the 20% of their ratings, using the remaining 80% as the training set (Table 6).
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Table 6 Best-item performance on the MovieLens dataset

t-test
(Pearson-based/
Best-item)

t-test
(Content-based/
Best-item)

Content-based Pearson-based Best-item

111.392
(p = 0.000)

158.840
(p = 0.000)

0.914822 0.772063 0.583496

The above results support the findings of the previous experiment demonstrating that
by selecting the best performing from a set of available algorithms then the overall
prediction accuracy may significantly increase.

The best-item approach does not aim to produce accurate predictions by managing
the sparsity problem (as done in the integrated approach) but by selecting the best
performing algorithm for each rating to be predicted (Fig. 1). More specifically, let D
be the dataset containing the ratings of n users on k items represented by an n × k
table. Assume we want to predict a rating Pum of a target user u for a target item m
(with unknown or unobserved rating). Also let {Rim} be the set of ratings provided for
the target item by the remaining n−1 users and S the set defined as S = D−{Rim} (i.e.,
excluding all ratings for the target item) containing the sequences of ratings from all i
users for the remaining k − 1 items. We divide S into training set L and test set T. Let
L∗ = L ∪ {Rit} be the set that contains training examples {(Ri), Rit} where Ri are the
sequences of ratings of all users i for all items in L, and Rit are the ratings of all users
i for a given item t in T. Then the best-item approach can be described as follows:

• Phase 1: Development of the “success” table
The base algorithms (e.g., lifestyle and Pearson-based) make predictions for each
of the Rit ratings (ignoring its actual value for the user at hand) and the predic-
tions are compared with the actual rating. The output of this comparison is a single
binary value either “0” if the Pearson-based is more accurate than the lifestyle
algorithm or “1” in the opposite case. The process is repeated for all ratings in
the test set T, leading to a set of meta-features represented by a user × item
table—called the “success” table — which contains the sequences of successes of
the lifestyle algorithm against the Pearson-based.

• Phase 2: Assignment of the class labels
In the next phase we assign a class label (i.e., “0” or “1”) to each sequence in the
“success” table by applying the two learning algorithms for predicting the ratings
Rim (ignoring its actual value for the user at hand) concerning the (original) target
item m and measuring their relative performance. The outcome of this process is
a set of training examples (sequences of 0’s and 1’s and their respective labels).

• Phase 3: Rating prediction
At the final phase a learning algorithm (literally any supervised learning algo-
rithm) is trained upon the set of meta-features (with known class labels as defined
above). The classifier produced is applied upon the “success” sequence of target
user u providing the best-performing algorithm which is applied for the prediction
of Pum.

A key difference of the best-item approach with respect to the approaches presented
so far is that user ratings serve not only as input to the prediction process but also as a
feedback mechanism in order to evaluate the performance of the base approaches and
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Fig. 1 Best-item learning and prediction process

develop the learning framework. The above formulation of the prediction problem
as a learning problem enables the application of any supervised learning algorithm.
In the present implementation, we employ the Naïve Bayes classification algorithm,
which is computationally non-expensive (Domingos and Pazzani 1997), and has been
applied in several practical problems and has been shown to perform very well com-
pared to more complex algorithms (Mooney and Roy 2000; Melville et al. 2002). In
our experimentations, we compared the Naïve Bayes and the Bayesian networks algo-
rithms and found that Naïve Bayes performs better as described in the next section
(Bayesian Networks MAE = 0.7492, Naïve Bayes MAE = 0.7380).

6.1.1 Empirical evaluation of the best-item approach

The objective of the empirical evaluation of the best-item approach is to examine
whether it significantly outperforms the Pearson-based at high-density levels. Thus,
we focus on the “Given 50” protocol, where we withhold 15 ratings to be predicted for
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Table 7 Empirical evaluation of the Naïve Bayes best-item approach compared to the lifestyle,
Pearson, and optimum best-item

Lifestyle Pearson Integrated Bayesian Net Optimum Naïve Bayes
“Best-item” “Best-item” “Best-item”

0.7647 0.7528 0.7564 0.7492 0.7115 0.7380
t = −13.128 t = −4.168
(p < 0.0001) (p < 0.0001)

each user and utilize the remaining ratings as input for the prediction task. Moreover,
we follow the Breese et al. (1998) experimental design where the error is computed
upon the same observed and test items for each user.

Following the best-item approach, we first dispatch a training set of 35 ratings
and compute the predictions for the remaining 15 available ratings using the lifestyle
and Pearson-based approaches. Then we develop the “success” table by comparing
the performance of the two approaches. The class of each of the training examples
is represented by the “success” or “failure” of the lifestyle approach compared to
the Pearson-based one. The “success” table is utilized for the training of the Naïve
Bayes algorithm, which is then consecutively queried for each of the 15 test-items
and for each user in the sample. The output of each query is the selection of ei-
ther the lifestyle or the Pearson-based approach as the most likely to be the best
performing for the specific item given the target user’s available ratings. For com-
parison purposes the “optimum best-item” is also included in Table 7 referring to an
ideal algorithm which makes 100% accurate predictions concerning the best perform-
ing algorithm on the target item. In addition, we present the best-item performance
when the Bayesian Networks algorithm (Mitchell 1997) is used as the meta-learning
algorithm.

The above-results indicate that the best-item approach that utilizes the Naïve Bayes
algorithm to predict the best performing algorithm on each item performs significantly
better than the Pearson-based approach at high-density levels, though other learning
algorithms may give better results approximating the performance of the optimum
“best-item.”

The proposed approach is a new hybridization technique where individual predic-
tions are made independently from each other before they are combined. Its theoret-
ical foundations are based on the stacking framework in machine learning research
(Dzeroski and Zenko 2004). More specifically, it is a meta-learning approach that
operates upon a set of base learning algorithms and a set of meta-features associated
with their previous performance, which are represented by the “success” table. The
best-item approach is characterized by its ability to accommodate any learning algo-
rithm as well as by presenting item-level sensitivity without requiring the analysis of
the item into features, as in CBF discussed next.

6.2 A content-based approach

In contrast to CF, CBF disregards all other users in the database and predicts future
ratings based solely on a user’s previous preference history (as expressed through rat-
ings). In computational terms the most important advantage of CBF in comparison to
CF is that it can produce recommendations even if no user has rated the target item,
such as in the case when a new item is introduced in the database. Along these lines we
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present a CBF approach designed for our application domain that may complement
the CF-based approaches discussed so far when the above conditions occur.

In several domains it is rather difficult if feasible at all, to describe items by features
as required by CBF. In particular in the domain under examination where advertised
products are involved, it is a cumbersome task define low-level product features (e.g.,
price or color), which are universally applicable and meaningful to a wide range of
products. It is not surprising that the majority of current work in adaptive and recom-
mender systems which concerns product-oriented prediction refers mainly to specific
product categories such as cars (Jameson et al. 1995), telephony devices (Ardissono
and Goy 2000), books (Mooney and Roy 2000), restaurants (Pazzani 1999), and mov-
ies (Basu et al. 1998) in which the definition of common low-level features is feasible.
In the proposed implementation of CBF, we examine the use of product subcategory
(e.g., sports cars, family cars, insurance services, beers, soft drinks, and so on) as a
single feature descriptive for all products that may associate previous preferences
with rating predictions.

In our implementation of CBF, we select the Naïve Bayes algorithm, in which the
user ratings represent five class labels. The algorithm is trained upon the available—
for each user —{feature, class} pairs and when a product’s feature is provided as input
it predicts its class membership by computing the conditional probability P(c|feature1,
feature2,..,featuren), where c = 1, 2, 3, 4, 5, and n represents the number of features.
Naïve Bayes has been successfully used in content-based recommender systems in
domains such as books and movies (Mooney and Roy 2000; Melville et al. 2002).

One of the important limitations of content-based algorithms is that they require
a sufficient number of training examples in order to produce reliable predictions. For
example, in cases where as many as 2, 5, or even 10 ratings are available for the target
user, CF is clearly preferred over CBF due to the low levels of coverage (the items
for which a prediction can be made by CBF). Thus, in the following experiment we
evaluate the CBF performance on the “Given 50” protocol and compare with the CF
results presented in the previous section.

The empirical findings demonstrate that CBF based on product subcategory is
outperformed by both lifestyle and Pearson-based approaches (Table 8).

It must be noted that within specific product categories more features which are
meaningful for certain groups of products would eventually improve the accuracy
of prediction. Furthermore, it is possible to increase the performance of the CBF
by employing regression techniques (Duda et al. 2000), which can directly predict
numerical ratings instead of representing them as classes ignoring the linear scale.

The CBF performance depends on the amount of available ratings of the same
subcategory with the target item. It is expected that if the target user has rated
enough items belonging in the “same subcategory” with the target item then a more
reliable CBF prediction can be made, since we have stronger indications concerning
whether or not the user has liked advertised products of a specific product subcatego-
ry. Indeed, examining the subcategories of the training and test items, an association
with the respective performance of CBF is revealed (Fig. 2).

Table 8 CBF performance for the selected features compared to CF approaches

CBF (Product subcategory) Pearson-based Lifestyle

0.9387 0.7528 t = −4.636; p = 0.000 0.7648 t = −4.274; p = 0.000
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Fig. 2 CBF performance in relation to the subcategory occurrences in the training set

Table 9 A best-item combination of CBF and lifestyle producing significantly better results than any
individual approach

Content-lifestyle Lifestyle Pearson CBF
Best-item (subcategory)

MAE 0.6918 0.7647 t = −6.922 0.7528 t = −5.267 0.9387 t = −5.767
(p < 0.0001) (p < 0.0001) (p < 0.0001)

The highest errors concern the two items with zero occurrences of the same product
subcategory in the training set. In this case, the algorithm outputs the most frequently
observed class in the training set. Removing these two items, the effect on the averaged
performance is significant but still CBF’s MAE (0.7941) is higher than Pearson-based
and lifestyle approaches (0.7369 and 0.7495, respectively). However, in the case where
as many as seven items belong in the same subcategory with the test item then the
CBF’s performance is impressively improved (0.6497).

Along these findings, the two methods can be combined and exploit each other’s
advantages in order to provide more accurate prediction. Indeed, the combination
of CBF and a collaborative filtering approach (e.g., the lifestyle one) under the best-
item approach can give significantly improved performance compared to any of the
individual approaches (Table 9).

The recommendation approaches discussed so far present complementary predic-
tive performances with respect to the sparsity problem and therefore they may be
aggregated into a single personalization strategy.

7 A personalization strategy

A personalization strategy (or, in other words a prediction strategy) “consists of one
or more prediction techniques and a set of rules that determine which technique(s) to
use” (van Setten 2002). The proposed strategy is extended beyond the boundaries of
CF and incorporates CBF which under certain conditions can be complementary to
the collaborative approaches.

The proposed strategy operates upon a set of “conditions” which rule the perfor-
mance of the individual approaches. The decision process that will be described in the
following sections relies on theoretical and empirical findings presented in this article
concerning the performance and suitability of the various approaches.
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7.1 Factors affecting CF and CBF

The major factors affecting the performance or restricting the use of CF or
content-based algorithms directly define the conditions that guide the selection of
the appropriate approach in the personalization strategy:

(a) Condition 1 (C1): the number of items rated by the target user affects CF algo-
rithms since the computation of similarities between the target and the remaining
of the users is performed upon overlapping ratings. It also affects CBF: few rated
items by the target user result into inaccurate predictions.

(b) Condition 2 (C2): the number of users “similar” to the target user, who rated the
target item, affects CF performance since the prediction on the target item is
computed as the weighted average of the neighbors’ ratings for the target item.

(c) Condition 3 (C3): the number of items “similar” to the target item rated by target
user affects CBF since the prediction on the target item is based upon the ratings
provided by the target user on similar (to the target) items. CF is not affected
by C3.

(d) Condition 4 (C4): sparsity. The sparsity problem occurs when few data (ratings)
are available for each user in the database and—similarly to the first condition—
mainly affects the computation of similarities among users. In contrast to the
first condition, sparsity refers to the entire database and can be measured by the
sum of rated items by each user to the total number of items times the number
of users. The overall sparsity level is an estimator for the number of available
ratings for the users in the database on average and it is a strong indicator of the
unreliability of the prediction. In conjunction with the first condition it specifies
the reliability of the prediction based on CF. For example, in the Pearson-based
approach, even if C1 is satisfied then at high-sparsity levels the possibility of
computing similarities upon a sufficient amount of overlapping ratings is sig-
nificantly reduced. Sparsity does not directly affect CBF because it ignores the
ratings available for the remaining of the users.

From the above list of the main conditions, two special cases of conditions can be
dispatched:

(e) The new-user or cold start problem (CS) is a special case of C1 that occurs when a
new user is introduced into the system with an empty set of rated items. This results
into the inability of both CF / CBF algorithms to produce recommendations.

(f) The first-rater or new item problem (FR) is a special case of C2 which occurs
when a new item is introduced in the database for which no ratings are available.
CF methods fail to produce a recommendation for the target user when none of
his/her neighbors have rated the item. At the initiation of the system both the
first-rater and cold-start problems occur.

Table 10 presents the different levels of effect of the conditions upon the approaches.
Collaborative filtering

(a) Pearson-based: it is highly affected by the number of ratings of the target user,
the number of co-raters of the target item and the sparsity level. It fails to operate
and produce predictions when a new user or a new item is introduced into the
system.
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Table 10 The factors’ effect on the personalization approaches varying from failure to operate
(“fail”), no-effect (“−“), low (“+”), medium (“++”), or high effect (“+ + +”)

Basic method Approach Conditions

C1 C2 C3 C4 FR CS

Collaborative
Filtering

Pearson-based + + + + + + − + + + Fail Fail

Lifestyle ++ + + + − ++ Fail ++
Integrated + + − + ++ Fail
Best-item ++ + + + − ++ Fail ++

Segment-level
(classification-
based)

Center-based ++ + + + − ++ Fail ++

Expert-based − − − − − −
Content-based Product subcategory

(CBF)
− − + + + − − + + +

(b) Lifestyle: the lifestyle approach does not depend on the available user ratings
to measure similarities and outperforms the Pearson-based when few ratings
are available or the sparsity level is high. Thus, despite the fact that predictions
become more accurate when more items are available, it is capable of producing
recommendations based on neighbors’ ratings even in the complete absence of
rated items by the target user. It is affected by the number of co-raters of the
target item and fails to produce recommendations in the complete absence of
neighbors. It provides equivalent predictions to the Pearson-based approach at
low sparsity levels.

(c) Integrated: it is on average the best performing approach (also covering the
hybrid approach). Compared to the Pearson-based and lifestyle approaches upon
which is developed, it benefits from the advantage of lifestyle (not highly affected
by C1) and avoids the disadvantages of the Pearson-based (high effect of C2 and
C4). Thus, in computational terms the effect of C1, C2, and C4 conditions is low.

(d) Best-item: it is useful at low-sparsity levels since it requires a sufficient num-
ber of ratings available in order to “learn” the best performing approach. As a
meta-learning hybrid approach which does not predict ratings but algorithms,
its performance is measured upon its ability to select the appropriate approach.
Clearly the prediction accuracy concerning the target item relies on the selected
approach (which in turn is affected by the current conditions).

Segment-level

(e) Expert-based and center-based. The expert-based is a special case of the
segment-level approach. When static data are utilized as classificatory data then
the approaches are not affected by the number of items rated by the users. The
prediction in the center-based approach is formulated by aggregating the rat-
ings of the target item available from the co-members of the lifestyle segment,
thus being affected by the number of co-raters of the target item. However,
in the expert-based, the classification of the users in the segments enables the
direct assignment of predictions associated to the specific segment by a mar-
keting expert (including the exploitation of large-scale psychographic surveys).
The expert-based approach enables the prediction when either of the FR or CS
conditions occurs. Furthermore, it is suitable for the initiating phase of the system
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when both conditions occur and no other approach can make a prediction, since
it does not depend on the number of ratings nor the density conditions in the
database.

Content-based filtering

(f) Product-subcategory CBF: CBF based on product subcategory gives less accu-
rate predictions than CF approaches but it does operate when very few or none
of the remaining users have rated the target item. This is the only case in the
proposed strategy for which CBF is considered as an alternative approach. The
number of items rated by the target user does not have a direct effect on CBF
since, even in the case that few ratings are available, the accuracy of prediction
depends on whether those items are similar to the target item, in which case CBF
can make a prediction.

7.2 Computation of factors’ threshold values

The personalization strategy operates upon a query for prediction on the target item
given the users’ ratings, and compares the current values of the “factors” against a
certain threshold. These factors’ values can be computed as follows:

(a) C1(user) = number of ratings of the target user, which can be easily counted
directly from the target user’s ratings vector.

(b) C2 (user, database, item) = the number of similar users who have rated the
target item. The arguments “user” and “database” are utilized to compute the
similarities between the target and the remaining of the users. Then, the number
of users who are similar to the target user and have rated the target item is
returned.

(c) C3(user, item) = the number of items similar to the target item that have been
rated by the target user. In the proposed implementation of CBF, this com-
putation requires the matching of the target user’s rated items to a product
subcategory from the KB (that assigns products to subcategories). Then the
number of rated items belonging in the specific product subcategory is returned.

(d) C4(database) = ∑
useri∈users C1(useri)

/
(users ∗ items). The sparsity score is eas-

ily computed from the database applying this formula, where C1(useri) refers to
the number of rated items from useri.

The thresholds for each case can be pre-computed upon the available data (and con-
tinuously refined) or by utilizing existing research results. The threshold values refer
to the points that a significant change in the relative performance of the approaches is
observed, suggesting a shift in the strategy in order to ensure that the best approach is
selected. Thus, the threshold values can be derived from the performance curves com-
paring the competing approaches under the specified conditions. Indicative threshold
values (applicable in our domain) that affect the decision process in the personaliza-
tion strategy can be extracted from the empirical results presented in this paper as
well as from other published research:

(a) C1_threshold = 5 ratings. In Sect. 5.2.1, we demonstrated that for up to five
rated items by the target user, lifestyle approach performs significantly better
than Pearson-based and is statistically equivalent to the integrated approach.
Furthermore, for five available ratings both approaches present a stabilized per-
formance, suggesting that the unreliability of prediction observed in the Given 2
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protocol has been settled. After this point the performances are statistically
equivalent and the assessment of additional conditions is required, since other
approaches can be considered as more suitable.

(b) C2_threshold = 20 neighbors. Previous empirical findings from published
research (Herlocker et al. 1999, 2002) suggest the adequate size of the neighbor-
hood concerning the reliable performance of the Pearson-based approach.

(c) C3_threshold = 7 items. The empirical results in Sect. 6.2 indicate that for at least
seven similar items in terms of product subcategory the content-based prediction
is reliable and gives better results than CF approaches.

(d) C4_threshold =





high ≈ 92–100%
medium ≈ 25–92%
low ≈ 0–25%

. The findings in 5.4.1 provide an estima-

tion of the sparsity intervals associated with variation in the performance of the
lifestyle, integrated, and best-item approaches. Indeed, up to the 92% sparsity
(five items rated on average in a total of 65 items) items, lifestyle can be selected,
while as the sparsity levels drop, integrated or best-item should be selected (for
5–50 and 50–65 items, respectively).

7.3 Combining the approaches into a personalization strategy

The personalization strategy (Fig. 3) is represented by a decision tree where each
node corresponds to a condition. Each condition is evaluated against the threshold
value and depending on whether the condition is satisfied (denoted by “yes” in Fig. 3),
the appropriate branch is followed, ending to an appropriate approach for the given
condition values.

The decision concerning which of the major methods (CF / CBF) should be selected
depends on the evaluation of condition C2. Indeed, if the number of neighbors who
have rated the target item is sufficient then a CF approach should be selected (the left
branch emanating from C2 = yes). It is worth noting that for traditional CF approaches

C2: Target item
rated by enough

neighbors?

C1: Target user
rated enough

items?

C4: Sparsity

C3: Rated enough
similar items?

CBF Expert

yes no

Lifestyle Integrated Best-item

yes

high
medium

low

yes no

Lifestyle

Integrated

no

Fig. 3 The personalization strategy
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such as the Pearson-based, C2 alone is not sufficient to justify its selection since it
additionally requires enough ratings available for the target user in order to enable
the measurement of similarities. On the contrary, lifestyle-based approaches can be
selected either in the presence (C1 = yes) or in the absence (C1 = no) of a sufficient
amount of rated items by the target user. If the target user has rated enough items
(C1 = yes) then the sparsity level would determine which of the lifestyle, integrated
or best-item is preferable. If the sparsity level is high, then lifestyle or integrated are
appropriate techniques while integrated should be chosen if sparsity is medium. At
low-sparsity levels the best-item approach presents the best performance. On the other
hand, if C1 = no, then few ratings are available and the possible options include life-
style and integrated since the best-item approach requires a sufficient amount of ratings
in order to operate.

If C2 is not satisfied (C2 = no) then CF cannot make reliable predictions and CBF
should be selected provided that the number of similar items rated by the target user
is sufficient (C3 = yes), otherwise the expert-based approach is selected (C3 = no).

The strategy described incorporates the “new user” and “new item” conditions by
applying zero threshold values for conditions C1 and C2, respectively (C1_thresh-
old = 0, C2_threshold = 0).

An example of application of the above strategy is described in Table 11, where
the objective is to find the appropriate recommendation approach for a target user
and a target item in a given dataset consisting of n users and m items.

The proposed strategy can be simplified if we consider only the sparsity condition,
which can be regarded as the most generic one in a recommender system’s lifecycle
(Fig. 4). This strategy suggests the lifestyle approach at the early stages of the rec-
ommender system’s lifecycle, the integrated as more items become available and the
best-item when the sparsity levels are low.

The computed sparsity value estimates the number of rated items to the total
number of available items. It is reasonable to assume that after a period of system

Table 11 An application example of the personalization strategy

Action Steps

1 Compute C2 (number
of neighbors rated the
target item)

• Compute similarities using an appropriate measure
(e.g., Pearson) between the target and the remain-
ing users

• Select neighbors above a similarity threshold
(e.g., threshold = 0)

• Count the number of neighbors who have rated the
target item (assume 20 neighbors)

C2 = Yes
2 Compute C1 (number

of items rated by the
target user)

• Count the number of rated items by the target user
(assume 10 ratings available)

C1 = Yes
3 Compute C4 (data-

base sparsity)
• Assume n = 1,000, m = 500, and total of available

ratings = 5,000
• Sparsity = (1,000*500)/5,000 = 10%—assume this

percentage represents low-sparsity condition
(depends on the domain)

C4 = low sparsity
Selected approach: integrated (or any other approach that deals with sparsity)
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Fig. 4 A “linear” personalization strategy for collaborative filtering predictions

operations C1 and C2 will converge to meet the threshold values: the number of rat-
ings for each user will increase as well as the number of neighbors of the target user
(as more users are added into the system in particular for large databases). However,
it is also apparent in real-world recommender systems that the same assumption may
not be true for C4. Indeed, the ratio of rated items to the total number of items may
remain low even after a long period of system usage due to the great amount of avail-
able items (e.g., book titles in Amazon can be tens of thousand) or the continuous
introduction of new items (such as new products), or the increased unwillingness of
the users to explicitly evaluate the items. Furthermore, the sparsity condition provides
a quick and very generic assessment for a batch prediction concerning several users,
rather than estimating all conditions described above for each one of the target user.

8 Summary and conclusions

In the present research different algorithmic approaches that utilize lifestyle data are
proposed addressing inherent limitations of CF algorithms related to the sparsity of
available ratings.

First, the proposed segment-level approach represents a direct implementation of
target marketing methods based on lifestyle segmentation. It introduces a classifica-
tion scheme based either on behavioral data (ratings) or on rating-independent user
data in contrast to traditional classification methods based on extensive psychograph-
ic questionnaires. In the case of classification based on rating-independent data, the
expert-based variation of the proposed approach addresses the cold-start problem,
one of the most important drawbacks of CF approaches.

The lifestyle approach represents the fundamental construct toward the improve-
ment of current personalization approaches. Since it requires no behavioral data to
compute similarities among users and therefore it is applicable under the “new user”
problem, in contrast to extant CF approaches which fail to make predictions. How-
ever, the most important contribution of the lifestyle approach is that it serves as the
key constituent of the subsequent proposed approaches which further improve the
predictive accuracy of CF algorithms in sparsity conditions.

The integrated approach is based upon and extends the hybrid approach. It presents
its highest accuracy at low-to-medium sparsity levels. It efficiently manages the sparsity
problem by substituting the original sparse user × item table by a dense table in
which missing values are replaced by lifestyle-based predictions. Furthermore, it can
accommodate any type of personalization approach that operates upon ratings and
improve its performance through the reduction of the sparsity effect.

The best-item approach introduces the combination of lifestyle and Pearson-based
ones but most importantly it proposes a new hybridization technique. Following
Burke’s (2002) taxonomy it can be classified as a “switching” hybrid since it switches
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from one approach to another when specific conditions occur. In contrast to existing
hybridization techniques, the best-item approach utilizes probabilistic learning algo-
rithms trained upon the performance history of the rival approaches and predicts
which of them will perform better for the target item. In this way, the proposed ap-
proach presents item-level sensitivity and avoids the interaction between the individ-
ual approaches, which may increase the final prediction error. The best-item approach
presents superior performance to the Pearson-based as well as lifestyle approaches
at low-sparsity level, complementing the performances of the lifestyle and integrated
approaches. Furthermore, it presents high generalization abilities since it can accom-
modate any number of prediction approaches and increase their performance.

The proposed content-based approach based on product subcategory is in terms of
predictive performance less accurate than CF methods, but when very few users have
rated the target item, it demonstrates superior performance provided that the target
user has rated a sufficient amount of items of the target item’s subcategory. Thus it
represents a suitable alternative approach when the above condition occurs.

Having defined the personalization framework through the development of several
approaches that exploit the notion of lifestyle, a personalization strategy is proposed
suggesting a suitable approach for a given condition. The personalization strategy
provides a single framework incorporating the proposed approaches while it can be
adjusted to accommodate any other approach since it is based upon well established
criteria of the recommender systems theory.

Future research involves algorithmic improvements that can be further examined
including the utilization of more descriptive product features (besides product sub-
category) as well as the investigation of model-based algorithms and their effect on
the predictive performance of the lifestyle-based approaches. In addition, the identi-
fication of suitable and domain independent lifestyle indicators that may improve the
accuracy of the proposed approaches, is a direction for future research. The notion of
lifestyle as a central construct of the consumer behavior model can be utilized to infer
behaviors independently from the application domain. The extension of the empirical
evaluation of the proposed approaches in larger samples as well as in domains such as
Web-based product recommendation systems, or personalized services over mobile
platforms, represent the most important future research avenue.
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