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Abstract
Background  As chronic kidney disease (CKD) progresses, metabolites undergo diverse transformations. Nevertheless, the 
impact of these metabolic changes on the etiology, progression, and prognosis of CKD remains uncertain. Our objective is 
to conduct a metabolomics analysis to scrutinize metabolites and identify significant metabolic pathways implicated in CKD 
progression, thereby pinpointing potential therapeutic targets for CKD management.
Methods  We recruited 145 patients with CKD and determined their mGFR by measuring the plasma iohexol clearance, 
whereupon we partitioned them into four groups based on their mGFR values. Non-targeted metabolomics analysis was 
conducted using UPLC-MS/MS assays. Differential metabolites were identified via one-way ANOVA, PCA, PLS-DA, and 
OPLS-DA analyses employing the MetaboAnalyst 5.0 platform. Ultimately, we performed differential metabolite pathway 
enrichment analysis, using both the MetaboAnalyst 5.0 platform and the MBRole2.0 database.
Results  According to the findings of the MBRole2.0 and MetaboAnalyst 5.0 enrichment analysis, six amino acid metabo-
lism pathways were discovered to have significant roles in the progression of CKD, with the glycine, serine, and threonine 
metabolism pathway being the most prominent. The latter enriched 14 differential metabolites, of which six decreased while 
two increased concomitantly with renal function deterioration.
Conclusions  The metabolic analysis unveiled that glycine, serine, and threonine metabolism plays a pivotal role in the pro-
gression of CKD. Specifically, glycine was found to increase while serine decreased with the deterioration of CKD.

Keywords  Metabolomics · Chronic kidney disease · Amino acids metabolites · OPLS-DA · Glycine · Serine · Threonine 
metabolism
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TPH-1	� Tryptophan hydroxylase-1
UPLC-MS/MS	� Ultra performance liquid chromatograph 

tandem mass spectrometry
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Introduction

Chronic kidney disease (CKD) is a clinical disorder arising 
from diverse pathogenic factors, including but not limited 
to glomerulonephritis, lupus nephritis, chronic interstitial 
nephritis, and diabetic nephropathy. As a major global pub-
lic health issue, CKD warrants significant attention [1]. For 
patients diagnosed with CKD, it is essential to have early 
and accurate detection, followed by prompt intervention. 
This is crucial to halt the progression of CKD, which if left 
unattended, could ultimately lead to end-stage renal failure 
[2].

In line with the research notions of genomics and prot-
eomics, metabolomics involves the quantitative evaluation of 
low-molecular-weight substances (typically < 1500 Dalton) 
present in organisms [3]. The identified metabolites pertain 
to diverse chemical categories, including but not limited to 
lipids, nucleotides, and amino acids. It is noteworthy that 
their concentration results from an intricate interplay among 
genes, the microbiome, and environmental factors [3]. The 
aberrant characteristics and metabolic pathways identified 
through metabolomics can offer valuable insight into the 
underlying disease mechanisms and furnish information 
regarding pathophysiological alterations in patients with 
CKD [4]. Therefore, metabolomics is regarded as a valu-
able tool for nephrology research, particularly in the quest 
for innovative biomarkers for diagnosing and prognosticat-
ing CKD [5].

Besides serving as integral constituents of proteins and 
polypeptides, amino acids also function as cell signaling 
molecules and gene expression regulators [6]. A recent 
investigation has demonstrated that amino acids, alongside 
their related upstream and downstream metabolites, partici-
pate in the pathophysiological processes underlying kidney 
injury by regulating oxidative stress, inflammation, and 
immune response [7]. Patients with CKD typically exhibit 
abnormal serum amino acid metabolic profiles. A study has 
ascertained that serum leucine levels are markedly dimin-
ished in patients with CKD [8], and this observation has 
been replicated in animal models, including dogs suffering 

from CKD [9]. According to a case–control study, argi-
nine, methionine, and threonine exhibit potential as meta-
bolic markers of residual renal function and biomarkers of 
prognosis among patients with nephropathy [10]. 5-meth-
oxy tryptophan (5-MTP) is a potential metabolite for early 
CKD screening, as its serum level exhibits a robust correla-
tion with the estimated glomerular filtration rate (eGFR) 
and decreases in tandem with CKD progression. Notably, 
tryptophan hydroxylase-1 (TPH-1) is an enzyme pivotal in 
5-MTP biosynthesis and can attenuate kidney injury by miti-
gating renal inflammation and interstitial fibrosis. Hence, 
both 5-MTP and TPH-1 may emerge as viable targets for 
CKD treatment [11].

Several investigations have identified biomarkers linked 
with CKD progression, yet limited attention has been paid 
to plasma amino acids and their corresponding upstream 
and downstream metabolites regarding their involvement in 
CKD progression. To address this gap, our study centered on 
identifying amino acid metabolites and metabolic pathways 
associated with renal function deterioration.

Methods

Metabolomics samples and mGFR measurement

The study comprised 145 patients fulfilling the inclusion cri-
teria exhibiting diverse levels of chronic renal insufficiency. 
The diagnosis of CKD was based on the NKFKDOI guide-
lines. Prior to enrollment, all patients provided informed 
consent after the Kiang Wu Hospital ethics committee's 
approval.

We collected 4 mL of peripheral venous blood from each 
patient to obtain plasma samples for metabolomics analysis. 
To estimate each patient's glomerular filtration rate (GFR), 
we employed plasma clearance of iohexol [12]. To conduct 
this study, we administered 5 mL of iohexol (300 mg/mL, 
GE Healthcare, Shanghai, China) via intravenous injection 
into one of the patient's upper limb veins. This injection 
lasted no more than two minutes, and patients were not in a 
fasting state at this time. We then collected plasma (6 mL) 
from the opposite upper limb vein and measured blood 
concentrations of iohexol at 120 and 240 min after admin-
istration using high-performance liquid chromatography 
(HPLC). When patients exhibited eGFR levels lower than 
30 mL/min/1.73 m2 [13], we postponed the second blood 
collection time to 300 min. All blood samples underwent 
centrifugation at room temperature for 10 min at 2000g to 
extract plasma and were stored at − 80 °C until analysis.
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Ultra performance liquid chromatograph tandem 
mass spectrometry (UPLC‑MS/MS) assays

At the Dian Calibra-Metabolon Joint Metabolomics Labora-
tory (Hangzhou, China), we employed four distinct UPLC-
MS/MS methods to test each sample's small molecule 
metabolites [14]. Sample preparation automated liquid trans-
fer was executed using Hamilton's MicroLab STAR​® system 
(Hamilton, Switzerland). We combined a methanol-based 
metabolite extraction solution with each sample, followed 
by shaking using a GenoGrinder 2010 (Spex SamplePrep, 
USA) and centrifugation for two minutes to precipitate pro-
teins and other debris. The metabolite-containing superna-
tant was evenly split into four portions corresponding to 
four UPLC-MS/MS analyses. Two components underwent 
reversed-phase (RP) UPLC-MS/MS analyses in positive ion 
electrospray ionization (ESI) mode utilizing the same col-
umn (BEH C18 2.1 × 100 mm, 1.7 μm column, Waters) and 
mobile solutions (water and methanol supplemented with 
0.05% perfluoropentanoic acid (PFPA) and 0.1% formic acid 
(FA)). The third component was analyzed via RP UPLC-
MS/MS in negative ion ESI mode, while the last component 
was evaluated through hydrophilic interaction chromatog-
raphy (HILIC) UPLC-MS/MS in negative ion ESI mode. 
After drying each fraction under nitrogen, we dissolved it 
in an appropriate solution for each UPLC-MS/MS method 
and then injected it into four UPLC-MS/MS systems. We 
processed the raw mass spectrometry data using our in-
house developed software, extracted and identified peaks and 
matched the experimental ion characteristics with entries in 
an internal library constructed using standard compounds to 
identify metabolites. Metabolite identification matching cri-
teria encompassed retention time index (RI), the molecular 
ion mass-to-charge ratio (m/z), and MS/MS spectral data. 
To heighten experiment reliability and minimize error, we 
applied a stringent matching window to RI and m/z crite-
ria, considering both forward and reverse MS/MS matching 
scores between standard compound entries and experimental 
data.

Pretreatment of metabolomics data

The study participants were divided into four groups based 
on their measured glomerular filtration rate (mGFR) values: 
group A (mGFR < 30 mL/min/1.73 m2), group B (30 mL/
min/1.73  m2 ≤ mGFR < 60  mL/min/1.73  m2), group C 
(60 mL/min/1.73 m2 ≤ mGFR < 90 mL/min/1.73 m2), and 
group D (mGFR ≥ 90  mL/min/1.73  m2). We conducted 
statistical analyses of patients' clinical characteristics and 
variables using SPSS 26.0 software, with a p-value < 0.05 
deemed statistically significant. MetaboAnalyst 5.0 (https://​
www.​metab​oanal​yst.​ca/) is an integrated platform for metab-
olomics data analysis, capable of conducting comprehensive 

normalization, statistical analysis, function enrichment 
analysis, meta-analysis, and other multi-omics analyses for 
both targeted and non-targeted metabolomic data [15]. We 
uploaded the comma-separated values (.csv) mass spec-
trometry data file onto the MetaboAnalyst 5.0 website, com-
prising a 145 (samples) × 1094 (compounds) data matrix. 
Before conducting data analysis, we performed data integrity 
checks, including class label verification, the existence of 
non-numeric values, missing values, or features with con-
stant values. To mitigate biased results stemming from trun-
cated data omissions, we replaced missing values with 1/5 
of the minimum positive value of its corresponding variable.

Data filtering was then implemented to identify and elimi-
nate variables unlikely to be utilized when modeling the 
data. Specifically, we filtered out variables whose relative 
standard deviation (RSD) exceeded 25% across the entire 
sample, removing 40% of the total. Finally, we performed 
median normalization, logarithmic transformation based on 
10, and Pareto scaling to achieve general systematic differ-
ences adjustment among samples.

Univariate and multivariate statistical analysis

We conducted a one-way analysis of variance (ANOVA) 
to preliminarily screen for significant features, setting the 
ANOVA p-value cutoff at 0.05. Following this, we car-
ried out paired principal component analysis (PCA) among 
Group A, B, C, and D, and selected the primary comparison 
group based on the PCA results. We then performed partial 
least squares-discriminant analysis (PLS-DA), and orthogo-
nal partial least squares-discriminant analysis (OPLS-DA) 
on this main comparison group.

PCA is an unsupervised dimension reduction method ena-
bling the study of training samples without labeled sample 
data. It linearly recombines all initially identified metabolites 
to construct a new set of comprehensive variables, selecting 
2–3 comprehensive variables according to analyzed charac-
teristics to reflect original variable information as much as 
possible, achieving dimension reduction.

PLS-DA is a supervised PCA method that considers 
grouping information to realize data dimension reduction. 
It uses both the X matrix and Y matrix by searching for 
multidimensional directions in the X space that can explain 
maximum variance in the Y space, better screening differ-
ential metabolites among different groups. OPLS-DA is a 
multivariate statistical analysis method employing super-
vised pattern recognition. Combining PLS-DA analysis with 
orthogonal signal correction (OSC) technology eliminates 
irrelevant influences and effectively screens differential 
metabolites.

Variable Importance in Projection (VIP) measures the 
variable weight value of (O) PLS-DA model variables, 
assessing each metabolite's expression pattern influence 

https://www.metaboanalyst.ca/
https://www.metaboanalyst.ca/
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intensity and explanatory ability on sample classification 
and discrimination in each group. VIP describes each dif-
ferential metabolite's overall contribution to the model, with 
a VIP value > 1 deemed statistically significant. We set the 
threshold for VIP value as > 1.

Metabolic pathway analysis

MBRole2.0 (http://​csbg.​cnb.​csic.​es/​mbrol​e2/) is an open 
database for functional enrichment analyses of significant 
compounds in metabolomics research [16]. We converted 
differential metabolite names screened by ANOVA analysis 
into "KEGG compound IDs" in MBROLE 2.0, setting anno-
tations and background as "KEGG pathways" and "Homo 
sapiens (human)," respectively. Both MetaboAnalyst 5.0 
platform and the MBRole2.0 database were utilized to con-
duct metabolite pathway enrichment analyses.

Results

Clinical characteristics of the study populations

A total of 145 patients aged between 20 and 96 years with 
CKD were recruited, 86 of whom were women. Based on 
their mGFR values, 22 patients were assigned to Group A, 
47 to Group B, 39 to Group C, and 37 to Group D. We 
conducted summary statistics on some clinical variables 
of the patients (Table 1), and the original clinical data of 
the patients were presented in the form of supplementary 
documents (Supplementary Table 1). For mGFR, age and 
body mass index (BMI) of the patients, we calculated the 
corresponding arithmetic means, standard deviations, and 
p-values of one-way ANOVA tests. For the dichotomous 
variables of the use of antiplatelet agents, antilipemic agents, 
antihypertensive medications, hypoglycemic drugs, and uric 
acid reduction medicines we showed their proportions and 
numbers in each group in Table 1, alongside their P-values 
obtained from chi-square tests.

Univariate analysis

A comprehensive total of 1094 metabolites were success-
fully identified utilizing non-targeted metabolomics analysis 
(Fig. 1). Lipids accounted for the highest proportion (40%) 
among the diverse categories, followed by amino acids 
(21%) and xenobiotics (21%). From this pool, we screened 
673 distinct metabolites via one-way ANOVA analysis and 
the results of ANOVA analysis were presented in Supple-
mentary Table 2.

PCA, PLS‑DA and OPLS‑DA

The results of PCA are depicted in Fig. 2A–F. The group A 
and group D were separated in the principal component 1. 
Meanwhile, compared with other subgroups, the metabolic 
spectrum difference between group A and group D was the 
most significant, signifying that patients' metabolic profiles 
underwent alterations with the progression of CKD, with the 
most significant changes noted among those with end-stage 
renal disease (ESRD).

Based on the results of PCA, we identified group A and 
group D as the main comparison group. To further enhance 
the performance of the PCA model, we carried out PLS-
DA (Fig. 2G), which conducts supervised analysis based 
on sample grouping to illuminate differences in metabolic 
profiles between groups and pinpoint more valuable differ-
ential metabolites. Among the metabolites that increased 
with mGFR decline, 2-methylcitrate and N-acetyl-1-meth-
ylhistidine had the highest VIP scores (Fig. 3A). Conversely, 
among the metabolites that decreased with mGFR decline, 
S-allylcysteine and caffeine had the highest VIP scores. We 
evaluated the quality of our model using the goodness of fit 
parameter (R2) and predictive power parameter (Q2) values. 
R2 indicates the interpretation rate of the built model to the 
X and Y matrix, while Q2 reflects the proportion of variance 
in the data predicted by the model, which translates into 
the model's prediction ability. In our study, all comparison 

Table 1   Clinical characteristics of four group’s participants

Group A: mGFR < 30 mL/min/1.73 m2); group B: 30 mL/min/1.73 m2 ≤ mGFR < 60 mL/min/1.73 m2); group C: 60 mL/min/1.73 
m2 ≤ mGFR < 90 mL/min/1.73 m2); group D: mGFR ≥ 90 mL/min/1.73 m2). 
BMI body mass index, mGFR measured glomerular filtration rate

Group 
number

mGFR (ml/
(min 1.73 m))

Age (years) BMI (cm/
kg2)

Antiplatelet 
agents

Antilipemic 
agents

Anti-
hypertensive 
agents

Hypoglyce-
mic agents

Uric acid 
reduction 
medicines

A 22 21.91 ± 6.43 74.86 ± 16.55 25.06 ± 3.22 9 (40.91%) 2 (9.09%) 15 (68.18%) 10 (45.45%) 0
B 47 44.58 ± 7.85 72.34 ± 13.55 24.53 ± 5.63 11 (23.40%) 5 (10.64%) 28 (59.57%) 11 (23.40%) 8 (17.02%)
C 39 73.20 ± 8.41 60.67 ± 14.32 25.24 ± 4.73 5 (12.82%) 6 (15.38%) 15 (38.46%) 7 (17.95%) 11 (28.21%)
D 37 106.87 ± 12.35 41.89 ± 10.63 23.87 ± 4.01 2 (5.41%) 0 4 (10.81%) 4 (10.81%) 2 (5.41%)
P value – 2.9719E−75 1.0508E−19 0.611 0.004525 0.123115 0.000006 0.017285 0.006242

http://csbg.cnb.csic.es/mbrole2/
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groups exhibited Q2 values exceeding 0.8 (Fig. 4A), indica-
tive of the model's satisfactory predictability.

To further highlight the differences between the two 
groups, we employed OPLS-DA for analysis, and generated 
score plots (Fig. 2H). OPLS-DA integrates an orthogonal 
signal correction (OSC) filter with PLS-DA to decompose 
X matrix information into data related and unrelated to Y 
and subsequently filter out difference information not associ-
ated with the classification. Finally, we used 2000 permu-
tation tests to evaluate model predictability and statistical 
significance. The Q2 value obtained via cross-validation of 
the OPLS-DA model exceeded 0.9 (Fig. 4B), indicating its 
suitability. The OPLS-DA score plot displayed a marked 
separation between the two comparison groups. Erythro-
nate, N-acetylneuraminate, C-glycosyl-tryptophan, hydroxy-
asparagine and 3-(3-amino-3-carboxypropyl)-uridine exhib-
ited the highest VIP scores, all of which increased with the 
deterioration of CKD (Fig. 3B).

Pathway analysis

To identify the metabolic pathways underlying CKD pro-
gression, 673 compounds screened via ANOVA under-
went ID conversion in MBRole2.0, with annotations set 
to "KEGG pathways" and background as "Homo sapiens 
(human)." To mitigate errors and omissions stemming from 
enrichment in any single database, we imported metabolites 
after ID conversion into the MetaboAnalyst 5.0 platform for 
enrichment analysis. Table 2 delineates the results of enrich-
ment analysis on the MetaboAnalyst 5.0 platform, revealing 
twelve significantly enriched (raw p-value < 0.05) metabolic 
pathways, six of which pertain to amino acid metabolism, 
including glycine, serine, and threonine metabolism, phe-
nylalanine, tyrosine, and tryptophan biosynthesis, arginine, 
and proline metabolism, phenylalanine metabolism, arginine 
biosynthesis, and tyrosine metabolism. The bubble map of 
metabolic pathway enrichment highlights that the most 
substantial bubbles corresponding to glycine, serine, and 

threonine metabolism and caffeine metabolism are situated 
at the top right of the diagram. This suggests that these two 
pathways are the most crucial in CKD progression (Fig. 5A). 
Meanwhile, MBRole2.0's enrichment outcomes are pre-
sented in Fig. 5B. Among the ten most important pathways, 
five belong to amino acid metabolism. In contrast to the 
other three pathways, arginine and proline metabolism, and 
glycine, serine, and threonine metabolism are considered 
the most two critical amino acid metabolic pathways. Four-
teen metabolites are enriched in the glycine, serine, and 
threonine metabolism pathway (Fig. 5C), where the levels 
of dimethylglycine and glycine increase with renal function 
deterioration, while the levels of 3-phosphoglycerate, glycer-
ate, pyruvate, sarcosine, serine, and tryptophan decline with 
worsening renal function.

Discussion

Numerous studies have demonstrated several plasma metab-
olites' involvements during CKD progression towards ESRD 
[17, 18]. Some delay CKD progression, but most accumulate 
as CKD progresses and exacerbate renal function deteriora-
tion examples include indoxyl sulphate (IS), p-cresyl sul-
phate (PCS), among others [19, 20]. Some significant uremic 
toxins are created and incorporated into the gut microbiota 
of CKD patients through amino acids in their diet, such as IS 
and indole-3-acetic acid (IAA) from tryptophan, while PCS 
is derived from tyrosine or phenylalanine [21]. The kidneys 
play a pivotal role in homeostasis, metabolism, and regula-
tion of plasma amino acid concentrations. Plasma amino 
acid concentrations in CKD patients significantly differ from 
those of healthy subjects; for instance, CKD patients exhibit 
lower essential amino acid concentrations and higher non-
essential amino acid levels than normal individuals [22]. 
Patients with CKD experience numerous changes in their 
amino acid metabolic profiles; however, the significance of 
these changes in CKD progression remains unclear. Thus, 

Fig. 1   The overview of anno-
tated metabolites
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this study aims to screen plasma amino acids and related 
metabolites that affect CKD progression using metabolomic 
methods.

The results of PCA analysis showed that the metabolic 
profiles of patients in group A and group D were most signif-
icantly different. However, this result may be influenced by 

the patient's age and BMI value, especially age. One study 
showed a gradual decrease in serum L-histidine concentra-
tion with increasing age (participants aged 32–81 years) 
[23]. For children and adolescents from 3 months to 18 years 
of age, the mean concentrations of aspartate, glycine, and 
valine all increased significantly with age [24]. Meanwhile, 

Fig. 2   Scores plot between the selected PCs. The explained variances 
are shown in brackets. A–F 2D score plots derived from the pairwise 
PCA analysis of Group A, B, C and D; G 2D score plots derived 

from the PLS-DA analysis between Group A and D; H 2D score plots 
derived from the OPLS-DA analysis between Group A and D
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this study also found a significant positive correlation 
between BMI and the levels of branched-chain and aromatic 
amino acids [24]. This suggests that factors such as age and 
BMI can influence the metabolic profile and should be con-
sidered when interpreting the results.

At the same time, the impact of medications on meta-
bolic pathways in the human body should not be under-
estimated. For example, atorvastatin can alter amino acid 

metabolism by affecting self-regulatory mechanisms in 
hyperlipidemia rats [25]. In animals treated with high 
doses of fenofibrate, plasma lysine, methionine and 
branched-chain amino acids were reduced [26]. Three 
months of dual insulin sensitizer therapy (metformin plus 
pioglitazone) has been found to reduce plasma concentra-
tions of phenylalanine, tyrosine, and arginine in patients 
with fasting hyperglycemia [27].

Fig. 3   Significant differential metabolites were identified by the 
ranking of the variable importance in the projection (VIP) scores. A 
Important features identified by PLS-DA. The colored boxes on the 
right indicate the relative concentrations of the corresponding metab-

olite in each group under study; B important features identified by 
OPLS-DA. The colored boxes on the right indicate the relative con-
centrations of the corresponding metabolite in each group under study

Fig. 4   The validation of the PLS-DA and OPLS-DA model. A The 
bar plot showing the three performance measures (prediction accu-
racy, multiple correlation coefficient R2, and explained variance in 
prediction Q2) obtained after the tenfold cross-validation analysis of 

multivariate data. The red star indicates the best classifier; B the pre-
dictive power evaluation of the OPLS-DA model by 2000 permuta-
tion tests
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N-acetyl-1-methylhistidine, an amino acid metabolite 
associated with the gene NAT8, had the second highest 
VIP score in PLS-DA analysis. High levels of circulat-
ing N-acetyl-1-methylhistidine have been associated with 
lower eGFR and increased CKD incidence rates in African 
American populations [28]. Notably, there exists a signifi-
cant correlation between NAT8 gene variations and N-acet-
ylated amino acids [29]. Targeted drug development target-
ing NAT8 gene mutations and N-acetyl-1-methylhistidine 
metabolite may present novel strategies for CKD treatment, 
potentially delaying CKD progression.

Simultaneously, we also discovered that among the 
metabolites that decreased with the decline of mGFR, 
S-allylcysteine had the highest VIP score. S-allylcysteine 
is an organosulfur phytochemical derived from aged gar-
lic extract and can provide renal protection in patients with 
chronic renal failure. It achieves this by inhibiting matrix 
remodeling mediated by the TGF-β1/Smad3 signaling path-
way [30]. This suggests that bioactive compounds such as 
S-allylcysteine could potentially be utilized in the manage-
ment of chronic kidney disease to slow down its progression.

Through OPLS-DA analysis, we identified hydroxy-aspar-
agine and C-glycosyl-tryptophan as two amino acid-related 
metabolites with high VIP scores. Both increase with renal 
function deterioration. Hydroxy-asparagine is a rare amino 
acid formed via post-translational asparagine hydroxyla-
tion mainly found in vitamin K-dependent protein S epider-
mal growth factor-like repeats [31]. C-glycosyl-tryptophan 
results from tryptophan translation modifications, specifi-
cally generated through glucose and tryptophan connec-
tion using a carbon–carbon single bond. Studies reveal that 
low eGFR is associated with high C-glycosyl-tryptophan 
levels, and elevated C-glycosyl-tryptophan concentrations 
may heighten eGFR decline risk [32, 33]. However, few 
studies have explored these two metabolites' implications 

concerning CKD progression, and their underlying mecha-
nisms require further molecular biological studies coupled 
with related experiments for clarification.

Our pathway analysis of differential metabolites revealed 
the significance of glycine, serine, and threonine metabo-
lism, phenylalanine metabolism, phenylalanine, tyrosine, 
and tryptophan biosynthesis, and arginine and proline 
metabolism during CKD. Specifically, glycine, serine, and 
threonine metabolism represent the most crucial pathway in 
CKD progression. We further observed increased levels of 
dimethylglycine and glycine alongside renal function dete-
rioration in the glycine, serine, and threonine metabolism 
pathway, whereas 3-phosphoglycerate, glycerate, pyruvate, 
sarcosine, serine, and tryptophan concentrations decreased 
with renal function deterioration.

The kidney plays a crucial role in both glycine anabo-
lism and glycine-to-serine conversion [34]. Elevated glycine 
levels in CKD patients suggest that renal function deterio-
ration causes glycine accumulation in the circulation. Addi-
tionally, elevated glycine cycling concentrations have been 
observed in rats, cats with CKD, and humans presenting 
renal insufficiency [35]. However, a previous study found 
that serum levels of serine, glycine, γ-aminobutyric acid, 
and tryptophan were all significantly lower in patients with 
diabetic nephropathy, hypertensive nephropathy, and chronic 
nephritis compared to healthy controls [36]. This implies 
that changes in amino acid metabolic pathways in CKD 
patients may be very complex, and more research is needed 
to understand the underlying mechanisms. IS metabolite 
accumulation occurs during CKD progression and pro-
motes glomerulosclerosis progression. It also induces free 
radical production and nuclear factor-κB (NF-κB) activa-
tion, leading to renal tubulointerstitial fibrosis [37]. Glyc-
erate is a monosaccharide present in tomatoes, plantains, 
grapes, and peanuts and positively correlates with healthy 

Table 2   Overview of pathway analysis enriched in MetaboAnalyst 5.0 platform

FDR false discovery rate

Pathway annotation Total Hits Raw p-value −Log10(p) FDR Impact

Caffeine metabolism 10 6 1.61E-06 5.793 0.00013529 1
Glycine, serine and threonine metabolism 33 9 1.08E-05 4.9676 0.0004525 0.72905
Phenylalanine, tyrosine and tryptophan biosynthesis 4 3 0.00038799 3.4112 0.010864 0.5
Glyoxylate and dicarboxylate metabolism 32 6 0.0030302 2.5185 0.063635 0.25927
Arginine and proline metabolism 38 6 0.0073709 2.1325 0.12383 0.08093
Phenylalanine metabolism 10 3 0.009475 2.0234 0.13265 0.2619
Citrate cycle (TCA cycle) 20 4 0.012363 1.9079 0.14835 0.21065
Arginine biosynthesis 14 3 0.025091 1.6005 0.26346 0.22843
Pyrimidine metabolism 39 5 0.033236 1.4784 0.29331 0.1413
Galactose metabolism 27 4 0.034917 1.457 0.29331 0.18419
Tyrosine metabolism 42 5 0.044028 1.3563 0.30576 0.24711
Starch and sucrose metabolism 18 3 0.049162 1.3084 0.30576 0.54399
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Fig. 5   The results of significant metabolites pathway enrichment. A 
Bubble plot for pathway analysis depicted in MetaboAnalyst 5.0 plat-
form. The vertical axis represents the log (p) value, while the hori-
zontal axis represents the pathway impact. The pathway impact is cal-
culated by adding up the important measures of each of the matched 
metabolites and then dividing by the sum of the important measures 
of all metabolites in each pathway. The larger the pathway impact, 
the more meaningful the metabolic pathway is. The pathway in the 

upper right corner of the bubble chart is the most reliable; B The 
results of metabolite set enrichment in MBRole2.0. Set: total number 
of selected metabolites; In set: the number of differential metabolites 
contained in this pathway; C KEGG’s metabolic pathway for the 
glycine, serine, and threonine metabolism. The red circle represents 
the enriched metabolites; the green boxes are metabolites that rise 
as mGFR decreases; the red boxes are metabolites that decrease as 
mGFR decreases. KEGG Kyoto Encyclopedia of Genes and Genomes
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eating patterns. Glycerate can control blood sugar by reduc-
ing insulin resistance, thus managing diabetic nephropathy 
progression. Consuming foods with high glycerate content 
may reduce CKD-related complications incidence [38]. The 
remaining five metabolites' accumulation significance in 
CKD has not been reported, and further studies are neces-
sary to determine their association with CKD.

Nonetheless, our study faces certain limitations. Firstly, 
our sample size is relatively small; therefore, future research 
should recruit more subjects to mitigate small sample size 
bias. Secondly, while our work provides evidence of amino 
acids as important plasma metabolites in CKD patients, the 
exact mechanism linking amino acids to CKD progression 
remains incompletely understood. Lastly, metabolites rep-
resent the end products of various biological processes in 
the human body, and metabolomics can only reflect changes 
at the end of the reaction pathway [39]. In the future, we 
need to test the accuracy of our results and uncover the 
underlying molecular biological mechanisms by combining 
genomics, transcriptomics, proteomics, and further transla-
tional research experiments, such as cell studies and animal 
studies.

Conclusions

In conclusion, metabolic profiling revealed that glycine, 
serine, and threonine metabolism constitute the most sig-
nificant amino acid metabolic pathway during CKD pro-
gression. Reduced renal function correlated with diminished 
3-phosphoglycerate, glycerate, pyruvate, sarcosine, serine, 
and tryptophan levels, alongside elevated dimethylglycine 
and glycine levels. Glycine and serine emerged as the most 
crucial metabolites during CKD progression.
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