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UBSM cells. Moreover, attenuated whole-cell SK channel 
currents were demonstrated in PBOO UBSM cells.
Conclusions The attenuated expression and function of SK 
channels, which results in the increased UBSM cells excit-
ability and contributes to DO, was discovered in PBOO 
UBSM cells, suggesting that SK channels might be poten-
tial therapeutic targets for the control of OAB.

Keywords SK channel · Partial bladder outlet obstruction · 
Overactive bladder

Introduction

Overactive bladder (OAB), which is described as urgency, 
with or without incontinence, is observed in almost half of 
partial bladder outlet obstruction (PBOO) patients and is 
closely associated with detrusor overactivity (DO) [1–3]. 
PBOO can lead to various structural and functional altera-
tions in the lower urinary tract, including urinary bladder 
smooth muscle (UBSM) remodeling [2–4]. Meanwhile, 
DO is associated with the increased excitability of UBSM 
cells in PBOO, and changes in the expression and function 
of UBSM regulatory proteins may contribute to an altered 
UBSM contractile phenotype [5, 6]. Therefore, PBOO ani-
mal models, which can imitate this pathological condition, 
are often used to study the pathophysiology of OAB.

USBM shows spontaneous phasic contractions driven 
by spontaneous action potentials. The resting membrane 
potential (RMP) plays a constitutive role in controlling 
cell excitability [7, 8]. In UBSM,  Ca2+-activated  K+ 
channels can be divided into three groups: large-con-
ductance  Ca2+-activated  K+ (BK) channels, small-con-
ductance  Ca2+-activated  K+ (SK) channels, and interme-
diate-conductance  Ca2+-activated  K+ (IK) channels [9]. 

Abstract 
Purpose Overactive bladder (OAB), usually accompanied 
by partial bladder outlet obstruction (PBOO), is associ-
ated with detrusor overactivity (DO) which is related to 
the increased urinary bladder smooth muscle (UBSM) 
cells excitability. Small-conductance  Ca2+-activated  K+ 
(SK) channels play a constitutive regulatory role of UBSM 
excitability and contractility. PBOO is associated with the 
decreased SK channels mRNA expression and the attenu-
ated regulative effect of SK channels on UBSM contrac-
tility. However, the regulation of SK channels in PBOO 
UBSM cell excitability is less clear. Here, we tested the 
hypothesis that PBOO is associated with decreased expres-
sion and function of SK channels in UBSM cells and that 
SK channels are a potential target for the treatment of 
OAB.
Methods Cystometry indicated that DO was achieved 2 
weeks after PBOO in female guinea pigs. Using this animal 
model, we conducted single-cell quantitative reverse tran-
scription-polymerase chain reaction (qRT-PCR) and patch-
clamp electrophysiology.
Results The single-cell qRT-PCR experiments indicated 
the reduced SK channel mRNA expression in PBOO 
UBSM cells. Patch-clamp studies revealed that NS309 had 
a diminished effect on resting membrane potential hyper-
polarization via the activation of SK channels in PBOO 

 * Yili Liu 
 air-nick@163.com

1 Department of Urology, Fourth Affiliated Hospital, China 
Medical University, 4 Chongshan East Road, Shenyang, 
Liaoning, China

2 Department of Stomatology, Fourth Affiliated Hospital, 
China Medical University, 4 Chongshan East Road, 
Shenyang, Liaoning, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s11255-017-1592-0&domain=pdf


1148 Int Urol Nephrol (2017) 49:1147–1155

1 3

The function and mechanism of BK channels, as very 
important regulators of UBSM excitability and contrac-
tility, have been widely investigated both under physi-
ological conditions and in PBOO [7, 9–15].

The expression of IK channels has been established in 
the UBSM of various species including mice, rat, guinea 
pigs and humans, but IK channels do not appear to play 
a constitutive role in regulating UBSM function [16–18]. 
On the other hand, SK channels, which are divided into 
three subtypes (SK1, SK2, and SK3) in mammals, have 
a small conductance of 4–14 pS; they show substantial 
physiological effects as powerful modulators in many 
cell types, including UBSM cells [16–21].

Previous researches indicated that whole-cell cur-
rents are increased in SK3 channel-overexpressing 
murine UBSM cells and that the knockout of SK2 chan-
nels in mice reduces apamin sensitivity to UBSM con-
tractility [22, 23]. It has been suggested that changes 
in the expression of SK channels may result in altered 
UBSM excitability and contractility. Our recent stud-
ies established that 2-week PBOO is associated with the 
decreased SK channel mRNA expression and the attenu-
ated regulatory effect of SK channels on guinea pig 
UBSM contractility [24]. However, the regulatory role 
of SK/IK channels in UBSM cells excitability during the 
development of PBOO is still unknown [12, 25].

In the present study, cystometry, single-cell quan-
titative reverse transcription-polymerase chain reac-
tion (qRT-PCR), and perforated whole-cell patch-clamp 
were applied to investigate the mechanism of pharma-
cological activation and inhibition of SK/IK channels 
in 2-week PBOO guinea pig UBSM cells. The selec-
tive SK/IK channel opener, 6,7-dichloro-1H-indole-
2,3-dione 3-oxime (NS309), as well as the SK and IK 
channel inhibitors apamin and TRAM-34, respectively, 
were applied in this study. We established that reduced 
expression and function of SK channels was discovered 
in guinea pig UBSM cells with PBOO.

Materials and methods

Animals

A total of 61 adult female Hartley Albino guinea pigs 
(China Medical University) with an age ranging from 8 
to 10 weeks and average weight of 403.1 ± 7.5 g were 
used in this study. All experimental procedures were 
approved by the Institutional Animal Care and Use Com-
mittee of China Medical University.

Surgically induced PBOO in guinea pigs

PBOO was induced as previously described [24]. The uri-
nary bladder, bladder neck and proximal urethra were 
exposed under anesthesia with 5% isoflurane/O2 gas inspi-
ration. A plastic tube was placed into the urinary bladder 
via the urethral orifice followed tying the proximal urethra 
around the catheter, and then the catheter was removed and 
the incision was closed. The sham operation employed the 
same procedure except for tying the ligature. Prophylactic 
antibiotics with ampicillin (100 mg/kg sc) were applied 
after the operation, along with buprenorphine (0.05 mg/kg 
sc) to control postoperative pain.

Cystometry

Two weeks after obstruction, general anesthesia was 
induced with 5% isoflurane/O2 gas inspiration. A catheter 
was inserted into the bladder dome after surgically expos-
ing the bladder and was connected to a physiological pres-
sure transducer and an injection pump (Dantec Menuet, 
Denmark). Cystometry was performed by infusing warm 
saline (37–38 °C) into the bladder at a rate of 12 ml/h. 
Three voiding events were recorded for each guinea pig 
to assess the following parameters: maximum voiding 
pressure (the maximum pressure during voiding), bladder 
capacity (the volume of saline infused to induce the void-
ing), voiding volume (the volume of micturition), void-
ing interval (the interval between voids), and the number 
of non-voiding contractions (NVCs) during one voiding 
event. NVCs were defined as spontaneous contractions (>4 
 cmH2O from the baseline bladder pressure) that did not 
result in a void.

UBSM single‑cell isolation

Guinea pigs were euthanized 2 weeks after PBOO by  CO2 
inhalation followed by thoracotomy. The urinary bladders 
were rapidly taken out and cut open longitudinally fol-
lowed removing the mucosa. One to two UBSM strips were 
incubated in 2 ml of dissection solution supplemented with 
1 mg/ml bovine serum albumin (BSA), 1 mg/ml papain, 
and 1 mg/ml DL-dithiothreitol at 37 °C for 12–18 min. 
UBSM strips were then transferred and incubated at 37 °C 
for 12–15 min in 2 ml of dissection solution supplemented 
with 1 mg/ml BSA, 0.5 mg/ml type II collagenase, 0.5 mg/
ml trypsin inhibitor, and 100 μM  CaCl2. The digested 
UBSM tissues were then washed three times with dissec-
tion solution supplemented with 1 mg/ml BSA and gently 
triturated with a fire-blunted Pasteur pipette to disperse sin-
gle UBSM cells.
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Single‑cell qRT‑PCR

Total RNA was isolated from freshly isolated UBSM cells 
using Trizol reagent (Invitrogen, Waltham, MA, USA). 
Reverse transcription of total RNA was operated using 
the SuperScript™ first-strand synthesis system (Invitro-
gen, Waltham, MA, USA) according to the manufacturer’s 
instructions. Real-time PCR was then performed using 
the synthesized cDNA on an ABI PRISM 7500 sequence 
detection system with SYBR GREEN PCR Master Mix 
[26]. Real-time PCR was carried out to analyze the mRNA 
expression of SK1, SK2, SK3, IK channels, and β-actin 
using specific primers (Table 1). The PCR conditions were 
94 °C for 1 min followed by 95 °C for 30 s and then 58 °C 
for 40 s for a total of 35 cycles [27]. All of the reactions 
were run three times and normalized to β-actin. qRT-PCR 
products were purified using the GenElute PCR Clean-
Up Kit (Sigma-Aldrich, St. Louis, MO, USA), and the 
sequencing of the SK1–SK3 (Kcnn1–Kcnn3), IK (Kcnn4) 
and β-actin (actb) genes was confirmed by direct sequenc-
ing of the amplified PCR products [28].

Electrophysiological recordings

The amphotericin-B-perforated whole-cell patch-clamp 
technique was performed to record the RMP and whole-
cell currents from freshly isolated guinea pig UBSM single 
cells as described previously [13, 14]. In brief, patch-clamp 
recordings were performed using an Axopatch 200B ampli-
fier system and Digidata 1440A controlled with pCLAMP 
10.2 software (Molecular Devices, Union City, CA, USA). 
The recording currents were filtered at 1 kHz with an eight-
pole Bessel filter model 900CT/9L8L (Frequency Devices, 
Ottawa, IL, USA) and sampled at a rate of 10 kHz. The 
borosilicate glass pipettes were pulled and polished to 
achieve a final tip resistance of 4–7 MΩ. Whole-cell  K+ 
currents were recorded by holding the UBSM cells at 
−70 mV, and voltage depolarization was performed from 
−40 to +80 mV for 200 ms in 20 mV steps; then, cells 
were repolarized back to −70 mV. The NS309 sensitive 
outward  K+ currents were recorded in the presence of pax-
illine to block BK channels and TRAM-34 to block IK 

channels. UBSM cell RMP was recorded in the current-
clamp mode of the patch-clamp technique without any cur-
rent input (Ih = 0). All patch-clamp experiments were con-
ducted at room temperature (22–23 °C).

Solutions and drugs

The dissection solution contained the following: 80 mM 
monosodium glutamate, 55 mM NaCl, 6 mM KCl, 10 mM 
glucose, 10 mM HEPES, and 2 mM  MgCl2; the pH was 
adjusted to 7.3 with NaOH. The extracellular solution for 
patch-clamp experiments contained the following: 134 mM 
NaCl, 6 mM KCl, 1 mM  MgCl2, 2 mM  CaCl2, 10 mM 
glucose, and 10 mM HEPES; the pH was adjusted to 7.4 
with NaOH. The pipette solution contained the following: 
110 mM potassium aspartate, 30 mM KCl, 10 mM NaCl, 
1 mM  MgCl2, 10 mM HEPES, and 0.05 mM EGTA; the 
pH was adjusted to 7.2 with NaOH and supplemented with 
freshly dissolved 200 μg/ml amphotericin-B in dimethyl 
sulfoxide (DMSO). The trypsin inhibitor, BSA, and ampho-
tericin-B were obtained from ThermoFisher Scientific (Fair 
Lawn, NJ, USA). Papain was purchased from Worthington 
Biochemical (Lakewood, NJ, USA). Paxilline, type II col-
lagenase, TRAM-34, apamin, and NS309 were purchased 
from Sigma-Aldrich (St. Louis, MO, USA). Amphotericin-
B, TRAM-34, paxilline, and NS309 were dissolved in 
DMSO, while all other chemicals were dissolved in dou-
ble-distilled water. The maximal DMSO concentration did 
not exceed 0.1% in the bath solution.

Data analysis and statistics

The relative differences in the PCR results were calcu-
lated by using the comparative Ct method  (2−ΔΔCt) after 
determining the Ct values for the reference (β-actin) and 
target (SK1, SK2, SK3, or IK) genes in each sample [29, 
30]. The relative mRNA expression level of the target 
gene was calculated by normalization to β-actin expres-
sion. The RMP was measured as the average of the last 
5 min of recording under each experimental condition 
and analyzed using Clampfit 10.2 (Molecular Devices, 
Union City, CA, USA). The mean values of the last 50 ms 

Table 1  Primers used for the single-cell qRT-PCR experiments

bp base pairs

Channel Forward Reverse Genbank no. Size (bp)

SK1 CACCATGCGTTCAAGAGCAG TCTTGGCCAACAGCACCTG XM_013147404.1 259

SK2 AGGTGATGTCATGCCCATTGT GGTTTCCATGTCAGAGCCGT XM_003473180.3 187

SK3 TCAATAAACTGCGGCCAGGA TAGAGGATGCGCTCGTAGGT XM_013158995.1 179

IK GTGGGCCACACAGGAAGAAT GGCGTTTGGGGTTGTAGTGA XM_013146782.1 208

β-actin TGCTGCGTTACACCCTTTCT ACAATCAAAGTCCTCGGCCA NM_001172909.1 212
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pulse of the 200 ms depolarization step of the record-
ings were analyzed using Clampfit 10.2 and were used 
to plot the current–voltage relationships. Data were fur-
ther analyzed with GraphPad Prism 5.0 software (Graph-
Pad software, San Diego, CA, USA). Data are expressed 
as mean ± SEM; n = the number of cells and N = the 
number of guinea pigs. Statistical significance was tested 
using a t test, or paired Student’s t test, and P < 0.05 was 
considered statistically significant.

Results

DO was successfully achieved 2 weeks after PBOO

Two weeks after inducing PBOO, bladder capacity was 
remarkably reduced (PBOO 1.83 ± 0.31 ml, N = 11; sham 
control 2.64 ± 0.18 ml, N = 9; P < 0.05; Table 2), with a 
significantly decreased voiding volume (0.91 ± 0.29 ml in 
PBOO, 1.85 ± 0.27 ml in sham control, P < 0.05; Table 2). 
Meanwhile, an increased maximum voiding pressure was 
observed in PBOO guinea pigs (61.2 ± 10.1  cmH2O, 
N = 11) compared to sham control animals (33.7 ± 7.1 
 cmH2O, N = 9; P < 0.05; Table 2). Moreover, there was 
a decrease in the voiding interval (PBOO 4.58 ± 0.89 min, 
N = 11; sham control 8.37 ± 0.49 min, N = 9; P < 0.05; 
Table 2) and more frequent NVCs were detected (sham 
control 0.47 ± 0.19, N = 9; PBOO 4.78 ± 0.41, N = 11; 
P < 0.05; Table 2), indicating that DO was already induced 
2 weeks after PBOO.

SK channels, not IK channels, indicated a significantly 
decreased mRNA expression levels in PBOO UBSM 
cells

The mRNA expression of SK channels, not IK channels, 
was altered in PBOO bladder mucosa and smooth mus-
cle, including rat and guinea pig [12, 17, 24, 25]. Accord-
ingly, we compared the gene expression of SK/IK channels 
between sham control and PBOO guinea pig UBSM cells 
using single-cell qRT-PCR. Our data demonstrate that the 
mRNA expression of SK1–SK3 channels was markedly 
decreased to 64.2 ± 0.2%, 70.7 ± 0.1%, and 23.6 ± 0.2% 
(N = 5) in PBOO UBSM cells, respectively, compared 
with sham controls (N = 4; P < 0.05; Fig. 1a–c). However, 
there was no significant reduction in IK channel mRNA 
expression in guinea pig UBSM cells 2 weeks after PBOO 
(P > 0.05; Fig. 1d). These single-cell qRT-PCR results indi-
cate that the decreased mRNA expression of SK channels 
may contribute to the altered excitability of PBOO guinea 
pig UBSM cells.

Pharmacological activation of SK channels has an 
attenuated hyperpolarization effect on the RMP 
of PBOO UBSM cells

Recently, it has been established that SK channels, not IK 
channels, are important regulators of UBSM cell excit-
ability under physiological conditions [16–18, 31]. Here, 
we assessed whether the regulation of SK/IK channels 
on the RMP of UBSM cells changed during PBOO using 
the current-clamp mode (I = 0) with the amphotericin-B-
perforated whole-cell patch-clamp technique. The average 

Table 2  Cystometric parameters

* Significant difference compared with sham control (P < 0.05)

Sham control PBOO

Bladder capacity (ml) 2.64 ± 0.18 1.83 ± 0.31

Voiding volume (ml) 1.85 ± 0.27 0.91 ± 0.29

Maximum voiding pressure  (cmH2O) 33.7 ± 7.1 61.2 ± 10.1

Voiding interval (min) 8.37 ± 0.49 4.58 ± 0.89

Frequency of NVCs 0.47 ± 0.19 4.78 ± 0.41
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Fig. 1  SK channels, not IK channels, indicated a significantly 
decreased mRNA expression levels in PBOO UBSM cells. Single-
cell qRT-PCR analyses indicating that the mRNA expression of 
SK1 (a), SK2 (b), and SK3 (c) channels was reduced to 64.2 ± 0.2, 
70.7 ± 0.1, and 23.6 ± 0.2%, respectively, (*P < 0.05) without sig-
nificant alterations in IK channel mRNA expression (d) (P > 0.05; 
NS non-significant) in PBOO UBSM cells (N = 5) compared with 
UBSM cells in sham controls (N = 4). Data are shown as relative 
mRNA expression normalized to β-actin
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UBSM cell capacitance was 27.3 ± 1.3 pF in sham control 
UBSM cells (n = 8, N = 5) and 26.2 ± 1.1 pF in UBSM 
cells from PBOO guinea pigs (n = 25, N = 18; P > 0.05). 
NS309 (10 μM), a SK/IK channel activator, significantly 
hyperpolarized UBSM cell RMP from a control value of 
−23.6 ± 2.2 to −29.8 ± 1.8 mV in sham control UBSM 
cells (n = 8, N = 5; P < 0.05; Fig. 2a) and from values 
of −22.8 ± 1.7 to −26.2 ± 2.4 mV in UBSM cells from 
PBOO guinea pigs (n = 8, N = 6; P < 0.05; Fig. 2b). There 
was no significant difference in the RMP of sham control 
UBSM cells (n = 8, N = 5) and PBOO UBSM cells before 
the application of NS309 (n = 8, N = 6; P > 0.05). Further-
more, the effect of hyperpolarization induced by NS309 
was attenuated in PBOO UBSM cells (3.5 ± 0.8 mV; 
n = 8, N = 6) compared with sham control UBSM cells 
(6.1 ± 0.9 mV; n = 8, N = 5; P < 0.05; Fig. 2a–c).

The role of SK channels in PBOO UBSM cell RMP 
hyperpolarization induced by NS309 was further exam-
ined by applying apamin, a selective SK channel inhibitor, 

before the addition of NS309. Apamin (1 μM) did not 
significantly hyperpolarize the UBSM cell RMP which 
was −24.6 ± 1.4 mV in the absence of apamin and 
−23.7 ± 2.8 mV in the presence of apamin (n = 9, N = 6; 
P > 0.05; Fig. 3a, c). In the presence of apamin (1 μM), 
the subsequent application of NS309 (10 μM) did not sig-
nificantly change the RMP, recorded as −25.5 ± 1.1 mV 
(n = 9, N = 6; P > 0.05; Fig. 3a, c).

In addition, TRAM-34, a selective IK channel inhibi-
tor, was present before the application of NS309 in PBOO 
UBSM cells to explore whether NS309-induced PBOO 
UBSM cell RMP hyperpolarization was mediated via the 
activation of IK channels. Our results indicate that the 
UBSM cell RMP (−27.2 ± 1.6 mV) did not change sig-
nificantly after the application of TRAM-34 (1 μM) 
(n = 8, N = 6; P > 0.05; Fig. 3b, d). NS309 (10 μM) sig-
nificantly hyperpolarized the PBOO UBSM cell RMP from 
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Fig. 2  Pharmacological activation of SK/IK channels has an attenu-
ated hyperpolarization effect on the RMP of PBOO UBSM cells. 
Original recordings illustrating the effect of NS309 (10 μM) on the 
RMP in a sham control UBSM cell (a) and in a PBOO UBSM cell 
(b). c Summary data showing the differences in the hyperpolariza-
tion effect on the RMP in the absence or presence of NS309 (10 μM) 
in sham control UBSM cells (n = 8, N = 5; *P < 0.05) and PBOO 
UBSM cells (n = 8, N = 6; *P < 0.05). NS309 (10 μM) caused 
reduced hyperpolarization of the RMP of PBOO UBSM cells com-
pared with sham control UBSM cells (#P < 0.05)
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Fig. 3  The RMP hyperpolarization induced by NS309 occurs via the 
activation of SK but not IK channels in PBOO UBSM cells. Repre-
sentative recordings in current-clamp mode illustrating the NS309 
(10 μM)-induced hyperpolarizing effect on PBOO UBSM cell 
RMP in the presence of 1 μM apamin to block SK channels (a) or 
1 μM TRAM-34 to block IK channels (b). c Summary data showed 
that apamin (1 μM) could not hyperpolarize the RMP and NS309 
(10 μM) did not have any effect on the RMP in PBOO UBSM cells 
pretreated with 1 μM apamin (n = 9, N = 6; P > 0.05; NS non-sig-
nificant). d Summary data illustrating that pharmacological inhibition 
of IK channels with TRAM-34 (1 μM) did not change the PBOO 
UBSM cell RMP (n = 8, N = 6; P > 0.05; NS non-significant), and 
could not alter the NS309-induced hyperpolarizing effect on PBOO 
UBSM cell RMP (n = 8, N = 6; *P < 0.05)
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−26.1 ± 2.2 to −29.3 ± 2.2 mV in the presence of TRAM-
34 (1 μM) (n = 8, N = 6; P < 0.05; Fig. 3b, d).

In conclusion, our current-clamp data demonstrate that 
the RMP hyperpolarization induced by NS309, which 
occurred via the activation of SK but not IK channels, was 
attenuated in PBOO UBSM cells.

NS309‑induced whole‑cell SK currents are decreased 
in freshly isolated PBOO guinea pig UBSM cells

It has already been shown that NS309-induced whole-
cell  K+ currents occur due to the activation of SK chan-
nels, not IK channels, in freshly isolated rat UBSM cells 
[18]. In this series of experiments, we examined whether 
NS309-induced steady-state SK currents changed in PBOO 
UBSM cells using a depolarizing voltage-step protocol at 
a holding potential of −70 mV in the presence of paxilline 
(300 nM) and TRAM-34 (1 μM) to block BK and IK cur-
rents. The average guinea pig UBSM cell capacitance was 
26.5 ± 1.2 pF in sham control UBSM cells (n = 11, N = 8) 

and 27.4 ± 0.7 pF in UBSM cells from PBOO guinea pigs 
(n = 22, N = 17; P > 0.05).

Firstly, the current–voltage relationships illustrate that 
NS309 significantly increased whole-cell  K+ currents in 
both sham control UBSM cells (n = 11, N = 8; P < 0.05; 
Fig. 4a, c) and UBSM cells from PBOO guinea pigs 
(n = 12, N = 9; P < 0.05; Fig. 4b, d). Moreover, it was 
found that NS309-sensitive whole-cell  K+ currents were 
attenuated in PBOO UBSM cells compared with UBSM 
cells from sham control guinea pigs (P < 0.05; Fig. 4e).

Secondly, a selective SK channel blocker, apamin 
(1 μM), was added before the application of NS309 in 
PBOO UBSM cells to determine whether NS309-induced 
whole-cell  K+ currents were mediated via the activation of 
SK channels. The current–voltage relationships show that 
NS309 had no significant effect on whole-cell  K+ currents 
in the presence of 1 μM apamin (n = 10, N = 8; P > 0.05; 
Fig. 5).

These data provide evidence that NS309-induced whole-
cell  K+ currents, which occur due to the activation of SK 
channels, were reduced in PBOO UBSM cells compared 
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PBOO freshly isolated guinea pig UBSM cells. Original record-
ings illustrating that 10 μM NS309 increased the voltage-dependent 
steady-state whole-cell SK currents in a sham control UBSM cell (a) 
and in a PBOO UBSM cell (b). Current–voltage relationships illus-

trating the reduced effect of NS309 (10 μM) on whole-cell SK cur-
rents in PBOO UBSM cells (n = 12, N = 9; *P < 0.05) (d, e) com-
pared with sham control UBSM cells (n = 11, N = 8; *P < 0.05; NS 
non-significant) (c, e). SK currents were recorded in the presence of 
paxilline and TRAM-34 to block BK and IK channels
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to UBSM cells from sham control guinea pig. The voltage-
clamp data, which were consistent with the current-clamp 
data, established that the regulation of SK channels in 
UBSM cell excitability was decreased 2-week after PBOO 
induction.

Discussion

The present study revealed that SK channels play a consti-
tutive role in the pathophysiology of PBOO and established 
a significant decrease in the expression and function of SK 
channels in the UBSM cells under these conditions. We 
discovered the mRNA expression of the SK1–SK3 chan-
nels was significantly decreased in PBOO UBSM cells, and 
pharmacological activation of SK channels with NS309 had 
a reduced effect on RMP hyperpolarization, and whole-cell 
SK currents were reduced in PBOO UBSM freshly isolated 
cells.

In our previous research, DO was successfully induced 
2 weeks after PBOO, which is in line with reports in the 
literature [24, 32, 33]. In the present study, cystometry 
indicated reduced bladder capacity and voiding volume, 
a shorter voiding interval, an increased maximum void-
ing pressure, and more frequent NVCs in PBOO guinea 
pigs (Table 2). The present results further established that 

PBOO animal models were suitable for studying the patho-
physiology of OAB.

Our previous research discovered the decreased mRNA 
expression of SK channels, but not IK channels, in PBOO 
guinea pig UBSM, which could contribute to the reduced 
regulatory role of SK channels in UBSM contractility [24]. 
However, the results seemed contradictory to some previ-
ous researches shown in the literature and the possible rea-
sons for the above-mentioned differences perhaps included 
the species-based differences in the expression of SK chan-
nel subtype in UBSM [12, 16–18, 22, 25, 31]. In the pre-
sent study, we collected the freshly isolated UBSM single 
cells in qRT-PCR to exclude any potential contamination 
by other non-UBSM cell types including endothelial cells, 
fibroblasts, vascular cells and neurons within the UBSM 
layers [16, 17]. Our present data indicated a significant 
decrease in the mRNA expression of SK1, SK2, and SK3, 
but no statistically significant changes in IK mRNA expres-
sion in PBOO guinea pig UBSM cells (Fig. 1) [24]. These 
data are in accordance with our previous molecular result 
using UBSM tissues and provide further evidence that the 
attenuated expression of SK channels, not IK channels, 
contributes to PBOO.

A reduced effect of SK channels on RMP has been 
shown in PBOO UBSM cells [25]. It is known that SK 
channels play a critical role in UBSM cell excitability 
[16–18, 31], but the function of SK channels has not 
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age relationships illustrating 10 μM NS309 did not affect the whole-
cell SK currents in the presence of 1 μM apamin (n = 10, N = 8; 
P > 0.05). SK currents were recorded in the presence of paxilline and 
TRAM-34
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been studied in PBOO UBSM cells by the perforated 
patch-clamp technique. In the present study, we report 
that the pharmacological activation of SK channels 
with NS309 remarkably hyperpolarized the RMP in 
both sham control and PBOO UBSM cells. However, 
NS309 treatment led to reduced RMP hyperpolariza-
tion in UBSM cells from PBOO guinea pigs compared 
to sham control UBSM cells (Fig. 2). Furthermore, 
apamin and TRAM-34 were applied to confirm that 
NS309 regulates UBSM RMP via SK channels, not IK 
channels (Fig. 3).

SK current activation was detected at a holding poten-
tial in the range of −40 to −30 mV, which is close to 
the RMP values in UBSM cells [34]. Therefore, the per-
forated patch-clamp technique was performed to record 
SK currents in the presence of paxilline and TRAM-34 
to block BK and IK currents. Our patch-clamp data indi-
cated that NS309-sensitive currents were significantly 
decreased in UBSM cells from PBOO guinea pigs com-
pared to sham control UBSM cells (Fig. 4). It has already 
been established that the inhibitory effect of NS309 on 
UBSM cell excitability is mediated by SK channels but 
not IK channels under physiological conditions [18]. 
Furthermore, apamin was applied to confirm that NS309-
sensitive currents were via SK channels, not IK channels 
(Fig. 5). Therefore, the patch-clamp data are consist-
ent with our molecular data and show that SK channel 
function is significantly reduced in PBOO UBSM cells, 
although SK channels still play a regulatory role in cell 
excitability. Furthermore, our present patch-clamp data 
elucidated that the reduced inhibitory effect of SK chan-
nels in PBOO UBSM contractility indicated in our previ-
ous study was perhaps due to the attenuated regulatory 
role of SK channels in RMP and the decreased SK cur-
rent in PBOO UBSM cells [24].

In summary, the present study revealed an outstanding 
decrease in the mRNA expression level of the SK1, SK2, 
and SK3 channels in UBSM cells from PBOO guinea 
pigs. Furthermore, we investigated SK channel activity 
in PBOO UBSM cells using the perforated patch-clamp 
approach and discovered the attenuated RMP hyperpolar-
ization and decreased whole-cell SK currents in UBSM 
cells from PBOO guinea pigs. Taken together, the attenu-
ated expression and function of SK channels is associated 
with PBOO and SK channels could represent novel thera-
peutic targets for the pharmacological treatment of OAB.
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