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transplantation. The pathogenesis, clinical manifestations, 
diagnosis, and treatment of HLH are discussed.
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Introduction

Hemophagocytic lymphohistiocytosis (HLH) is a syndrome 
characterized by a hyperactive yet ineffective immune 
response to an antigenic challenge. HLH results from 
either an inherited (primary) or acquired (secondary HLH) 
inability of cytotoxic CD8+ T lymphocytes (CTLs) and 
natural killer cells (NKs) to lyse target cells [1–4]. These 
target cells include the initiators of the immune response, 
such as infected or malignant cells, and antigen-presenting 
cells upon resolution of the initial challenge. The conse-
quent proliferation of CTLs results in a large production 
of interferon-γ (INF-γ) that causes a marked proliferation 
of benign histiocytes (macrophages). These macrophages 
and CTLs invade organs, such as liver, spleen, and lymph 
nodes, and release further inflammatory cytokines, includ-
ing INF-γ, TNF-α, and interleukins (IL)-1, 6, and 18 [5]. 
The result is a so-called cytokine storm with severe sys-
temic inflammatory response syndrome (SIRS), multiorgan 
dysfunction syndrome (MODS), and frequent death. The 
proliferating histiocytes engulf red cells, white cells, plate-
lets, and their precursors and are called hemophagocytes 
(HPC), hence the alternative designation hemophagocytic 
syndrome.

The cardinal clinical manifestations of HLH include 
unremitting fever, hepatosplenomegaly, various cytopenias, 

Abstract  Hemophagocytic lymphohistiocytosis (HLH) 
is a hyperinflammatory syndrome caused by defective 
lytic capability of cytotoxic T lymphocytes and NK cells, 
which results in proliferation of benign hemophagocytic 
histiocytes. A cytokine storm ensues, and a severe systemic 
inflammatory response syndrome, multiorgan dysfunc-
tion syndrome, and death frequently follow. It may occur 
as a primary (inherited) form, or be acquired secondary to 
malignancy, infection, rheumatologic disease, or immu-
nosuppression. Cardinal manifestations include fever, 
cytopenias, hepatosplenomegaly, and dysfunction of liver, 
kidney, CNS, and/or lung. Additional laboratory findings 
include marked hyperferritinemia, hypofibrinogenemia, 
hypertriglyceridemia, abnormal LFTs, coagulopathy, and 
hyponatremia. Nephrologists need to be aware of this 
syndrome owing to the frequent occurrence of acute kid-
ney injury in these severely ill patients. Glomerulopathy 
and nephrotic syndrome may develop. Kidney transplant 
recipients are at increased risk of HLH due to immuno-
suppression, and most such cases are triggered by infec-
tion with over 50 % mortality. Effective treatment of HLH 
usually requires chemoimmunotherapy to acutely suppress 
inflammation, specific treatment of underlying infection or 
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and multiorgan dysfunction, including liver, CNS, lung, 
and kidney [1–4]. Characteristic laboratory findings in 
addition to the cytopenias include hyperferritinemia, hyper-
triglyceridemia, hypofibrinogenemia, abnormal LFTs, 
hyponatremia, elevated LDH, elevated soluble CD25 
(sCD25), reduced or absent NK cell activity, and coagu-
lopathy. Bone marrow aspiration typically, but not always, 
reveals HPCs, which may also be seen in the liver, spleen, 
or lymph nodes. Unfortunately, no pathognomonic finding 
or test is available to diagnose HLH, including the presence 
of HPCs, as these may be found in otherwise severely ill 
patients [6, 7].

Nephrologists need to be aware of HLH [8]. Acute kid-
ney injury (AKI) can develop, especially in the critically 
ill [9], where it may be challenging to differentiate HLH 
from severe SIRS/MODS secondary to sepsis, trauma, or 
autoimmune/autoinflammatory disease. The distinction is 
critical, as immunomodulatory therapy may be required 
to dampen the hyperinflammatory state if HLH has devel-
oped, but may be harmful otherwise. In addition, various 
glomerulopathies are reported in HLH, often in the setting 
of nephrotic syndrome [10]. Thrombotic microangiopathy 
(TMA) can also occur [10]. Finally, HLH can develop post-
kidney transplantation [11].

Pathophysiology: primary HLH

Primary or familial HLH (FHL) results from recessive 
mutations in genes involved in the function of the cytotoxic 
granules of CTLs and NKs. Normal degranulation requires 
several proteins for cytosolic vesicle transport, sorting, 
docking, priming, and finally fusion with the cell mem-
brane [12]. Upon degranulation, perforin inserts into the 
target cell membrane, thereby allowing granzymes to enter 
and cause apoptosis. At least 5 types of FHL are described, 
termed FHL1-5. They are detailed in Table 1. FHL usually 
presents in the first months of life, often in response to a 
viral infection or immunization. However, some patients 
present later in adult life (see below).

Other inherited immune deficiency syndromes also can 
present with HLH, including oculocutaneous albinism syn-
dromes (Chediak–Higashi syndrome, Griscelli syndrome 
type 2, and Hermansky–Pudlak syndrome type 2), which 
share defective cytotoxic degranulation similar to FHL3-
5. The X-linked lymphoproliferative diseases (XLP), types 
1 and 2, have normal degranulation but develop HLH in 
response to uncontrolled primary EBV infection [13]. 
Additional primary immunodeficiencies that may develop 
HLH include severe combined immunodeficiency (SCID), 
combined immunodeficiency, and chronic granuloma-
tous disease [14]. Interestingly, HLH can develop in SCID 
patients with severe deficiencies of both CTLs and NKs. 

Nevertheless, macrophages can be activated with an associ-
ated cytokine storm [14].

Mice bearing analogous mutations to those found in 
human FHL and other primary immunodeficiencies have 
been developed [3, 15]. The best studied are perforin-defi-
cient mice (Prf−/−), mimicking FHL2. These mice diseases 
do not develop spontaneously but require an infectious 
trigger, typically either the lymphocytic choriomeningitis 
virus (LCMV) or murine cytomegalovirus (MCMV). With 
LCMV, the full HLH syndrome develops, and the main 
pathogenic cytokine is INF-γ secreted by CD8+ CTLs. A 
somewhat more benign syndrome develops with MCMV. 
Although CTLs and NKs produce INF-γ to activate mac-
rophages in this model, TNF-α secreted by macrophages 
and dendritic cells (DCs) is the main culprit, and IL-10 
secreted by NKs tends to dampen the hyperinflammation. 
Analogous to FHL3 and FHL4, mice deficient in Munc13-4 
(Unc13djinx/jinx) and syntaxin 11 (Stx11−/−), respectively, 
have been developed. Again, they are susceptible upon viral 
challenge to develop an HLH-like syndrome with varia-
tions in severity and cytokine mediators.

With FHL, the severity of the cytolytic defect of CTLs in 
patients with biallelic null mutations correlates with sever-
ity of disease, at least in terms of age of onset [15]. Perforin 
deficiency, the most severe defect, has the earliest age of 
onset (mean age 3 months). The age of onset increases with 
Griscelli syndrome type 2 (13 months), FHL4 (27 months), 
and Chediak–Higashi syndrome (38  months), although 
high variability exists within each group [15, 16]. Similar 
graded defects in cytotoxicity correlate with the severity of 
disease in the corresponding murine models: Perforin-defi-
cient mice demonstrate the most severe HLH, followed by 
Rab27A deficiency (Griscelli syndrome type2), syntaxin 11 
deficiency (FHL4), and Lyst deficiency (Chediak–Higashi 
syndrome). Of note, restoration of perforin expression 
to 10–20 % of normal with mixed chimerism in a mouse 
model (Prf−/−) reestablished normal immune regula-
tion [17]. This is analogous to patients with hypomorphic 
missense mutations (as opposed to null mutations) who 
have reduced rather than absent protein expression. Such 
patients present later in life, with milder disease or atypical 
features [18–21].

Pathophysiology: secondary HLH

sHLH develops at any age without a detectable genetic 
defect. Inciting events include infection, malignancy, auto-
immune/autoinflammatory disease, metabolic disease, and 
immunosuppression associated with HIV or solid organ 
transplantation [22–25]. An appropriate inflammatory 
response becomes exaggerated to produce a clinical syn-
drome similar to FHL. Polymorphisms or hypomorphic 
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mutations in the same genes that cause FHL may underlie 
susceptibility to sHLH (see below). A predisposing condi-
tion and/or triggering event can be identified in the major-
ity of sHLH cases. Multiple causes may coexist, such as 
malignancy or immunosuppression with an infectious trig-
ger. Occasionally, no inciting event is found and these cases 
are considered idiopathic. Since primary HLH can be initi-
ated by the same triggering agents as those causing sHLH, 
an apparent diagnosis of sHLH does not rule out an under-
lying genetic defect.

The hyperferritinemia and hemophagocytosis charac-
teristic of HLH both contribute to its pathophysiology and, 
simultaneously, help to mitigate the hyperinflammation. 
Ferritin is an intracellular, iron-storage molecule com-
posed of 24 subunits [26]. Ferritin is secreted by hepato-
cytes, Kupffer cells, and macrophages in an iron poor form. 
Secreted ferritin has pro-inflammatory effects by stimulat-
ing production of NF-κB in hepatic stellate cells. Alter-
natively, lymphocytes may be stimulated to produce the 
anti-inflammatory IL-10. In addition, ferritin inhibits CXC 
chemokine receptor 4, thereby reducing proliferation and 
migration.

Anemia in HLH develops rapidly, and hemophagocy-
tosis per se has been ascribed a primary role. Zoller et al. 
[27] termed this “consumptive anemia of inflammation” 
and showed that interferon-γ signaling is required for both 
the anemia and hemophagocytosis by a process resembling 
apoptotic cell uptake. Hemophagocytosis preceded anemia 
and was considered the major proximate cause. In a dif-
ferent model, Behrens et  al. [28] produced severe anemia 
without detectable hemophagocytosis. Subsequently, this 
group confirmed the prime importance of interferon-γ for 
development of severe anemia but not for hemophagocy-
tosis, which was readily detectable in interferon null mice 
in the absence of anemia [29]. Hence, hemophagocytosis 
was neither necessary nor sufficient for developing severe 
anemia.

Recent evidence indicates that the driving force for 
MODS in HLH is the cytokine storm and not hemophago-
cytosis [30]. In fact, HPCs can release significant quanti-
ties of the anti-inflammatory IL-10, representing a mecha-
nism to dampen the hyperinflammation [31]. In a mouse 
model, blocking either hemophagocytosis itself or the 
IL-10 released from HPCs enhanced virus-induced CTLs, 
liver damage, and mortality [31]. HPCs express markers of 
alternate activation [32] (M-2 macrophages), including the 
hemoglobin/haptoglobin scavenger receptor CD163 [32]. 
M-2 macrophages contribute to resolution of inflammation 
and tissue repair [33]. Both free and bound hemoglobin can 
be taken up by CD163+ macrophages and can activate heme 
oxygenase-1 (HO-1) [34]. Similarly, CD163+ HPCs have 
upregulated HO-1 in response to free heme liberated from 
phagocytosed erythrocytes [35]. The HO-1 catabolism 

of heme results in production of ferritin, bilirubin, and 
carbon monoxide, agents with potent anti-inflammatory 
effects [36]. Interestingly, postmortem bone marrow sam-
ples of patients dying from sepsis revealed abundant HPCs 
expressing HO-1, thereby indicating role for hemophago-
cytosis in hyperinflammatory states in general [35].

HLH in adults

Ramos-Casals et al. [22] reviewed MEDLINE and Embase 
databases supplemented with manual searches through 
9/2011 for case series dealing with the clinical manifesta-
tions and treatment of HLH in adults and found 677 articles 
(2197 patients). Mortality was 41  % in a subset of 1109 
patients. Infections were identified in 1108 (of the 2197), 
neoplasms in 1047, autoimmune disease in 276, transplan-
tation in 95 (including 53 kidney), and other circumstances 
in 89. Only 81 were idiopathic. Nearly a third had multi-
ple causes. The most common infections were viruses (762 
of 1108), mainly EBV (330) and HIV (173). Other viruses 
included CMV (69), other herpes viruses (74), parvovi-
rus, hepatitis viruses, and influenza. Bacteria were found 
in 206/1108, most commonly tuberculosis (78), but also 
staphylococcus and E coli. The most common parasite was 
leishmania and histoplasma the most common fungus. Of 
1047 neoplasms, the majority were hematologic (981), 
including 369 with T cell or NK cell lymphoma, 333 with 
B cell lymphoma, 67 with leukemia, and 61 with Hodgkin’s 
lymphoma. Solid tumors were rare (32). The most common 
autoimmune diseases were SLE (133/276) and adult-onset 
Still’s disease (AOSD) (54).

Subsequently, 3 large series of HLH in adults were pub-
lished. Riviere et al. identified 162 patients [23]. Hematologic 
malignancies were the most common triggers (92 patients). 
Infections were identified in 40, including 6 with concurrent 
malignancies. Autoimmune disease was found in 5. Parikh 
et  al. [24] reported 62 adult patients. They also found the 
most common cause to be malignancy (32 patients). Infec-
tion was found in 21, autoimmune disease in 5, and 4 were 
idiopathic. Li et al. [25] reported 103 cases. Again, hemato-
logic malignancies were most common (49 patients). Infec-
tions were found in 24, autoimmune diseases in 14, 24 with 
an unknown origin, and 8 with multiple causes.

When complicating rheumatic diseases, sHLH is termed 
macrophage activation syndrome (MAS). Most commonly, 
this occurs in systemic onset juvenile idiopathic arthritis 
(sJIA) [37], AOSD [38], or SLE (childhood [39] or adult 
onset [40]). HLH can also complicate Kawasaki’s disease 
or a vasculitis. With autoimmune or autoinflammatory con-
ditions, HLH is typically triggered by a flare of the disease 
[37–39]. Less commonly, viruses such as EBV or antirheu-
matic medications are implicated.
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HLH develops in about 10 % of cases of sJIA. Another 
30–40  % evidence occult HLH [41–43]. Such cases have 
laboratory abnormalities consistent with HLH, but lack 
clinical manifestations [43]. When HLH complicates sJIA, 
20 % of cases appear simultaneously with onset of the sJIA 
without frank arthritis and may be confused with FHL. 
Defective cytotoxic function of NKs occurs with HLH 
complicating sJIA, although a similar defect may be detect-
able in the absence of HLH [44].

Genetic considerations in adult HLH

The separation of primary HLH from sHLH is not clear-
cut and should not be based simply on age of presentation. 
sHLH can present in childhood [45], and adults with sHLH 
may have genetic defects similar to the inherited conditions 
in Table 1. Realization of this overlap is important, because 
with an inherited mutation HLH may recur, and should the 
patient survive the initial episode prolonged therapy and/
or hematopoietic stem cell transplantation (HSCT) need be 
considered.

Zhang et  al. [21] studied 175 adult HLH patients 
referred for genetic testing. Missense and splice-site muta-
tions/polymorphisms in the genes for perforin, MUNC13-
4, and MUNC18-2 were found in 25 (14 %), including 12 
(48 %) with the A91V polymorphism in both heterozygous 
and homozygous states. The A91V polymorphism reduces 
expression of perforin [46] resulting in susceptibility to 
HLH and is present in 3–17  % of the general population 
(1–4 % homozygous) [46]. Two patients were double het-
erozygotes with the A91V mutation and another mutation 
in one of the genes involved in degranulation. In a follow-
up study, Zhang et al. [47] found an additional 21 patients 
with digenic heterozygous mutations involving perforin (10 
of which had A91V) and one of the degranulation genes. 
Seven had digenic heterozygous mutations in 2 degranu-
lation genes. These mutations/polymorphisms were con-
sidered hypomorphic, with adult HLH following a viral 
or other trigger. Sieni et  al. [48] described 11 adult-onset 
patients with genetic defects underlying HLH in an Italian 
registry. These included 6 patients with biallelic perforin 
mutations, of which 4 included heterozygous A91V poly-
morphisms. Two also carried biallelic mutations consistent 
with FHL3, one FHL5, and 2 with XLP1. Wang et al. [49] 
studied 195 Chinese adults with HLH and found 3 with 
biallelic perforin mutations, 1 hemizygous SAP mutation 
(XLP1), and 6 monoallelic mutations (3 involving perforin, 
3 syntaxin 11). None had the A91V polymorphism.

FHL mutations may also underly sHLH in the pediat-
ric age range. In cases of HLH complicating sJIA, patho-
genic biallelic MUNC13-4 mutations were found in 2 of 
18 patients [50]. Another study found the A91V perforin 

polymorphism in 20 % of 15 sJIA patients with HLH com-
pared to 10 % of 41 sJIA patients without HLH [51]. Simi-
larly, whole-exome sequencing of 14 sJIA patients with 
HLH found 5 with protein-altering variants in FHL-related 
genes (MUNC13-4, STXBP2, and LYST) compared to 4 of 
29 patients with sJIA without HLH [52]. In a study of 28 
patients with HLH, 13 had 1 or more mutations in HLH-
related genes, including 5 with STXPB2 and 5 with UNC13 
mutations [53].

Clinical manifestations

The clinical manifestations of HLH result from tis-
sue invasion by macrophages and CTLs, as well as the 
“cytokine storm” from the excessive release of inflamma-
tory cytokines, especially IL-1, IL-6, IL-18, INF-γ, and 
TNF-α. A constellation of symptoms, signs, and labora-
tory abnormalities occurs that depends on the severity of 
the syndrome, the underlying predisposing conditions, 
and the presence of a triggering agent. Unremitting fever 
is nearly universal. Other constitutional symptoms include 
asthenia and weight loss. Splenomegaly, hepatomegaly, 
and adenopathy occur in a significant minority. Neurologic 
manifestations may develop in up to 70 % of sHLH cases 
[54–57] and may be obvious clinically or detectable only 
by imaging or CSF examination [56]. Clinical findings 
include altered mental status, seizures, hemiparesis, cra-
nial nerve palsies, and meningitis. Permanent sequelae may 
result [54, 56, 57]. Coagulation abnormalities are com-
mon. Disseminated intravascular coagulation (DIC) may 
occur in 50 % HLH patients in the ICU, with over 20 % 
having severe bleeding [58]. Liver dysfunction is com-
mon and can progress to fulminant failure. Histologically, 
portal tract infiltration by CTLs and HPCs is present [59]. 
Cutaneous manifestations occur in up to 65 % of patients 
and include erythroderma, maculopapular rash, and morbil-
liform eruption [60]. HPCs may be found in skin biopsies 
[61]. A systemic inflammatory response syndrome (SIRS) 
with multiorgan dysfunction syndrome (MODS) may 
occur, including shock and acute lung or kidney injury. The 
clinical manifestations of HLH overlap with other causes 
of SIRS or MODS, such as bacterial sepsis or trauma, and 
such cases may be incorrectly labeled as “culture-negative 
sepsis [62]”. Patients dying from sepsis may have a marked 
proliferation of CD163+ HPCs predominantly ingesting 
RBCs and their precursors in the absence of frank HLH 
[35].

The most notable laboratory abnormalities in HLH 
include cytopenias, hyperferritinemia, hypofibrinogenemia 
due to consumption and liver injury, hypertriglyceridemia 
secondary to cytokine inhibition of lipoprotein lipase, and 
elevated transaminases and LDH. CRP may be markedly 
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elevated, but the ESR is often normal or only minimally 
elevated because of hypofibrinogenemia. Elevated soluble 
CD25 and soluble CD163 reflect excessive CTL and mac-
rophage activation, respectively. NK cells or their function 
is markedly reduced. Hyponatremia is common.

The most frequent renal manifestation is AKI. Aulagnon 
et  al. [9] reported on 95 ICU patients with sHLH. Using 
current definitions, AKI occurred in 59 (62  %); 6-month 
survival was 37 % as compared to 56 % in those without 
AKI. Most (51 patients) reached stage 2 or 3 AKI, and 
dialysis was required in 59 %. AKI was attributed to acute 
tubular necrosis (49 %), hypoperfusion (46 %), tumor lysis 
(29  %), or glomerulopathy (17  %). Only 1 patient had 
a kidney biopsy. Nephrotic syndrome (NS) was present 
in 12, of whom 9 had AKI. Thirty-two percent of surviv-
ing patients had CKD at 6 months. The incidence of AKI 
was no different from that in a contemporaneous group of 
newly diagnosed, high-grade malignancy patients admitted 
to the same ICU (58 % of 202 patients). Direct interstitial 
infiltration by activated macrophages and T lymphocytes is 
reported to cause reversible AKI [63].

Glomerulopathy and NS complicating HLH result from 
primary podocyte pathology. Thaunat et  al. [10] reported 
on 9 patients with NS and HLH that had kidney biopsies 
at 3 French hospitals and another 2 cases from the litera-
ture. AKI was present in 10/11, and 7/11 died. The under-
lying lesions included collapsing FSGS (5 patients, all of 
African descent), minimal change disease (4 Caucasian 
patients), and TMA (2 patients). A subsequent case report 
found minimal change disease in association with HLH 
[64].

HLH can complicate kidney transplantation. In 1979, 
Risdall et al. [65] described 19 patients with virus-associ-
ated HLH, and 13 were kidney transplant recipients. All 
cases were triggered by viruses, predominantly CMV. Kar-
ras et  al. [66] studied 17 patients with HLH among 4230 
renal transplants (prevalence of 0.4  %) collected from 8 
Parisian transplant units. HLH developed from 10  days 
to 15 years after transplantation (median 52 days). All 17 
were receiving corticosteroids, and 11 had received ATG 
within 3 months prior to developing HLH. Infections were 
detected in 14, most commonly herpes viruses (3 EBV, 
3 CMV, 1 HHV 6, and 1 HHV8). Two patients had lym-
phoma, and 2 had no obvious trigger. Immunosuppression 
was reduced in all. Eight died, and 4 of the 9 survivors lost 
their allografts. Asci et al. [67] reported on 13 patients out 
of 403 renal transplant recipients (prevalence of 3.2  %) 
from a center in Turkey. HLH occurred from 2  weeks to 
30  months post-transplantation (median 15  months). An 
infectious trigger was identified in 6 (tuberculosis in 4, 
CMV in 2, E. coli in 1). Hepatitis C was present in 8 of 
the 13. All patients had azathioprine discontinued and CNI 
reduced or discontinued. All 6 patients that received IVIg 

survived, as did 2 other patients responding to antimicro-
bial therapy.

In a 2009 Editorial Review, Ponticelli and Alberighi 
identified 76 cases of HLH in kidney transplant recipients 
with an overall 53 % mortality [11]. The majority of cases 
were triggered by infections, most commonly viral, but 
also bacterial and protozoal infections. HLH also occurred 
in patients with malignancy. Subsequently, additional cases 
of HLH in kidney transplant recipients have been reported 
with a variety of triggers, typically infections [68–74], 
including histoplasmosis, dengue, Bartonella, CMV, and 
BK virus. To date, 84 kidney transplant patients have been 
reported to have HLH [65–90]. Infectious triggers were 
identified in 76 % (Table 2).

Diagnosis of HLH

No pathognomonic finding or test confirms HLH. The His-
tiocyte Society proposed criteria for diagnosing pediatric 
FHL (Table 3). According to the most recent update (HLH-
2004) [91], 5 of the following 8 criteria must be satisfied: 
(1) fever; (2) cytopenia in 2 lineages; (3) splenomegaly; (4) 
elevated ferritin; (5) elevated triglycerides and/or reduced 
fibrinogen; (6) hemophagocytosis in bone marrow, spleen, 
or lymph nodes; (7) low or absent NK cell cytotoxic activ-
ity; and (8) elevated soluble CD25. Supporting evidence 
not required for diagnosis includes abnormal liver function 
tests, CNS involvement (based on clinical examination, 

Table 2   Infectious triggers in kidney transplantation

Organism Number of cases References

Viruses CMV 24 [65–67, 76, 84, 85, 
136, 137]

EBV 6 [65, 66, 84, 138]

HHV 8 5 [66, 67, 83, 86]

HHV 6 2 [66, 82]

BKV 2 [72, 87]

VZV 1 [65]

Parvovirus B19 1 [90]

Hepatitis C 1 [66]

HSV 1 1 [65]

Dengue 1 [70]

Bacteria Tuberculosis 6 [66, 67, 79]

Bartonella 3 [66, 71, 74]

Parasites Toxoplasmosis 4 [66, 88, 137]

Babesiosis 2 [78, 139]

Leishmaniasis 1 [75]

Fungi Torulopsis 1 [89]

Pneumocystis 1 [66]

Histoplasmosis 2 [68]
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CSF findings, and/or CT or MRI scans), lymphadenopathy, 
rash, hyponatremia, and elevated LDH. Hence, a diagnosis 
is made by a constellation of clinicopathologic findings, 
familial history, or documentation of genetic mutations. 
The applicability of HLH-2004 criteria to adults with sus-
pected HLH remains to be determined. Importantly, all of 
these features with the possible exception of splenomegaly 
can be found in severe SIRS secondary to trauma or sepsis 
[62]. Furthermore, the underlying predisposing conditions, 
such as rheumatologic disease or malignancy, may them-
selves affect baseline levels of some of these laboratory 
abnormalities. This clouds the issue of appropriate cutoffs 
and questions the use of specific criteria depending on the 
underlying disease.

A web-based, international Delphi study of 24 HLH 
experts identified 7 criteria as “absolutely required” or 
“important” for diagnosing sHLH in adults: cytopenia(s), 
demonstrable hemophagocytosis, fever, organomegaly, 
elevated ferritin, predisposing disease, and high LDH [92]. 
Four other criteria were of uncertain benefit: fibrinogen, 
triglycerides, elevated transaminases, and percentage of 
glycosylated ferritin. Fardet et  al. [93] utilized the results 
of this Delphi study in a retrospective analysis of 312 
patients to derive the HScore. This score included 6 of the 
“absolutely required” Delphi criteria, as well as 3 of 4 of 
uncertain benefit. Scores ranged from 0 to 337 with area 
under receiver operator curve of 0.97 in the original devel-
opmental data set and 0.95 in a separate validation set. The 
optimal cutoff was 169, accurately classifying 90 % of the 
patients. This scoring system is available online at http://
saintantoine.aphp.fr/score/.

The use of HLH-2004 criteria to diagnose HLH (called 
MAS) in the setting of rheumatic disease is even more 
problematic. The cutoffs for thrombocytopenia, neutrope-
nia, and fibrinogen in HLH-2004 may be too stringent for 
an autoinflammatory condition, such as sJIA where levels 
are typically high to start. More relevant may actually be a 
drop in these measurements. Ravelli et al. published guide-
lines for diagnosis of HLH in the setting of sJIA (Table 3) 
[94]. Laboratory criteria included (1) decreased platelet 
count (≤262 ×  109/l), (2) elevated aspartate aminotrans-
ferase (>59 U/l), (3) decreased WBC count (≤4.0 × 109/l), 
and (4) hypofibrinogenemia (≤250  mg/dl). Clinical crite-
ria included (1) CNS dysfunction, (2) hemorrhages, and 
(3) hepatomegaly. Any 2 or more laboratory criteria or 2 
or more laboratory and clinical criteria would be sufficient 
for diagnosis. The higher cutoffs compared to HLH-2004 
for platelets, WBC count, and fibrinogen were required 
because of the elevated baseline levels. These criteria were 
recently validated in a large, retrospective, multinational 
study, with better performance compared to modified HLH-
2004 criteria [95]. In another study of 27 patients with 
sJIA diagnosed with MAS by these guidelines, 33  % did 

not satisfy HLH-2004 criteria [96]. Similar issues apply to 
diagnosing MAS in AOSD and SLE, the 2 most common 
triggering autoimmune diseases in adults. In this situa-
tion, no specific diagnostic criteria have been published for 
adults.

If HLH is a consideration, the majority of criteria in 
either HLH-2004 or HScore are readily obtainable, with the 
exception of NK cell function and soluble CD25 levels. Of 
special note are serum ferritin and bone marrow aspiration 
(BMA). Unfortunately, neither is specific, and BMA lacks 
sensitivity. The pediatric HLH-2004 criteria use a ferritin 
cutoff of 500 ng/ml. Although quite sensitive, it is not spe-
cific, even in childhood. Allen et al. studied 330 consecu-
tive children with maximum ferritin levels above 500  ng/
ml. Only 10 were diagnosed with HLH. The optimal cutoff 
for diagnosing HLH in this retrospective pediatric cohort 
was 10,000 ng/ml with a sensitivity of 90 % and specific-
ity of 96  % [97]. Adult series show even less specificity. 
Moore et al. studied 627 adult patients with maximum fer-
ritin levels above 1000 ng/ml and found only 4 with HLH 
[98]. Beer et  al. [99] studied 405 adult patients with fer-
ritin levels above 5000 ng/ml and found only 3 cases had 
HLH. Schram et al. [100] evaluated 113 adult patients with 
ferritin levels above 50,000 ng/ml. HLH was found in only 
19 (17 %), even at these extraordinarily high levels. Major 
contributing disorders to such hyperferritinemia in these 
series included renal failure, iron overload, hepatocellular 
injury, infection, and malignancy.

A bone marrow aspiration is mandatory to determine 
HPCs are present, as well as to rule out hematologic malig-
nancy. The presence of HPCs on bone marrow aspiration 
is not required for diagnosis, however, as the sensitivity 
is only 60–85 % [101, 102]. Hence, a negative aspiration 
does not rule out HLH and should not delay specific treat-
ment, if otherwise indicated [101]. Furthermore, finding 
HPCs is clearly not specific for HLH, as they can often be 
found following transfusions or surgery [103] and in the 
critically ill [7]. Suster et al. [104] studied 230 consecutive, 
autopsied adults and found moderate-to-severe HPCs in the 
bone marrow of 102 cases (44 %). This result was strongly 
associated with the number of recent RBC transfusions. In 
those with ≥5 units transfused, the adjusted odds ratio was 
nearly 60. Strauss et al. [7] studied 107 consecutive autop-
sied medical ICU patients and found hemophagocytosis in 
the bone marrow of 69 (64.5 %).

In all cases diagnosed as HLH, screening for genetic 
defects is recommended. If present, a decision regarding 
aggressive therapy and possible HSCT is simplified. For-
mal genetic testing is labor intensive and takes weeks to 
complete. Flow cytometric (FC) assays are available with 
results in several days. Normal degranulation of NK cells 
and CTLs results in surface expression of CD107a. Such 
expression is abnormal in FHL3-5 and the oculocutaneous 

http://saintantoine.aphp.fr/score/
http://saintantoine.aphp.fr/score/
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albinism syndromes, but normal in FHL2 and the XLP syn-
dromes. FC staining for intracellular perforin is absent or 
greatly reduced in FHL2, and intracellular SAP and XIAP 
are deficient in XLP1 and 2, respectively. All patients 
should have CD107a and perforin assayed, and all male 
patients SAP and XIAP assayed as well [105]. Using this 
protocol, Bryceson et  al. [106] evaluated 494 patients by 
FC with suspected HLH and found a sensitivity of 96  % 
and specificity of 88 % for differentiating genetic degranu-
lation defects (FHL3-5 and oculocutaneous albinism syn-
dromes) from FHL2, XLP1 and 2, and sHLH. Directed, 
formal genetic testing can then follow.

Identification of triggering agent

After establishing a diagnosis of HLH, it is imperative 
to search for a triggering agent that may require specific 
therapy [2, 105]. Malignancy and infection are the 2 most 
common triggers in adult HLH, with autoimmune disease 
a distant third [22–25]. The most common triggering infec-
tions are viral, especially EBV [45, 107] and other herpes 
viruses. Blood for PCR analysis should be obtained for 
EBV, CMV, VZV, herpes simplex, HHV6, HHV8, parvo-
virus B19, adenovirus, hepatitis, and influenza. Many other 
infections have been identified as triggering agents, espe-
cially intracellular pathogens, but also pyogenic bacteria 
[108]. If suspected, PCR of a bone marrow aspirate for 
leishmania should be performed. A malignancy evaluation 
is indicated in sHLH, especially in the absence of an identi-
fied infection or auto-inflammatory condition, and should 
include CT or MRI of chest and abdomen [109]. A bone 
marrow evaluation is mandatory, and a PET scan may also 
be considered.

Treatment of HLH

Treatment of HLH depends on the severity of hyperin-
flammation, underlying disease, the specific trigger, and 
whether or not an underlying genetic predisposition exists. 
No randomized, controlled treatment trials have been pub-
lished, and only observational data exist. FHL in the pedi-
atric age range is nearly uniformly fatal, with 1-year sur-
vival in early reports of less than 5 % [110]. The HLH-94 
protocol of 8 weeks of dexamethasone and etoposide with 
intrathecal methotrexate in selected cases dramatically 
improved outcomes. In patients with persistent, familial, 
or relapsing disease, continued dexamethasone pulses, 
daily cyclosporine, and intermittent etoposide were used 
as a bridge to HSCT [55]. In a multinational series of 249 
pediatric patients using this protocol, the estimated 5-year 
survival was 54 %, and this improved to 66 % in the 124 

able to undergo HSCT [55]. Of note, 49 children were alive 
and well >1  year after completion of therapy that had a 
median duration of 4 months without HSCT. Presumably, 
these patients had sHLH. The HLH-2004 protocol added 
cyclosporine during the 8-week induction phase [91]. As 
an alternative regimen, a single-center series of 38 pediat-
ric FHL patients received antithymocyte globulin (ATG) 
and methylprednisolone, along with intrathecal methotrex-
ate and corticosteroids. Maintenance therapy then included 
cyclosporine and intermittent intravenous immunoglobulins 
until 26 eventually underwent HSCT [111]. The complete 
response rate to ATG was 73 % with another 24 % attain-
ing a partial response. HSCT is indicated in patients with 
documented genetic mutations, as well as in those with 
familial, relapsing, or refractory disease. Reduced intensity 
conditioning appears to be better tolerated than myoabla-
tive conditioning.

The optimal treatment of sHLH in adults remains unde-
fined. Although some cases resolve with just supportive 
therapy and treatment of the trigger, the most immediate 
issue is usually to quell the intense hyperinflammatory 
state. At a minimum for cases requiring urgent treatment, 
high-dose corticosteroids are indicated. In severe, famil-
ial, or relapsing disease, HLH-2004 should be considered. 
Etoposide appears to be especially suited for HLH, as it 
selectively deletes activated CD8+ CTLs in LCMV-infected 
Prf−/− mice and alleviates all manifestations of HLH [112]. 
Cyclophosphamide and methotrexate had similar effects, 
although other chemotherapeutic agents did not. In a ret-
rospective analysis of 162 adults with sHLH, first-line use 
of etoposide was associated with significantly improved 
30-day survival by multivariable analysis [113].

Treatment of an identified infectious trigger is manda-
tory, such as ganciclovir for CMV or amphotericin for 
leishmania. In the latter circumstance, antimicrobial ther-
apy alone may suffice. In cases triggered by EBV, obser-
vational data support the use of etoposide in both pediatric 
[114] and young adult [115] patients. Treatment was most 
effective when instituted within 4 weeks of onset of disease 
[114, 115]. Theoretical support for use of etoposide derives 
from studies demonstrating EBV infection of CD8+ CTLs 
in EBV-HLH [116, 117]. Etoposide was also shown to have 
direct antiviral effects by inhibiting EBNA synthesis and 
EBV-induced transformation of mononuclear cells in vitro 
[118]. B cells may also be infected in EBV-HLH [119], 
and rituximab combined with traditional HLH therapy sig-
nificantly reduced ferritin levels and EBV viral titers [120]. 
HSCT has also been effective in EBV-associated HLH 
[121].

Hyperferritinemic MODS in the ICU patient is not 
uncommon and merits consideration of sHLH. Such 
patients have severe SIRS caused by suspected/con-
firmed sepsis or a noninfectious illness, such as active 
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rheumatologic disease, catastrophic antiphospholipid syn-
drome, or trauma [26, 62]. Malignancy is also common 
[122, 123]. If sHLH is deemed present, the use of chemo-
immunotherapy in a potentially septic patient, however, 
poses a dilemma. A family history of HLH or possibly 
consanguineous parents would necessitate the HLH-2004 
protocol [124]. Rapid flow cytometric screening for genetic 
defects as outlined above should be performed, and if posi-
tive would also support HLH-2004 protocol, as would sig-
nificant CNS involvement. Active malignancy would neces-
sitate either HLH-2004 protocol or specific therapy.

Two recent series describe mortality and treatment of 
adult HLH cases admitted to the ICU, one based on HLH-
2004 criteria [122] and one based on the HScore [123]. 
Hospital mortality ranged from 52 to 68  %, respectively. 
Steroids were used in 55 and 66  %, etoposide in 80 and 
40  %, and intravenous immunoglobulin (IVIG) in 5 and 
27 %, respectively. Some authors favor methylprednisolone 
over dexamethasone in ICU cases [125]. Plasma exchange 
(PE) and anakinra have also been employed. In a multi-
center, retrospective cohort study of 23 critically ill chil-
dren with hyperferritinemic syndrome, suspected sHLH 
was treated with PE and either IVIG or methylprednisolone 
(n = 17) and compared to PE and IVIG with dexametha-
sone, cyclosporine, or etoposide (n  =  6). Despite docu-
mented infections in 15 patients, only 3 died, all receiving 
the more aggressive HLH-like agents [125]. Other data sup-
port the use of PE and IVIG [26, 62]. Anakinra appeared 
effective as initial therapy in a retrospective case series of 8 
pediatric sHLH cases admitted to the ICU. However, 6 also 
received high-dose steroids, and 5 received IVIG [126]. 
Therapy was well tolerated, and anakinra is safe in patients 
with severe sepsis [127].

Recent series of adult HLH implicate malignancy as the 
most common trigger, usually lymphomas. HLH can com-
plicate the active phase of malignancy or occur following 
chemotherapy-induced remission, where it is typically trig-
gered by an infection [109, 128]. With active malignancy, 
it remains unclear whether first-line therapy should be 
HLH-directed (e.g., HLH-2004 protocol) or targeted to the 
specific malignancy. If HLH directed, specific malignancy 
therapy should immediately follow resolution of the hyper-
inflammation. Infection can also coexist with active malig-
nancy, most notably EBV [129], and in such cases anti-B 
cell therapy is probably additionally indicated [109]. Active 
malignancy, usually lymphoma, is also found in over 
50 % of HIV-associated HLH cases [130]. Chemotherapy-
induced HLH results from infection and necessitates either 
reduction in intensity or interruption of further chemother-
apy [109].

Mortality rates with HLH complicating auto-inflamma-
tory/autoimmune diseases are generally much lower than 
with FHL or other causes of sHLH. Hence, initial therapy 

is less intense than HLH-2004 and usually does not include 
etoposide. For example, mortality in a large series of 362 
HLH cases complicating sJIA was 8  % [131]. Nearly all 
(98  %) received corticosteroids, 61  % received cyclo-
sporine, and 36  % received IVIG. Biologic agents were 
given to 15 %, most commonly anakinra (10 %), but also 
etanercept, rituximab, tocilizumab, infliximab, and canaki-
numab in a handful. Etoposide was only used in 12  %. 
Interestingly, HLH can develop in patients with sJIA under-
going treatment with biologic agents, including tocilizumab 
[132, 133], canakinumab [134], and anakinra [135]. In the 
latter case, dose escalation was effective in treatment [135]. 
In juvenile lupus-associated HLH, mortality is around 
10  % [39], with steroids (100  %), cyclosporine (38  %), 
and IVIG (32 %) being the mainstays of therapy in a mul-
ticenter series and literature review of 38 patients [39]. The 
largest series of adult autoimmune/autoinflammatory HLH 
in the absence of coexisting active infection or malignancy 
reported 116 patients, including 61 with SLE and 31 with 
AOSD. Overall mortality was 13 %. Corticosteroids were 
used in 98 %, with 53 % of 87 patients responding to ster-
oid monotherapy [38]; however, IVIG was used in 24  %, 
cyclosporine in 21 %, IV cyclophosphamide in 15 %, and 
etoposide in only 3  %. In the presence of an infectious 
trigger, and in the absence of an underlying disease flare, 
reduction in immunosuppression may be preferred in SLE-
associated HLH [40].

Little data exist to guide therapy of HLH in kidney trans-
plant recipients. As shown above, the vast majority of cases 
are triggered by infections, which should be specifically 
treated whenever possible. We believe calcineurin inhibitor 
therapy should be continued given the role of cyclosporine 
in HLH-2004. High-dose steroids are indicated, and anti-
metabolite therapy should be discontinued to reduce pos-
sible over-immunosuppression. If rejection develops, IVIG 
is a consideration, with PE if antibody mediated. If EBV 
is detected, dexamethasone, etoposide, and rituximab seem 
justifiable.

Conclusion

Nephrologists need to be aware of the clinical manifesta-
tions, diagnosis, and treatment of HLH in its various set-
tings. In the acutely ill ICU patient with AKI in the setting 
of MODS, HLH may have supervened, a situation neces-
sitating specific treatment. Similarly, patients with autoim-
mune and autoinflammatory diseases may develop HLH 
and present with glomerulopathy associated with the either 
the underlying disease or HLH. Finally, in immunosup-
pressed kidney transplant patients, when clinical conditions 
suggest it, HLH must be recognized as mortality is over 
50 %.
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