
User Model User-Adap Inter (2006) 16:249–280
DOI 10.1007/s11257-006-9009-2

O R I G I NA L PA P E R

Using shared representations to improve coordination
and intent inference

Joshua Introne · Richard Alterman

Received: 10 October 2005 / Accepted in revised form: 4 April 2006 /
Published online: 26 September 2006
© Springer Science+Business Media B.V. 2006

Abstract In groupware, users must communicate about their intentions and maintain
common knowledge via communication channels that are explicitly designed into the
system. Depending upon the task, generic communication tools like chat or a shared
whiteboard may not be sufficient to support effective coordination. We have previously
reportedonamethodologythathelpsthedesignerdeveloptaskspecificcommunication
tools, called coordinating representations, for groupware systems. Coordinating repre-
sentations lend structure and persistence to coordinating information. We have shown
that coordinating representations are readily adopted by a user population, reduce
coordination errors, and improve performance in a domain task. As we show in this
article,coordinatingrepresentationspresentauniqueopportunitytoacquireuser infor-
mation in collaborative, user-adapted systems. Because coordinating representations
support the exchange of coordinating information, they offer a window onto task and
coordination-specific knowledge that is shared by users. Because they add structure
to communication, the information that passes through them can be easily exploited
by adaptive technology. This approach provides a simple technique for acquiring user
knowledge in collaborative, user-adapted systems. We document our application of this
approach to an existing groupware system. Several empirical results are provided. First,
we show how information that is made available by a coordinating representation can
be used to infer user intentions. We also show how this information can be used to mine
free text chat for intent information, and show that this information further enhances
intent inference. Empirical data shows that an automatic plan generation component,
which is driven by information from a coordinating representation, reduces coordina-
tion errors and cognitive effort for its users. Finally, our methodology is summarized,
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and we present a framework for comparing our approach to other strategies for user
knowledge acquisition in adaptive systems.

Keywords Groupware · Knowledge acquisition · Adaptive user interfaces ·
Coordinating representations · Plan recognition

1 Introduction

Acquiring enough run-time information about the user to provide intelligent sup-
port is a central issue in building any adaptive system (Fischer 2001; Jameson 2002;
St. Amant and Young 2001). To tutor a student, a system needs to know the student’s
strengths and weaknesses; to offer context sensitive help, it needs to know what the
user wants to accomplish; to help find relevant content, it needs to know the user’s
interests. For a collaborative system to adapt to its users’ needs, it must have infor-
mation that is relevant to collaboration—information like the users’ shared goals,
common knowledge, or roles.

A major hurdle in the design of a user knowledge acquisition strategy is how to
encourage the user to furnish the information that the system needs without impairing
the overall usability of the system. There are numerous approaches to the problem.
Mixed initiative systems (e.g., Maes 1994; Horvitz 1999) often obtain information
through agents that engage the user to jointly solve a domain task (e.g., TRAINS,
Ferguson et al. 1996; LUMIERE, Horvitz et al. 1998; COLLAGEN, Rich and Sidner
1998). Intelligent tutorial systems exploit the information gained during the test-
ing process to derive models of students (e.g., Anderson et al. 1995). Multi-modal
systems (e.g., Bosma and Andre 2004) and affective interfaces (e.g., Kaiser 2005)
integrate other sources of information, like gestures and biometrics, to enhance the
information available to a back-end inference process.

In groupware systems, much of the information required to drive intelligent support
is already available in the communication that goes on between coordinating users
(see Alterman 2000). Unfortunately, most user communication occurs via unstruc-
tured channels such as chat or message boards, making it difficult for the system to
extract the necessary information. One solution is to enlist a human actor as inter-
preter for the system; for example, in the COPPER system (Read et al. 2006) a student
tutor evaluates a group process and provides this information in a form the system
can use. The student tutor performs the group evaluation as part of her role and the
system provides support for the activity.

However, it is not always possible to co-opt an individual’s existing domain task to
furnish the adaptive component with the structured information it needs at runtime.
In these cases it may be possible is to add more highly structured communication
channels to the system (e.g., Malone et al. 2001; Soller 2004). The structured infor-
mation generated by collaborators when using these channels can be leveraged to
populate user models and adapt the system. For instance, McLaren et al. (2006) show
how students’ use of a domain specific structure (Petri-nets or UML diagrams) can
be used to infer metrics of group effectiveness. Similarly, Suebnukarn and Haddawy
(2006) show how the collaborative use of a graph based interface tool can be mapped
directly into the system’s Bayesian Network based model of each student’s concep-
tual knowledge. In both of these systems, interface structure is leveraged to simplify
a back-end adaptive process.
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Identifying the right kind of structure to introduce at the interface is a hard design
problem. Care must be taken not to impair the users’ ability to communicate with one
another or perform their domain tasks, and there is no guarantee that the structure
which is introduced will provide the system with the runtime information it needs.
In this article, we describe a method for introducing structure that people will use,
that helps them stay coordinated, and at the same time provides useful information
to the adaptive system. The method hinges upon the development of task specific
communication tools that support the exchange of structured information relevant to
coordination. Because these artifacts add structure to communication, the informa-
tion that passes through them can be easily exploited by runtime algorithms. Because
the information is relevant to coordination in the task domain, it will be useful for
domain-specific intent inference. Here, we present a series of case studies demonstrat-
ing the approach in a testbed groupware environment.

1.1 Coordinating representations

There is a rich body of ethnographic research that describes how people design and
use structured artifacts to support specific and complex coordination as part of an
established work practice (Suchman and Trigg 1991; Goodwin and Goodwin 1996;
Hutchins 1995; Schmidt and Simone 1996). These kinds of artifacts have several com-
mon properties. They are external representations that address recurring problems
of coordination within a community. They make it easier for individuals to align
their private views of the world. There is a protocol that describes their typical use
within a particular community of practice. Following Suchman and Trigg (1991), we
refer to these kinds of artifacts as coordinating representations (CRs) (Alterman et al.
2001).

There are many examples of CRs in everyday life. The stop sign is a CR that helps
people to coordinate their behaviors at an intersection. The arrivals and departures
board at a train station supports coordination between many people and the opera-
tors of a railway terminal. The grocery list on the wall in the kitchen helps a couple
coordinate the activity of supplying a household. The stock market “ticker” helps
millions of people coordinate their market activities.

There are also many examples of CRs that have evolved over time to support
specialized communities. For instance, the complex sheet in an airport setting is an
example of a paper-based coordinating representation that helps coordinate transfers
of baggage and people between gates in an airport during “complexes” (Suchman
and Trigg 1991). Complexes are pre-scheduled periods of time during which all gates
fill with incoming planes, transfers are made, and then all planes depart. As shown in
Fig. 1, the complex sheet is a matrix mapping incoming to outgoing planes, and cells in
the matrix are used to indicate the transfer of people or baggage. Planes are ordered
chronologically along both axes, so completed transfers are checked off diagonally
downward and to the right across the cells of the matrix.

As computers have become common in work settings, computer-based coordinat-
ing representations have been developed. The bug-report form is a CR that is used by
software engineers to structure and monitor the progress of a software engineering
process. Shared calendars, call tracking databases, and inter-office wikis are all exam-
ples of general CRs that can be used to share information and improve coordination
within a multi-user environment.
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Fig. 1 The complex sheet (Suchman and Trigg 1991)

When CRs are introduced directly into a system’s communication channels, we are
able to enhance coordination both via the intrinsic usefulness of the CRs and also
by gathering information that a groupware system can then use to provide intelligent
support. This article discusses evidence of such expanded utility in one system and
describes a methodology that can be applied to develop adaptive components in other
groupware systems.

1.2 Organization of the argument

This work primarily concerned with how to acquire knowledge about users and their
at runtime context to drive intelligent algorithms, without creating unnecessary or
undesirable work for the users. The solution proposed is to modify the representa-
tional properties of the software system so as to both improve user coordination and
gain access to the necessary runtime information. Hence, a single design solution is
used to improve the system from the users’ perspective, and from the perspective of
the adaptive component designer.

To serve as a roadmap, an outline of the argument is provided here as a series of
questions and answers.

1. Question: How can adaptive support be added to a groupware system?
Answer: We infer users’ intentions.

2. Question: Where can the run-time user information required for intent inference
be obtained?
Answer: This information is available in unstructured communication channels,
but because it is unstructured it is difficult to access.

3. Question: How can this information be transformed so as to make it available to
the system?
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Answer: By introducing a structured communication channel in the form of a
coordinating representation.

4. Question: If users are provided with this more highly structured communication
channel, will they use it?
Answer: Yes, because the structure that is provided by the coordinating represen-
tation makes it easier for users to exchange some kinds of information.

5. Question: Can a coordinating representation be developed that does not impair
user performance?
Answer: Yes; in fact, CRs improve domain performance.

6. Question: Is the information that becomes available via the use of the CR useful
for intent inference?
Answer: Yes, because it offers a window onto task and coordination-specific
knowledge that is shared by users, and this knowledge is highly structured.

The results from case studies will be presented that confirm the answers to the above
questions, demonstrating that:

1. Users choose to use the coordinating representation over chat to exchange some
kinds of information (Sect. 4.1)

2. Using the coordinating representation helps users perform their task better. (Sect.
4.1)

3. The information provided by the coordinating representation enables intent infer-
ence with good accuracy. (Sect. 4.2)

4. An adaptive component that is driven by the information made available is heav-
ily used, improves performance in the domain task, and reduces cognitive effort.
(Sect. 5)

The article proceeds as follows. First, the domain, groupware platform, and asso-
ciated intent inference technique are presented. Some of the representational defi-
ciencies of the groupware system are then described; first from the perspective of the
user, and then from the perspective of the developer of an adaptive component. It
is then shown how a CR addresses these problems. Empirical data is presented that
demonstrates how the CR benefits the users, and how information derived from its
use improves intent inference. An adaptive component that uses information from
the CR is described, and further empirical data confirming the utility of the adaptive
component is presented. After a summary of the overall methodology, we provide a
framework for comparing this methodology to other approaches to building adaptive
systems. The article concludes with some final thoughts about the generality of the
approach and future work.

2 VesselWorld

The experimental platform used in these studies is a groupware system called Vessel-
World, in which three participants collaborate to remove toxic waste from a harbor.
VesselWorld was demonstrated at CSCW 2000 (Landsman et al. 2001). The platform
was designed with the goal of studying the coordination problems commonly faced by
groupware users. The domain task requires varying degrees and types of coordination,
collaborators have different roles and responsibilities, and coordinating information is
exchanged via a chat window. These features are highly relevant to the study of group-
ware systems in general. VesselWorld proved to be very challenging for its users; in
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Fig. 2 The VesselWorld system

our case studies, we found that the performance of a given user group usually did not
stabilize until after roughly seven hours of use (including a 2-hour training session).

VesselWorld presents a relaxed WYSIWIS environment, shown in Fig. 2, in which
three participants play the role of ship’s captains, and their joint goal is to remove
toxic waste barrels from a harbor without spillage. The main interface (“World View”
in the figure) is a shared map; the x (increasing to the west) and y-axes (increasing to
the north) indicate latitude and longitude respectively. Users are provided a private
“marker” facility so that they may annotate the world view with pertinent information
(see the “Marker” in the figure). Each ship can only “see” a small radius around its
current location (the darker circle marked “Visible Range” in the figure), so each user
has different directly observable domain information; hence users must communicate
to maintain shared information about wastes in the environment. Communication
may occur at any point, but all communication occurs through a text-based chat
window that is part of the system (“Chat Window” in the figure). VesselWorld logs
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complete interaction data that can be used to replay user activity. This later feature is
discussed further in Sect. 6.

The progression of a VesselWorld session is turn-based, such that every user must
submit a single step to the server before it evaluates them and updates the world on
each client screen. Users may plan any number of steps in advance, although each
step can only involve objects that are currently visible. Plans can be managed (steps
may be deleted or plans reset) via a separate planning window (“Planning Window”
in the figure). Users’ plans are not visible to each other, again requiring explicit
communication to manage coordinated plans.

A VesselWorld session is complete when all toxic waste barrels have been moved
to a large barge, which has a fixed position and unlimited capacity. Each ship has a
different role in this process. Two of the ships have cranes that can be used to lift toxic
waste barrels from the harbor and load them onto a barge. The third user is a tugboat
that can be used to drag small barges (which have limited capacity) from one place
to another. The crane operators can load multiple wastes onto the small barge, and
at least one of them must also be present to unload the barrels and place them on
the large barge. For notational convenience, we will occasionally refer to the crane
operators as “cranes,” the tugboat operator as the “tug,” and toxic waste barrels as
toxic wastes or simply wastes.

Wastes are of different types and require different coordination strategies to be
removed from the harbor. A single crane may lift a small or medium waste, but two
cranes must join together to lift and carry a large waste, and an extra large waste
may be jointly lifted but can only be carried on a small barge by the tug. Wastes may
require specialized equipment to be moved, and the cranes carry different types of
equipment. The tug is the only actor who can determine the type of equipment a waste
requires.

The users are scored by a function that takes into account the number of barrels
cleared, the number of steps this took, the number of errors (dropped waste barrels)
made, and the difficulty of the problem. In all user studies, the users were instructed
to try to maximize their score.

2.1 Intent inference in VesselWorld

Planning in VesselWorld is a laborious and error prone operation (Alterman et al.
2001). User errors often occur because of forgotten plan steps or joint plans that have
become unsynchronized. We sought to develop an automatic plan generation tool to
address these problems. A hurdle in making such a tool useful is that there are an
overwhelming number of potential goals for each user at any given time. Thus, an
intent inference procedure was developed to reduce the number of possible goals to
a manageable list from which users could then make a selection.

Bayesian Networks (BNs; Pearl 1988) were used to infer user intensions. BNs have
been used in numerous systems and in a variety of ways to perform plan recognition
(e.g., Charniak and Goldman 1993; Horvitz et al. 1998; Albrecht et al. 1998). The
approach taken here is straightforward. The BNs used in VesselWorld are static and
model the relationship between information about the state of the domain and users’
likely intentions. At runtime, information about the domain is posted to these models
for each agent-waste pair separately. The likelihood an agent has an intention with
respect to a given waste is read off one of the nodes in the network, and the intention
with the highest value for a given agent-waste pair is taken to be the most likely one



256 User Model User-Adap Inter (2006) 16:249–280

for that agent. New information is posted to the BN whenever a relevant change in
the world is detected.

Two BNs were developed, one which infers crane intentions and one which in-
fers tug intentions. Together, the two BNs can infer seven goal types; JOINT
LIFT (〈crane〉〈waste〉), LIFT (〈waste〉), JOINT LOAD (〈crane〉〈waste〉), and LOAD
(〈waste〉) for the cranes, and BRING (〈small barge〉〈waste〉), ID (〈waste〉), and
TRANSFER (〈small barge〉〈large barge〉) for the tug. In this paper, we restrict our
analysis to the portion of the crane network that predicts the Cranes’ intentions to lift
wastes. This BN is shown in Fig. 3; it models the likelihood that a crane operator has
the intention to lift (or jointly lift with the other crane operator) a specific toxic waste.

The information used to determine if a crane has an intention to lift a waste is:

• The size of the waste (which determines whether a single crane can lift the waste,
or the support of another crane is required). (Node 1)

• The type of equipment required by the waste and the type of equipment the crane
has. (Nodes 2 and 3).

• Whether the cranes are close to or heading towards the waste. (Nodes 4–7).
• If the crane actor is currently holding a waste. (Node 8).

As portrayed in Fig. 3, the BN combines a procedural model of the task-domain
with domain-specific heuristics that indicate which of those actions are most likely.
For example, a procedural constraint is that an individual crane cannot lift a waste
unless it either has the right type of equipment, or the waste does not require equip-
ment; this information is captured in three nodes, “Need Equip,” “Has Equip,” and
“Equip.” These three nodes do not represent a simple rule, because the equipment
requirements for a waste might not be known, and hence it is necessary to explicitly
handle this kind of uncertainty.

Heuristic factors interact with the procedural model to differentially weight those
wastes that are possible lift candidates. For the cranes, these factors are how close
the ship is to a waste, how close the current heading of the ship is to a path that will
intersect with a waste, and whether or not the operator is already holding an object.

Fig. 3 Schematic of BN used to infer Crane Lift Intentions (information is posted to numbered
nodes)
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This heuristic information in part reflects the physical constraints of the domain; a
ship must be close to a waste before it can be lifted.

As a whole, the BN models users that have a certain degree of proficiency with the
domain. It is expected that such users understand the rules of the game, and will only
try to lift wastes that they can. It is also expected that these users will proceed in a
generally predictable fashion. That is, they will not zig-zag wildly upon an approach
to a domain object, and they will not randomly pick up wastes and put them down
again. It would be possible to incorporate additional models for less proficient users,
or model users’ domain concepts more precisely (e.g., Horvitz 1998). The focus of
this work, however, is upon solving the difficulties in acquiring the user information
necessary to drive the user model at runtime.

3 Representational problems in VesselWorld

Any piece of software may be considered to be part of a representational system. A
representational system has three essential ingredients (Norman 1991):

1. The represented world (that which is to be represented);
2. The representing world (a set of symbols);
3. An interpreter (which includes procedures for operating upon the representa-

tion).

The representing world mediates the interaction between the interpreter and the
represented world, and in so doing constrains the types of interaction that are possible
between the two. As applied to software, the software system is a representational
medium that constrains both how information in the represented world is viewed, and
what procedures are available to the user for interacting with this world.

For adaptive systems, software can be seen to function as a mediating layer in two
distinct but intersecting representational systems. First, and most clearly, it mediates
the interaction between the user and domain (which may include other users), trans-
forming the represented world so as to (hopefully) better support domain activity.
The software system also mediates the interaction between the designer of the adap-
tive component and the user. In this later case, software very much constrains what
information the designer can acquire about the user at runtime (St. Amant et al. 2003).

Here, representational deficiencies in VesselWorld are considered from both per-
spectives. The problem from the user’s perspective, which is most traditionally thought
of as an HCI problem, is considered first. The problem from the perspective of the
adaptive component designer, which is a user knowledge acquisition problem, is then
described. Both these kinds of problems are exactly those which Coordinating Rep-
resentations can solve. Following the analysis of these problems, it is shown how the
introduction of a CR in VesselWorld does just that.

3.1 Problems from the user’s perspective

During a VesselWorld problem solving session, users must search for and discover
information about the waste barrels that are floating in the harbor. Because each
user has different locally available information, and recovering wastes requires the
coordinated efforts of multiple users, it is necessary that participants communicate to
establish mutual knowledge about the wastes. Managing and maintaining this shared
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information comprises a significant portion of the work that users must do during a
VesselWorld session.

VesselWorld initially provided two tools to support this work. The chat window
allows users to communicate information about objects in the domain. It provides a
scrollable history that records the entire dialogue during a given chat session, so that
users can more easily recover information that may have been missed or is forgotten.
The other tool is a “marker” facility, which allows individual users to annotate their
own private maps (each user can only see their own markers). A marker consists of a
highlighted point on the map, and a free-form text message for recording information
(see Fig. 2).

These tools reflect the designers’ initial vision of users’ representational needs for
managing domain information and establishing mutual knowledge about waste bar-
rels. It was expected that users would publish local information via the chat window,
and use the marker facility to record all waste information. During actual system use,
it was found that these tools did not provide users with sufficient support. These rep-
resentational deficiencies were most clearly manifest in specific features of the users’
runtime dialogue.

One such feature was explicit talk about coordination, as shown in Fig. 4. In the
example Crane2 suggests that the participants work out a shorthand for referring to
waste information (line 3). Such explicit talk reveals a perceived need by the users for
some form of coordinating structure.

Another feature of user chat was the emergence of explicit conversational patterns
for managing domain information. For example, one group would perform a “marker
check” when there were discrepancies among individual’s local waste information, in
which all of the known wastes would be validated. First, an actor would announce
a marker check, and then proceed to transcribe all of her local waste information
into the chat window. The other actors would confirm or contradict this information
according to their own private views of the world. The transcription process that this
group of actors undertook involved a significant amount of mundane work. However,
users made the decision that this was less work than trying to recover from errors that
were caused by inconsistent information about the world.

Recurring coordination problems were also indicative of a representational defi-
ciency in the system. Frequently, one actor’s reported perceptions raised questions
from another actor, possibly about the size or location of a waste. This was usually
caused by a lack of precision in communicating about locations, leading to difficulties
in resolving references to objects. Sometimes, these errors would lead to one actor
moving to the area of the waste in dispute to resolve the problem.

The coordination problems and dialogue features described above can be gener-
ally described as grounding problems (Clark 1996). The creation and maintenance of

Fig. 4 Explicit talk about
coordination

1. Tug1: There are two waste sites near me, 
one at 120/415, one just SE of it. 

2. Crane1: what sixze/ equi[p?  

3. Crane2: hmm shall we come up with a short 
hand for a waste info?   

4. Tug1: The Se one is small, needs a 
Dredge, the first is small, and need NO 
equipment. Does that mean I can pick it 
up? 
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common ground forms a substantial portion of the work that goes into conversation
(Fergusson et al. 1996; Traum 1994). Research has also demonstrated that technolog-
ical media have impacts on grounding (Clark and Brennan 1990; Brennan 1998; see
also Clark and Wilkes-Gibbs 1986).

To a degree, our analysis methodology (see Alterman et al. 2001; Feinman and
Alterman 2003 for more detail) builds upon some of this earlier work on the grounding
process. Our analysis elucidates those coordination problems that lead to the design of
domain specific CRs, and grounding problems are one type of coordination problem
that CRs can address. Critically, CRs solve two problems in the design of adaptive
groupware. They address coordination problems for collaborating users, and they
can also address a knowledge acquisition problem. In the following, the knowledge
acquisition problems in VesselWorld are examined more carefully.

3.2 Problems from the adaptive component designer’s perspective

The BN introduced in Sect. 2 is a model of the behavior the designer expects of users
in different situations at runtime. For instance, the designer expects that if the two
cranes are approaching a large waste and are not carrying anything, there is a good
chance they will attempt to jointly lift the waste. In order for this model to function,
information about the user and the user’s runtime context is required. Some of this
information can be derived from the plan steps users submit (where the users are,
what direction they are heading in, what they are holding). However, a significant
portion of the required information about wastes (where they are, what size they
are, what equipment they require) is only available in the users’ discussion about the
domain. This information is very hard to extract automatically.

Figure 5 is a portion of the chat logs taken from a typical planning session in
VesselWorld. Note that users sometimes refer to toxic wastes by coordinates on the
shared map (e.g. “105, 420”). In the first line of the example, Crane2 announces a
waste at (120, 420). In lines 2–4, Crane1 asks for clarification about the specifics of the
waste. In lines 5–6, the tug replies (having apparently already investigated that toxic
waste barrel) with corrected coordinates (105, 420) and specific information about
the waste. In line 8, Crane2 thanks the Tug operator for the clarification, and the Tug
closes the conversational turn in line 9.

This dialogue illustrates some of the problems in automatically extracting the
domain information required as input to our intent inference procedure. In order to
associate information appearing in separate utterances with a single concrete waste,

Fig. 5 Excerpt from chat
during VesselWorld session

1. Crane2: I found a waste at 120 
420 

2. Crane1: ok 

3. Crane1: what type of waste? 

4. Crane1: large,small? 

5. Tug1:  105 420 needs a dredge,
i think that is where
you are 

6. Tug1:   small 

7. Crane1: ok 

8. Crane2: Thanks for checking 

9. Tug1:   no problem 



260 User Model User-Adap Inter (2006) 16:249–280

it is necessary to correctly resolve references. However, because the dialogue occurs
between three active participants, the conversational turns that might be used to
narrow the reference resolution scope are hard to identify. Furthermore, referring
expressions can change from utterance to utterance even within the same conversa-
tional turn. For example, line 1 refers to the waste as “120 420” and line 5 refers to
the same waste as “105 420.” People can sometimes handle such ambiguities, but this
is problematic for automatic reference resolution algorithms.

Within user groups, some structural conventions for referring to domain objects
do emerge, but the type and use of this structure varies widely between and within
groups. Some groups are explicit in defining a shorthand; other groups converge to
common conventions over time. Within groups, referential styles vary between par-
ticipants and over time. Oftentimes, multiple conventions will co-exist. In Fig. 6, a
section of a transcript is shown for a group that exhibits this behavior. In the segment
of dialogue shown, the players are announcing waste barrels they have found. In this
group Crane2 always includes an “@” between the type and the location portions
of the referring expression, and a question mark is used to indicate that equipment
requirements for the waste are unknown. Crane1 usually places the type description
before the location, and the tug places a type description after the location. The
participants never converge to a common convention.

For purposes of knowledge acquisition, the problem with such inconsistencies is
that it is very difficult to produce a single rule or set of rules to identify referring
expressions within chat. Rather than developing specialized algorithms to deal with
the nuances of three-way, live chat in the VesselWorld domain, it would vastly sim-
plify our task if users were to enter all the information the system needs in a common,
structured form. Although this might seem like it would unnecessarily burden the
user, below we will see that this is not the case.

4 Using CRs to fix representational problems

VesselWorld has representational deficiencies from the both the user’s and the adap-
tive component designer’s perspectives. In mediating the interaction between the
users and domain, it does not offer the right kind of support for managing informa-
tion about wastes. In mediating the interaction between the designer and the users, it
does not provide structured access to the runtime information required for successful
intent inference. The analyses performed above led to the design of a Coordinating
Representation, which is a solution to both of these problems.

There are other approaches to designing of collaborative artifacts that address var-
ious issues in collaboration. Cognitive work analysis (Vincente 1999) advocates a host

Fig. 6 Different ways of
referring to wastes, within one
group

1. Crane1: l 543 204  

2. Crane1: s 562 150  

3. Crane2: X?@150,559  

4. Tug1:   1 395 lg dredge 

5. Crane2: s?@190,434 

6. Crane2: s?@202,336 

7. Crane1: sm 394 71 

8. Crane1: large 395 22 
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of ethnographic methods for developing interfaces that address collaborating users’
needs. Activity theorists focus on the need for mediating artifacts that address ten-
sions in the larger activity system (e.g. Engeström 2000). Suthers (2003) approaches
the design problem from the perspective of the teacher, as a way to improve the
process of collaborative inquiry. However, no existing framework draws together
design problems from the perspectives of both the user and the adaptive component
designer.

Several CRs were developed for VesselWorld (Alterman et al. 2001). The CR that
addresses the representational problems described above is called the Object List
(Fig. 7). The Object List is a WYSIWIS (What You See Is What I See) component
that helps users to manage domain information and coordinate references. It displays
the same data in tabular format for each user. Users enter and maintain all of the data
in the Object List. Each row of data contains several fields of information, including a
user assigned name, the status, and the location of the associated object. The location
field may be filled in by clicking first on the field and then on the object on the map.
The size, equipment, action, and leak fields are filled in using drop-down menus. A
free text field (“Notes”) is also provided for each entry so that any other relevant
information may be communicated. Entries in the Object List can be displayed on the
World View (Fig. 2) as icons that are annotated with the name that is in the “Name”
field.

There is nothing exotic in the design of the Object List. It is remarkable as the
product of a repeatable design methodology that is explicit guidance for the creation
of shared artifacts which simplify coordination for users and make intent inference
easier. In the following, empirical data is provided that demonstrates the Object List
indeed achieves both of these goals.

4.1 Improvements from the user’s perspective

In all user experiments, the Object List was heavily used, and the coordination prob-
lems described above were no longer observed. The Object List had significant quali-
tative impacts upon the way users coordinated information about toxic waste barrels.
Figure 8 compares sample dialogues from users who did not have access to the Object
List (the left column) to those that did (the right column). It is immediately apparent
that the group that had the Object List spent far less time talking about the details of

Fig. 7 The object list
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Without the Object List With the Object List 

1. Crane2:  what was small at 275, 
400?   

2. Tug1:  sX   

3. Crane2: ahve sX at 450 above that  

4. Tug1:  mD at 400 350    

5. Tug1:  yes, there is an sX at 275 
250 as well   

6. Crane2: I have two amall at 275, 
400 and 275, 450 are these the 
same?   

7. Tug1:  no, there are two sX there  

8. Tug1:  well, there are actually 
three in almost a line from n-s   

9. Crane2: at 400 and 450? what about 
the 275, 250?  

10.Crane2: ok, so the southern exists? 

11.Crane2: I'm almost there, nothing 
at 275, 250  

12.Tug1:  300 350, 250 400, and 275 
250 are my markers  

13.Tug1:  argh  

14.Tug1:  I mean 275 450  

15.Crane2: ok, those sound good 

16.Tug1:  i don't know why I kee do-
ing that. 

1. Crane1: I got an XL! 

2. Tug1: I got nothing, you luck 
basrstartd. 

3. Crane2: I got an Xl and an L, mommy!  
;) 

4. Tug1: Merry christmas kids…. 

5. Crane1: I’ll map North third? 

6. Tug1: I’ll take middle 3rd. 

7. Crane2: I’m at south-central. Tug, 
where are you? 

8. Tug1: I’m jus nw of the barge, let me 
put that on the map… 

9. Tug1: actually more w than n. 

10.Crane2: With the LB in the corner, 
maybe our best bet is moving the SB 
NW and loading it with all the NW 
corner’s goodies, which CRANE1: can 
map 

11.Crane1: not a bad plan… 

12.Tug1: Ok, I’ll make a bit of a sweep 
around here while CRANE1: looks 
around. 

13.Crane1: Tug, can you pick up the SB 
at your earlier opp? 

14.Tug1: CRANE2: can map up on the way? 

Fig. 8 Dialogue from users before an after the introduction of the object list

Fig. 9 Object List created during dialogue in Fig. 8

each waste. None of their discussion appears to be designed to exchange information
about the wastes per se, but rather is focused on strategizing.

Figure 9 depicts the information users entered into the Object List during the dialog
in the right hand column of Fig. 8. This demonstrates that the information previously
exchanged via the chat tool has now been offloaded into the Object List.

To assess the impact of coordinating representations quantitatively, a formal study
was performed comparing the performance of teams with and without CRs (Alterman
et al. 2001). Each test group consisted of three teams of three subjects. Subjects were
a mix of area professionals, mostly in computer-related industries, and undergraduate
students; all were paid a flat fee for the experiment.

The results of this study, shown in Table 1, compare the final 5 h of play for each
group (by which time performance had stabilized), and these results were normalized
over a general measure of complexity for each of the problems solved. The perfor-
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Table 1 Improvement of CR
groups over non-CR groups;
final 5 h of play

Indicator Improvement (reduction)

Communication 57% (p < 0.01)
Domain errors 61% (p < 0.2)
System events 38% (p < 0.06)
Clock time 49% (p < 0.01)

mance of the test group that had the CRs was better across several measures: amount
of chat, number of errors committed, number of system events generated (an indicator
of interface work), and clock time.

The most significant effect is the 57% reduction in communication generated. This
confirms the observation that a significant amount of communication was offloaded
into the CRs. Also highly significant is the 49% reduction in clock time. Only slightly
less significant is the reduction in system events (mouse clicks, etc.), down 38%. Addi-
tionally, overall domain errors (errors in performing domain actions which led to a
toxic spill) were reduced by 61%. The variance of this measure was quite high due
to the overall low frequency of this kind of error; this reduced its confidence below
statistical significance (p < 0.2).

The above results demonstrate that the introduction of the Object List modifies the
representational system from the user’s perspective in ways that improve the ability
of the collaborators to coordinate information. It is shown in the following how the
Object List also addresses the representational needs of the designer.

4.2 Improvements from the adaptive component designer’s perspective

The Object List captures information about the world that would otherwise be ex-
changed in chat, and transforms it into a form that can be easily used in the intent
inference process described above. In addition to information about where the wastes
are, what equipment they need, and what size they are, the Object List also provides
the system with a set of user-assigned labels. These labels can be used to mine chat for
additional information about users’ intentions. Detailed information about how chat
information was used can be found in Appendix A.

The relative utility of information from the Object List for performing intent infer-
ence is evaluated in the following. This is done by comparing the ability of the BN
to predict user lift actions in historical log files across several information conditions.
Before presenting results, the evaluation methodology is described in detail.

4.2.1 Evaluation methodology

To evaluate the utility of information from the Object List, the BN was trained and
tested under four information conditions using a single dataset (described in Table 2),
and its performance was compared across these conditions. The dataset consists of
time-stamped information derived from the log files collected from each use session
in the dataset. It contains the state information required by the BN. State informa-
tion includes information about each waste (position, size, and equipment needs), the
users’ locations and heading, and wastes as they are lifted. The dataset also contains
information about references made by users during chat to objects that are listed in
the Object List.
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Table 2 Dataset for the
evaluations

Team Sessions Avg. # of wastes per problem Total Hours

Team 1 10 11.7 9.9
Team 2 6 11 8.4
Team 3 9 14.3 9.1
Team 4 16 14.5 8.7
All 41 13.5 34.3

Each condition changes the amount and quality of information about wastes in the
dataset. The four information conditions, and the information available under each
condition, were:

1. Perfect Information – Under this condition, the dataset contains complete and
accurate information about the position, size, and equipment needs for every
waste at each point in time. Perfect information is not typically available at run-
time, but it can be derived from the problem files which define the initial problem
configuration for a usage session. This is an ideal case, and provides a baseline
against which to compare the other information conditions.

2. Object List – Under this condition, the dataset contains information about the
position, size, and equipment needs for wastes that are entered in the Object
List, as it becomes available. This information is subject to errors, duplication,
and omissions. Compared to the Perfect Information condition, performance of
the BN under this condition is indicative of the quality of the information users
provide via the Object List.

3. Perfect info + Chat – All of the information in the Perfect Information condition,
plus the occurrence of names of objects (as entered by users into the Object List) in
chat. More precisely, there is an entry in the dataset for each time a word appears
in chat matches one of the labels for a waste in the Object List (see Appendix A).
This condition is used to investigate how much predictive information references
to wastes in chat add.

4. Object List + Chat – Information from the Object List condition, plus the occur-
rence of names for objects in chat. This condition represents the best possible
runtime performance of our inference procedure without information from prob-
lem files.

Because the dataset contains different information under each condition, the prob-
ability distribution stored in the BN may be optimal for one information condition
but not another. If the evaluation were to be performed using a single probability
distribution for all data conditions, results might reflect the “preference” of that par-
ticular probability distribution, rather than the utility of information contained in the
dataset.

To overcome this problem, the probability distribution of the BN was fit to the
dataset in each information condition before testing. To train the network, each data-
set is compiled into a series of cases. A case consists of values for each non-hidden
node in the BN (see Sect. 2.1), and each case represents a change in the relevant infor-
mation about the world. During the training phase, values for the “Will Lift” node
were extended back in the dataset from each actual lift for a 10 min time window. The
size of the time window was based on initial experimentation, and chosen to maximize
the performance of the BN.
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The EM(η) algorithm (Bauer et al. 1997) was used to train the network, and the
same starting parameters for the BN were used in each case. The EM(η) algorithm
is a generalized version of the standard EM algorithm with a learning parameter.
When 1.0 < η < 2.0, the EM(η) algorithm is significantly faster than the standard EM
algorithm, but still has good convergence properties. For all of our training sessions,
η = 1.8. Algorithm performance was further optimized by posting only unique cases
to the network, and weighting each unique case in the training set according to the
number of times it occurred.

For the evaluation, two performance metrics were calculated: the correct goal rate
(CGR), which is the proportion of correctly guessed goals; and the false positive rate
(FPR), which is the proportion of guesses that were false. A guess is made whenever
a relevant state variable changes. Any uninterrupted sequence of correct guesses
leading up to the step immediately preceding the execution of the predicted goal is
counted as a single correct goal. The total number of goals is the number of wastes
lifted. Thus,

CGR = correct goals/total goals

FPR = incorrect guesses/total guesses

4.2.2 Evaluation

The evaluation was performed solely to compare the utility of different information
sources for intent inference, and in particular, the utility of the information derived
from the object list. These performance metrics are not indicative of how well the
intent inference procedure performs within the context of a specific adaptation. Stud-
ies of our adaptive component are documented in the next section.

The results of the evaluation are shown in Table 3, and reflect average perfor-
mance across all teams for each of the four data conditions. A two-factor ANOVA
was used to evaluate the effects of the two variables (Perfect Info vs. Object List,
and with or without Chat information) for both CGR and FPR. The analysis revealed
no significant interactions between the variables. For the CGR, the effects of both
variables were significant, but for the FPR, only performance differences between
the Perfect Info and Object List conditions were significant. These results were cor-
roborated via further analysis using paired t-tests. In general, this analysis indicates
that the algorithm performs better when perfect information is available, and that
chat information reliably increases the number of lift actions correctly inferred. Chat
information does not, however, reliably reduce false positives given this training and
testing methodology.

Table 3 Intent inference
results for different
information sources

Correct goal rate With chat Without chat p-value

Perfect Info 0.87 0.83 p < 0.03
Object List 0.77 0.70

p-value p < 0.001
False positive rate
Perfect Info 0.51 0.53 p = 0.4
Object List 0.58 0.60

p-value p < 0.001
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The “Perfect Info” case, in the top row of the table, provides a baseline against
which results for the other conditions may be compared. It is a rough indicator of the
best the intent inference procedure can do, given only complete information about
the state of the world. Across the four teams in the dataset, the Correct Goal Rate for
the “Perfect Info” case ranged from 0.77 to 0.91 for this condition. There was a weak
correlation between problem size (number of toxic wastes) and individual team per-
formance (r = 0.23), reflecting the fact that it is more difficult to make good guesses
when there are more options to choose from. In general, these metrics indicate that
the inference procedure is effective.

As expected, the intent inference procedure does not perform as well with infor-
mation from the Object List alone. However, results from the “Object List” condition
were still good, and demonstrate that use of the Object List was reliable enough to be
useful for intent inference.

The “Perfect Info + Chat” condition demonstrates that references add significant
information that cannot be derived from knowledge about the state of the domain.
Thus, regardless of access to state information (for instance, if there were intelligent
sensors placed in the world) the Object List adds information that still improves intent
inference.

The combination of reference information from chat and domain information from
the Object List (the “Object List + Chat” condition) improves the performance of the
procedure to a point where it is nearly as good as the “Perfect Info” condition.
These results confirm that, by modifying the representational properties of the media
between the user and adaptive component designer, high quality runtime information
can be made available for intent inference.

To demonstrate that this information is sufficient to drive a useful adaptive sup-
port mechanism at runtime, an adaptive component was implemented and its use
evaluated. These results are described in the following section.

5 An adaptive component

As described in Sect. 2.1, planning in VesselWorld is a laborious and error prone
operation, and user errors are frequently the result of forgotten plan steps or joint
plans that have become unsynchronized. The adaptive component was thus designed
to help users formulate basic individual and joint plans. Using the intent inference
procedure, the system can provide a small set of likely plans from the hundred or so
that are possible at any point in time.

The interface to the component is shown in Fig. 10. It displays inferred plausible
domain goals for each of the users. Like the Object List, it is a WYSIWIS component,
so each user can see the other users’ goals as well. Users can select plausible goals from
their own column to have the system automatically generate a plan. The component
can generate individual as well as shared plans. If the information in the Object List
is correct, the generated plans are guaranteed to be correct.

The detailed function of the adaptive component is as follows:

1. Each time state information is updated (e.g., when plans are executed, informa-
tion is added to the Object List, an object reference appears in chat, etc.) the
system offers each user up to five plausible goals, displayed in order of priority
and color-coded according to the system’s “confidence” in that prediction. Each
user can only select goals from their column.
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Fig. 10 The adaptive component

2. When the user selects a goal, it is copied into the top row, which displays each
user’s currently confirmed goal. The user then has the option to request an auto-
matically generated plan that will accomplish the selected goal (the “Get Plan”
button shown in Fig. 10).

3. The system generates a plan that the user can inspect. In cases where the goal
involves multiple actors, the other actors are invited to join the plan. If all invited
actors accept the invitation, a plan is generated; if invited actors do not accept the
invitation, the requesting user is so informed.

4. If the user accepts the plan (by clicking the “Accept” button in Fig. 10), it is
automatically copied into the user’s planning window for execution.

If the plan is generated from correct state information, no user modifies the state
in such a way that conflicts with the generated plan, and the plan is executed to
completion, it will succeed in achieving the desired goal.

5.1 User studies

We performed a formal study with four teams to evaluate the use of the adaptive
component and its effects on performance. Two of the teams were given access to the
adaptive component, and the others were not. The participants were a mix of students
and local-area professionals, with varying degrees of computer proficiency. Each team
was trained for 2 h in use of the system, and then solved randomly chosen VesselWorld
problems for approximately 10 h. To alleviate fatigue concerns, the experiment was
split into four 3-h sessions.

For the teams with the component, the inference procedure used information from
the Object List and chat (the Object List + Chat condition) to infer user goals and
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construct plans. The following results report on the last 5 h of play time for each group,
by which time performance of the users had stabilized.

5.1.1 The component was heavily used

All groups used the component to generate plans within the system. On average, users
confirmed a goal every 1.5 min (SD = 46 s), requested a plan for each confirmed goal,
accepted 71% of plans requested (SD = 19%), and completed the execution of 83%
(SD = 6.75%) of these plans. Overall, this indicates that roughly 59% of confirmed
goals resulted in a plan that was executed to completion. For each problem solving
session, one quarter of all plan steps submitted to the server were generated by the
component (SD = 8%).

The component generated plans for 43% (SD = 15%) of the domain goals it could
have predicted for the Cranes (some goals, like “search the harbor” were not inferred).
It was not possible to obtain a similar statistic for the Tug operator because it is diffi-
cult to recognize the tug’s goals in the collected log files (goals for the tug are not
bracketed by easy to detect plan steps like “LIFT” and “LOAD”).

5.1.2 The component improved users’ performance in the domain task

The groups that had the component had 45% (p < 0.10) fewer joint errors (failures
during joint actions) per minute than the groups that did not. This difference is not
significant at the .05 level because of the small sample size and overall low proportion
of joint errors. A reduction in joint errors corroborates prior analysis of use of the
VesselWorld system, which indicated that joint errors were usually the result of plan
submissions becoming unsynchronized (Alterman et al. 2001). Because the compo-
nent generates coordinated plans in advance, users could simply submit each step and
be assured that actions would be coordinated.

5.1.3 The component reduced cognitive effort

To measure the change in cognitive effort between the two populations, the amount of
time it took users to execute plans and the amount of interface work were evaluated.
It was found that the amount of clock time taken by users between submitting steps
of automatically generated plans was 57% less (p < 0.01) than in groups without
the adaptive component, but that there were no significant differences in the number
of mouse clicks per waste. Because the reduction in clock time for groups with the
component cannot be explained by a reduction in the amount of interface work, we
conclude that the component reduced the cognitive effort of the collaborators.

As stated in Sect. 1.2, these studies show that the adaptive component was heavily
used, improved user performance, and reduced cognitive effort during plan execution.
This is verification that collaborating users can generate enough structured informa-
tion when using a coordinating representation to drive useful intelligent support.
We conclude that the approach to adding intelligent support demonstrated here was
successful for this domain.



User Model User-Adap Inter (2006) 16:249–280 269

6 Summary of the methodology

This work has demonstrated how the design of a groupware system can be modified to
address the needs of two intersecting representational systems. This is done by adding
structure to the system in the form of a Coordinating Representation. The CR helps
users coordinate and improves performance in the domain task. It also renders infor-
mation previously exchanged via an unstructured communication channel accessible
for use in an adaptive support system.

Clearly, much in this approach rests on the design of the CR. To facilitate the appli-
cation of the approach to other domains, a repeatable design methodology for CRs
with the necessary properties has been developed (Alterman et al. 2001, Landsman
and Alterman 2005; Feinman and Alterman 2003). This methodology can be summa-
rized in four steps:

1. Transcripts are collected of runtime user behavior.
2. These transcripts are analyzed in order to identify weak spots in the user’s repre-

sentational system.
3. This analysis is used to develop coordinating representations that people will use,

and that improve coordination.
4. Information collected by the CRs is leveraged to drive adaptive components.

Transcript collection has roots in ethnography and interaction analysis. Tradition-
ally, ethnography has relied upon in situ observation. Suchman and Trigg (1991) and
Goodwin and Goodwin (1996) explored the use of video recordings in capturing
and analyzing naturally occurring workplace activity. While video is a very powerful
technique for studying a work practice, it is a resource intensive process. For the
ethnographer, groupware makes life much easier, because a large portion of the rele-
vant activity is mediated by the system itself, and can thus be passively recorded and
analyzed offline.

To perform the kind of ethnographic analysis required to identify representational
deficiencies in groupware, it is helpful to be able to replay transcripts, rewind when
necessary, easily locate high-level task events (e.g., the submission of plans), and add
annotations. To provide this functionality, a component-based software framework
called THYME was developed (Landsman and Alterman 2005). Groupware systems
built using THYME automatically log all usage data, and replay tools can be rapidly
generated. The replay tools provide a console similar to that on a VCR, but with all
of the above features.

Two techniques have been developed to analyze transcripts. One of them, which
was described briefly in Sect. 3.1, examines users’ recurrent activities to identify weak
spots in an existing representational system (Alterman et al. 2001). The other tech-
nique examines co-reference chains (Feinman and Alterman 2003). To perform this
later analysis, the analyst identifies and tags all references to objects, plans, and other
entities of interest in a logged dialogue. Metrics are then calculated for the distribution
and lifespan of each type of reference and these metrics are used to identify the need
for supporting structure. Empirical evidence has been collected demonstrating that
these analysis techniques can be used to make predictions about the type of structure
that will be useful (Feinman 2006).

These analyses guide the development of CRs that address representational needs
of both the user and the designer. Because CRs fix problems with an existing represen-
tational system for the users, they will improve the users’ ability to stay coordinated,
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and users will use them. This article has demonstrated how the structure introduced
by CRs can than be leveraged to introduce adaptive support.

7 Balancing user effort and adaptive component designer effort

As discussed above, adaptive software can be viewed as the mediating layer in two
intersecting representational systems. This situation is depicted in Fig. 11. In the
diagram, the software system is presented as a composition of three components. This
is intended as a descriptive conceptual breakdown only, and is based loosely upon
early adaptive software models that grew out of user-interface management systems
(e.g., Hefley and Murray 1993).

The three components of this model are:

The interface—Contains the signals and controls that the user interacts with directly.
It is analogous to Norman’s (1991) surface representation.
The domain model—The system’s internal representation of the task-domain. It de-
fines the functionality of the system. The domain model is very often implicit in the
code that makes up a system, rather than represented concretely.
The adaptive component—May contain a user model, domain knowledge, an infer-
ence engine, and other technology related to run-time adaptation. It serves as a proxy
that supports the time delayed interaction between the designer and user. It encap-
sulates the designer’s assumptions about the user’s potential needs at runtime, what
information is needed to recognize those needs, and how they should be met.

There are two representational systems in the diagram. In one, software mediates
the interaction between the user and the domain; this is the user’s perspective. In the
other, the software mediates the interaction between the user and designer of the
adaptive component; this is the designer’s perspective. This conceptualization high-
lights what are often considered competing design requirements for adaptive systems
(Schneiderman and Maes 1997). The choices that are made with respect to the bal-
ance between these requirements are reflected in the design of the interface. These

Fig. 11 Two intersecting
representational systems
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choices have consequences for the amount of work the user must do, and the resources
expended in developing the system.

Several other systems are examined here with respect to the balance struck between
these competing design requirements. This balance is characterized by the degree to
which specific interface features are incorporated to meet the design requirements
from either perspective. The set of features meeting design criteria from the user’s
perspective are referred to as a task-language. A task-language is devoted to support-
ing user’s manipulation and interpretation of the domain-task. In VesselWorld, a user
plans a step to move his ship closer to a waste using the task language.

The set of features meeting the designer’s criteria (from the perspective of the
intent inference engine) are referred to as a meta-language. A meta-language is not
the task-language itself, but is rather a set of interface features that allow the user
to tell the system about the task being performed. VesselWorld does not have a
meta-language (c.f. Alterman 2000).

7.1 Task languages

Task-languages are designed to mediate and support user action in a domain. Exam-
ples of task-languages include direct manipulation and command-line interfaces. In
the case of groupware, a chat window is part of the task-language, because it mediates
the user’s coordination with other users (part of the domain task). Some user-adaptive
systems infer user’s needs by monitoring their task interaction alone. These systems
contain few or no meta-language operators (Fig. 12).

In such systems, the feasibility of and effort involved in developing the adaptive
component depend upon how easily interaction data can be interpreted against the
backdrop of available task and domain knowledge. For example, the SmartEDIT
system (Lau et al. 2000) is a programming by demonstration system that can in-
fer user plans for making syntactical edits to a document. The system does em-
ploy a minimal meta-language that requires the user to segment the execution trace
into training examples, but its inference mechanism interprets task-level information
directly.

SmartEDIT’s inference mechanism (a version space algorithm) is successful for
two reasons. All relevant user information is readily available by monitoring changes
to the text buffer, the cursor location, and the clipboard contents. Furthermore, a set
of domain operators that cover a large portion of the syntax editing task-domain are

Fig. 12 Adaptive system with
task-language
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readily specified. For such well-defined domains, the costs associated with knowledge
engineering can be relatively small.

Recommender systems are a different class of user-adaptive software that require
minimal or no meta-languages. Among the most widely used of these (e.g. Ama-
zon.com; Google), knowledge acquisition depends only upon a user’s task level behav-
ior—browsing, purchasing, or searching. The two most commonly used inference
techniques in widely deployed recommender systems are collaborative filtering
(Goldberg et al. 1992) and text-based information retrieval. For collaborative
filtering, domain knowledge is based upon statistical patterns of many users perform-
ing similar (browsing, purchasing, or searching) behaviors. Text-based information
retrieval depends upon statistical patterns of words in a large corpus of documents
that others have created. In both cases, the bulk of the knowledge engineering effort
is offloaded to external sources.

Generally then, for adaptive systems that employ a task-language:
User effort to engage the adaptive component is low. The user is willing to use the

interface; this is the sole interface through which the user interacts with the domain.
This does not imply that the system is easy to use; it only means that knowledge
acquisition does not introduce much extra work for the user.

Adaptive component design effort is domain dependent. Often, importing a suffi-
cient amount of domain knowledge into the system requires a significant investment
of engineering effort, though sometimes this domain knowledge is available from
external sources.

7.2 Meta languages

When the system cannot extract enough information from the user’s interaction with
a task-language to support adaptation, a meta-language can be included. Examples
of meta-languages include preference dialogs used to configure a system’s behavior,
or a natural language interface to an agent. The defining feature of a meta-language
is that its primary role is to address the knowledge acquisition needs of the designer
(Fig. 13).

Meta-languages cover the spectrum from formal to natural, and may support a
more or less objectified interaction with the adaptive component. The Collagen sys-
tem (Rich and Sidner 1998; Lesh et al. 1999) is an example of a system that used
a formal meta-language to support an objectified interaction with an agent. Colla-
gen is a middleware framework for the development of collaborative agents that can

Fig. 13 Adaptive system with
meta-language
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provide guidance and offload some user work in the domain task. In its initial formu-
lation, Collagen included a formal meta-language called ADL (Artificial Discourse
Language) (Sidner 1994). The user provided the system with information about her
goals via a menu-driven interface to ADL (which provided a list of valid dialogue
moves), and the intelligent component then used this information to provide support
in the form of suggestions about next steps and contextual reminders.

In Collagen, ADL reduces development costs in two ways. It provides the system
with structured information about the user’s intentions. It also enforces a particular
interaction between the user and adaptive component, so that domain knowledge and
the algorithms associated with its use can be represented in a portable and domain
independent way. In this manner, Collagen forms an adaptive systems framework that
can greatly reduce development costs in the long-term.

A drawback with the formal/objectified approach is that the user is required to
manage two tasks instead of one. One is her desired domain task, and the other is
explaining her actions to the system. This second task is made even more cumbersome
when it requires the use of a formal language. As was noted by Collagen’s developers,
“it is often more efficient and natural to convey intentions by performing actions”
(Lesh et al. 1999; p. 23).

One way to avoid requiring that the user manage two tasks is to combine the
meta-language with the task-language, so that the interaction no longer objectifies the
adaptive component and the user is free to focus on the domain task. For example,
the Epsilon collaborative learning environment requires interlocutors to use sentence
openers that represent speech acts during chat, and this structure is in turn used to
identify problems with the collaborative process (Soller 2004). The task and meta-
language are coincident in Epsilon, but still distinct, as the structure that is added to
the task-language is done so solely to address designer’s knowledge acquisition needs.
This kind of approach can lead to interference with the user’s domain-task.

Natural meta-languages (which rely upon natural language understanding) can
be employed to avoid problems with formal languages; they provide a rich source of
information about the user, and potentially require little or no training to use. Interac-
tion via a natural meta-language usually requires an objectified adaptive component
(a conversational “agent”), which potentially raises the same “two-task” problem
as above. However, sufficiently advanced natural language would allow the user to
choose the best modality for the task at hand without ever having to focus on the
meta-task of making herself understood.

The major drawback with natural language understanding is that technology is
not yet advanced enough to scale beyond special purpose applications (Zukerman
and Litman 2001). This results in additional work from both the user and designer’s
perspective. To the user, the interface may appear to support a wider range of conver-
sational moves and vocabulary than it actually does, and the user is left to navigate
a dialog through trial and error (Schneiderman 1998). For the designer, a good deal
of effort must go into building the language recognition facility, and input to the
intelligent component cannot be easily constrained, and so may be more difficult to
process.

Numerous approaches have been developed to manage the tradeoffs when employ-
ing meta-languages. For example:

• Mixed initiative systems, such as Lookout (Horvitz 1999) try to calculate the trade-
off between the benefit provided by the adaptive system and the additional work
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the meta-language requires from the user. An assumption in this approach is that
at certain points, the user may want to engage an intelligent agent, and that this
can be recognized with a sophisticated enough domain task model and processing
of the task-language.

• Some systems adapt the meta-language itself over time by allowing the user to
introduce or redefine terms. For instance Pan et al. (2005) describe a system
in which the system and the user adapt to one another to achieve a common
vocabulary. This form of two-way adaptation is an interesting take on end-user-
programming (Nardi 1993), and may lower the bar for casual users that would not
otherwise be interested in customizing the system’s behavior.

• Multi-modal systems incorporate other input modalities along with limited nat-
ural language processing to improve system comprehension. The CASIS system
(Leong et al. 2005) uses contextual cues like room temperature, ambient noise, and
room activity to reduce error rate in speech recognition. Such systems are still in
early phases of research, and require specialized hardware in controlled settings,
but offer significant performance gains over mono-modal meta-languages.

Generally then, for adaptive systems that employ a meta-language:
User effort may be too high. Whether or not people are willing to use a meta-

language depends on the potential benefit and the design of the language. Using a
meta-language can disrupt the domain task, either by requiring the user to manage
an additional task, or by interfering with the task-language. Meta-languages can trade
reduced design costs for additional user effort.

Adaptive component design effort can be reduced by implementing a meta-lan-
guage, although this depends on the type of language used. Often, a designer’s efforts
to make a meta-language more appealing to the users, as with the case of natural lan-
guages, ultimately results in more overall work (for both the designer and the user)
than the meta-language saves in terms of making inference easier.

7.3 Coordinating representations: combining task and meta languages

The approach described in this article employs a coordinating representation to serve
the needs of both the designer and the user. The task and meta-languages are not
merely coincident (as with the Epsilon system above). Instead, the CR combines the
task-language and meta-language into a single interface mechanism that serves both
roles (Fig. 14).

The general idea of combining user needs and designer needs into a common inter-
face tool is not restricted to collaborative systems (see St. Amant et al. 2003, for a
discussion). However, as we have shown, groupware is particularly amenable to the
approach because of the difficulty that users have in coordinating their activities. For
VesselWorld, it was precisely the difficulty in maintaining common ground that makes
the structure of the Object List so useful for users. This structure is equally useful from
the designer’s perspective, because it renders the users’ task-relevant common ground
accessible to runtime inference mechanisms.

There are other systems that use coordinating representations in a similar manner,
although their role is rarely given such a central focus. Jameson et al. (2003) describes
a collaborative multi-agent system for scheduling a business trip, in which agents serve
as proxies for users in a scheduling scenario. The role of the agent, and one of the
main foci of that work, is to provide a social face to help users stay aware of others’
preferences and motivations. However, most of the information that is derived from
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Fig. 14 Adding structure to a
task language to enable
intelligent support in
groupware

the users comes from a coordinating representation that allows them to express their
preferences and explore possible solutions to the constraint problem set up by the
collaborative task.

Concept maps are a class of CRs that have proved useful in adaptive systems.
Concept maps are visual representations of interlinked concepts that can be useful
for people tying to communicate about large conceptual structures or coordinate
knowledge engineering efforts (Novak and Gowin 1984). Cañas and Carvalho (2004)
describes several adaptive systems that use concept maps in collaborative settings.
One system uses the structure in a concept map, along with WordNet (Miller 1990) to
disambiguate word senses. Another system draws conclusions from the concept maps
shared by students in a collaborative learning environment. These conclusions can
help the students to identify weaknesses or inconsistencies in their own conceptual
structures.

Generally then, for adaptive systems that employ coordinating representations:
User effort is reduced. Communicating coordinating information, such as required

in maintaining common ground, is part of the domain task in a groupware system. As
set forth in Sect. 4.1, our empirical data proves that CRs can make this easier, and
because CRs actually reduce user workload, users are willing to use them.

Adaptive component design effort is low. Information can be easily leveraged for
adaptation because it is highly structured, and germane to the users’ joint task. Our
approach in VesselWorld used widely available AI techniques, and the data discussed
in Sect. 5.1 validates the effectiveness of the resultant adaptive system.

8 Generality and future work

Coordinating representations offer a means for merging two traditionally competing
design requirements for user-adapted systems into a single representational medium.
On the one hand, CRs can reduce user workload and improve coordination. On the
other, by structuring coordinating information, CRs provide the designer with a rich
source of user and context information that can be leveraged by an adaptive support
system at runtime.
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In our methodology, coordination problems become opportunities for knowledge
acquisition. An analytical procedure has been provided to identify these problems,
and it can be applied to any media that a community of actors uses to coordinate
a recurring activity. Relatively complete usage data is required to perform the pre-
scribed analysis procedure. In the case of groupware that mediates the majority of
the users’ interactions, this may be achieved through the addition of logging utilities
to the groupware system itself. For collaborations, which extend outside of the media
under investigation, more traditional forms of data collection (e.g. videotape) will be
required.

We have validated our approach via case studies that demonstrate its effectiveness
in VesselWorld. The coordination problems experienced by VesselWorld users are
highly representative of those problems in other collaborative environments. Users
have different information about the world and need to share this information to
accomplish their joint task. Individuals change objects in the world and need to
inform others of these changes. Users have different roles and responsibilities. The
task requires close coordination at times, but long-term commitments are also a critical
part of the activity.

In this article, we’ve focused primarily upon problems related to grounding, but
our analysis has revealed other types of coordination problems as well. Alterman et
al. (2001) document the problems users faced in sequencing closely coordinated activ-
ities and tracking long-term commitments, and describe CRs that were developed to
address these problems.

Similar kinds of problems have been described in the context of modern mili-
tary applications. As networked technology has become ubiquitous in the military,
electronic chat has found its way into mission-critical applications. Usage patterns
reminiscent of the coordination problems in VesselWorld have been documented.
Chat history is heavily relied upon to recall missed or forgotten information, and
there are problems keeping track of mission orders (Heacox et al. 2004). The need
for adaptive chat mechanisms that are more aware of the user’s task so as to minimize
interruptions (Cummings 2004) has also been noted.

Our approach is agnostic with regards to the particular inference technique that
is used. Bayesian Networks were employed because they are easy to use, were suffi-
ciently powerful for our needs, and many open-source and off-the-shelf implementa-
tions are available. Other techniques might have been used instead of or in addition to
BNs. Sophisticated NLP algorithms could likely derive more mileage from references
to wastes in chat than we were able to with our procedure. The training algorithms
used to analyze the BN’s performance could be employed at runtime to adapt to
user behavior over time. More sophisticated planning algorithms and optimization
routines could have been employed to produce efficient plans given available waste
information. The point is that a range of possibilities for building adaptive support
cascade from the increased availability of structured information about the user. The
approach is then limited by the relevance of the information to the adaptation goal,
the power of available inference algorithms and expertise of the designer.

The end result of applying our methodology to VesselWorld was a successful adap-
tive plan-generation component. This component is entirely domain specific, and may
not be necessary or feasible in other domains. A natural extension to the existing
methodology would offer guidance to the designer regarding the type of adaptive
support that may be desirable or feasible using coordinating information from CRs.
The development of such an extension is our current and future focus.
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An avenue we are actively exploring is the generation of awareness information
that is generally not available in collaborative applications. Much work on awareness
has focused upon replicating information that is lost in distributed settings, such as
awareness of what is going on (Dourish and Belotti 1992), who is around (Dourish and
Bly 1992), and what has changed in a shared environment (Gutwin and Greenberg
1998). Recently, Carroll et al. (2003) has investigated the potential role of “activ-
ity awareness” in collaborative applications. The term activity awareness describes
awareness of how work is embedded within the context of the overall activity. Coor-
dinating representations are useful for generating the information required to provide
this kind of awareness because they capture and structure information that consti-
tutes the users’ shared context. The computer, as a mediating artifact with significant
abilities to summarize, sort, and synthesize structured data is in a good position to
automatically combine and provide this information as feedback to users.
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Appendix A: Using chat

Users in VesselWorld often refer to wastes in chat using the labels they’ve assigned
to objects in the Object List. To incorporate this information into the intent inference
procedure, we modified the BN based on the following analysis.

Table 4 depicts the likelihood that a reference for an object will appear during the
three consecutive 5 min windows prior to a lift of that object at time t. In the table,
“Joint” and “Single” refer to whether a waste requires both or just one crane operator

Table 4 Probability of
reference preceding a lift at
time t

t-5 to t t-10 to t-5 t-15 to t-10

Joint Single Joint Single Joint Single

Lift 0.62 0.42 0.27 0.15 0.25 0.08
∼ Lift 0.15 0.11 0.10 0.07 0.08 0.04

Fig. 15 BN with nodes for chat added; added nodes are colored differently
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to lift. In the ∼Lift conditions, values reflect the likelihood some waste is referred to
prior to a lift of a different waste.

There is about a 60% chance that waste will be referred to in chat in the 5 min
preceding the lift if that waste requires assistance, and about a 40% chance if that
waste can be lifted singly. Chat references are predictive of lift actions for roughly a
15-min window of time preceding a lift. On the basis of this analysis, we expanded
our BN to include three 5 min windows of chat history, with one node for each 5 min
window. The expanded network is shown in Fig. 15.
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