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(NCC), which is responsible for NaCl reabsorption in 
the early distal convoluted tubules. The syndrome is 
transmitted as an autosomal recessive trait and is charac-
terized by hypokalemic metabolic alkalosis in combina-
tion with hypomagnesemia and hypocalciuria (Table  1) 
[1–3].

Aim of this review is the presentation of the underlying 
pathophysiologic mechanisms of acid–base and electro-
lyte abnormalities observed in patients with Gitelman syn-
drome (Table 1).

Hypokalemia and kaliuria

Hypokalemia (serum potassium concentration <3.5 mEq/L) 
owing to renal potassium wasting (potassium to creatinine 
ratio in a random urine specimen >18 mEq/g creatinine) is a 
cardinal manifestation of Gitelman syndrome. The underly-
ing mechanisms of kaliuria include (Fig. 1):

1.	 Increased distal flow rate as a result of the decreased 
sodium chloride reabsorption in the early distal con-
voluted tubules leads to increased potassium secretion 
due to diffusion gradient through enhanced “big” or 
“maxi” potassium channels activity [4–6].

2.	 Volume depletion-induced increased aldosterone levels 
lead to increased potassium secretion through the renal 
outer medullary potassium (ROMK) channels. Addi-
tionally, the aldosterone-induced increased sodium 
reabsorption in the late distal convoluted and corti-
cal collecting tubules by the epithelial sodium chan-
nel [ENaC] is associated with increased potassium 
excretion through an increased electronegativity of the 
lumen resulting in an elevated electrical gradient favor-
ing potassium secretion [4–8].
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Introduction

Gitelman syndrome (familial hypokalemia–hypomagne-
semia) is the most common inherited tubular disease 
resulting from mutations of the SLC12A3 gene encod-
ing the thiazide-sensitive sodium–chloride cotransporter 
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3.	 Hypomagnesemia is also associated with inappropri-
ate kaliuresis and can contribute to the development of 
hypokalemia [9, 10].

Increased excretion of chloride

The decreased sodium and chloride reabsorption in 
the early distal convoluted leads to increased fractional 
excretion of chloride. Indeed, a fractional excretion of 

chloride  >0.5% is among the diagnostic criteria pro-
posed for the diagnosis of Gitelman syndrome [1]. How-
ever, increased chloride excretion is also observed in other 
genetic tubulopathies (such as Bartter syndrome) or diuret-
ics surreptitious intake [11, 12]. It has been proposed that a 
thiazide test can be useful for the diagnosis of the Gitelman 
genotype in patients with normotensive hypokalemic alka-
losis. Thus, in cases of Gitelman syndrome 3  h after the 
administration of 50  mg of hydrochlorothiazide fractional 
chloride clearance increases by less than 2.3% [13].

Table 1   Gitelman syndrome: 
main laboratory findings

a Fractional excretion (FE) of a substance (s) is determined by the equation: FEs = 100

×
Surine×CREATININEserum

Sserum×CREATININEurine

Serum analyses
 Hypokalemia (serum potassium <3.5 mEq/L)
 Metabolic alkalosis
 Hypomagnesemia (serum magnesium <1.4 mEq/L)
 Increased renin and aldosterone levels
 Hypophosphatemia (occasionally)
 Hyponatremia (rarely)
 Glucose intolerance/insulin resistance (rarely)

Urine analysesa

 Renal potassium wasting (potassium/creatinine in a random urine specimen >18 mEq/g creatinine)
 Renal magnesium wasting (fractional magnesium excretion >4%)
 Hypocalciuria (calcium/creatinine in a random urine specimen <0.07 mg/mg)
 Increased chloride excretion (fractional chloride excretion >0.5%)

Fig. 1   Gitelman syndrome: Pathophysiology of the associated acid–
base and electrolyte abnormalities. TRMP6 epithelial magnesium 
channel transient receptor potential cation channel subfamily M 

member 6, FE fractional excretion, ENaC epithelial sodium channel, 
ROMK renal outcome medullary potassium channel
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Metabolic alkalosis

Hypokalemia is commonly associated with metabolic alka-
losis. The underlying mechanisms of metabolic alkalosis 
are shown in Fig. 2. Hypokalemia is associated with redis-
tribution of potassium out of the cells resulting in entry of 
H+ into cells. This intracellular acidosis in the renal tubu-
lar cells is associated with increased H+ secretion in both 
proximal and distal tubules along with increased bicar-
bonate reabsorption. Furthermore, increased potassium 
depletion-associated ammoniogenesis in the proximal renal 
tubules may also play a role in the development of alkalo-
sis. Finally, hypokalemia is also associated with induction 
of the H+–K+–ATPase in the a-intercalated tubular cells 
in the collecting tubules resulting in increased excretion of 
H+, which can also contribute to the development of meta-
bolic alkalosis [14].

Hypocalciuria

Hypocalciuria, defined as a spot urine calcium to creati-
nine ratio  <0.07  mg/mg (0.2  mmol/mmol) in adults, is a 
common finding in patients with Gitelman syndrome [1]. 
It has been reported that the decreased calcium excretion 
is related to the extracellular volume contraction-medi-
ated compensatory increase in sodium reabsorption in 
the proximal renal tubules leading to an increased passive 
calcium paracellular transport through an increase in the 
electrochemical gradient [15–17]. In fact, it is well known 
that in the proximal renal tubules calcium reabsorption is 
coupled tightly to sodium chloride reabsorption [15]. It 
has been proposed that increased calcium reabsorption at 
the thiazide-sensitive site in the distal convoluted tubules 
may contribute to the hypocalciuria [7, 18] though this 

mechanism has not been confirmed [16]. In fact, in the dis-
tal tubules the reduced NCC expression is associated with 
reduced intracellular sodium levels leading to increased 
calcium exit across the basolateral membrane through the 
Na+–Ca2+ exchanger 1. The resulting low intracellular cal-
cium leads to increased apical calcium entry into the cells 
through the transient receptor potential cation channel sub-
family V member 5 (TRPV5) channels. Alternatively, the 
decreased magnesium reabsorption in the distal convoluted 
tubules results in reduced intracellular magnesium concen-
tration leading to increased TRPV5-mediated calcium reab-
sorption [18].

It has been also reported that increased sodium chlo-
ride transport in the thick ascending loop of Henle (TAL) 
through the K+–Na+–2Cl− cotransporter is observed in 
these patients as a result of tubular adaptation to renal 
sodium loss [19, 20]. This process is associated with an 
increase in transepithelial voltage along the TAL leading to 
paracellular calcium reabsorption along this segment [19]. 
It has recently been reported that the thiazide-sensitive 
NCC gene inactivation in experimental animals is associ-
ated with increased duodenal calcium absorption as well 
as osteoblast differentiation and bone calcium storage [21]. 
These findings may explain the higher bone mineral density 
observed in patients with Gitelman syndrome but also in 
thiazide-treated patients [22].

Hypomagnesemia

Hypomagnesemia (serum magnesium <1.2 mEq/L) associ-
ated with inappropriate magnesiuria (fractional magnesium 
excretion  >4%) [23] is a characteristic feature of patients 
with Gitelman syndrome [1]. In these patients, the under-
lying mechanisms of magnesiuria are not well delineated. 

Fig. 2   Mechanisms of metabolic alkalosis in patients with Gitelman syndrome
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However, it has been suggested that hypomagnesemia is 
related to downregulation of the epithelial magnesium 
channel transient receptor potential cation channel subfam-
ily M member 6 (TRMP6), which is expressed along the 
apical membrane of the distal convoluted tubules and is 
responsible for the active transcellular transport of magne-
sium [15, 24]. The underlying mechanisms of this down-
regulation are not clear, but atrophy of the early distal con-
voluted cells observed in mice not expressing the NCC in 
the apical membrane of the distal convoluted cells may be 
responsible [16]. Additionally, increased aldosterone levels 
observed in these patients have been shown to be related to 
magnesiuria possibly through downregulation of TRMP6 
channels. Thus, spironolactone is useful in these patients 
since it can reduce urinary magnesium excretion and 
increase magnesium levels 1 [25]. Finally, hypokalemia 
may also play a role in the development of hypomagne-
semia since it is also associated with renal magnesium 
wasting [9]. It should be mentioned that hypomagnesemia 
in combination with hypokalemia can lead to a prolonged 
QT interval and cardiac arrhythmias [26, 27]. Thus, 
patients with these electrolyte derangements should avoid 
drugs prolonging the QT interval.

Hypophosphatemia

Hypophosphatemia due to renal phosphate wasting has 
been occasionally reported in patients with Gitelman syn-
drome. The underlying mechanisms are not clear though 
hypophosphatemia may be due to increased aldoster-
one levels or to the coexistent metabolic derangements 
(hypokalemia and metabolic alkalosis) [28, 29].

Hyponatremia

Hyponatremia is rarely reported in patients with Gitelman 
syndrome [30]. A NCC blockage-induced syndrome of 
inappropriate antidiuretic hormone secretion (SIADH) has 
been proposed, especially in case of an impaired renal tubu-
lar dilutional capacity owing to inability to decrease distal 
tubular Na+ and Cl− concentration, similar to thiazide-
induced hyponatremia mechanism [31]. Additionally, extra-
cellular volume contraction seen in patients with Gitelman 
syndrome due to urinary Na+ loss may increase antidiuretic 
hormone release. Patients with Gitelman syndrome exhibit 
decreased free water clearance [19], a factor that increases 
the risk of hyponatremia if other contributing factors ensue, 
such as a substantial increase in free water intake [30, 32], 

renal tubular salt wasting [32] or pneumonia-induced anti-
diuretic hormone inappropriate secretion [33].

Mechanisms of blood pressure control 
and carbohydrate metabolism abnormalities

Even though these patients exhibit hypovolemia-induced 
elevated angiotensin II and aldosterone levels, their blood 
pressure tends to be normal or even low. The absence of 
hypertension is related to renal sodium wasting but also 
to the increased concentration of angiotensin-converting 
enzyme 2 (ACE-2), which converts angiotensinogen to 
angiotensin_1-7 that possess vasodilatory effects. How-
ever, hypertension in adulthood is common in patients 
with Gitelman syndrome possibly due to the chronic ele-
vated levels of angiotensin II and aldosterone [34–36].

Both increased and decreased insulin resistance have 
been described in patients with Gitelman syndrome. 
Glucose intolerance and insulin resistance are possibly 
related to chronic hypokalemia/hypomagnesemia [36]. 
Additionally, impaired insulin secretion compared with 
healthy subjects has been reported in Gitelman patients 
[37]. However, increased insulin sensitivity along with 
reduced oxidative stress as well as improved endothelial 
function possibly due to reduced angiotensin II signaling 
have also been found [38–40].

Conclusions

Gitelman syndrome is usually characterized by 
hypokalemic metabolic alkalosis in combination with 
hypomagnesemia and hypocalciuria, but increased chlo-
ride excretion and renin/aldosterone levels, hypophos-
phatemia (occasionally), hyponatremia (rarely) and glu-
cose intolerance/insulin resistance can be also observed. 
The knowledge of the associated pathophysiologic mech-
anisms is useful for the treatment of patients with Gitel-
man syndrome as well as for the understanding of clinical 
and laboratory manifestations of other tubular diseases.
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