
User Model User-Adap Inter (2006) 16: 63–82
DOI 10.1007/s11257-006-9005-6

O R I G I NA L PA P E R

TV program recommendation for multiple viewers
based on user profile merging

Zhiwen Yu · Xingshe Zhou · Yanbin Hao ·
Jianhua Gu

Received: 1 June 2005 / Accepted in revised form:
16 April 2006 / Published online: 10 June 2006
© Springer Science+Business Media B.V. 2006

Abstract Since today’s television can receive more and more programs, and televi-
sions are often viewed by groups of people, such as a family or a student dormitory,
this paper proposes a TV program recommendation strategy for multiple viewers
based on user profile merging. This paper first introduces three alternative strategies
to achieve program recommendation for multiple television viewers, discusses, and
analyzes their advantages and disadvantages respectively, and then chooses the strat-
egy based on user profile merging as our solution. The selected strategy first merges
all user profiles to construct a common user profile, and then uses a recommendation
approach to generate a common program recommendation list for the group accord-
ing to the merged user profile. This paper then describes in detail the user profile
merging scheme, the key technology of the strategy, which is based on total distance
minimization. The evaluation results proved that the merging result can appropriately
reflect the preferences of the majority of members within the group, and the proposed
recommendation strategy is effective for multiple viewers watching TV together.

Keywords Digital television · Television program recommendation · Multiple
viewers · User profile merging · Total distance minimization

Z. Yu (B) · X. Zhou · J. Gu
School of Computer Science, Northwestern Polytechnical University,
P.R. China
e-mail: zhiwenyu@nwpu.edu.cn

Y. Hao
Management School, Northwestern Polytechnical University,
P.R. China
e-mail: haoyanbin-000@sohu.com

X. Zhou
e-mail: zhouxs@nwpu.edu.cn

J. Gu
e-mail: gujh@nwpu.edu.cn



64 User Model User-Adap Inter (2006) 16: 63–82

1 Introduction

The rapid growth of communication technologies and the invention of the set-top-box
(STB) and personal digital recorder (PDR) have enabled today’s digital television to
receive and store tremendous numbers of television (TV) programs. The abundance
of TV programs precipitates a need for smart “recommenders” to help people obtain
programs that they really want to watch. To fulfill this requirement, many personal-
ized TV systems have been built to assist individual users in filtering and selecting
programs based on their respective personal preferences.

However, for social custom and economic reasons, television is often a common
equipment in both private (e.g. living room) and public areas (e.g. student dormitory).
The TV is usually viewed by multiple members of the groups sitting together. So the
TV recommendation system should not only provide personalized programs for indi-
viduals, but also be able to recommend programs to multiple viewers taking care of
the preferences of the majority of viewers, in the case where the viewers are watching
TV at the same time, and in the same spot. Existing TV recommendation systems
do not propose solutions to address this issue. This paper proposes a TV program
recommendation strategy for multiple viewers using profile merging. The user profile
merging is based on total distance minimization.

The rest of this paper is organized as follows. Section 2 discusses previous work
relevant to this paper. Section 3 provides three alternative strategies to achieve
program recommendation for multiple television viewers, discusses, and analyzes
their advantages and disadvantages, and then chooses the strategy based on profile
merging as our solution. Section 4 describes the user profile merging scheme, which is
based on total distance minimization. The prototype implementation and evaluation
are presented in Sect. 5. Finally, Sect. 6 concludes the paper.

2 Related work

There has been much research done in the area of TV program personalization.
Several personalized TV systems have been built in recent years to help users deal
with the overabundant TV programs, such as PTV (Smyth and Cotter 2004), Inter-
active Personalized TV (O’Sullivan et al. 2004), TV3P (Yu and Zhou, 2004), TV
recommender (Gutta et al. 2000), TV-Advisor (Das and Horst 1998), and P-EPG
(Ehrmantraut et al. 1996). But none of them have proposed solutions to recom-
mend TV programs for multiple viewers. A possible solution for recommending TV
programs to multiple viewers is to model a group by merging individual user models.
This is referred to as group recommendation or group modeling. There have been
several group recommender systems presented during the past few years.

Group Modeling (Masthoff 2004) discusses different strategies for combining indi-
vidual user models to select TV items to suit groups of viewers. Many issues related
with group recommendation are discussed, such as normalization, linearity, misery,
order, solidarity, and fairness. Through experiments, the author explores how viewers
select programs for a group to watch based on ratings for each of them, investigates
how satisfied the group believe they would be with programs chosen by different
strategies, and analyzes three proposed algorithms for presenting a sequence of items
that take order and ratings into account.



User Model User-Adap Inter (2006) 16: 63–82 65

TRAVEL DECISION FORUM (Jameson 2004) proposes a user interest aggrega-
tion method for group recommender by allowing the current member optionally to
view (and perhaps copy) the preferences already specified by other members. This
method has several advantages, such as saving of effort, learning from other members,
and encouraging assimilation to facilitate the reaching of agreement.

INTRIGUE (Ardissono et al. 2003) recommends tourist attractions for heteroge-
neous groups of tourists that include relatively homogeneous subgroups (e.g. children
and disabled).

PolyLens (O’Conner et al. 2001) recommends movies to groups of users. It is
extended from MovieLens system, which is based on an individual’s taste as inferred
from ratings and collaborative filtering. PolyLens allows users to create groups and
ask for a recommendation for that group. It also explores several design issues of
a group recommender, such as the nature of a group, how groups are formed, the
privacy issues in showing recommendations to groups, etc.

A hypertext system’s network structure is used to store the aggregation of users’
collective knowledge on a given domain, which the author refers to as Group User
Model (Bollen 2000). The group user model is combined with individual user interests
to generate personalized hyperlink recommendations.

Let’s Browse (Lieberman et al. 1999) recommends web pages to a group of two or
more users who are browsing the web together. It is assisted by an intelligent agent
to keep track of the user’s interests, and then uses a simple linear combination of the
profiles of each user.

MusicFX (McCarthy and Anagnost 1998) selects background music to suit a group
of people in a fitness center. The system generates a group preference from the individ-
ual preferences that have been previously specified by the members who are currently
working out.

Our work differs from previous work in several aspects. First, we provide TV
program recommendation to multiple viewers through merging user profiles.
INTRIGUE (Ardissono et al. 2003) recommends tourist attractions to heterogeneous
groups of tourists by combining the subgroup-related satisfaction scores in a weighted
way. By its very nature, it merges recommendations rather than user models. PolyLens
(O’Conner et al. 2001) obtains movie recommendations for group users by employing
traditional collaborative filtering techniques. It does not address the problem from
the perspective of user model merging. Second, we merge individual user preferences
on features (e.g. genre, actor, and keyword about a program) not individual ratings on
programs. Group Modeling (Masthoff 2004) arrives at a recommendation decision to
a group of users through combining individual user ratings on whole programs rather
than features. Furthermore, Group Modeling recommends a sequence of programs
and tries to make nobody in the group really unhappy (avoiding misery), while our
approach recommends one TV program at a time and makes the majority of the
group happy. Third, as for profile merging, our merging algorithm is based on total
distance minimization. We are the first to introduce distance concepts to measure the
difference between user profiles. The total distance minimization guarantees that the
merged result should be close to most users’ preferences. Let’s Browse (Lieberman
et al. 1999) and MusicFX (McCarthy and Anagnost 1998) use very rough methods
for user preference merging, such as simple linear combination and sum of square. To
aggregate a group of users’ interests, TRAVEL DECISION FORUM (Jameson 2004)
provides an interface for explicit preferences input and allows each member to see
the other member’s preferences. Neither user profile merging nor recommendation



66 User Model User-Adap Inter (2006) 16: 63–82

merging is used. Group User Model (Bollen 2000) is the collective knowledge of a
group of users on a given domain transformed from hyperlink structure. It is used to
improve and recommend hyperlinks to individual users rather than a group of users.

3 Alternative strategies

In this section, we first present three recommendation strategies toward groups of
users, and then briefly analyze them.

3.1 Strategy 1—Group agent

In this recommendation strategy, the users register a common account for them, and
input their original preferences to generate a common profile. When the user group
intends to watch TV together, they log in with the common account. As a result, the
group agent learns preferences for the group, and recommends programs to them.

3.2 Strategy 2—Merging recommendations

In Strategy 2, the system first uses a recommendation approach to generate a pro-
gram recommendation list for each user according to their respective profiles. Then it
merges these recommendation lists to generate a common program recommendation
list for the group. The schematic of this recommendation strategy is shown in Fig. 1.

3.3 Strategy 3—Merging user profiles

In Strategy 3, the system first merges all user profiles to generate a common user
profile. Then it uses a recommendation approach to generate a common program
recommendation list for the group according to the common user profile. The schematic
of this recommendation strategy is shown in Fig. 2.

User profile 1 User profile 2 User profile N

Program 
recommendation 

list 1 

…

…

Common program 

Recommendation merging 

algorithm 

Program 
recommendation 

list 2 

Program 
recommendation 

list N 

Fig. 1 Strategy 2: merging recommendations



User Model User-Adap Inter (2006) 16: 63–82 67

Fig. 2 Strategy 3: merging
user profiles …

Common user profile 

Common program 

User profile merging 
algorithm 

User profile 1 User profile 2 User profile N

Compared to the last two strategies that use a merging algorithm, the strategy
using the group agent is simple and direct, and sometimes more accurate. But, it is not
adaptive and flexible. First, it requires the group of viewers to watch TV together for
a long time so as to learn their common preferences. Second, the group agent cannot
work when some members of the group rather than the whole group is watching TV.
In contrast, whenever a subgroup of users wants to enjoy TV shows together, the
last two strategies can generate the common program recommendation list for them.
Several approaches, such as “hidden eye” technology, remote control functionality or
smart card technology (Bozios et al. 2001), can be adopted to identify the members of
the user group who are currently watching TV. For its convenience and intelligence, in
this paper we choose Strategy 3 to achieve TV program recommendation for multiple
viewers. The superiority of Strategies 3 to 2 is verified by experiment in Sect. 5. The
individual user profiling and the approach to generate a recommendation list from
a user profile have been presented in our early work (Yu and Zhou 2004). The user
profile merging, which is the key technology to implement this strategy, is described
in the following section.

4 User profile merging based on total distance minimization

The user profile merging algorithm merges individual profiles so as to form a common
user profile that reflects most and consistent preferences of the group (Yu et al. 2004,
2005). In this section, we first describe the merging scheme, then give an example to
demonstrate the merging process.

4.1 Universal vector representation

In each user profile, there are many features (e.g. genre, actor, and keyword about TV
programs) as well as weights indicating the relative importance of features. We gather
all the features from user profiles alphabetically as a lexicon, and use a thesaurus to
reduce the feature list. The lexicon is represented as a vector.

Lexicon = (feature1, feature2, . . . , featuren). (1)



68 User Model User-Adap Inter (2006) 16: 63–82

With the lexicon vector, we can define each user profile universally as a vector V:

V = (f1, f2, . . . , fn), (2)

where V is a vector with n (total number of terms in above lexicon) items, where fi is
the value assigned to corresponding featurei (1 ≤ i ≤ n) in the lexicon vector. Suppos-
ing user’s feature weight belongs to [−1, 1], of which ‘-1’ means maximum disliking
(aversion), ‘1’ means maximum liking (desire), the value fi is assigned complying with
the following rules:

• Rule (1): if featurei is included in the user profile and its weight is positive, then
fi=1;

• Rule (2): if featurei is included in the user profile and its weight is negative, then
fi=-1;

• Rule (3): if featurei is included in the user profile and its weight is zero, or featurei
is not included in the user profile, then fi=0.

4.2 Definition of merging result

Dalal (1988) proposes a distance concept for belief revision. We adopt Dalal’s distance
concept to measure the inconsistency between two user preferences, and define the
merging result.

Definition 1 Distance between two bits (x and y), d(x, y), x ∈ {1, 0, −1}, y ∈ {1, 0, −1},
d(1, 0) = d(0, 1) = d(0, −1) = d(−1, 0) = 1,
d(1, 1) = d(0, 0) = d(−1, −1) = 0,
d(1, −1) = d(−1, 1)=2.

Definition 2 Distance between two user profiles (Ui and Uj), Du(Ui, Uj),
Du(Ui, Uj) = D(Vi, Vj) = ∑n

k=1 d(ak, bk), ak ∈ Vi, bk ∈ Vj, Vi and Vj are corre-
sponding vectors extracted from Ui and Uj.

Definition 3 ψn is the set of all vectors composed of n elements, each of which belongs
to {1, 0, −1}.

Definition 4 Suppose that V1, V2, . . ., VN , and V ∈ ψn, the merging result of V1, V2,
…, VN is V. It satisfies ∀B {B ∈ ψn},

∑N
i=1 D(Vi, V) ≤ ∑N

i=1 D(Vi, B), which means
the total distance is minimum.

4.3 Merging procedure

The merging procedure consists of two steps. The first step is feature selection, whose
task is to determine whether a feature should be included in the target common user
profile. As we know, each user profile may contain a large number of features. The
total number of features that occur in all user profiles may be very large. So we should
select part of them to represent common interest. The second step is weight assign-
ment, which means how much weight should be assigned to a selected feature. The
schematic structure of profile merging is shown as Fig. 3.



User Model User-Adap Inter (2006) 16: 63–82 69

Feature
selection

Weight 
assignment 

User
profile 

Common 
user profile

Fig. 3 Schematic structure of profile merging

4.3.1 Feature selection

Feature selection is based on total distance minimization. For each element of the
target vector (merging result), choosing which one from {1, 0, −1} as its value depends
on whether it makes the total distance minimum.

Theorem 1 Assume N user profile vectors, where each vector has only one element,
Vi = {ai}, (i = 1, 2, . . ., N, ai ∈ {1, 0, −1}). Define c1 as the total number of times a ‘1’
occurs in the vectors; c0 as the total number of times a ‘0’ occurs in the vectors; c−1 as
the total number of times a ‘−1’ occurs in the vectors. Then, under Definitions 1–4, the
merging result of the N vectors is:

Merging result (V)=





0, if c1 + c−1 < c0 + 2c1 and c1 + c−1 < c0 + 2c−1,
±1 or 0, if c1 + c−1 = c0 + 2c1 = c0 + 2c−1,
0 or − 1, if c1 + c−1 = c0 + 2c1 and c1 + c−1 < c0 + 2c−1,
0 or 1, if c1 + c−1 < c0 + 2c1 and c1 + c−1 = c0 + 2c−1,
±1 , else.

(3)

Proof According to Definition 1, the total distance of ‘1’ to the N vectors is c0 +2c−1;
the total distance of ‘0’ to the N vectors is c1 + c−1; and the total distance of ‘-1’ to
the N vectors is c0 + 2c1. If c1 + c−1 < c0 + 2c1 and c1 + c−1 < c0 + 2c−1, according to
Definition 4, the merging result whose total distance should minimize, is 0. Similarly,
if c1 + c−1 = c0 + 2c1 = c0 + 2c−1, the merging result is ±1 or 0; if c1 + c−1 = c0 + 2c1
and c1 + c−1 < c0 + 2c−1, the merging result is 0 or -1; if c1 + c−1 < c0 + 2c1 and
c1+c−1 = c0+2c−1, the merging result is 0 or 1; otherwise the merging result is ±1. ��

In the cases of c1 + c−1 = c0 + 2c1 = c0 + 2c−1, c1 + c−1 = c0 + 2c1 and
c1 +c−1 < c0 +2c−1, c1 +c−1 < c0 +2c1, and c1 +c−1 = c0 +2c−1, the result is not cer-
tain. For these cases, we set the merging result as ±1. So Theorem 1 can be revised as:

Theorem R1 Assume N user profile vectors, where each vector has only one element,
Vi = {ai}, (i = 1, 2, . . ., N, ai ∈ {1, 0, −1}). Define c1 as the total number of times a ‘1’
occurs in the vectors; c0 as the total number of times a ‘0’ occurs in the vectors; c−1 as
the total number of times a ‘−1’ occurs in the vectors. Then, under Definitions 1–4, the
merging result of the N vectors is:

Merging result(V) =
{

0, if c1 + c−1 < c0 + 2c1 and c1 + c−1 < c0 + 2c−1,
±1, else

(4)

(Proof omitted).

Theorem 2 Assume N user profile vectors, where each vector has K elements,
Vi = {a1, a2, . . ., aj, . . ., aK}, (i = 1, 2, . . ., N, aj ∈ {1, 0, −1}). Define V as the merg-
ing result of these N vectors. Then, each element of V is the merging result of the
corresponding element in V1, V2, …, VN.



70 User Model User-Adap Inter (2006) 16: 63–82

Proof The K-element vectors V1, V2, . . ., VN are represented as follows:

V1 : {a11, a12, . . ., a1j, . . ., a1K},
V2 : {a21, a22, . . ., a2j, . . ., a2K},
. . .

VN : {aN1, aN2, . . ., aNj, . . ., aNK},
V : {a1, a2, . . ., aj, . . ., aK},

aij denotes the jth element of the ith vector. V is the merging result.
Now, calculate the total distance (TD) of vector V to V1, V2, . . ., VN :

TD = ∑
D(Vi, V) = D(V1, V) + D(V2, V) + · · · + D(Vi, V) + · · · + D(VN , V)

(i = 1, 2, . . . , N)

= ∑
d(a1j, aj)+ ∑

d(a2j, aj)+ · · · + ∑
d(aNj, aj)(j = 1, 2, . . . , K)

= ∑
d(ai1, a1)+ ∑

d(ai2, a2)+ · · · + ∑
d(aiK, aK)(i = 1, 2, . . . , N).

Obviously, if we make
∑

d(aij, aj)(i = 1, 2, . . ., N, j = 1, 2, . . ., K)minimum, TD can
be minimum.

∑
d(aij, aj) is the total distance of the jth element in V to corresponding

element (that is, the jth element) in V1, V2, . . ., VN . So Theorem 2 is proved. ��
We can select features to form the common user profile according to Theorems

R1 and 2. If the value of the jth element of V is ±1, this means we should select the
corresponding feature (the jth feature in the lexicon vector). If the value of the jth
element of V is 0, this means we should discard the corresponding feature. In Sect.
4.4, we will give an example to illustrate the selection process.

4.3.2 Weight assignment

The individual user profile acquisition and update by integrating two main tech-
niques—explicit input/modification and learning from feedback—was presented in
our early work (Yu and Zhou, 2004). Explicit input/modification means inputting
features and weights during registration or modifying them after log in through a
Graphical User Interface (GUI). Learning from feedback utilizes a relevance feed-
back mechanism to modify the preference features and their weights, respectively, by
observing the user behavior. Through the learning approach, the weights are consis-
tent in all the user profiles. However, the same weight value obtained through explicit
input/modification in different user’s profile often signals a different importance. The
reason is that different users have different rating criteria and customs. For instance,
0.8 input by Tom may mean the feature is the favorite feature, but for Jack, it may
simply imply moderate interest.

Through this profiling scheme, weights in different user profiles are not obtained
with universal measurement. So, we should not assign a weight to a selected feature
by simply summing all the weights in the individual user profiles, but instead should
first normalize them.

(1) Weight normalization
For each user profile, we normalize the original weight of each feature according

to the following general normalization formula:

w′
i = wi − wmin

wmax − wmin
× (Umax − Umin)+ Umin, (5)



User Model User-Adap Inter (2006) 16: 63–82 71

where wi is featurei’s original weight, w′
i is the normalized value of wi, wmax and wmin

are the maximum and minimum weight in the user profile, respectively [Umax, Umin]
is the value universe of feature weight. Here Umax = 1 and Umin = −1, so formula (5)
can be simplified to the following one:

w′
i = 2wi − wmax − wmin

wmax − wmin
. (6)

Through formula (6), the normalized value is always on a standard universe, say
[−1, 1].
(2) Weight calculation

For each selected feature,

Weighti =
∑m

j=1 w′
ij

n
, (7)

where Weighti is the weight assigned to featurei in the merged user profile, w′
ij is the

normalized weight value of featurei in the jth user profile. In the group, which is com-
posed of n members, there are totally m user profiles containing featurei. Formula (7)
also results in the weight values of the selected features falling into the range of [−1, 1].

In weight calculation, we used n-mean value as the weight of a selected feature in
order to take all members’ preferences into consideration. If m = n, it is clearly a
typical average method. If m < n, we consider the other members whose profiles do
not include the feature through dividing the sum by n not by m.

4.4 Example

Suppose there are five user profiles, namely U1, U2, U3, U4, and U5, as shown in Table 1.

Step 1 Represent user profiles as (feature, weight) vectors

U1 = ((A, −0.3), (C, 0.8), (D, −0.7), (E, −0.6), (H, 0.9), (I, −0.2), (J, 0.6), (N, 0.4),

(P, 0.3)),

U2 = ((A, 0.7), (B, −0.9), (D, 0.3), (E, 0.5), (F, −0.8), (K, −0.2), (N, 0.5), (O, −0.3)),

U3 = ((A, 0.3), (D, −0.4), (E, 0.2), (H, 0.5), (J, 0.7), (K, −0.1), (L, −0.4), (M, 0.8)),

Table 1 User profile examples

U1 U2 U3 U4 U5
Feature Weight Feature Weight Feature Weight Feature Weight Feature Weight

A −0.3 A 0.7 A 0.3 A 0.2 C 0.7
C 0.8 B −0.9 D −0.4 D −0.3 E −0.8
D −0.7 D 0.3 E 0.2 E 0.6 F 0.4
E −0.6 E 0.5 H 0.5 H 0.8 G 0.8
H 0.9 F −0.8 J 0.7 I −0.3 J −0.2
I −0.2 K −0.2 K −0.1 J 0.5 K −0.2
J 0.6 N 0.5 L −0.4 K 0.7 L −0.4
N 0.4 O −0.3 M 0.8 M −0.3 N 0.7
P 0.3 O 0.6



72 User Model User-Adap Inter (2006) 16: 63–82

Table 2 Universal vector

A B C D E F G H I J K L M N O P

V1 −1 0 1 −1 −1 0 0 1 −1 1 0 0 0 1 0 1
V2 1 −1 0 1 1 −1 0 0 0 0 −1 0 0 1 −1 0
V3 1 0 0 −1 1 0 0 1 0 1 −1 −1 1 0 0 0
V4 1 0 0 −1 1 0 0 1 −1 1 1 0 −1 0 0 0
V5 0 0 1 0 −1 1 1 0 0 −1 −1 −1 0 1 1 0

U4 = ((A, 0.2), (D, −0.3), (E, 0.6), (H, 0.8), (I, −0.3), (J, 0.5), (K, 0.7), (M, −0.3)),

U5 = ((C, 0.7), (E, −0.8), (F, 0.4), (G, 0.8), (J, −0.2), (K, −0.2), (L, −0.4), (N, 0.7),

(O, 0.6)).

Step 2 Construct the lexicon

Lexicon= {A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P}.
Step 3 Construct the universal vector for each user profile, shown in Table 2

Step 4 Select feature

According to Theorems R1 and 2, for feature A, c0 = 1, c1 = 3, c−1 = 1,
since c1 + c−1 > c0 + 2c−1, merging result of feature A, V(A) = ±1. For feature
B, c0 = 4, c1 = 0, c−1 = 1, since c1 + c−1 < c0 + 2c1 and c1 + c−1 < c0 + 2c−1,
merging result of feature B, V(B) = 0. Similarly, we can get V(C) = 0, V(D) = ±1,
V(E) = ±1, V(F) = 0, V(G) = 0, V(H) = ±1, V(I) = 0, V(J) = ±1, V(K) = ±1,
V(L) = 0, V(M) = 0, V(N) = ±1, V(O) = 0, V(P) = 0. That is, the merging re-
sult V = (±1, 0, 0, ±1, ±1, 0, 0, ±1, 0, ±1, ±1, 0, 0, ±1, 0, 0). So the target common user
profile contains the following features: A, D, E, H, J, K, and N.

Step 5 Normalize the weight

For U1, since feature A, D, E, H, J, and N are included in the merged user profile,
we should normalize the weights of these features. In U1, the maximum weight is 0.9
and the minimum weight is −0.7, so

w′(A) = 2 × (−0.3)− 0.9 − (−0.7)
0.9 − (−0.7)

= −0.5,

w′(D) = 2 × (−0.7)− 0.9 − (−0.7)
0.9 − (−0.7)

= −1,

w′(E) = 2 × (−0.6)− 0.9 − (−0.7)
0.9 − (−0.7)

= −0.875,

w′(H) = 2 × 0.9 − 0.9 − (−0.7)
0.9 − (−0.7)

= 1,

w′(J) = 2 × 0.6 − 0.9 − (−0.7)
0.9 − (−0.7)

= 0.625,

w′(N) = 2 × 0.4 − 0.9 − (−0.7)
0.9 − (−0.7)

= 0.375.



User Model User-Adap Inter (2006) 16: 63–82 73

Similarly, we can perform normalization for U2, U3, U4, and U5.

Step 6 Calculate the target weight

For feature “A” in the merged user profile, it occurs in U1, U2, U3, and U4.

Weight(A) = −0.5 + 1 + 0.1667 − 0.0909
5

= 0.1152.

Similarly, we can obtain Weight(D) = −0.5, Weight(E) = −0.0977, Weight(H) = 0.5,
Weight(J) = 0.3326, Weight(K) = −0.0114, and Weight(N) = 0.4.

Step 7 Generate the target merged user profile

So the merged user profile, Umerged = ((A, 0.1152), (D, −0.5), (E, −0.0977), (H, 0.5),
(J, 0.3326), (K, −0.0114), (N, 0.4)).

5 Implementation and evaluation

5.1 Implementation

With the proposed user profile merging algorithm, we built a TV recommender system
for multiple viewers called TV4M. The TV4M system leverages our earlier developed
personalized TV system, namely TV3P (Yu and Zhou 2004) for individual user profil-
ing and programs ranking. TV3P accomplishes the individual user profile acquisition
and learning by employing an implicit and explicit profiling scheme. It adopts Vector
Space Model (VSM) (Salton 1989) as its object information representation method,
and the cosine of the angle between the program vector and the user profile vector as
similarity measure. Programs are ranked according to similarities. The TV4M system
is developed using the JAVA programming language (JDK1.4.1).

To identify who (i.e. which members) are watching television programs together,
we provided a GUI for multiple viewers to log in to the system, which is shown in
Fig. 4. In this scenario, five of seven members of the family intend to log in and watch
TV together.

Figure 5 is the main interface of TV4M system after the group users logged in. It
mainly consists of three parts. In the left column, there are some buttons to trigger
system administration functions (e.g. login, logout, and exit the system) and profile
related functions (e.g. modify and display the user profile). The middle column con-
tains the program recommendation list and a description for a selected item. A Java
Media Framework (JMF) based media player is integrated in the right column. In this
scenario, the recommendation list contains four local programs (“I Guess, Guess,
Guess”, “Nike Shoes”, “Sea Fish Sales”, and “Philips Flat TV”) ordered according to
their scores (i.e. similarities). When the program “I Guess, Guess, Guess” is selected,
its description can be browsed below the recommendation list. After the users click
“Display”, the media player is switched to show the program of “I Guess, Guess,
Guess”.

5.2 Evaluation

There were totally 25 users invited to test the system. The experiments involved a
total of 200 distinct video contents (TV programs, movies, advertisements, and videos



74 User Model User-Adap Inter (2006) 16: 63–82

Fig. 4 Interface for multi-user
login

Fig. 5 Main interface

made by DIY) lasting from 38 s to several hours. A wide variety of genres were incor-
porated, including soccer match, romance movie, soap TV program, documentary,
etc. We performed six experiments to test the efficacy and overhead of the proposed
user profile merging algorithm.

5.2.1 Experiment 1

(1) Evaluation method
In this experiment, we aimed to evaluate the Precision and Recall (Rijsbergen

1979) of the profile merging in recommending the appropriate TV programs. It mea-
sures satisfaction of a group of users to the programs recommended to them based
on the merged user profile. The evaluation method includes the following steps:

(1) Get a group of viewers;
(2) Merge their profiles to generate a common user profile;
(3) Show the title, genre, actor, and brief introduction of each program to the group,

and ask the group to specify their choices, in which they are interested and in



User Model User-Adap Inter (2006) 16: 63–82 75

which they are not interested. The goal is to get the number of interesting pro-
grams in the collection, e.g. the group is interested in 20 programs in the testing
set. To deal with group dynamics when the group specified their choices, i.e.
preventing the members from expressing their opinions influenced by some dom-
inant or popular persons in the group, we allowed each member to separately
indicate whether a program is interesting, and then decided the group’s choice by
voting;

(4) Use a recommendation approach to choose programs for the group according to
the merged user profile;

(5) Count how many programs are recorded, and compare the recorded programs
with the set of interesting programs indicated in Step (3). The goal is to get the
number of programs totally recorded, and the number of interesting programs
already recorded;

(6) Use Precision and Recall defined as follows to calculate their satisfaction percent-
age, and draw the Recall-Precision graph.

Precision = number of interesting programs recorded
total number of programs recorded

, (8)

Recall = number of interesting programs recorded
number of interesting programs in collection

. (9)

(2) Results
Seven users (5 males and 2 females) constituting a group participated in the

experiment. The experimental results are shown in Fig. 6. There are five sessions
in the experiment. We get a Recall-Precision pair in each session. Every Recall-
Precision pair determines a node in the graph. According to F1, the harmonic
mean of Recall and Precision (Rijsbergen 1979), the best performance happens
during the session where the values of Recall and Precision are 0.63 and 0.57,
respectively.

5.2.2 Experiment 2

(1) Evaluation method
In this experiment, we aimed to evaluate the efficacy of the profile merging algo-

rithm by comparing scores explicitly assigned by the group and similarities measured
by a recommendation approach according to the merged user profile. It goes as follows:

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

Pr
ec

is
io

n

Fig. 6 Recall-Precision graph of experiment 1



76 User Model User-Adap Inter (2006) 16: 63–82

(1) Get a group of viewers;
(2) Merge their profiles to generate a common user profile;
(3) Show them the program choices for several clips, and ask them to mark the pro-

grams ranging from 0 to 1 with step 0.1, e.g. the group assigns 0.7 to a specific
program. To handle group dynamics, we asked each member to rate each program
independently, and then averaged the scores to obtain the group rating for the
program;

(4) Use a recommendation approach to evaluate the programs (similarity measure)
according to the merged user profile;

(5) Compare the results (scores assigned and similarities measured) by using stan-
dard deviation (SD1) indicated as formula (10). The smaller SD1 is, the better
performance the strategy has.

SD1 =
√
√
√
√ 1

n

n∑

i=1

(scorei − similarityi)
2. (10)

(2) Results
Another five users (1 male and 4 females) constituting a group participated in the

experiment. We asked the group to rank some programs and assign scores to them. To
test the effect of program variety, i.e., liked or disliked, we selected ten representative
programs that the group rated differently with values from 0 to 0.9 with 0.1 steps (i.e.,
0, 0.1, 0.2, …, 0.9). The results are shown in Table 3. The value of SD1 is 0.0784, which
is very small.

5.2.3 Experiment 3

(1) Evaluation method
In this evaluation, we aimed to evaluate the efficacy of the profile merging by com-

paring feature weights merged and feature weights learned through the same learning
approach for individual user profile acquisition and update. The evaluation method
includes four steps:

(1) Get a group of viewers;
(2) Merge their profiles to generate a common user profile;

Table 3 Results of
experiment 2

Program name Score Similarity
assigned measured

Titanic 0.9 0.93
Pretty girls 0.8 0.75
Tokyo love story 0.7 0.82
Forrest gump 0.6 0.61
I, Robot 0.5 0.64
Star wars 0.4 0.37
Psycho 0.3 0.25
Philips flat TV 0.2 0.12
God’s hand of Maradona 0.1 0.00
Chanel perfume 0.0 0.09



User Model User-Adap Inter (2006) 16: 63–82 77

(3) Show programs to the group, and use a learning approach to capture the group’s
preferences in terms of feature and its weight;

(4) Compare the results (feature weights merged and feature weights learned) by
using standard deviation (SD2) indicated as formula (11). Also, the smaller SD2
is, the better performance the strategy has.

SD2 =
√
√
√
√ 1

n

n∑

i=1

(weightMergedi − weightLearnedi.)2 (11)

(2) Results
Another five male students constituting a group participated in the experiment. We

ranked the features in the merged common user profile according to their weights.
Then we took the top ten features and compared their weights with corresponding
weights in the learned profile. The results are shown in Table 4. The value of SD2 is
0.1998. We can observe that the weights of the top seven features in the merged com-
mon user profile are very close to those in the learned user profile, while the weights
of the last three features vary largely especially the feature “Satellite” and “James
Bond”. The reason is that in the learning process, there are not many programs involv-
ing the feature “Satellite” and “James Bond”. We believe that if the period of learning
process is sufficient, and the number of testing programs is as large as possible, the
performance could be fine.

5.2.4 Experiment 4

(1) Evaluation method
All the above three experiments aim at testing the efficacy of TV4M. In this exper-

iment, we tested the overhead of the user profile merging algorithm in terms of time
and storage cost. We compared our proposed approach (eliminating features using
Dalal’s distance (EFD)) versus simple approach (keeping all features (KAF)). We
measured the time costs of EFD and KAF, storage costs of the profile via EFD
and KAF, and time costs of recommendation using the profile via EFD and KAF.
We performed the experiment on a PC with 2.66 GHz Pentium 4 CPU and 512 MB
memory running Windows XP.

Table 4 Results of
experiment 3

Feature name Weight merged Weight learned

Soccer 1.0000 0.9064
Diego Maradona 0.9329 0.9330
Stephen Chow 0.8893 0.9127
Zinedine Zidane 0.8832 0.8571
Comedy 0.8800 0.7069
Discovery 0.8796 0.8271
Drama 0.8665 0.6712
Satellite 0.8663 0.4200
Ge You 0.6534 0.5098
James Bond 0.6440 0.3299



78 User Model User-Adap Inter (2006) 16: 63–82

Table 5 Results of
Experiment 4

Overhead EFD KAF

Time cost of merging 578 ms 547 ms
Storage cost of the merged 48 KB 97 KB
user profile
Time cost of recommendation 328 ms 391 ms

(2) Results
Table 5 shows the results of this experiment. The time cost of merging is very close.

Our merging approach spends 578 ms, which is more than the simple approach by
mere 31 ms. The merged user profiles via EFD and KAF take up storage space of
48 KB (102 features) and 97 KB (301 features), respectively. Obviously, the storage
cost of the merged user profile via KAF is two times that of EFD. Then we used
the two merged user profiles to recommend programs. The average recommendation
time by using the profile via EFD is 328 ms, which is less than that of KAF (391 ms)
by 63 ms. For a group, the merging executes only once, while the recommendation
process performs many times. Therefore, the recommendation time influences the
system performance more than the merging time. Furthermore, the storage cost of
the user profile using KAF is much more than using EFD.

5.2.5 Experiment 5

(1) Evaluation method
In this experiment, we aimed to compare the efficacy of our proposed user profile

merging algorithm (EFD) to KAF, random recommendation, and TV program merg-
ing in terms of the Precision and Recall. The measure of Precision and Recall for
EFD and KAF is the same as experiment 1, but using different merged profiles. For
random recommendation, the system does not choose TV programs according the
profile merged with our proposed approach, but randomly selects TV programs to
be recorded. The measure of Precision and Recall for the strategy of TV program
merging is somewhat different from experiment 1. It includes the following steps:

(1) Get a group of viewers;
(2) Ask the group to specify the interesting programs in a collection. The group

dynamics handling is the same as experiment 1;
(3) Use a recommendation approach to choose programs for each member based on

the corresponding individual user profile;
(4) Combine all of the programs recorded for the individual users, and compare the

recorded programs with the set of interesting programs indicated in Step (2) so
as to get the number of programs totally recorded, and the number of interesting
programs already recorded

(5) Calculate the Precision and Recall, and draw the Recall-Precision graph.

(2) Results
A group including five users (3 males and 2 females) participated in the experi-

ment. The users got program recommendations through EFD, KAF, random recom-
mendation, and TV program merging respectively. There were five sessions for each
approach in the experiment. We put the results of these four approaches on the same
Recall-Precision graph, as shown in Fig. 7, to determine which run is superior. Curves



User Model User-Adap Inter (2006) 16: 63–82 79

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

Pr
ec

is
io

n

EFD KAF Random Recommendation Program Merging

Fig. 7 Recall-Precision graph of experiment 5

close to the upper right-hand corner of the graph (where Recall and Precision are
maximized) indicate better performance.

It can be observed that the performance of random recommendation is the worst.
The curve of it is very close to the lower left-hand corner of the graph with both of the
Recall and Precision very small. The strategy of TV program merging is better than
random recommendation. The Recall is acceptable, but the Precision is small. The
reason is that the total programs collected from all of the members includes most of the
contents that the group were commonly interested, but also includes many programs
merely interesting to individual users not to the whole group. The curves of EFD and
KAF are very near and close to the upper right-hand corner of the graph. So the effica-
cies of EFD and KAF are almost the same and better than random recommendation
and TV program merging. Since the overhead of EFD is lower than KAF as verified
in experiment 4, we think the overall performance of EFD is better than KAF.

(3) Statistical testing
Since different recommendation methods are being compared in this experiment,

it is necessary to evaluate the statistical significance of the results. The statistical
significance tests ascertain whether the differences in evaluation results are really
meaningful or just by chance (Hull 1993). We adopted the test called paired t-test
(Hull 1993) for this purpose, which is widely used in IR community. The test is
depicted briefly as follows:

Let Xi and Yi be the scores (e.g., the average precision) of recommendation meth-
ods X and Y for a group profile i where i = 1. . .n, and define Di = Xi − Yi. The test
assumes that the model is additive, i.e. Di = µ + εi, where µ is the mean value and
the errors εi are normally distributed. The null hypothesis H0 is µ = 0 (X performs
as well as Y), and the alternative hypothesis H1 is µ >0 (X performs better than Y in
terms of average precision).

Paired t-test

t =
−
D

√
s2/n

, where
−
D = 1

n

n∑

i=1

Di and s2 = 1
n − 1

n∑

i=1

(Di − −
D)2 (12)

follows the t-distribution with n − 1 degrees of freedom, where n is the number of

samples,
−
D and s2 are the sample mean and the variance.

We tested each recommendation method against each of the other methods. The
degree of freedom in the test was 4. Table 6 shows the results, in which the value of t and
corresponding p-value are presented. Regarding significance levels, we used α = 0.05



80 User Model User-Adap Inter (2006) 16: 63–82

Table 6 Results of statistical testing

Pairs (X versus. Y) t p-value

KAF versus EFD 3.162 0.01< p-value<0.05
EFD versus random recommendation 5.213 p-value< 0.005
EFD versus program merging 4.503 p-value< 0.01
KAF versus random recommendation 6.112 p-value< 0.005
KAF versus program merging 5.255 p-value< 0.005
Program merging versus random recommendation 1.510 p-value> 0.05

andα = 0.01. From Table 6, we can see that the null hypothesis for testing KAF against
EFD must be rejected at α = 0.05 (0.01 < p < 0.05). Therefore, we can conclude that
KAF is likely to be better than EDF in terms of average precision, but only at the 0.05
level. For all of the other tests except program merging versus random recommen-
dation, the null hypothesis is rejected at the 0.01 level. It means both EFD and KAF
perform better than random recommendation and program merging. For program
merging versus random recommendation, the null hypothesis cannot be rejected even
at α = 0.05, hence we must regard their average precisions as equivalent.

In general, the paired t-test for statistical significance testing proved that our results
presented in Fig. 7 were really meaningful and not just due to chance.

5.2.6 Experiment 6

(1) Evaluation method
In this experiment, we aimed to evaluate the impact of homogeneity and heteroge-

neity of the user groups, in other words, how different the users are, would be on our
proposed group recommendation approach. Two different groups were set up for this
test. One group included five male undergraduates who were classmates and in the
same dormitory. So the group could be homogeneous. The other group was set up to
be heterogeneous, which comprized two male master students who preferred sports
programs, one little boy who liked cartoon, two female undergraduates who were
interested in romantic stories and one female librarian who liked drama. The system
merged the two group user profiles and recommended programs to them, respectively.
Then we asked the two groups whether they were satisfied with the programs selected
for them.

(2) Results
We found that quite a few programs were chosen for the homogeneous group. All

of the members were satisfied with the recommendation result. While there were few
programs for the heterogeneous group, and the members were not satisfied with the
result. It could be observed that for the homogeneous group, many features were in-
cluded in the target profile, and the merged result could reflect the members’ common
interests. But since the members in the heterogeneous group differed a lot in gender,
age, profession, or education, the merged result could not be convergent. So we get
the conclusion that the homogeneity and heterogeneity really have some impact on
the group recommendation system. It works better when the members in a group
have a close relation or something in common.



User Model User-Adap Inter (2006) 16: 63–82 81

6 Conclusion

In this paper, we present a program recommendation strategy for multiple television
viewers using profile merging. The user profile merging is based on total distance min-
imization, which guarantees that the merged result is close to most users’ preferences.
Two theorems are proposed and proved for feature selection, which simplifies the
process of finding the target vector, and makes the system feasible and efficient. The
evaluation results proved that the recommendation strategy is effective for multiple
viewers watching TV together. Furthermore, the recommendation strategy is simple
and feasible. It can be implemented in PDRs, as well as low cost STBs.

For future work, we plan to deploy the group recommendation method in different
application areas, such as web and music recommendation.

Acknowledgements We would like to thank the anonymous reviewers for their valuable comments
and suggestions. This work was partially supported by the National Natural Science Foundation of
China (No. 60573161), and the Doctorate Foundation of Northwestern Polytechnical University of
China (No. CX200417). We thank Phillip McKerrow (University of Wollongong, Australia) for his
helpful discussion about performance evaluation.

References

Ardissono, L., Goy, A., Petrone, G., Segnan, M., Torasso, P.: INTRIGUE: personalized recommenda-
tion of tourist attractions for desktop and handset devices. Appl. Artif. Int. 17(8–9), 687–714 (2003)

Bollen, J.: Group user models for personalized hyperlink recommendations. In: Proceedings of the
International Conference on Adaptive Hypermedia and Adaptive Web-Based Systems, LNCS
1892, pp. 38–50 (2000)

Bozios, T., Lekakos, G., Skoularidou, V., Chorianopoulos, K.: Advanced techniques for personalized
advertising in a digital TV environment: the iMEDIA system. In: Proceedings of the eBusiness
and eWork Conference, pp. 107–113. Venice, Italy (2000)

Dalal, M.: 1988, Updates in Propositional Databases. Technical Report DCS-TR-222, Department of
Computer Science, Rutgers University

Das, D., ter Horst, H.: Recommender Systems for TV. In: Recommender Systems, Papers from the
1998 Workshop, Technical Report WS-98–08, Madison, WI, Menlo, Park, pp. 35–36. AAAI Press,
CA (1998)

Ehrmantraut, M., Härder, T., Wittig, H., Steinmetz, R.: The personal electronic program guide –
towards the pre-selection of individual TV programs. In: Proceedings of the 5th International
Conference on Information and Knowledge Management (CIKM’96), pp. 243–250. Rockville,
MD, USA (1996)

Gutta, S., Kurapati, K., Lee, K. P., Martino, J., Milanski, J., Schaffer, J. D., Zimmerman, J.: TV content
recommender system. In: Proceedings of the Seventeenth National Conference on Artificial
Intelligence and Twelfth Conference on Innovative Applications of Artificial Intelligence,
pp. 1121–1122. Austin, TX, USA, (2000)

Hull, D.: Using statistical testing in the evaluation of retrieval experiments. In: Proceedings of the
16th International ACM SIGIR Conference, pp. 329–338. New York, USA (1993)

Jameson, A.: More than the sum of its members: challenges for group recommender systems. In:
Proceedings of the International Working Conference on Advanced Visual Interfaces, pp. 48–54.
Gallipoli, Italy (2004)

Lieberman, H., Dyke, N.W.V., Vivacqua A.S.: Let’s Browse: a collaborative web browsing agent. In:
Proceedings of the International Conference on Intelligent User Interfaces (IUI99), pp. 65–68.
ACM Press, New York (1999)

Masthoff, J.: Group modeling: selecting a sequence of television items to suit a group of viewers.
User Model. User-Adapt. Interact. J. Personalization Res. 14(1), 37–85 (2004)

McCarthy, J.F., Anagnost, T.D.: MusicFX: an arbiter of group preferences for computer supported
collaborative workouts. In: Proceedings of the 1998 Conference on Computer-Supported
Cooperative Work, pp. 363–372. Seattle, WA, USA (1998)



82 User Model User-Adap Inter (2006) 16: 63–82

O’Connor, M., Cosley, D., Konstan, J., Riedl, J.: PolyLens: a recommender system for groups of
users. In: Proceedings of the European Conference on Computer-Supported Cooperative Work,
pp. 199–218. Bonn, Germany (2001)

O’Sullivan, D., Smyth, B., Wilson, D. C., McDonald K., Smeaton, A.: Improving the quality of the
personalized electronic program guide. User Model. and User-Adapt. Interact. J. Personalization
Res. 14(1), 5–36 (2004)

Rijsbergen, C.J.: Information Retrieval. Butterworths, 2nd edn. London, UK (1979)
Salton, G.: Automatic Text Processing: The Transformation, Analysis, and Retrieval of Information

by Computer. Addison-Wesley Longman Publishing, Boston, MA, USA (1989)
Smyth, B. P., Cotter, P.: Case-studies on the evolution of the personalized electronic program guide.

In: Ardissono, L., Kobsa, A., Maybury, M.T. (eds.) Personalized Digital Television: Targeting
Programs to Individual Viewers. Kluwer Academic Publishers, Dordrecht, Netherlands (2004)

Yu, Z.W., Zhou X.S.: TV3P: an adaptive assistant for personalized TV. IEEE Transactions Consum.
Electron. 50(1), 393–399 (2004)

Yu, Z.W., Zhou, X.S., Hao, Y.B., Gu, J.H.: User profile merging based on total distance minimization.
In: Proceedings of the 2nd International Conference On Smart homes and health Telematics
(ICOST 2004), pp. 25–32. IOS Press, Singapore (2004)

Yu, Z.W., Zhou, X.S., Zhang D.Q.: An adaptive in-vehicle multimedia recommender for group
users. In: Proceedings of IEEE 61st Vehicular Technology Conference (VTC 2005-Spring),
pp. 2800–2804. Stockholm, Sweden (2005)

Authors’ Vitae

Zhiwen Yu
Zhiwen Yu is a Post-doctoral Researcher at the Information Technology Center, Nagoya Univer-
sity, Japan. He received his Ph.D. in Computer Science from the Northwestern Polytechnical Uni-
versity, P. R. China in 2005. This work was done when he was a Ph.D. candidate at the School
of Computer Science, Northwestern Polytechnical University. His research interests include multi-
media intelligent services, adaptive systems, personalization, and pervasive computing. From Sep-
tember 2004 to May 2005, he was a visiting researcher at the Institute for Infocomm Research,
Singapore.

Xingshe Zhou
Xingshe Zhou is Professor and Dean of the School of Computer Science, Northwestern Polytechnical
University, P. R. China. He received his M.S. degree in Computer Science from Northwestern Poly-
technical University. His research interests lie in adaptive systems, distributed computing, pervasive
computing, and sensor networks.

Yanbin Hao
Yanbin Hao is a Lecturer at the Management School, Northwestern Polytechnical University, P.R.China.
He received his B.S. degree in Radio Electronics from Lan Zhou University in 1998, and his M. S. de-
gree in Computer Science from Northwestern Polytechnical University in 2004. His research interests
include information merging, distributed computing, and embedded computing.

Jianhua Gu
Jianhua Gu is a Professor at the School of Computer Science, Northwestern Polytechnical University,
P.R.China. He received his Ph.D. in Computer Science from Northwestern Polytechnical University.
His research interests include distributed computing, software engineering, computer operating sys-
tems, and embedded computing.


