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Abstract
Purpose Obesity usually induces overactive bladder (OAB) associated with detrusor overactivity, which is related to 
increased contractility of the detrusor smooth muscle (DSM). Small-conductance  Ca2+-activated  K+ (SK) channels play a 
constitutive role in the regulation of DSM contractility. However, the role of SK channels in the DSM changes in obesity-
related OAB is still unknown. Here, we tested the hypothesis that obesity-related OAB is associated with reduced expression 
and activity of SK channels in DSM and that SK channels activation is a potential treatment for OAB.
Methods Female Sprague–Dawley rats were fed a normal diet (ND) or a high-fat diet (HFD) and weighed after 12 weeks. 
Urodynamic studies, quantitative reverse transcription-polymerase chain reaction (qRT-PCR), and isometric tension record-
ing were performed.
Results Increased average body weights and urodynamically demonstrated OAB were observed in HFD rats. qRT-PCR 
experiments revealed a decrease in the mRNA expression level of SK channel in DSM tissue of the HFD rats. Isometric ten-
sion recordings indicated an attenuated relaxation effect of NS309 on the spontaneous phasic and electrical field stimulation-
induced contractions that occurred via SK channel activation in HFD DSM strips.
Conclusions Reduced expression and activity of SK channels in the DSM contribute to obesity-related OAB, indicating that 
SK channels are a potential therapeutic target for OAB.
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Introduction

The incidence of obesity, which is defined as abnormal or 
excessive fat accumulation, has doubled since 1980. More 
than 35% of adults aged 20 years or older were overweight 
in 2008 [1]. Obesity is associated with an increased risk of 
many chronic diseases, including diabetes, cardiovascular 
disease, and cancer [1, 2]. In addition, data from epidemio-
logical studies revealed that weight gain in adulthood are 

related to a higher prevalence of lower urinary tract symp-
toms (LUTS) [3–5].

As a common type of LUTS, overactive bladder (OAB) 
is characterized by urgency, with or without urgency uri-
nary incontinence and is usually associated with urody-
namically demonstrable detrusor overactivity (DO) [6, 7]. 
In addition, OAB has a significant effect on the mental 
health and quality of life of patients, and the incidence 
of OAB has increased. The potential etiology and con-
tributing factors of OAB remain complex and unclear, 
but obesity is a well-known specific cause of OAB [3–5]. 
OAB is more likely to be observed in obese people [3, 8]. 
Rats with obesity induced by a high-fat diet (HFD) became 
overweight and exhibited non voiding contractions (NVCs) 
that were suggestive of DO [9, 10]. Thus, HFD-induced 
obesity animal models are usually used to study the 
pathophysiology of OAB. The inflammation that results 
from obesity in detrusor smooth muscle (DSM) may be 
an important contribution to obesity-associated LUTS, 
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including OAB [9–11]. On the other hand, DO is also due 
to the enhanced contractility of DSM, characterized by 
spontaneous phasic contractions; therefore, changes in the 
expression and function of DSM regulatory proteins may 
cause a difference in DSM contractility [12–14].

Ca2+-activated  K+ channels play very important roles 
in the regulation of contractility by means of controlling 
the membrane potential and the repolarization, and after 
hyperpolarization phases of the action potential in DSM 
cells [15–18]. Small-conductance  Ca2+-activated  K+ (SK) 
channels and intermediate-conductance  Ca2+-activated  K+ 
(IK) channels, which are two members of  Ca2+-activated 
 K+ channel family, have similar electrophysiological char-
acteristics and are classified as  Ca2+-activated but voltage-
insensitive channels [18]. SK channels, which are typically 
represented by three subtypes (SK1, SK2, and SK3), are 
activated only by increased intracellular  Ca2+, and these 
channels have a regulatory effect on the membrane poten-
tial and thus are important factors for controlling the 
contractility of smooth muscle, including DSM [13, 14, 
19–27]. However, IK channels, whose expression has been 
shown in the DSM, have no significant effect on the regu-
lation of DSM contractility [19, 20, 22–24, 27, 28].

The pharmacological activation of SK channels induced 
a marked hyperpolarization effect on DSM cell membrane 
potential followed by significant relaxation of the DSM 
[22, 23, 27]. In addition, the selective SK channel inhibi-
tor apamin caused a dramatic increase in the amplitude 
of spontaneous contractions in rodent and human DSM 
[22–24, 27, 29–35]. Furthermore, SK3 channel-overex-
pressing DSM cells showed enhanced whole cell currents, 
and the regulatory effect of apamin was attenuated in SK2 
knockout mice [32, 36]. Our previous studies revealed 
that the decreased expression and activity of SK channels 
were tightly associated with OAB in a partial bladder out-
let obstruction (PBOO) animal model [13, 14]. Recently, 
it was revealed that obesity induced alteration of atrial 
electrical activities and changed the activities of IK and 
SK channels [37]. However, the changes in the regulatory 
effect of SK/IK channels on DSM contractility in obesity-
induced OAB remain unknown.

In the present study, a rat model of obesity induced by 
a HFD was used to further investigate the molecular and 

functional changes in SK/IK channels that occur in the 
DSM under these conditions using cystometry, quantita-
tive reverse transcription-polymerase chain reaction (qRT-
PCR), and isometric tension recordings. A selective SK/IK 
channel opener, 6,7-dichloro-1H-indole-2,3-dione3-oxime 
(NS309), and SK and IK channel inhibitors (apamin and 
TRAM-34, respectively) were applied in this study. We 
demonstrate that attenuated SK/IK channel expression and 
activity contributes to obesity-associated OAB.

Materials and methods

Animals

A total of 70 adult female Sprague–Dawley (SD) rats 
(China Medical University) with an average weight of 
207.8 ± 9.4 g were used in this study. For 12 weeks, the 
study animals were housed three per cage with a 12-h 
light–dark cycle and fed either a normal diet (ND) (fat: 
5%; protein: 20%; and carbohydrate: 75%) or a HFD (fat: 
30%; protein: 14%; and carbohydrate: 56%) that induces 
obesity as previously described [9, 11]. All rats were 
weighed at 12 weeks, and urodynamic studies were con-
ducted in ten rats from each group. The study animals were 
then sacrificed in a carbon dioxide tank prior to the col-
lection of bladder specimens. All experimental procedures 
were approved by the Institutional Animal Care and Use 
Committee of China Medical University.

Cystometry

General anesthesia was induced by 5% isoflurane/O2 gas 
inspiration using a facial mask. A catheter was inserted 
into the bladder dome after surgically exposing the bladder 
and connected to a physiological pressure transducer and 
an injection pump (Dantec Menuet, Denmark). Cystometry 
was performed by infusing warm saline (37–38 °C) into 
the bladder at a rate of 12 ml/h. Three voiding events were 
recorded for each rat to assess the following parameters: 
maximum voiding pressure (the maximum pressure during 
voiding), bladder capacity (the volume of saline infused 

Table 1  Primers used for the 
qRT-PCR experiments

bp base pairs

Channel Forward Reverse Size (bp)

SK1 AGC TCC GGA CTG TGA AGA TT TGG CTT GGG CTA TGA GAC TT 213
SK2 ACG CTA GTG GAT CTG GCA AA ACG CTC AGC ATT GTA GGT GA 240
SK3 CAG GAA ACA CCA GAG GAA GT AGG GAA TTG AAG CTG GCT GT 228
IK TGC CAG CCC ATC GAT TCT CTTC TTC AAC AAG GCG GAG AAA CACG 330
β-Actin TAA AGA CCT CTA TGC CAA CAC AGT CAC GAT GGA GGG GCC GGA CTC ATC 240
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to induce voiding), voiding volume (the micturition vol-
ume), voiding interval (the interval between voids), and 
the number of NVCs during one voiding event. NVCs were 
defined as spontaneous contractions (> 4 cm  H2O from 
the baseline bladder pressure) that did not result in a void. 
Bladders that were assessed by cystometry were not used 
in other experiments.

DSM tissue collection

The rats were euthanized by  CO2 inhalation followed by 
thoracotomy. The urinary bladders were rapidly removed 
and preserved in cold dissection solution. The urinary 
bladders were cut open longitudinally, and the mucosa was 
removed. DSM strips (5–7 mm long and 2–3 mm wide) 
from the urinary bladder dome were collected.

qRT‑PCR

Total RNA was isolated using TRIzol reagent (Invitrogen, 
Waltham, MA, USA) from mucosa-free rat DSM strips. 
Reverse transcription of total RNA was performed using 
the SuperScript™ First-Strand Synthesis System (Invitro-
gen, Waltham, MA, USA) according to the manufacturer’s 

instructions. Real-time PCR was then performed using 
the synthesized cDNA on an ABI PRISM 7500 sequence 
detection system with the SYBR GREEN PCR Master Mix 
[38]. Real-time PCR was carried out to analyze the mRNA 
expression of the SK1, SK2, SK3, IK channels, and β-actin 
using specific primers (Table 1). The PCR conditions were 
94 °C for 1 min followed by 35 cycles of 95 °C for 30 s 
and 58 °C for 40 s [9, 13, 14, 39]. All of the reactions were 
run three times and normalized to β-actin. All qRT-PCR 
products from intact whole DSM tissues and isolated DSM 
cells were purified using the GenElute PCR Clean-Up Kit 
(Sigma-Aldrich, St. Louis, MO, USA), and the sequences 
of the detected genes were confirmed by direct sequencing 
of the amplified PCR products [40].

Isometric DSM tension recordings

Isometric DSM contraction recordings were made as pre-
viously described [13, 41, 42]. Isolated DSM strips were 
secured to isometric force–displacement transducers and 
placed in physiological saline solution aerated with 95% 
 O2/5%  CO2 (pH 7.4) at 37 °C. The DSM strips were ini-
tially tensioned (10 mN) during an equilibration period 
of 45–60 min. To minimize the effect of neurotransmit-
ters released from neurons on the DSM, 1 µM tetrodotoxin 
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Fig. 1  OAB was induced by HFD-treatment. Representative urody-
namic recording trace showing the changes in bladder function in 
HFD rats (a). Reduced bladder capacity (b), decreased voiding vol-
ume (c), shorter voiding intervals (e), and more frequent NVCs (f) 

were observed in rats in the HFD group compared with those in the 
ND group (N = 10 in each; P < 0.05). However, there was no signifi-
cant difference in maximum voiding pressure (d) between the two 
groups (P > 0.05). *P < 0.05 for ND versus HFD; NS nonsignificant
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(TTX), a selective inhibitor of neuronal voltage-gated  Na+ 
channels, was present during the spontaneous phasic con-
traction recordings.

In another experimental series, nerve-evoked contractions 
were induced by electrical field stimulation (EFS) using a 
pair of platinum electrodes mounted in the tissue bath paral-
lel to the DSM strip in the absence of TTX. The EFS pulses 
were generated using a PHM-152I stimulator (MED Associ-
ates, St. Albans, VT, USA). The EFS pulse parameters were 
as follows: 0.75 ms pulse width, 20 V pulse amplitude, 3 s 
stimulus duration, and reversal of the polarity at alternating 
pulses. After the equilibration period, the DSM strips were 
subjected to continuous repetitive EFS with increasing fre-
quencies from 0.5 to 50 Hz at 3 min intervals. The contrac-
tions were recorded using a MyoMED myograph system 
(MED Associates, St. Albans, VT, USA).

Solutions and drugs

The dissection solution contained the following components: 
80 mM monosodium glutamate, 55 mM NaCl, 6 mM KCl, 
10 mM glucose, 10 mM HEPES, and 2 mM  MgCl2; the pH 
was adjusted to 7.3 with NaOH. The physiological saline 

solution was freshly prepared daily and contained the fol-
lowing components: 119 mM NaCl, 4.7 mM KCl, 24 mM 
 NaHCO3, 1.2 mM  KH2PO4, 2.5 mM  CaCl2, 1.2 mM  MgSO4, 
and 11 mM glucose; the solution was aerated with 95% 
 O2/5%  CO2 to obtain a pH of 7.4. NS309 was purchased 
from Sigma-Aldrich (St. Louis, MO, USA). NS309 was dis-
solved in DMSO, while all other chemicals were dissolved in 
double-distilled water. The maximum DMSO concentration 
in the bath solution did not exceed 0.1%.

Data analysis and statistics

Relative differences in the PCR results were calculated by 
using the comparative Ctmethod ( 2−ΔΔCt ) after determining 
the Ct values for the reference (β-actin) and target (SK1, 
SK2, SK3, or IK) genes in each sample [9, 13, 14]. The 
relative mRNA expression level of the target gene was calcu-
lated after normalization to β-actin expression. MiniAnalysis 
software (Synaptosoft, Decatur, GA, USA) was used to ana-
lyze five DSM contraction parameters including contraction 
amplitude, muscle integral force (the area under the curve of 
the phasic contractions), duration (defined as the width of 
the contraction at 50% of the amplitude), frequency (contrac-
tions per minute), and tone (phasic contractions in the base-
line curve). For the analysis of the compound effects, one 
5-min-long stable recording made prior to the application 
of the compounds was analyzed for the control, and another 
5-min-long stable recording was analyzed after the applica-
tion of each concentration of the compounds. For sponta-
neous phasic contractions, every parameter under control 
conditions was taken to be 100%, and the data were normal-
ized. The contraction amplitude at every EFS frequency was 
normalized to the amplitude at an EFS frequency of 50 Hz 
under control conditions (taken to be 100%) and expressed 
as a percentage of the EFS-induced contraction. Data were 
further analyzed with GraphPad Prism 5.0 software (Graph-
Pad Software, San Diego, CA, USA). Data are expressed 
as the mean ± SEM; n = the number of strips or cells, and 
N = the number of rats. Statistical significance was tested 
using one-way ANOVA, followed by Dunnett’s multiple 
comparison test, a t test, or a paired Student’s t test, and 
P < 0.05 was considered statistically significant.
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Fig. 2  Decreased mRNA expression levels were foundfor the SK 
channels in the DSM of HFD rats. Decreased relative mRNA expres-
sion levels of SK1 (a), SK2 (b), and SK3 (c) channels in DSM tissue 
in the ND and HFD groups (n = 16, N = 5 in each; P < 0.05) without 
significant changes in relative mRNA expression level of the IK (d) 
channel (P > 0.05). *P < 0.05 for ND versus HFD; NS nonsignificant

Fig. 3  NS309, a selective SK/IK channel activator, had an attenu-
ated relaxation effect on spontaneous phasic contraction in isolated 
DSM strips from HFD rats. Representative recordings of DSM strips 
isolated from ND (a) and HFD (b) rats showing the concentration-
dependent relaxation effects of NS309 (30 nM–10 µM) on spontane-
ous phasic contractions. Cumulative concentration–response curves 
illustrating the effects of NS309 on the amplitude (c), muscle inte-
gral force (d), duration (e), frequency (f), and tone (g) of spontane-
ous phasic contractions in ND DSM strips (n = 12, N = 6) and HFD 
DSM strips (n = 12, N = 7; P < 0.05). *P < 0.05 for ND versus HFD; 
#P < 0.05 for control versus NS309
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Results

Obesity induced by a HFD

There was no statistically significant difference in body 
weight between the two groups before feeding (HFD 
201.2 ± 6.9 g, N = 40; ND 206.9 ± 8.1 g, N = 30; P > 0.05). 
The average body weight of the HFD rats was significantly 
increased after 12 weeks (HFD 646.1 ± 11.3 g, N = 40; 
ND 349.8 ± 9.7 g, N = 30; P < 0.05). However, the bladder 
weight of the HFD rats (91.9 ± 5.2 mg, N = 40) did not differ 
significantly from that of the ND animals (93.6 ± 3.7 mg, 
N = 30; P > 0.05) after the HFD treatment.

OAB was induced by HFD treatment

Twelve weeks after HFD feeding, the bladder capac-
ity was significantly reduced compared to that of ND rats 
(HFD 0.34 ± 0.08 ml, N = 10; ND 0.68 ± 0.06 ml, N = 10; 
P < 0.05; Fig. 1a, b), with a notably decreased voiding vol-
ume (0.33 ± 0.09 ml in HFD, N = 10; 0.67 ± 0.07 ml in ND, 
N = 10; P < 0.05; Fig. 1a, c). The maximum voiding pressure 
did not differ significantly between the rats of two groups 
(ND 42.5 ± 6.7 cm  H2O, N = 10; HFD 43.1 ± 7.6 cm  H2O, 
N = 10; P > 0.05; Fig. 1a, d). In addition, the HFD rats had 
a shorter voiding interval (HFD 1.9 ± 0.5 min, N = 10; ND 
3.9 ± 0.4 min, N = 10; P < 0.05; Fig. 1a, e) and a significantly 
increased frequency of NVCs (HFD 3.6 ± 0.8, N = 10; ND 
0.47 ± 0.3, N = 10; P < 0.05; Fig. 1a, f) compared to those in 
the ND rats, indicating that OAB had been induced.

Decreased mRNA expression levels of the SK 
channels were detected in the DSM of HFD rats

Our results established that the genes for the SK1, SK2, and 
SK3 channels were significantly decreased in the DSM from 
HFD rats compared to the levels in ND animals (Fig. 2a–c). 
HFD treatment significantly reduced the relative mRNA 
expression of the SK1–SK3 channel to 60.7 ± 0.2, 62.7 ± 0.2, 

and 26.1 ± 0.1% (n = 16, N = 5), respectively, compared to 
the values observed in ND rats (n = 16, N = 5; P < 0.05; 
Fig. 2a–c). However, there was no significant difference 
in the mRNA expression level of IK channels (1.22-fold 
decrease, HFD vs. ND; P > 0.05; Fig. 3d) in the rat DSM 
between the two groups. (P > 0.05; Fig. 2d). The present 
molecular study indicates that HFD treatment is associated 
with decreased mRNA expression of SK channels but not 
IK channels in the rat DSM.

Selective pharmacological activation of SK channel 
with NS309 had an attenuated relaxation effect 
on spontaneous phasic contractions in isolated DSM 
strips from HFD rats

Here, NS309, a selective SK/IK channel activator, was 
applied to test whether there were changes in the effect of 
SK/IK channels on spontaneous phasic contraction, which 
represents the contractility in isolated DSM strips from HFD 
rats. NS309 (0.3–10 µM) showed a concentration-dependent 
inhibitory effect on spontaneous phasic contractions in iso-
lated DSM strips for both ND rats (n = 12, N = 6; P < 0.05; 
Fig. 3) and HFD rats (n = 12, N = 7; P < 0.05; Fig. 3). How-
ever, an attenuated relaxation effect of NS309 on sponta-
neous phasic contractions was recorded in isolated DSM 
strips from HFD rats (Fig. 3). In addition, NS309 caused 
the following contraction parameters to decrease: ampli-
tude (17.9 ± 3.7% vs. 61.5 ± 5.1%), muscle integral force 
(16.5 ± 4.2% vs. 58.4 ± 4.7%), duration (51.2 ± 4.7% vs. 
73.4 ± 5.1%), frequency (47.5 ± 4.8% vs. 82.9 ± 4.9%), and 
tone (80.1 ± 3.2% vs. 92.1 ± 3.3%), respectively (ND vs. 
HFD, P < 0.05; Fig. 3).

Apamin, a selective SK channel inhibitor, and TRAM-34, 
an IK channel inhibitor, were applied to determine whether 
the attenuated effects of NS309 were mediated by SK chan-
nels in isolated DSM strips from HFD rats. Apamin (1 µM) 
significantly antagonized the relaxation effect of NS309, 
as indicated by all contraction parameters (n = 12, N = 7; 
P < 0.05; Fig. 4). However, another experimental protocol 
indicated that there was no significant difference in the 
effects of NS309 in the presence or absence of TRAM-34 
(100 µM) (n = 13, N = 7; P > 0.05; Fig. 4). Therefore, the 
relaxation effect of NS309 on the spontaneous phasic con-
tractions in isolated DSM strips from HFD rats occurred via 
the activation of SK channels.

These series of experiments indicates that a HFD induces 
an attenuated relaxation effect on SK channel activation and 
on spontaneous phasic contractions in isolated DSM strips.

Fig. 4  The relaxation effect of NS309 on spontaneous phasic contrac-
tions in isolated DSM strips from HFD rats occurred viaSK chan-
nelactivation. Original recordings illustrating the different effects of 
NS309 (30 nM–10 µM) on HFD DSM spontaneous phasic contrac-
tions in the presence of 1  µM apamin (a), a selective SK channel 
blocker, or 100  µM TRAM-34 (b), a selective IK channel blocker. 
The presence of 100  µM TRAM-34 did not change the cumula-
tive concentration response curve showing the inhibitory effects of 
NS309 on the amplitude (c), muscle integral force (d), duration (e), 
frequency (f), and tone (g) in isolated DSM strips from HFD rats 
(n = 13, N = 7; P > 0.05). The inhibitory effect of NS309 on spontane-
ous phasic contractions was decreased in isolated DSM strips from 
HFD rats pretreated with 1 µM apamin to block SK channels (n = 12, 
N = 7; P < 0.05). *P < 0.05 for Apamin + NS309 versus NS309 or 
TRAM-34 + NS309 versus NS309
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NS309 has a decreased inhibitory effect 
on EFS‑induced contraction in isolated DSM strips 
from HFD rats via the activation of SK channels

In addition, 10 µM NS309 significantly decreased the ampli-
tude of EFS-induced contractions in isolated DSM strips 
from ND (n = 12, N = 7; P < 0.05; Fig. 5a, c) and HFD rats 
(n = 13, N = 7; P < 0.05; Fig. 5b, d). Furthermore, the inhib-
itory effect of NS309 (10 µM) on the amplitude of EFS-
induced contractions (amplitude decreased to 72.1 ± 5.5%) 
was attenuated in isolated DSM strips from HFD rats com-
pared with the inhibitory effect on the amplitude (decreased 
to 23.5 ± 4.1%) in isolated DSM strips from ND rats at the 
highest EFS stimulation frequency of 50 Hz (P < 0.05; 
Fig. 5a–d).

Next, the HFD DSM strips were preincubated with 
apamin or TRAM-34 to determine whether the relaxation 
effect of NS309 on EFS-induced contractions was medi-
ated by SK channels. Apamin (1 µM), the selective SK 
channel blocker, significantly abolished the relaxation of 
NS309 on EFS-induced contractions at almost all stimula-
tion frequencies (n = 13, N = 7; P < 0.05; Fig. 6a, c). NS309 
(10 µM) reduced the amplitude of EFS-induced contractions 
to 87.2 ± 4.1% in the presence of apamin (1 µM) (n = 13, 
N = 7) compared to 72.1 ± 5.5% in the absence of apamin 
pretreatment (n = 13, N = 7; P < 0.05). However, pretreat-
ment with TRAM-34 had no significant inhibitory effect on 
the NS309-induced inhibition of EFS-induced contraction 
(n = 13, N = 7; P > 0.05; Fig. 6b, c). Therefore, the inhibitory 
effect of NS309 on the amplitude of EFS-induced contrac-
tions was mediated by SK channels.

Our functional study establishes the attenuated regulation 
effect of SK channels on HFD DSM strip contractility, which 
is consistent with the molecular experiments.

Discussions

In the present study, we revealed that mRNA expression 
level of SK1–SK3 channels was significantly decreased in 
DSM and that selective pharmacological activation of SK 
channels with NS309 had an attenuated relaxation effect 
on spontaneous phasic and EFS-induced contractions in 

isolated DSM strips from HFD rats. The discovery provides 
important insight into the etiology of OAB.

OAB, affecting the mental health and quality of life of 
patients, is closely related to diet-induced obesity [5, 43]. 
In addition, HFD feeding is one of the most commonly used 
animal models for obtaining important insights into the eti-
ology of OAB. Recently, OAB was observed in obese rats 
fed a HFD for 24 weeks [44]. We established that rats fed a 
HFD for 12 weeks showed OAB and increased inflammatory 
responses in the DSM [9]. In our present study, the rats that 
were fed a HFD exhibited increased body weight without 
significant changes in bladder weight, which is consistent 
with previous studies [9, 44, 45]. In addition, data from our 
urodynamic study indicated OAB in obese rats, which mani-
fested as more frequent NVCs and shorter voiding intervals, 
as well as decreased bladder capacity and voiding volume 
(Fig. 1). However, the maximum voiding pressure did not 
change significantly in the HFD-induced obese rats (Fig. 1). 
Therefore, the model of HFD-induced obesity employed 
here, in which the rats displayed increased body weight 
and urodynamically established OAB, closely reflects the 
changes reported in humans.

Recently, we established that the attenuated expression 
and activity of SK channels, not IK channel, are contributed 
to PBOO-induced OAB in an animal model [13, 14]. In addi-
tion, SK channels had a regulatory effect on the contractility 
of neurogenic OAB patients’ detrusor strips, which indicated 
a close association between SK channels and development 
of OAB [46]. In our present study, a significant reduction in 
the mRNA expression of SK1, SK2, and SK3 was observed 
without notable changes in IK mRNA expression when com-
paring the DSM of HFD rats to the DSM of ND rats (Fig. 2). 
Our qRT-PCR results provide direct molecular evidence that 
the decreased expression of SK channels in the DSM is asso-
ciated with HFD-induced OAB.

It is well known that SK channels and not IK channels 
play an important regulatory role in DSM contractility, so 
any changes in the expression of SK channels could signifi-
cantly alter DSM function [22, 23]. Spontaneous phasic con-
tractions, a feature of DSM, are usually observed in isolated 
DSM strips obtained from many animals [47]. Here, we 
assessed all parameters of spontaneous phasic contractions 
in isolated DSM strips to reveal whether decreased expres-
sion of SK channels could result in the different regulatory 
effect of SK channels on contractility in isolated DSM strips 
from HFD-induced OAB rats. The pharmacological activa-
tion of SK channels with NS309 had an attenuated relaxation 
effect on spontaneous phasic contractility in isolated DSM 
strips from HFD rats compared to that in DSM strips from 
ND rats (Fig. 3). In addition, the application of apamin or 
TRAM-34 demonstrated that the decreased effect of NS309 
on HFD DSM strip contractility is related to the attenuated 
function of SK channels, not IK channels (Fig. 4).

Fig. 5  The inhibitory effect of NS309 on EFS-induced contractions 
was attenuated in DSM strips from HFD rats. Original recordings of 
DSM strips illustrating the inhibitory effects of NS309 (10  µM) on 
EFS-induced contractions (stimulation frequency 0.5–50  Hz) in the 
ND (a) and HFD (b) groups. Frequency response curves indicat-
ing the differences in the amplitude of EFS-induced contractions in 
the presence and absence of NS309 (10 µM) in ND DSM strips (c) 
(n = 12, N = 7) and HFD DSM strips (d) (n = 13, N = 7; P < 0.05). 
*P < 0.05 for control versus NS309
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Acetylcholine and ATP, which are released by parasympa-
thetic nerves, can activate purinergic P2X receptors and mus-
carinic receptors, resulting in DSM contraction during mictu-
rition [47]. EFS at stimulation frequencies 0.5–50 Hz, which 
can activate the cholinergic and purinergic nerves located in 
DSM, was performed to determine whether the SK channel 
modulation of EFS-induced contractions differed between 
DSM isolated strips from HFD and ND rats. The effect of 
NS309 on the amplitude of EFS-induced contractions was 
lower in DSM isolated strips from HFD rats (Fig. 5). Further-
more, preincubation with apamin or TRAM-34 established 
that the relaxation effect of NS309 on EFS-induced contrac-
tion occurred via SK channels, not IK channels (Fig. 6). Com-
bined with the data from the spontaneous phasic contraction 
experiments, these results clearly show that the selective 
pharmacological activation of SK channels with NS309 has 
an attenuated relaxation effect on HFD rat DSM contractility.

OAB, which is generally induced by PBOO, obesity or 
neurogenic disorders, is closely related to urodynamically 
demonstrable DO, which is due to the changed DSM contrac-
tility [9, 13, 48, 49]. The myogenic basis is associated with an 
enhanced spontaneous contractile activity of myocytes [49]. 
It is well known that SK channels act as a negative feedback 
element in DSM contractility [50]. Therefore, one of the pos-
sible explanations for the results of our present study is that 
the attenuated SK channel expression and activity contribute 
to the increased DSM contractility, and further OAB in HFD-
induced obesity rats.

Our present study provides a notable contribution eluci-
dating the critical functional role of SK channel in obesity-
induced OAB. The significantly reduced mRNA expression 
level of SK1, SK2, and SK3 channels in the DSM from HFD 
rats was established. In addition, the molecular experiments 
results were confirmed by functional studies, which indicated a 
reduced regulatory effect of SK channels on both spontaneous 
phasic and EFS-induced contractility in isolated DSM strips 
from HFD-induced obesity rats. Antimuscarinic agents can 
competitively inhibit acetylcholine which is the main neuro-
transmitter in DSM to reduce nerve sensitivity, thereby playing 
a constitutive role in the treatment of OAB. However, con-
ventional antimuscarinic pharmacotherapy causes side effects 
such as dry mouth, constipation, headache, cardiac, and so on 

that limit the application of these drugs [51, 52]. Therefore, SK 
channel activators could be potential strategies for the treat-
ment of these patients.
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