
User Model User-Adap Inter (2007) 17:183–214
DOI 10.1007/s11257-006-9017-2

O R I G I NA L PA P E R

Discovering stages in web navigation
for problem-oriented navigation
support

Vera Hollink · Maarten van Someren ·
Bob J Wielinga

Received: 1 November 2005/Accepted in revised form: 18 September 2006 /
Published online: 5 December 2006
© Springer Science+Business Media B.V. 2006

Abstract Users of web sites often do not know exactly which information they are
looking for nor what the site has to offer. The purpose of their interaction is not only
to fulfill but also to articulate their information needs. In these cases users need to
pass through a series of pages before they can use the information that will eventu-
ally answer their questions. Current systems that support navigation predict which
pages are interesting for the users on the basis of commonalities in the contents or
the usage of the pages. They do not take into account the order in which the pages
must be visited. In this paper we propose a method to automatically divide the pages
of a web site on the basis of user logs into sets of pages that correspond to naviga-
tion stages. The method searches for an optimal number of stages and assigns each
page to a stage. The stages can be used in combination with the pages’ topics to give
better recommendations or to structure or adapt the site. The resulting navigation
structures guide the users step by step through the site providing pages that do not
only match the topic of the user’s search, but also the current stage of the navigation
process.

Keywords Navigation support · Information needs · Web usage mining ·
Navigation stages

V. Hollink(B) · M. van Someren · B. J. Wielinga
Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
e-mail: vhollink@science.uva.nl

M. van Someren
e-mail: maarten@science.uva.nl

B. J. Wielinga
e-mail: wielinga@science.uva.nl

184 Vera Hollink et al.

1 Introduction

In recent years web sites have evolved from small electronic leaflets to highly complex
continually changing information systems. They are used not only to find well-specified
information, but also to find answers to less articulate questions and to solve problems.
This development poses higher demands on the structure of a web site and tools that
support navigation.When solving a problem users often do not know exactly what
solutions exist nor what the site has to offer as support in finding the solutions. If
a user is not able to express her information needs as keywords, simple search and
retrieval are not adequate Alpay et al. (2004). For these users a topic-based navigation
structure is also not optimal as some of the pages about a topic will be relevant at an
early stage of the search and others only after the user has acquired the knowledge
that is needed to select a solution.

For example, consider a web site of an online shop that not only includes detailed
information about products but also general information about the product types,
their purposes and the conditions for their use. Maybe it even has pages describing
possible combinations of products or explaining the products’ terminology. For users
who are looking up some detail of a specific product this extra information is not
interesting. On the other hand, users who are wondering which product is the most
suitable for them can benefit enormously from visiting the general information before
reading about specific products. The general information does not directly contribute
to their buying decisions but rather helps to reformulate and articulate their questions
or tell them in which directions to look for a specific product.

Ezendam et al. (2005) and Alpay et al. (2005) showed that users who cannot accu-
rately formulate their questions can be helped greatly by problem-oriented navigation
structures that help them to view the information on the site in the right order. Prob-
lem-oriented navigation support is especially useful for sites with many incidental or
one-time user with questions that need to be solved in a number or steps. Many of
these questions first need to be reformulated or abstracted into the terminological and
conceptual context of a domain before a solution can be given (see for example the
classic work in the context of expert systems by Clancey (1985)). Despite these benefits
at present not many sites provide problem-oriented navigation support. One reason
is that it is hard to predict in advance with which questions users will come to the
site and how this will influence navigation. Moreover, creating advanced navigation
structures by hand is an extremely difficult and time consuming task.

Existing methods to automatically support user navigation or structure web sites
do not offer problem-oriented navigation support. Recommender systems provide
automated support by selecting a limited number of pages which they believe to be
interesting for the user. Many systems, including Schwab and Pohl (1999), Zhu et al.
(2003) and Mobasher et al. (2002), form clusters of pages with similar topics in such
a way that users who are interested in some of the pages from a cluster have a high
probability of also being interested in the other pages from that cluster. When a user
visits a page, other pages from the cluster of the currently visited page are recom-
mended. The recommendations act as shortcuts, which allow the user to reach his
goal without passing through a series of less interesting pages. As we argued above,
when navigation involves orientation and reformulation of problems, representing
user interests as topic clusters is no longer sufficient. Two pages from the same cluster
can be very similar in topic but one may contain introductory information and the

Discovering stages in web navigation 185

other a detailed solution. In this case the introductory page should be recommended
first or appear first in a navigation structure.

In this paper, we propose a method to automatically create navigation components
that indicate the preferred reading order for the pages of a web site. The sequential
structures underlying these components consist of a number of so called navigation
stages. The stages represent groups of pages that fulfill the same role the users’ navi-
gation processes. Input to the algorithm is the information stored in the site’s log files.
From the patterns found in the logs the optimal number of stages is determined and
each page is assigned to a single stage. At the same time the algorithm minimizes the
number of times the stage order is violated in the user logs.

The stages that are discovered can be combined with an (automatically constructed)
content-based structure to construct problem-oriented navigation support. This sup-
port can be offered in the form of a menu in which pages are presented in the preferred
order or recommendations that do not appear until the user has visited the relevant
introductory pages. Other possible applications include filtering or ranking the results
of a search engine so that the results match the current stage of the user’s navigation
process.

The stage discovery algorithm is applicable to sites where the users prefer to read
the pages in a specific order, but where the initial navigation structures do not enforce
a reading order. If the navigation structure influences the reading order too strongly,
the discovered navigation patterns reflect the structure of the site instead of the users’
preferences. This happens for instance when the algorithm is applied to sites that
rely on in-text links as primary means of navigation. In-text links force users to click
through series of pages before other pages can be reached. Consequently, the page
order imposed by the link structure will appear as the dominant pattern in the log
files.Examples of navigation means to which our method is applicable are topic-ori-
ented menus. The menus show the user where the pages on some topic are located, but
do not prescribe in which order the pages should be read.Other suitable structures are
site search engines. The order of the pages in result lists indicate the pages’ relevance
but not their reading order.

The remainder of this paper is organized as follows. Section 2 specifies the task
of discovering stages. Section 3 discusses related work. Section 4 describes the stage
discovery algorithm. In Sects. 5 and 6, we evaluate the algorithm on log data collected
in user experiments. In Sect. 7 artificial data is used to examine the sensitivity of the
algorithm to characteristics of the log data. Sect. 8 demonstrates how a stage model
can be used for building order sensitive menu structures. The last section contains
conclusions and suggestions for further research.

2 The SeniorGezond site

In this section, we describe the navigation structure of the SeniorGezond site1 which
motivated us to create the stage model. The SeniorGezond site is a Dutch health-
care site developed by the Netherlands Organization for Applied Scientific Research
(TNO) in cooperation with domain specialists from the Geriatric Network and the
Leiden University Medical Center. It contains information for elderly people about
the prevention of falling accidents (Alpay et al. 2005).

1 http://www.SeniorGezond.nl/

186 Vera Hollink et al.

Before the current navigation menu of the SeniorGezond site was developed, other
menu structures were designed and tried out in various prototypes. In the first proto-
type a purely topic-oriented structure was used. Evaluation of this prototype showed
that people experienced great difficulties in expressing their problems in terms of the
site’s topics (Alpay et al. 2004). This motivated the developers to build a navigation
structure that is directed more at the viewpoint of the visitors.

The current navigation menu of the SeniorGezond site reflects the Precaution
Adoption Process (PAP) model, a psychological model that describes how people
become aware of their problems and translate their problems into actions (Ezendam
et al. 2005; Alpay et al. 2005). The stages of the PAP model are translated into a
menu structure with three layers. The first layer consists of problem descriptions, the
second layer consists of descriptions of general solutions and the third layer con-
sists of practical information about products and services that implement the general
solutions. The product pages contain the information that in the end solves the users’
problems. The other two layers help the users to articulate their problems and provide
information about available solutions. A screenshot of the SeniorGezond site and the
layered menu can be found in Fig. 1.

The problem-oriented menu of the SeniorGezond site has two dimensions. The
horizontal axis or the layers of the menu represent navigation stages. On the vertical
axis we see a number of topics such as dizziness and joint wear. Automatically finding
clusters of pages with similar topics, as on the vertical axis, is a well known task that
is worked on by many researchers, including Mobasher et al. (2002), Perkowitz and
Etzioni (2000) and Pierrakos and Paliouras (2005). The emphasis of our work is on
the other dimension: finding the stage structure.

Fig. 1 A screenshot of the SeniourGezond site and its problem-oriented menu (in Dutch). The
screenshot shows a product page about rollators. In the menu this product is connected to the solution
‘Loophulpmiddel nodig?’ (Need a walking aid?) and the problem ’Gewrichtsslijtage’ (joint wear)

Discovering stages in web navigation 187

We define a navigation stage as a group of pages that play similar roles in the
users’ navigation processes. The structure that our method searches for consists of a
set of stages and a relative ordering of the stages. The stages are ordered in such a
way that users generally prefer to visit pages from the first stage at the beginning of
their sessions, then proceed to pages from the second stage, etc. There is no preferred
visiting order for two pages within the same stage.

Ezendam et al. (2005) evaluated the layered structure of the SeniorGezond site by
analysis of the log files and a usability study. She found that all three layers of the
menu were visited frequently and that most transitions between pages occurred within
layers or from problems to solutions or from solutions to products. Moreover, many
users visited all three layers. The usability study showed that people recognized the
layered structure and found it easy to use. In conclusion, Ezendam’s results provide
strong evidence that the problem-oriented structure is used as intended and that it
provides better guidance than a topic-oriented menu.

There are many other domains in which a problem-oriented structure might be
able to provide guidance. The study of Choo et al. (2000) shows that web users vary
substantially in the extent to which they know what information they are searching
for. It frequently happens that people want to solve a problem or answer a question
and do not know beforehand what solutions exist and what the site has to offer. They
can formulate their information needs in terms of the questions, but not in terms of
solutions or answers. In these cases, it is important that the site is structured around
the viewpoints of the users rather that the viewpoints of the providers of the content.

Another example is someone who wants to ask the local government permission to
build a shed. In the end her question will be answered by a web page that contains the
address of an organization she needs to write to or an application form for a building
permit. However, when she visits a governmental site about building legislation she
cannot search for these organizations and permits, because she may not know that
they exist or whether they apply. Here, a problem-oriented menu could be of great
help. Instead of referring her to the application form directly, it would first provide
general information about building legislation, then refer her to some application
procedures and finally to a downloadable application form. A similar situation occurs
when someone wants to buy some product he is not familiar with. A topic-oriented
menu orders the available products according to some product features. If the visitor
does not know exactly what he needs he might not be able to select the features
that are most appropriate for his situation. A problem-oriented structure starts with
offering more general information about product types and product features. In the
next step this information can be used to select a product.

In spite of the potential benefit of problem-oriented menus, not many sites offer
this service. No doubt one of the reasons for this is the considerable effort needed to
created these structures. In this work we present a method to automate this process.
It allows site owners to learn the order in which users want to read the pages of a site
and it creates a problem-oriented navigation structure. The method saves site owners
the effort of restructuring the contents of the site and saves the users the effort of
tracking the relevant information through the site’s structure.

3 Related work

In recent years much research has been devoted to the automatic construction and
adaptation of navigation structures. Probably the most notable in this respect is the

188 Vera Hollink et al.

work of Perkowitz and Etzioni (2000). They developed PageGather, an algorithm to
automatically create index pages for web sites. PageGather creates a graph represent-
ing pages and their co-occurrences in the users’ sessions. The connected components
in the graph form the basis of the index pages. More recently Pierrakos and Paliouras
(2005) invented an algorithm to select parts of a web directory that are interesting
for a group of users. Their Community Directory Miner employs probabilistic latent
semantic analysis to extract clusters of users with common interests and to select page
categories that correspond to these interests. The MONTAGE system (Anderson and
Horvitz 2002) automatically assembles personalized start pages (montages) for web
users. The montages contain links to pages that the user has visited in contexts similar
to his current situation. By providing shortcuts to frequently accessed web content the
MONTAGE system facilitates routine web browsing. In Hollink et al. (2005b) we pre-
sented an algorithm that uses the information gain criterion to optimize a navigation
menu in terms of the number of steps that users need to reach their target information.
Web personalization refers to a large family of methods to adapt web navigation struc-
tures or web content to individual users. For a survey of usage-based personalization
methods we refer to Pierrakos et al. (2003). A more broad view on adaptive navigation
support in the context of adaptive hypermedia is given in Brusilovsky (2001).

A large majority of the research on navigation adaptation for both groups of users
and individuals, including the ones mentioned above, focuses on the selection of
interesting content. Much less attention has been paid to the order in which the pages
should be presented to the users. An exception is the work on educational hyperme-
dia, e.g. De Bra and Calvi (1998) and Brusilovsky et al. (1998). However, here the
preferred order of the pages, or more general the content chunks, is specified by hand.
Although it is generally agreed that the need to specify these relations is one of the
main drawbacks of these systems, to our knowledge no attempts have been made to
automatically learn the prerequisites from user behavior.

A variety of machine learning techniques have been applied to the task of learning
a model of web usage. Again, most models only include page relevance and not page
order. A type of models that do include page order are Markov models e.g. Pitkow
and Pirolli (1999), Sarukkai (2000) and Deshpande and Karypis (2004). Markov mod-
els make predictions about the next step of a user using the observed frequencies
of sequences of pages in the log files. They contain information about sequences of
individual pages, but do not specify relations between larger units such as page clus-
ters. This lack of a large scale structure means that they do not provide insights in the
behavior of the users and cannot serve as a basis for automatically created navigation
structures.

In Anderson et al. (2001) and Cadez et al. (2003) mixtures of Markov models are
used to find clusters of users with similar browsing patterns. A limitation of this work is
that the patterns that characterize the clusters are restricted to sequences of manually
assigned page categories. These sequences can be viewed as navigation stages, but the
possible stages are limited to the predefined page categories.

Ypma and Heskes (2002) overcome this problem by representing web user behav-
ior as a hidden Markov model (HMM). In HMMs the hard-coded page categories are
replaced by a number of unobservable states. The current state of a user determines
the probability of visiting pages and moving to other states. In theory, the states of
a HMM can contain pages with similar topics as well as similar stages. However,
inspection of the states produced in Ypma and Heskes (2002) reveals that in practice
the pages are primarily grouped by topic. Moreover, the simultaneous optimization

Discovering stages in web navigation 189

of stages and topics makes learning HMMs computationally expensive. Furthermore,
for the creation of navigation structures HMMs yield the same problem as Markov
models, albeit to a lesser extent. The states of a HMM provide some structure, but it
is not completely clear how they can be translated into a navigation structure.

A more clear interpretation can be given to the model presented in Jin et al. (2005).
Just like Pierrakos and Paliouras (2005) they use probabilistic latent semantic analysis
to detect clusters of users who have visited similar sets of pages (in the paper called
tasks). Once the clusters have been fixed, the authors find task-level usage patterns
by computing the most likely tasks in each step of the users’ navigation. These pat-
terns provide information about tasks that are frequently performed subsequently
in a session. A drawback of this approach is that tasks can only be distinguished if
they are frequently performed in isolation. Series of subtasks that are almost always
performed together are viewed as one task. This makes the method appropriate for
finding top-level tasks, but not for dividing the navigation within tasks into stages.

Another interesting model of web usage is the information foraging theory first
introduced in Pirolli and Fu (2003). The theory describes how people decide when to
keep browsing in the current information source (web site) and when to go search-
ing for a better source. According to Pirolli and Fu, people estimate the amount
of relevant information that can be found on a site based on the site’s information
scent.When the information scent becomes too low they switch to another site with
a higher scent. Pirolli and Fu model the sequential behavior of users who are try-
ing to fulfill an information need. The model explains how an information need gets
satisfied when information is found, but not how an information need is changed by
the information found so far. As a result, navigation assistance systems based on the
information foraging theory, such as the one in Herder (2004), can help users to find
trails along the most informative pages, but the theory does not prescribe in which
order the pages should be on the trail.

In sum, an extensive amount of work has been devoted to the automatic creation
of link structures, but in this area presenting the links in the right order has received
little or no attention. Possibly, this is due to the lack of order sensitive models that are
comprehensible enough to be used in navigation structures. In Hollink et al. (2005a)
we presented a method for finding a simple and understandable model of web usage
in which the main order characteristics are preserved. In the current work this algo-
rithm is refined and evaluated in more depth. Moreover, here we go beyond building
the model and show how it can be used to automatically create sequential navigation
structures.

At the algorithmic level the method presented in this work bears some resem-
blance to scaling methods such as uni-dimensional preference scaling (Carroll 1972)
and ordinal utility revelation Domshlak and Joachims (this issue). Like our method,
these methods seek to convey the underlying structure in a set of items by scaling
them onto one dimension. Scaling methods make use of observed relations between
items. If we apply scaling to web usage data, the items are pages and the relation
between them is ‘is visited (directly) before.’ A problem occurs when two sets of
pages occur almost never in the same sessions. In this case the scaling algorithms have
no accurate information about the relative positions of the two sets of pages. Our
algorithm overcomes this problem by using the positions of the pages in the sessions
which makes all pages comparable.

190 Vera Hollink et al.

Fig. 2 The top level of the stage discovery algorithm

4 The stage discovery algorithm

In this section, we present an algorithm that automatically divides the pages of a web
site into navigation stages. Each stage represents a group of pages for which the order
of their requests cannot be accurately predicted, but that as a group can be ordered
relative to other groups. The pages in a stage may not have similar topics, but play
similar roles in the users’ navigation processes.

The stage discovery algorithm needs as input a set of log files of the site for which
a stage structure is created. To collect these logs the site must have been online for
some time. Moreover, while the server logs are collected, the site’s navigation struc-
ture must not force the users to visit the pages in a specific order. As we discussed in
the introduction, many commonly used navigation structures fulfill this requirement,
including topic-based menus and site search engines.

The stage discovery algorithm does not make use of the pages’ contents. Content-
based methods use word similarity to cluster pages with related topics. These clusters
may not correspond to stage structures because pages with similar roles do not nec-
essarily contain similar words. As a result one topic cluster can contain both generic
introductory pages and pages with highly specific information.

Figure 2 shows the top level of the algorithm in pseudocode. The algorithm is
composed of three main steps that are discussed in detail below:

1. Initialization The pages are scaled along one dimension (i).
2. Stage construction By clustering the scale is divided into an optimal number of

stages and the pages are assigned to the stages (ii).
3. Stage optimization The page assignments are optimized through bootstrapping (iii).

4.1 Initialization

Before the actual initialization starts, the sessions of individual users are extracted
from the server logs. Here a session is defined as the sequence of pages that a user has
viewed during her visit to the site. When users are required to login to the site, the
requests of individual users can be uniquely identified. Otherwise, the sessions need
to be restored from the IP addresses and browser information that are available in
standard log files. Log files of sites with dynamically created pages sometimes contain
large numbers of URLs pointing to pages with almost the same contents. In this case
pages with very similar contents need to mapped onto one URL. A wealth of tech-
niques has been developed to improve the quality of restored sessions when proxies
and caching are used, e.g., Cooley et al. (1999), but a discussion of these techniques is

Discovering stages in web navigation 191

Fig. 3 The first step of the stage discovery algorithm: initialization

beyond the scope of this article. From now on we assume that the sessions are restored
and represented as lists of consecutively visited pages.

The second preprocessing step is the removal of all revisits from the restored
sessions. Users who are visiting pages from one stage might sometimes go back to a
page from the previous stage that they have already visited to look up details they
do not remember accurately. To prevent the algorithm from incorrectly inferring that
these pages belong to the later stage, we remove all revisits from the sessions. Another
advantage of removing the revisits is that it removes the difference between sessions of
users who use browser caching and sessions of users who do not use browser caching.

After preprocessing the actual initialization step starts. In this step the pages are
laid out on a one-dimensional scale that reflects the parts of the sessions in which they
are visited most often. The initialization process is summarized in Fig. 3.

The algorithm starts with collecting the positions of the pages in each session and
normalizing the positions by dividing them by the length of the session. We define the
relative position (RP) of a page p at thekth place in a session consisting of m page
visits as:

RP(p) = (k − 1)/(m − 1)

The position of a page in a session with only one page is defined as 0.5. The average
relative position (ARP) of a page is the average over its relative positions in all sessions
in which it appears. In the pseudocode in Fig. 3 the ARPs of the pages are represented
as a function fARP that maps pages onto ARP values.

The reason for introducing the concept of average relative position is that it allows
us to lay down all pages onto a one-dimensional scale.The position on this scale reflects
the part of the sessions in which the page is visited most often. Pages with low ARP
values are visited mainly in the beginning of sessions, while pages with high ARPs
belong to the end of sessions. This insight is formalized in the second step of the stage
discovery algorithm where the stages are constructed.

4.2 Stage construction

In the stage construction step the ARP values of the pages are clustered. The resulting
page clusters form the initial stages. In addition, in this step we determine in how many

192 Vera Hollink et al.

Fig. 4 The second step of the stage discovery algorithm: stage construction

stages the navigation can be decomposed. Figure 4 shows the construction process in
pseudocode. In the coming paragraphs we first explain how we transform the ARP
values into stages when the number of stages is known (in Fig. 4 starting at (i)) and
then we explain how the optimal number of stages can be estimated (iv).

4.2.1 Constructing a fixed number of stages

To divide the ARP scale into n clusters we apply the Expectation Maximization
(EM) algorithm (Dempster et al. 1977). The EM algorithm fits a mixture of n one-
dimensional Gaussians to the ARP values (i). In the resulting mixture each Gaussian
corresponds to a cluster of ARP values. To transform the Gaussians into stages we
compute for each Gaussian in which interval of the ARP scale the Gaussian is the
most likely component. In other words, we compute the intersection points of the
Gaussians in the mixture (ii). The intersection points divide the ARP scale into a
number of regions that correspond to the stages.

Now each page can be assigned to the stage in which ARP region the page’s ARP
value falls. However, the assignment of pages with ARPs close to the region bound-
aries is very insecure. Therefore, for each stage we increase the lower boundary of its
region and decrease the upper boundary of its region until only 70% of the stage’s
original ARP region remains (iii). Pages with ARPs within these intervals are assigned
to the corresponding stages. The assignment of pages with ARP values outside the
stage boundaries is postponed to the last step of the stage discovery algorithm. In
Fig. 4 the stage assignments are represented by the function fstage that maps pages
onto stages.

4.2.2 Determining the number of stages

As can be seen in Fig. 4 the optimal number of stages is determined by generating and
evaluating models with increasing numbers of stages and selecting the best performing

Discovering stages in web navigation 193

model. Intuitively, the best performing model is the one that most accurately describes
the user behavior that is found in the log data. The quality of a model’s fit to the ARP
data is expressed by the average log-likelihood of the ARP values given the Gaussian
mixture. However, this measure alone does not suffice to compare the performance
of mixture models as models with more components always have the potential to fit
the data at least as good as models with fewer components. Consequently, using only
the log-likelihood could lead to severe overfitting.

To prevent the selection of overly complex models the likelihood needs to be
combined with a measure that favors models with smaller numbers of stages. One
possibility is to penalize models relative to the number of model components. How-
ever, for this problem a more meaningful solution is at hand. The proportion regular
transitions reflects the extent to which the individual user sessions follow the stage
pattern prescribed by the model. The more sessions follow the pattern, the better the
model. The proportion regular transitions is defined as the proportion of the page
transitions made in the user sessions in the log file that are regular according to a
model. A transition between two consecutively visited pages is regular if the pages
are from the same stage or if the stage of the first page directly precedes the stage of
the second page.

The proportion regular transitions is generally smaller when a model with fewer
components is used, because smaller models place fewer restrictions on the page
order. According to a model with only one stage all transitions occur within one stage
and thus all transitions are regular. In the other extreme, a model that assigns each
page to a separate stage prescribes a complete page ordering. With this model all
deviations from the prescribed path are marked as irregular.

As a final measure of model performance, we define the fitness of a model as a
linear combination of its average log-likelihood and its proportion regular transitions:

Fitness(n|S) = (1 − α) ∗ Likelihood(S|n) + α ∗ Proportion_regular(S|n)

Here Likelihood(S|n) is the average log-likelihood of the sessions S given the model
with n stages. Proportion_regular(S|n) is the proportion of the page transitions in S
that are regular according to the model with n stages. α is a weighting parameter.

In the current version of the algorithm we test all models with a number ofstages
smaller than some user specified value. The model in this set with the highest fitness
is used to create the initial stage assignment that is passed on to the next step of the
stage discovery algorithm.Another possibility is to start with a model with one stage
and test continually larger models until the fitness no longer increases. In this paper
we chose to implement the former method. It requires a little more computation, but
is less sensitive to variations in the fitness.

The EM algorithm does not always result in a fit that can be interpreted as a
valid stage model. Sometimes one of the model components ‘dies’, its prior proba-
bility becomes zero. In this case the model effectively has become a model with a
smaller number of stages. Another possibility is that one Gaussian is superimposed
on another Gaussian, so that the regions between the Gaussians’ intersection points
do not include the means of the distributions. In both situation we consider the fitted
model to be an invalid stage model and assign it a fitness of zero. Note that both
problems to not occur with one stage models. This means that a one stage model
(a model without a division in stages) is correctly marked as the preferred choice
when no other valid stage model can be found for a data set.

194 Vera Hollink et al.

4.3 Stage optimization

In the previous section the pages were assigned to stages on the basis of the parts
of the sessions in which they occurred most. Here we improve the classification by
looking at the context in which the pages occur in the individual sessions (see Fig. 5
for the pseudocode).

In our model stages are strictly ordered, so that most navigation steps occur within
one stage or from a page from one stage to a page from the next stage. As a conse-
quence, a page which occurs in the sessions mostly between two pages from stage s has
a high probability of belonging to stage s. We use this idea to correct the classification
of pages that are initially assigned to an incorrect stage. For each page p and each
stage s we count the number of times p occurs between two pages of stage s. We define
the evidence of misclassification of p as the difference between the number of times p
occurs in its current stage and the maximum number of times p occurs in some other
stage (ii). The pages with the highest evidence of misclassification are reassigned to
the stage in which they occur most (iii). With the new classifications for each page the
evidence of misclassification is recomputed and again the stages of the pages with the
highest evidence are changed. This bootstrapping process is continued until no more
stage changes are made or until a maximum number of cycles is reached.

Because the bootstrapping process can be sensitive to sessions of users who did
not follow the stage structure very accurately, it is embedded in a larger cycle. The

Fig. 5 The third step of the stage discovery algorithm: stage optimization

Discovering stages in web navigation 195

first time the bootstrapping process is called we use only sessions that have a least
90% regular page transitions (i). In later cycles this restriction is gradually relaxed
until all sessions are used with at most 50% regular page transitions (iv). In this way
we improve the quality of the data that is used during bootstrapping and reduce the
chance that the process drifts towards a suboptimal classification.

4.4 Complexity

The stage discovery algorithm is designed to run offline. There is no need to rerun
the algorithm each time a user requests a page, as the discovered stage structures are
typically stable behavior patterns that do not change on a daily basis. As a result, the
running time of the algorithm is not a major issue. Nevertheless, in this section we
briefly discuss the algorithm’s space and time requirements as scalability is essential
when using web log data.

The initialization phase involves one pass through the log file. The time and memory
complexity of this phase are linear in the length of the log file. For stage construction
more resources are needed. The time complexity of one iteration of the EM algorithm
is linear in the size of the data set and the number of model components. The data
set consists of one data point per page so that the complexity becomes O(p.n), where
p is the number of pages on the site and n is the number of stages. The number of
cycles that the algorithm needs to converge depends on the distribution of the data
and is hard to predict in advance. However, in practice for many data sets the number
of cycles appears to be approximately constant under varying amounts of data and
model components, e.g., Cadez et al. (2003). In these cases, the total time complexity is
linear in the number of data points and the number of components. Our experiments
suggest that also for the stage discovery algorithm this relation is roughly linear. To
determine the optimal number of stages the construction process is run with various
numbers of stages. For each number of stages EM is called and the log file is traversed
to determine the proportion regular transitions. As a result, the time complexity of
the stage construction phase is O(N.(p. 1

2 .(N + 1) + s)), where s is the size of the log
file and N is the maximum number of stages. The memory requirements of the EM
algorithm are modest as only the values of the current cycle need to be stored. The
space complexity is O(p.n).

In the stage optimization phase for each regularity level the algorithm makes one
pass through the log file to select the regular sessions. With these sessions a number
of bootstrapping cycles are performed. The time needed for one bootstrapping cycle
is O(r), where r is the number of regular sessions. Our experiments indicate that the
number of bootstrapping cycles does not increase with increasing numbers of sessions.
Consequently, the time needed to perform the bootstrapping process is linear in the
number of regular sessions. In total, the time complexity of the optimization phase
is O(s + b.r) per regularity level, where b is the number of bootstrapping cycles. The
space complexity is O(r + p).

The time requirements of the stage optimization phase can be problematic when
s and r are very large. Fortunately, the time can easily be reduced by increasing the
required proportion of regular transitions. The minimum proportion of regular tran-
sitions can thus be used as a parameter to control the computational costs. Increasing
this parameter reduces both the number ofbootstrapping cycles and the number of
sessions included in bootstrapping.

196 Vera Hollink et al.

Because the total time and space requirements of the stage discovery algorithm are
linear in the length of the log file and the number of pages of the site, the algorithm
can be used on large data sets. To give an indication of the practical time and memory
costs: running the algorithm on the log data from the SeniorGezond experiment (244
sessions with in total 5057 server requests, see Sect. 5) takes 7 seconds on a normal
desktop computer using an implementation that was not extensively optimized.

5 Discovering stages for the SeniorGezond site

To evaluate whether the stage discovery algorithm is able to produce useful stage
structures, we test it on two different domains. The first domain is the SeniorGezond
site that was discussed in Sect. 2. The second domain is described in Sect. 6. In both
cases the structure of the web sites is used as a gold standard to which the classification
made by the algorithm is compared.

In this section, we apply the stage discovery algorithm to log data from the
SeniorGezond site to see whether the algorithm is able to reconstruct the site’s stage
structure from the users’ navigation patterns. In this experiment we used a simplified
version of the site. Instead of the stage-oriented menu this version contained only a
single large menu with a long list of links to all pages of the site. Furthermore, all
external links, in-text links and other means of navigation were removed.

Thirty participants performed each ten search tasks on the modified SeniorGezond
site. In each task the participants were asked to play the role of an elderly person in
a problematic situation who searched the SeniorGezond site for a solution. The for-
mulation of the problem descriptions was on purpose a little vague. We wanted to
simulate users who felt they had a problem, but were not able to clearly articulate
their problem. An example of a problem description can be found in Appendix A. The
participants were mainly computer science students. None of them knew the purpose
of the experiment.

The participants accessed the modified site through a login page. During the search
assignments all clicks were recorded. For each assignment of each participant we listed
the pages that were viewed consecutively during the performance of the assignment.
This resulted in 244 lists of pages (sessions) with an average length of 7.3 page views
(after revisit removal). As shown in Table 1, 90 of the 120 pages were visited at least
once. In the following discussion we will only consider the 90 visited pages, since the
algorithm has no information about the remaining 30 pages. This does not affect the
scope of our conclusions, because in a real application we can safely assume that all
web pages are visited.

Table 1 The number of pages
and page visits per page type in
the SeniorGezond experiment
after removal of revisits

Page type No. pages No. visited No. visits Avg. no.
pages visits per

visited page

Problems 10 10 355 35.5
Solutions 27 20 732 36.6
Products 83 60 685 11.4
Total 120 90 1772 19.7

Discovering stages in web navigation 197

First, we analyzed the behavior of the subjects by hand to see whether they followed
the expected pattern problems → solutions → products. In this analysis we made use
of the types of the pages. Of course, this information was not available to the discovery
algorithm. The transition matrix in Table 2 shows for each page type how many times
someone went from a page of this type to a page of each other type. From the matrix
it is clear that by far most transitions occur within stages or go from one stage to the
next stage. This confirms that the different page types are used during different nav-
igation stages. Furthermore, the transition frequencies in Table 2 are very similar to
the ones found for the online version of the SeniorGezond site (Ezendam et al. 2005).
Apparently, the tasks used in the experiment elicit behavior that closely resembles
that of the real users.

The navigation stages can be seen even more clearly from the ARP distributions of
the three page types shown in Fig. 6. The figure clearly shows that the problem pages
are visited mostly in the beginning of the sessions, the solution pages in the middle and
the product pages in the end. From these results we conclude that for our users the
three page types of the SeniorGezond site indeed form navigation stages: the problem
pages form the first stage, the solutions the second stage and the products the third
stage.

Above we showed that the three navigation stages of the SeniorGezond site can
be seen clearly when the types of the pages are known. We will now demonstrate that
the stage discovery algorithm can find the stages without requiring knowledge about
the types of the pages.

Table 2 Relative frequency of
transitions between the page
types of the SeniorGezond site
in percentages

To type

Problems Solutions Products Stop

From type Start 75.4 20.1 4.5 –
Problems 38.9 52.1 4.8 4.2
Solutions 3.0 63.5 25.0 8.5
Products 1.6 4.8 69.2 24.4

0

 0.1

 0.2

 0.3

 0.4

 0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
el

at
iv

e
fr

eq
ue

nc
y

Average relative position in bins of 0.055

Problems
Solutions
Products

All

Fig. 6 The distribution of the ARPs of the pages in the log data of the SeniorGezond experiment

198 Vera Hollink et al.

To determine the number of stages we fitted models with one up to eight stages and
determined the fitness of these models as described in section 4.2. We repeated the
experiments with various values for the parameter α to determine the optimal value
for α. Figure 7 shows the fitness of the models when various values of α are used. The
correct number of stages, three, is found when α lies between 0 and 0.625, with the
most clear optimum around 0.25.

When the stage discovery algorithm is applied to a new site, the optimal value for
α cannot be determined is this way, as for a new site the correct number of stages is
unknown. However, in the following sections we will see that an α of 0.25 also works
well in other domains, so that in a new domain this value can be used directly.

Next, the model with three stages was used to assign each page to a stage. Table 3
shows the proportion of the SeniorGezond pages that was classified correctly, the
accuracy. Note that a stage assignment is called correct if a problem page is assigned
to the first stage, a solution to the second stage or a product page to the third stage.
After the stage construction step 86% of the pages were assigned to the correct stage.
As visible in the table most problem and product pages were classified correctly, but
the assignment of the solution pages was not very accurate. Inspection of the process
showed that most of these pages were not really misclassified, but not yet assigned
to a stage. In the stage optimization step these unclassified pages were assigned to a
stage and all misclassifications were repaired. In the end all pages were assigned to the
correct stage. These results lead to the conclusion that the stage discovery algorithm
can accurately discover the navigation stages of the SeniorGezond site from log files.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1 2 3 4 5 6 7 8

Fi
tn

es
s

Number of stages

Average likelihood
Part regular transitions

Alpha = 0.25
Alpha = 0.5

Alpha = 0.75

Fig. 7 The fitness of models with various numbers of stages and various values of α for the
SeniorGezond data

Table 3 The accuracy of the
stage discovery algorithm on
the pages of the SeniorGezond
site

Step Accuracy

Problems Solutions Products Total

Stage construction 0.90 0.45 0.98 0.86
Stage optimization 1.00 1.00 1.00 1.00

Discovering stages in web navigation 199

6 Discovering stages for a hardware comparison site

We replicated the Senior Gezond experiment with pages and tasks in a second domain.
The site we used in this experiment contains information about computers and prod-
ucts related to computers such as printers and digital cameras. The site not only
provides information about specific products and terminology, but also about the
importance of the various features of the products.

The site consists mainly of four page types. The so called howto pages tell the users
how to buy a product from some category. They discuss the different types of products,
the importance of the features for various purposes and explain the terminology used
to describe the features. For instance, the ‘How to buy a printer’ pages explain the
difference between laser printers and inkjet printers and advice the users on which
type of printer to buy in which situation. In addition, they explain the importance of
features such as resolution and cartridge capacity. The overview pages provide a site-
by-site comparison between a number of top-rated products. For example, the laser
printer overview pages show small photos of ten laser printers and list briefly the most
important features of each printer. The most specific pages are the product pages.
These pages contain detailed information about single products. The full specifica-
tions of the products are given and for some products a series of photos is provided.
Besides these three types of structured pages, the site also contains a number of news
articles. These address a wide variety of topics, including new developments, trends
and opinions.

Users who want to buy a product without being an expert in the area of the product
can first explore the domain by reading the howto pages. Once they have an idea of
their needs in terms of product features, they can use the overview pages to select some
promising products. Finally, they can make a decision based on the specific product
features. This scenario suggests that the howto pages form the first navigation stage,
the overview pages the second and the product pages the third stage. The role of the
news pages is less clear.

Despite the natural order of the page types, the hardware site does not provide
a stage-oriented menu. All four page types are represented as top level items in the
site’s menu. The links to the howto pages are not emphasized, so that the user is given
no clue about what pages are good starting points. In contrast, a stage-oriented menu
would guide the users from the howto pages via the overview pages to the product
pages. Such a menu could potentially reduce the users’ efforts needed to find the pages
that are relevant in each stage of the search process.

To see whether users are indeed inclined to visit the hardware pages in some order
we conducted an experiment parallel to SeniorGezond experiment. For this experi-
ment we selected howto, overview, product and news pages from eleven product cate-
gories. Again we removed the menu and link structure from the pages and replaced it
by a flat menu that did not impose or suggest any visiting order. The number of pages
in the hardware comparison experiment was much larger than in the SeniorGezond
experiment (303 vs. 120), which made it much harder for the participants to locate
the useful pages. With this number of pages selecting a page from an alphabetic list
of links to all pages of the site would take to long. Therefore, we added a selection
facility, which allowed the participants to enter keywords and only view links to pages
that contained the keywords. The selected links were still ordered alphabetically and
not by relevance, so that the link order did not bias the participants’ choices.

200 Vera Hollink et al.

Thirty-one participants performed ten search tasks. In each task the participants
played the role of a person who wanted to buy a product for some purpose, but who
was not knowledgeable in the domain. An example of a task description can be found
in Appendix B. The experiment resulted in 288 sessions with an average of 6.4 page
views per session (after revisit removal). These figures are comparable to the figures
of the Senior Gezond experiment. However, the hardware comparison site contained
more pages than the SeniorGezond site, so that the individual pages were visited less
frequently as shown in Table 4.

Figure 8 shows the distribution of the ARPs of the four page types of the hardware
site. The figure confirms our hypothesis that the howto pages are visited mostly in the
beginning of the sessions, the overview pages in the middle and the product pages in
the end. Another interesting finding is that the news pages did not seem to belong to
a navigation stage, but were visited throughout the sessions. We did not include the
transition matrix here, but it shows the same patterns.

The stage discovery algorithm was applied to the log data. Figure 9 shows the fit-
ness of models with various numbers of stages. The models with 6 and 8 stages have
a fitness of 0. In these cases the solutions of the EM algorithm were not valid stage
models, because one of the model components had zero probability (see Sect. 4.2.2).
Unfortunately, the model with three stages did not have the highest fitness with any
value of α. The algorithm comes closest to the correct solution when an α of 0.25 is
used, which coincides with the optimal value found in the SeniorGezond experiment.

Table 4 The number of pages
and page visits per page type in
the hardware comparison
experiment after removal of
revisits

Page type No. pages No. visited No. visits Avg. no.
pages visits per

visited page

Howtos 44 40 543 13.6
Overviews 27 26 359 13.8
Products 136 122 804 6.6
News 96 59 136 2.3
Total 303 247 1842 7.5

0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

0 0.2 0.4 0.6 0.8 1

R
el

at
iv

e
fr

eq
ue

nc
y

Average relative position in bins of 0.055

Howto
Overview
Products

News

Fig. 8 The distribution of the ARPs of the pages in the log data of the hardware comparison
experiment

Discovering stages in web navigation 201

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1 2 3 4 5 6 7 8

Fi
tn

es
s

Number of stages

Average likelihood
Part regular transitions

Alpha = 0.25
Alpha = 0.5

Alpha = 0.75

Fig. 9 The fitness of models with various numbers of stages and various values of α for the hardware
comparison data

Table 5 The accuracy of the
stage discovery algorithm on
the pages of the hardware
comparison site

Step Accuracy

Howto Overview Products Total

Stage construction 0.78 0.69 0.61 0.66
Stage optimization 0.90 0.88 0.69 0.76

The average likelihood and proportion regular transitions in Fig. 9 follow less smooth
courses than the ones of the SeniorGezond data. This is most likely due to the smaller
numbers of visits per page, which makes the ARP values less accurate and the bound-
aries of the stages less sharp. In the next section, the negative effect of small amounts
of data is shown in simulation experiments.

Subsequently, we evaluated how accurate the stage discovery algorithm could find
the stages, when the optimal number of stages was known. The algorithm was applied
to the experimental data and assigned all visited pages to a stage. We limit the compu-
tation of the classification accuracy to the howto, overview and product pages, because
the news pages do not have a correct stage. Ideally the algorithm would recognize
automatically which pages belong to a particular part of the sessions and which pages
are visited throughout the sessions, but the current version does not yet include this
feature.

The accuracy of the classification after stage construction and stage optimization is
shown in Table 5. The algorithm assigned 76% of the pages to the correct stage. The
classification of the howto and overview pages was very accurate, but the classification
of the product pages proved more difficult. This difference can be explained by the
fact that the howto and overview pages are visited twice as much as the product pages
(see Table 4). More visits per page make the ARP values more accurate and provide
more evidence during the optimization phase. This fact also explains the difference
with the accuracies found in the SeniorGezond experiment. In the next section, we
evaluate the effect of the number of pages on the accuracy in detail.

The effect of the size of the log files can be seen in Fig. 10. This plot was created
by running the stage discovery algorithm on randomly selected parts of the hard-
ware comparison log. Adding more data dramatically improves the accuracy of stage

202 Vera Hollink et al.

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 50 100 150 200 250 300

A
ve

ra
ge

 a
cc

ur
ac

y

Number of training sessions

Stage construction
Stage optimization

Fig. 10 The average accuracy with various numbers of sessions taken from thelog data of the hardware
comparison experiment

construction and stage optimization. The figure suggests that at 288 sessions the accu-
racy of the classification has not yet reached a maximum and can be improved by
adding more data.

In conclusion, we found strong indications that the various page types of the hard-
ware comparison site are used during different navigation stages. The stage discovery
algorithm is capable of finding the foundations of the stage structure, although more
data is necessary to automatically determine the optimal number of stages. The dis-
covered stage structure can be used to build a stage-oriented menu, which matches
the users’ search patterns (see Sect. 8). Such a menu might provide better guidance
to the users than the currently available topic-based menu.

7 Analysis of the sensitivity of the method

The previous sections discussed applications of our method to pages taken from
existing sites. In this section, we analyze the sensitivity of the method to several
characteristics of the data using artificial data.

The behavior of users is simulated with a finite state automaton. The automaton
consists of an ordered set of states and a transition function. The states in the autom-
aton correspond to navigation stages. The transition probabilities between the states
stand for the probabilities of going from a page in one stage to a page in another stage.
The transition probabilities are determined by three parameters: the probability of
staying in the same stage, pstay, the probability of going to the next stage, pproceed, and
the probability of going to any other stage, pjump. Each state consists of a set of pages.
All pages in a state have equal probability of being visited. Thus, the probability of
visiting a page p in stage s is the probability of going to stage s divided by the number
of pages in s. Figure 11 shows an example of an automaton with three states.

The automata are used to generate sets of user sessions (log files). The generation
process starts with an empty session in the start state. A state transition is performed
with the probabilities determined by the transition function. If the new state is a con-
tent state a page is randomly selected from the new state and added to the session.
Then a second state transition is performed, etc. A session is complete when the stop
state is reached.

Discovering stages in web navigation 203

Fig. 11 A simulation model with three content states. States are represented by circles, pages in the
states by dots. All unlabeled arrows have probability pjump/2

Simulation models with various characteristics are used to generate data sets for
the sensitivity tests. In each case the reference data set is the one that is most similar to
the SeniorGezond data. Like the SeniorGezond site, the model for the reference set
has 3 stages with respectively 10, 20 and 60 pages. It is used to generate 244 sessions.
Furthermore, the probability of going to a random stage (pjump) is set at the value
found in the Seniorgezond data, 0.136. The values of pstay and pproceed are adjusted,
so that the average length of the sessions in the reference data set becomes equal to
the average length of the SeniorGezond sessions.

7.1 Finding the number of stages

To determine under which conditions the right number of stages is found we used
the simulation model to generate log files with various numbers of stages and various
numbers of sessions. We had the stage discovery algorithm choose between models
with one to six stages. We repeated each experiment 50 times and evaluated in how
many cases the algorithm was able to find the correct number of stages.

Figure 12 shows the part of the log files for which the correct number of stages
was found when the real number of stages was 3. Best results are achieved with an α

between 0 and 0.5, in other words when the likelihood of the Gaussian mixture was
weighted more heavily than the proportion regular transitions. Within this range the
algorithm is robust against small changes in the value of α. This confirms our claim
that the α of 0.25 can be used safely in new domains. The estimation of the number
of stages becomes much more accurate if more training sessions are available. From
Fig. 13 we can see why: when more data is available each page is visited more often
so that the deviations of the ARPs of the pages in the various stages are smaller. This
results in larger ‘gaps’ between the ARPs of the pages from different stages which
makes the stages more easily separable.

In the next experiment, we varied the number of stages by adding more stages
with 20 pages between the first and the last stage. As visible in Fig. 14, the higher the
number of stages, the more difficult it is to find the correct number of stages. When
there are more stages, the means of the ARPs of the pages of the stages lie closer
together, while the variance does not change. This increases the overlap between the
stages which makes the individual stages harder to distinguish. To be able to discover
models with more stages, better estimations of the ARP values are necessary. As
Fig. 14 shows, this can be accomplished by acquiring larger log files.

204 Vera Hollink et al.

0

 0.2

 0.4

 0.6

 0.8

1

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

Pr
ec

is
io

n

Alpha

244 sessions
500 sessions

1000 sessions
1500 sessions
2000 sessions

Fig. 12 Part of the experiments in which the correct number of stages is found with various numbers
of sessions and various values of α

 0

 0.2

 0.4

 0.6

 0.8

 1

 2000 1500 1000 500 244 100M
ea

n
an

d
st

an
da

rd
 d

ev
ia

tio
n

of
 A

R
Ps

Number of sessions

Fig. 13 The average mean and standard deviation of the ARPs of the pages from three stages and
various amounts of training sessions

0

 0.2

 0.4

 0.6

 0.8

1

1 2 3 4 5 6

Pr
ec

is
io

n

Number of stages

244 sessions
500 sessions

1000 sessions
2000 sessions

Fig. 14 Part of the experiments in which the correct number of stages is found with various numbers
of stages, various numbers of sessions and an α of 0.25

Discovering stages in web navigation 205

7.2 Page classification

In this section we evaluate the accuracy of the stage assignment when the number of
stages is known. All presented accuracies are averages over 50 generated log files.

First, we look at the effects of stage construction and stage optimization on the
logs generated with the reference model. Figure 15 plots the distribution of the accu-
racy over 50 runs. After stage constructions most runs have an accuracy of around
0.7.The optimization step makes some runs much better and others much worse. This
is a direct consequence of the bootstrapping method. When enough pages are classi-
fied correctly, misclassified pages have a large probability of occurring between two
correctly classified pages and being fixed. On the other hand, when too many pages
become misclassified, the stage of correctly classified pages can be changed, so that
even more pages become misclassified. This ‘snowball’ effect results in large numbers
of very good and very bad runs and relatively small numbers of mediocre runs.

In the second experiment, we varied the number of sessions per log file. Figure 16
shows the accuracy after stage construction and stage optimization. Both accuracies
are higher when more training data is available. The effect on the optimized accuracy
is stronger, because bootstrapping benefits from more data as well as a better initiali-
zation. These effects are similar to the ones found for the hardware comparison data
in Sect. 6.

We varied the total number of pages while keeping the ratio between the numbers
of pages in the three stages fixed. The results (after optimization) are presented in
Fig. 17. If there are more pages, the available data per page is less, which results in a
decrease in construction accuracy. When there are many pages the optimized accu-
racy suffers from the lower construction accuracy. At the same time more pages also
mean that there is more data available for the bootstrapping phase. As can be seen
in Fig. 17, these two opposite effects make that the algorithm performs optimal when
the number of pages is about 50.

In the next experiment again the number of pages was varied, but in this case pages
were only added to the second stage. Figure 18 shows that the classification accuracy
decreases when the number of pages in the stages become unbalanced. There are two
reasons for this effect. First, if one stage has much more pages than the others, there is

0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
el

at
iv

e
fr

eq
ue

nc
y

Accuracy in bins of 0.1

Stage construction
Stage optimization

Fig. 15 The distribution of the accuracy over 50 simulation runs

206 Vera Hollink et al.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 800 1600 2400 3200 4000 4800

A
ve

ra
ge

 a
cc

ur
ac

y

Number of sessions

Stage construction
Stage optimization

Fig. 16 The average accuracy with various numbers of sessions

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1

0 50 100 150 200 250

A
ve

ra
ge

 f
in

al
 a

cc
ur

ac
y

Total number of pages

100 sessions
244 sessions
500 sessions

1000 sessions

Fig. 17 The average accuracy with various numbers of pages (varied in all stages)

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1

 50 100 150 200 250

A
ve

ra
ge

 f
in

al
 a

cc
ur

ac
y

Total number of pages

100 sessions
244 sessions
500 sessions

1000 sessions

Fig. 18 The average accuracy with various numbers of pages (varied in the second stage)

Discovering stages in web navigation 207

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

A
ve

ra
ge

 f
in

al
 a

cc
ur

ac
y

P_jump

100 sessions
244 sessions
500 sessions

1000 sessions

Fig. 19 The average accuracy with various values for Pjump

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1

2 3 4 5 6 7 8

A
ve

ra
ge

 f
in

al
 a

cc
ur

ac
y

Number of stages

100 sessions
244 sessions
500 sessions

1000 sessions

Fig. 20 The average accuracy with various numbers of stages

relatively little data about the pages in the large stage. The large number of imprecise
ARP values hinders the stage construction. Second, EM assigns a large probability
to the large stage. Because of this more pages from the smaller stages are classified
incorrectly as pages from the large stage than vice versa. During bootstrapping this
effect is magnified, so that the large stage ‘swallows’ the smaller stages. Fortunately,
the figure also shows that these effects are less likely to occur when more data is
available.

We made the behavior of the simulated users less predictable by increasing the
probability of making irregular stage transitions (pjump). Figure 19 shows the results
of varying the value of pjump, while keeping the ratio between pstay and pproceed
constant. Imprecise ARP values resulting from large numbers of irregular transitions
reduce the construction accuracy. In the optimization step the algorithm suffers both
from the reduced construction accuracy and from the many irregular transitions in
the data. All together, the accuracy drops when the percentage irregular transitions
exceeds a certain maximum, but irregularity can be compensated for by adding more
log data.

In the last experiment, the number of stages was varied by adding more stages with
20 pages between the first and the last stage. From Fig. 20 we can see that there is

208 Vera Hollink et al.

a maximum number of stages that can be learned with a certain amount of training
data. With high numbers of stages the stage boundaries become very tight compared
to the deviation of the ARPs. Since more data makes the deviation smaller, more
stages can be learned if more training sessions are available.

In summary, the algorithm appears to be sensitive to irregularities in the data and
the complexity of the site and the navigation. However, these problems can be over-
come by providing more training data. This is a promising result, as log files of web
sites are typically very noisy but also extremely large.

8 Building problem-oriented navigation structures

The previous sections discussed how pages of a web site can be divided into
navigation stages on the basis of the pages’ usage. In this section we demonstrate
how a discovered stage structure can be used to create a menu that guides a site’s
visitors through the navigation stages.

In Fig. 1, we showed the structure of the problem-oriented menu of the Senior
Gezond site. The tree like structure can be decomposed into two orthogonal struc-
tures. The vertical layers represent the navigation stages: the left most layer contains
the problem pages, the middle layer the solutions and the right most layer the prod-
ucts. The horizontal structure represents the pages’ topics. Below each problem page
we find the solution pages that treat the same subject as the problem page and below
each solution we find the products that implement the solution. The topic structure
and the stage structure are orthogonal: topics stretch over multiple stages and stages
contain pages from all topics.

To construct a problem-oriented menu for a site one needs to divide the site’s
pages along both dimensions. The stage discovery algorithm can be used to form
the stages. The topics can be taken from the site’s topic-based menu, if such a menu
is available. Otherwise, a topic structure can be found with traditional content- or
usage-based clustering methods, for example with the ones used in Mobasher et al.
(2002), Perkowitz and Etzioni (2000)and Pierrakos and Paliouras (2005).

The experiments in section 5 showed that the stage discovery algorithm was able
to find the stage structure of the SeniorGezond menu. By combining the stages with
the site’s topic structure the problem-oriented menu of the SeniorGezond site can be
reconstructed. Ezendam et al. (Ezendam et al. 2005; Alpay et al. 2005) showed that
the addition of this menu to the SeniorGezond site made it significantly easier for the
users to find their way through the site. This shows that at least in this case the stage
discovery algorithm was able to find a valuable and effective stage structure.

To demonstrate that the stage discovery algorithm also produces meaningful menus
in other domains we built a problem-oriented menu for the hardware comparison
site. We used the stage structure with three stages as it was discovered in Sect. 6.
The topic structure was created with the PACT approach of Mobasher et al. (2002).
We did not evaluate other clustering techniques, since our goal was not optimize the
topic structure but to demonstrate how stages and topic clusters are combined into
a stage-oriented navigation structure. According to the PACT methodology, the ses-
sions were first clustered on the basis of the cosine similarities between the vectors
of visited pages. Subsequently, each session cluster was characterized by the pages
that were visited frequently in the sessions in the cluster. This resulted in 18 partially
overlapping page clusters.

Discovering stages in web navigation 209

Table 6 Part of the stage and topic structures for the hardware comparison site with a few classified
pages

Topic cluster 1 Topic cluster 2 · · ·
Stage 1 How_to_Buy_a_Printer_–_ How_to_Buy_a_Digital_

Shopping_Tips.html Camcorder_–_Introduction.html
How_to_Buy_a_Printer_–_ Affordable_Camcorders.html
The_ Big_Picture.html
How_to_Buy_a_Printer_–_ How_to_Buy_a_Digital_
The_ Specs_Explained.html Camcorder_–_The_Specs_

Explained .html

Stage 2 Top_10_Ink_Jet_Printers_–_ Top_9_Digital_Camcorders_–_
Chart.html List.html
Top_5_Affordable_All–purpose_ JVC_GR–D72US.html
Printers_–_Chart.html
Top_10_Ink_Jet_Printers_–_ Top_9_Digital_Camcorders_–_
List.html Chart.html

Stage 3 Canon_i455_Desktop Sony_DCR–HC20_MiniDV_
Photo Printer.html Handycam.html
Canon_Pixma_iP1500.html Sharp_VL–Z800U.html
Canon_i860_Desktop_ Panasonic_PV–DV953.html
Photo_ Printer.html

Table 6 shows 2 topics of the combined stage and topic structures for the hardware
comparison site. Due to space limitations not all pages in the visible cells are shown.
The stage classification in Table 6 is not perfect. The first stage of topic 2 contains the
news page, ‘Affordable_Camcorders.html’ and the overview stage contains the product
page ‘JVC_GR–D72US.html’. In spite of these misclassifications, overall the intended
stage structure is clearly visible. The topic clusters are also easy to interpret: cluster 1
contains pages about printers and cluster 2 contains pages about digital camcorders.

Figure 21 shows a part of the menu that was created from the matrix. The stage
headings are added by hand. In the situation of Fig. 21 the user has first clicked on
‘How to Buy a Printer–The Big Picture’. When he clicked the link the page was shown
and the menu below the link opened to reveal three links to overview pages. From
these the user selected ‘Top 5 Affordable All-purpose Printers–Chart’ and got access
to three product links. Finally, he selected the product ‘Canon i860 Desktop Photo
Printer’. This example demonstrates that the menu indeed behaves as intended: at
each step it shows the pages that are both relevant for the user’s task and match the
user’s navigation stage.

The results of the user experiment presented in section 6 indicated that users of
the hardware site tend to go through a number of stages when searching for informa-
tion. The problem-oriented menu supports this pattern by showing the pages in their
natural order. The results in Ezendam et al. (2005) and Alpay et al. (2005) show that
this can considerably facilitate the users navigation processes. Therefore, we believe a
problem-oriented menu like the one presented here can be a valuable addition to the
hardware comparison site. However, detailed usability studies are necessary to con-
firm that the stage menu works also in the hardware domain. In specific, the objective
navigation efforts and the subjective experiences of visitors using a problem-oriented
menu should be compared to the experiences of visitors using a topic-based structure.

210 Vera Hollink et al.

Fig. 21 Part of the automatically constructed stage-oriented menu for the hardware comparison site

Besides the presented navigation menus, stage structures can also provide order
information in other types of menus or even other navigation means. The presented
menus are difficult to use if too many pages belong to the same stage and topic. In
this case the lists of menu items should be subdivided into subtopics. A user now first
selects a category before she sees the pages from her current stage and topic. An
example of an alternative problem-oriented navigation means is a wizard style inter-
face that helps users step-by-step to formulate their information needs. The stages
can also be used to rank the results of a site search engine or recommender system
in such a way that links that match the user’s current navigation stage appear at
the top of the list. In any case the navigation structures allow the users to navigate
trough the site and the stages assist this process by presenting the pages in the right
order.

9 Conclusions and discussion

Most web sites provide a topic-based menu as the primary means of navigation. They
aim to make all content reachable in a small number of clicks. Topic-based structures
are efficient when users know what information they want and the menu is only used
to reach the relevant links. However, users do not always know exactly what they
are looking for and what the site has to offer. For these users a topic-based naviga-
tion structure is not ideal, as they often experience great difficulties translating their
information needs into the site’s topics Alpay et al. (2004).

In Ezendam et al. (2005) an alternative navigation structure is presented that not
only aims at making the information reachable but also guides the users through the
available information. Ezendam shows that this structure significantly facilitates the
navigation process in the domain of falling accidents.

Based on the structure in Ezendam et al. (2005) we created the stage model pre-
sented in this paper. According to this model users’ navigation processes can be
decomposed into a number of navigation stages. Each stage is characterized by a
distinct set of pages. We provide an efficient and scalable algorithm to learn the
parameters of the model for a given web site. The algorithm divides the set of pages
of the site into a number of navigation stages on the basis of the observed usage of
the pages in site’s server logs. We demonstrate how a filled in model can be used to
create a problem-oriented navigation menu.

Discovering stages in web navigation 211

The stage discovery algorithm was evaluated in a series of experiments. The
algorithm proved to be able to find stage structures in log data from user experi-
ments conducted in two very different domains. Simulation experiments showed that
the algorithm is able to discover stages in noisy data as long as enough log data is
provided. These results indicate that the stage discovery algorithm is an adequate
method to automatically create problem-oriented navigation structures for a wide
range of domains.

Although the results of the stage discovery algorithm are encouraging, some issues
remain unsolved. First, the sites that were used for the data collection in the user
experiments were stripped of all navigation structures to exclude the possibility that
the discovered patterns were imposed by the sites’ structures. However, for real web
sites this is a rare situation. Web sites for which a stage-oriented menu is created most
likely provide some navigation means that allow the users to browse through the site.
The algorithm can be applied without modification to sites which structures do not
force the users to follow a specific path through the site, such as topic-based menus and
site search engines. More problematic are sites with in-text links and other sequential
structures that require that the users click through a series of pages before they can
reach the pages they actually want to visit. Such structures bias the navigation behav-
ior of the users and consequently the patterns found in the log files. More research
is needed to determine how large the influence of these biases is on the discovered
stage patterns and how they can be compensated for.

From Ezendam et al. (2005) and Alpay et al. (2005) we know that in the falling
accident domain the stage-oriented menu has a positive effect on the users’ naviga-
tion experiences. However, we do not know for sure whether stage structures will
have the same effects in other domains. We expect that in any domain where users
enter a site without knowing exactly what information they need the users will navi-
gate from pages which give an overview of the available options to pages with more
specific content. We believe that for these users problem-oriented menus can pro-
vide useful guidance, but detailed usability studies are necessary to confirm this. In
particular we need to compare the navigation efforts and navigation experiences of
visitors using a stage-oriented structure to the efforts and experiences of visitors using
a topic-oriented structure.

Other directions of further research involve the extension of the stage discovery
algorithm. One point that needs improvement is that in the current version all pages
of a site are assigned to a navigation stage. In our experiments we found that some-
times there are pages that do not belong to a particular stage but are used throughout
the sessions. The next version of the algorithm will use the standard deviations of
the pages’ ARP values to determine whether a page should be assigned to a stage or
placed somewhere outside the stage-oriented menu.

Another point that needs to be addressed is the creation of menus for sites where
some users do not know what they are looking but others have very specific informa-
tion needs. This situation poses two challenges. For the discovery algorithm the stage
patterns become harder to distinguish because they are not visible in the sessions of
the users with specific questions. Menu creation becomes more complicated because
the menu should now accommodate both user types. We are planning to handle the
first challenge by running the algorithm only on sessions which at first sight seem to
follow a meaningful pattern. This extra bootstrapping cycle will boost the algorithm’s
robustness to noise and at the same time make it more efficient. An easy solution
to the second challenge is to include two separate menus for the two user types.

212 Vera Hollink et al.

However, choosing between the two menus requires extra effort on the users’ part.
The best solution would be to identify the users’ search types very early in the sessions
and adapt the interface style to their personal needs. We are currently investigating
the possibility to recognize various users types.

The last and maybe most tricky issue is the creation of labels for the stages. Like
most clustering methods the stage algorithm creates groups of pages, but a human is
needed to interpret the groups and provide labels. Automating the labeling involves
identifying the role that the pages play in the users’ navigation. Topic clusters can to
some extent be characterized by words that occur frequently on the pages or in the
pages’ annotations, e.g., Perkowitz and Etzioni (2000), Pierrakos and Paliouras (2005).
For stage clusters extracting the labels from the pages’ contents is more complicated,
because the pages’ roles are often not mentioned explicitly.

Acknowledgements We would like to thank Stephan ten Hagen for his contributions during the early
stages of this research. Furthermore, we thank Laurence Alpay, Nicole Ezendam, Ton Rövekamp,
and Marcel Hilgersom for their valuable comments. This research is supported as ToKen2000 project
by the Netherlands Organization for Scientific Research (NWO) under project number 634.000.006.

Appendix

A Example assignment from the SeniorGezond experiment

Mister Jansen is 82 years old. He is living with his wife in an apartment for seniors
on the ground flour. He has got up early to visit his grandson’s birthday. At half past
nine his daughter picks him up by car. He had to give up cycling and driving years ago
because of his poor sight and rheumatism. He walks towards the car on his daughter’s
arm and opens the door. When he tries to bend over to enter the car, he suddenly
slips. He makes a nasty fall on his elbow and feels a severe pain. Scared to death his
daughter calls an ambulance.

Soon after their arrival in the hospital mister Jansen is seen by a doctor. The doctor
takes pictures of mister Jansen’s arm and concludes that it is broken at two places,
but the segments are not displaced. The arm is placed in a cast and mister Jansen
receives a recipe for pain killers. From all the events mister Jansen is very tired and
his daughter decides to bring him home. On the way home they drive by the drugstore
to pick up the pain killers.

The next day mister Jansen feels already much better, but he is still worried about
the whole event. He visits the SeniorGezond site to see whether the site can help him
to make sure accidents like this won’t happen again. Play the visit of mister Jansen to
the SeniorGezond site.

B Example assignment from the hardware comparison experiment

You have a small law firm with four employees. You have bought a new computer
with a new system to document your cases. To make sure the old paper documenta-
tion does not get lost, you decide to buy a scanner and save it all on cd. You want a
scanner suitable for this purpose, but you don’t know anything about scanners. Find
an appropriate scanner.

Discovering stages in web navigation 213

References

Alpay, L.L., Toussaint, P.J., Ezendam, N.P.M., Rövekamp, A.J.M., Graafmans, W.C., Westendorp,
R.G.J.: Easing internet access of health information for elderly users. Health Informatics J. 10(3),
185–194 (2004)

Alpay, L.L., Ezendam, N.P.M., Zwetsloot-Schonk, J.H.M.: Final report of the Geriwijzer/Senior
Gezond project.Technical Report, Leiden University Medical Center, Leiden, The Netherlands
(2005)

Anderson, C.R., Domingos, P., Weld, D.S.: Adaptive web navigation for wireless devices. Proceedings
of the Seventeenth International Joint Conference on Artificial Intelligence, pp. 879–884. Seattle,
Washington, USA (2001)

Anderson, C.R., Horvitz, E.: Web montage: a dynamic personalized start page. Proceedings of the
11th International Conference on World Wide Web, pp. 704–712. Honolulu, Hawaii, USA (2000)

De Bra, P., Calvi, L.: AHA! an open adaptive hypermedia architecture. New Rev Hypermedia
Multimedia 4, 115–139 (1998)

Brusilovsky, P.: Adaptive hypermedia. User Model. User-Adapt. 11(1–2), 87–110 (2001)
Brusilovsky, P., Eklund, J., Schwarz, E.: Web-based education for all: a tool for developing adaptive

courseware. Proceedings of the Seventh International World Wide Web Conference, pp. 291–300.
Brisbane, Australia (1998)

Cadez, I., Heckerman, D., Meek, C., Smyth, P., White, S.: Model-based clustering and visualization of
navigation patterns on a web site. Data Mining Knowledge Discovery 7(4), 399–424 (2003)

Carroll, J.D.: Individual differences and multidimensional scaling. Multidimensional Scaling: Theory
Appl. Behav. Scio. 1, 105–155 (1972)

Choo, C., Detlor, B., Turnbull, D.: working the web: an empirical model of web use. Proceedings of
the 33rd Hawaii International Conference on System Sciences. Maui, Hawaii (2000)

Clancey, W.: Heuristic classification. Artif. Intell. 27(3), 289–350 (1985)
Cooley, R., Mobasher, B., Srivastava, J.: Data preparation for mining world wide web browsing

patterns. J. Knowledge Inform. Syst. 1(1), 5–32 (1999)
Deshpande, M., Karypis, G.: Selective Markov models for predicting web page accesses. ACM Trans.

Internet Technol. 4(2), 163–184 (2004)
Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the EM algorithm.

J. Roy. Stat. Soc. 39, 1–38 (1977)
Domshlak, C., Joachims, T.: Efficient and non-parametric reasoning over user preferences. This issue.
Ezendam, N.P.M., Alpay, L.L., Rövekamp, A.J.M., Toussaint, PJ.: Enhancing accessibility of the

content of a fall prevention website for elderly: a cross sectional study. Technical Report, Leiden
University Medical Center, Leiden, The Netherlands (2005)

Herder, E.: Sniffing around for providing navigation assistance. Proceedings of the Workshop on
Adaptivity and User Modeling in Interactive Systems, pp. 20–24. Berlin, Germany (2004)

Hollink, V., van Someren, M., ten Hagen, S.: Discovering stages in web navigation. Proceedings of
the 10th International Conference on User Modeling, pp. 473–482. Edinburgh, UK (2005a)

Hollink, V., van Someren, M., ten Hagen, S., Wielinga, B.: Recommending informative links.
Proceedings of the IJCAI-05 Workshop on Intelligent Techniques for Web Personalization,
pp. 65–72. Edinburgh, UK (2005b)

Jin, X., Zhou, Y., Mobasher, B.: Task-oriented web user modeling for recommendation’. Proceedings
of the 10th International Conference on User Modeling, pp. 109–118. Edinburgh, UK (2005)

Mobasher, B., Dai, H., Luo, T., Nakagawa, M.: Discovery and evaluation of aggregate usage profiles
for web personalization. Data Mining Knowledge Discovery 6, 61–82 (2002)

Perkowitz, M., Etzioni, O.: Towards adaptive web sites: conceptual framework and case study. Artif.
Intell. 118, 245–275 (2000)

Pierrakos, D., Paliouras, G.: Exploiting probabilistic latent information for the construction of
community web directories. Proceedings of the 10th International Conference on User Modeling,
pp. 89–98. Edinburgh, UK. (2005)

Pierrakos, D., Paliouras, G., Papatheodorou, C., Spyropoulos, C. D.: Web usage mining as a tool for
personalization: A survey. User Model. User-Adapt. 13(4), 311–372 (2003)

Pirolli, P., Fu, W.-T.: SNIF-ACT: a model of information foraging on the world wide web. Ninth
International Conference on User Modeling, pp 45–54. Johnstown, USA (2003)

Pitkow, J.E., Pirolli, P.: Mining longest repeated subsequences to predict world wide web surfing.
Proceedings of the Second USENIX Symposium on Internet Technologies and Systems,
pp. 139–150. Boulder, USA (1999)

214 Vera Hollink et al.

Sarukkai, R.: Link prediction and path analysis using markov chains. Proceedings of the Ninth
International World Wide Web Conference, pp. 377–386. Amsterdam, The Netherlands (2000)

Schwab, I., Pohl, W.: Learning user profiles from positive examples. Proceedings of the ACAI’99
Workshop on Machine Learning in User Modeling, pp. 15–20. Chania, Greece (1999)

Ypma, A., Heskes, T.: Automatic categorization of web pages and user clustering with mixtures of
hidden markov models. Lecture Notes in Computer Science, 2703, 35–49 (2003)

Zhu, T., Greiner, R., Häubl, G.: Learning a model of a web user’s interests. Proceedings of the Ninth
International Conference on User Modeling, pp. 65–75. Johnstown, USA (2003)

Authors’ vitae

Vera Hollink is a Ph.D. student at the Human-Computer Studies Laboratory of the University of
Amsterdam. In 2002 she received her M.S. degree in Artificial Intelligence from the same university.
During her master’s studies she has been involved in projects on information retrieval and natural
language processing. Her Ph.D. project focuses on the use of machine learning techniques to automati-
cally improve link structures of web sites. The current work reports on the outcomes of her Ph.D. work.

Maarten van Someren is Assistant Professor of Artificial Intelligence at the University of Amsterdam,
working mainly in the area of Machine Learning. Since 1985 he has been a senior researcher and pro-
ject coordinator of the projects in Machine Learning, Knowledge Acquisition and Cognitive Modeling.
The research in this volume is part of an effort to apply Machine Learning to self-improving interfaces.

Bob J. Wielinga (1945) studied physics at the university of Amsterdam, where he was awarded a
Ph.D. degree cum laude in 1972 for a thesis in nuclear physics. In 1977, Wielinga was appointed senior
lecturer at the Department of Psychology of the University of Amsterdam. Since 1983,Wielinga has
performed research on the methodology of knowledge-based system design and knowledge acqui-
sition. In 1986, Wielinga was appointed full professor of Social Science Informatics in the Faculty
of Psychology. In this capacity Wielinga was and is team leader of several research projects, includ-
ing KADS, ACKnowledge, REFLECT and KADS-II. He was one of the main contributors to the
development of the KADS methodology for knowledge based system development.

