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Introduction

Diabetes mellitus (DM) is currently considered a mod-
ern global epidemic with a continuously increasing bur-
den. Registry data show that the incidence of type 2 dia-
betes mellitus (T2DM) has more than doubled in the last 
30 years, and time projections of diabetes burden over the 
next decades depict further rising trends [1, 2].

Diabetic nephropathy (DN) comprises one of the major 
microvascular complications of DM [3] and is character-
ized by albuminuria (>300 mg/24 h), a progressive decline 
of the glomerular filtration rate (GFR) by 2–20 mL/min per 
year, arterial hypertension and increased cardiovascular 
morbidity and mortality [4–6]. The overall prevalence of 
microalbuminuria and macroalbuminuria is nearly 30–35 % 
in both types of DM. Diabetic nephropathy in patients with 
type 1 DM (T1DM) rarely develops earlier than 10 years 
after diagnosis, whereas approximately 3  % of patients 
with newly diagnosed type 2 DM (T2DM) already have 
overt nephropathy [7–9]. Diabetic nephropathy is the most 
common cause of CKD [10–12], and diabetic patients in 
some countries account for 40–50 % of patients receiving 
dialysis [13].

Anemia is one of the most significant consequences of 
CKD, and it is mainly attributed to insufficient erythro-
poietin (EPO) production. The control of red blood cell 
(RBC) mass is based on a classic negative feedback loop 
mediated by changes in the production of the hormone 
EPO, which is mainly produced in the kidney and regu-
lates the production of erythrocytes by interaction with 
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specific EPO receptors (EPOR) on bone marrow eryth-
roid progenitors. Anemia can manifest itself early in the 
course of CKD, and its prevalence and severity go in par-
allel with the progression of kidney disease. The National 
Kidney Foundation’s clinical practice guidelines define 
anemia as a hemoglobin (Hb) concentration lower than 
13.5 g/dL for adult men and less than 12.0 g/dL for adult 
women [14]. However, anemia develops earlier in the 
course of CKD among patients with DM [15–17] and 
the severity of anemia tends to be more marked in these 
patients compared to nondiabetic subjects, regardless 
of the stage of CKD, while this difference is even most 
prominent among CKD stage 3 patients [18–21]. Sev-
eral studies have demonstrated the importance of early 
detection of anemia in patients with T1DM and T2DM 
[22–24].

In this review, we focus on the “less known” complex 
interacting mechanisms which are involved in the patho-
physiology of anemia associated with DN.

The role of the kidneys in hematopoiesis

The kidneys play a key role in hematopoiesis since the 
physiologic regulator of RBC production, the glycopro-
tein hormone EPO, is produced and released within the 
kidney, in response to impaired oxygen delivery from the 
circulating erythrocytes. EPO is a member of the family of 
class 1 cytokines and is produced by peritubular interstitial 
cells, which were subsequently identified as peritubular 
fibroblasts located within the renal cortex [25, 26]. Subse-
quently, EPO is excreted in the peritubular capillaries and 
enters the systemic circulation through the renal vein [26]. 
Although a small quantity of EPO is produced in the liver, 
the spleen, the brain, the lungs and the testes, its production 
by these organs cannot substitute for the renal production 
and cannot meet the increased needs in patients with CKD 
[27]. The normal plasma EPO concentration ranges from 6 
to 32 IU/L [27].

Erythropoietin exerts its action by binding to the EPOR 
which is present on erythroid progenitors in the bone mar-
row, from the colony-forming units erythroid stage (CFU-
E) to late basophilic erythroblasts. Without EPO present, 
these cells are rapidly lost via programmed cell death [28, 
29]. Thus, EPO is an essential factor determining survival 
for erythroid progenitors, beginning at the CFU-E stage 
all the way to basophilic erythroblasts. The production and 
release of EPO are regulated by a feedback mechanism, 
which is related to hypoxia, as the fundamental stimulus 
for EPO production is the availability of O2 for tissue meta-
bolic needs [30]. Renal cells responsible for the production 
of EPO possess specific hypoxia-sensing regulatory mech-
anisms, which are mostly based on transcription factors 

induced by hypoxia [31, 32] called hypoxia-inducible fac-
tors (HIFs).

Pathogenesis of anemia in diabetic nephropathy

The ability of the kidneys to produce EPO is not impaired 
in renal disease, and the absolute value of EPO can be nor-
mal or even high; however, EPO levels will be inappro-
priately low relative to the degree of anemia, resulting in 
a functional EPO deficiency. An interplay of pathophysi-
ological mechanisms associated with EPO production and 
action together with factors unrelated to EPO determines 
the pathogenesis of anemia in diabetic nephropathy (Fig. 1) 
[33–35].

Erythropoietin‑dependent mechanisms

Glomerular hyperfiltration

The preclinical normoalbuminuric phase of DN is char-
acterized by kidney hypertrophy together with increased 
renal blood flow and a simultaneous increase in the GFR 
which augments by 20–40 % above normal levels [36]. The 
hemodynamic abnormalities in DN have been attributed to 
hyperglycemia as well as other contributory factors includ-
ing insulin-like growth factor I, atrial natriuretic peptide, sex 
hormones, intracellular sorbitol, early glycation products, 
which cause dilation of the afferent arteriole, constriction of 
the efferent arteriole and suppression of the tubuloglomeru-
lar feedback, thus resulting in increased glomerular pressure 
and hyperfiltration [3, 37, 38]. Hyperfiltration is observed 
in 25–75 % of patients with T1DM and 5–40 % of patients 
with T2DM [36, 39]. Enhanced renal blood flow results in 
increased oxygen supply in the renal tissue and subsequently 
removal of the hypoxia stimulus for the production of EPO. 
Thus, augmented oxygenation of the renal parenchyma, 
especially at the specific areas of EPO synthesis, results in 
premature reduction in the renal EPO production [30].

Proteinuria

Severe proteinuria causes loss of the endogenously pro-
duced EPO in patients with impaired function of the glo-
merular barrier, as occurs in DN, since its molecular 
weight is smaller than albumin. Indeed, patients with DN 
who present with severe proteinuria appear to have a sig-
nificant reduction in EPO concentration in the plasma due 
to increased EPO urinary losses [30, 39–42]. It should be 
noted that anemia in the setting of proteinuria is not related 
to the loss of renal function [24]. Finally, both the fractional 
and the total urinary excretion of EPO are not elevated in 
patients without significant proteinuria (nonnephrotic type) 
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[43], while hypoalbuminemia has been shown to be signifi-
cantly associated with severe anemia in patients with DN 
[44].

Chronic inflammation

In DM, hyperglycemia, arterial hypertension and dys-
lipidemia stimulate the proinflammatory activity of the 
endothelium via various mechanisms which involve 
increased oxidative stress, dysregulation of the nitric oxide 
synthase (NOS), production of advanced glycosylated end 
products (AGEs) and the activation of converting factor 
NF-kappaB [3, 45]. The activated endothelial cells express 
proinflammatory cytokines such as interleukin-1 (IL-1), 
tumor necrosis factor α (TNFα) and adhesion molecules 
such as ICAM-1 and VCAM-1 [30, 46, 47]. It has been 
suggested that the inflammatory mediators suppress the 
hypoxia-induced production of EPO [48]; however, there 
is no solid evidence available to support this hypothesis 
[49]. A cross-sectional survey in T2DM patients did not 
reveal any correlation between C-reactive protein (CRP) 
and EPO levels [50], whereas another study managed to 
show an inverse significant correlation between CRP and 
hemoglobin concentration (Hb) in T2DM patients [51]. 
However, chronic systemic inflammation together with 
microvascular disease causes a reduction in the activity 
of EPO on its target cells [52, 53]. The resistance to EPO 
action involves inhibition of the maturation of erythrocyte 

precursors, reduction in EPOR expression, inhibition of 
EPO binding to its receptor by competitors and inhibition 
of activation of signaling pathways [54]. In addition, EPO 
can be nonenzymatic glycosylated, similar to apolipopro-
teins thus causing decreased levels of active circulating 
EPO [55]. Finally, the degree of hyperglycemia severity 
appears to modify the expression of EPOR through recep-
tor glycosylation, whereas a significant inverse correlation 
between serum EPO and the fraction of glycosylated Hb 
has been found in diabetic patients [13].

Microvascular damage

The early microvascular damage, observed in patients with 
DM, which is independent of the progressive reduction in 
the GFR, also contributes to the anemia of DM [30]. Thick-
ening of the glomerular basement membrane together with 
simultaneous thickening of the tubular basement membrane 
is reported to be among the first pathological alterations of 
nephron architecture in patients with DM even in absence 
of established albuminuria/proteinuria [56]. The changes 
of the tubular basement membrane disturb the equilibrium 
between the renal tubules, the peritubular fibroblasts and 
the endothelium, thus further disrupting the renal excre-
tion of EPO [30]. Inomata et  al. [35] reported that inter-
stitial fibrosis also contributes to the anemia of DN. In a 
recent study, Mise et  al. [57] investigated the impact of 
tubulointerstitial lesions on anemia in diabetic patients with 

Fig. 1   Suggested pathophysi-
ological mechanisms and causes 
of anemia in CKD and DN. 
A number of mechanisms 
(white-colored boxes) are com-
mon among all CKD patients 
independently of the primary 
renal disease, and they usually 
appear with the progression of 
CKD, while other “less known” 
mechanisms (gray-colored 
boxes) are mainly EPO depend-
ent and initiated at the early, 
preclinical stages of DN
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biopsy-proven DN and demonstrated that higher intersti-
tial fibrosis and tubular atrophy scores were more strongly 
associated with reduced Hb values, whereas glomerular 
and vascular lesion scores did not seem to correlate signifi-
cantly with the presence of anemia. However, it remains to 
be further clarified whether the process of tubular atrophy 
and interstitial fibrosis is more severe in DN than in other 
kidney diseases with underlying severe interstitial lesions.

Autonomic neuropathy

Autonomic neuropathy is one of the culprits considered 
to play a significant role in the pathogenesis of anemia in 
DN, although the mechanism has not been completely elu-
cidated. Several studies have demonstrated a positive cor-
relation between polyneuropathy and anemia in patients 
with DM [58]. These findings are further supported by the 
fact that patients suffering from multiple system atrophy or 
pure autonomic neuropathy have EPO deficiency as well 
[33, 59–61]. Additionally, experimental studies have failed 
to produce EPO in response to hypoxia after visceral den-
ervation, as occurs in patients with DM [62]. Interestingly, 
diabetic patients who display signs of autonomic neuropa-
thy such as orthostatic hypotension have lower EPO levels 
compared to diabetic patients without autonomic neuropa-
thy despite equal Hb concentration levels [63]. On the other 
hand, an increase in the production of EPO is observed 
after renal transplantation in the setting of graft denerva-
tion, which may cause erythrocytosis [64]. Moreover, in a 
recent study investigating the response of EPO to anemia 
in T2DM patients without advanced renal failure, anemic 
patients had a longer duration of T2DM and a higher car-
diovascular autonomic neuropathy score [65]. Although 
serum EPO level was weakly correlated with hemoglobin 
values, multiple linear regression analysis revealed that 
autonomic neuropathy score was independently related to 
Hb or EPO level, thus suggesting that autonomic neuropa-
thy is associated with a blunted EPO response to anemia in 
this group of patients [65].

The renin–angiotensin–aldosterone system

The renin–angiotensin–aldosterone system (RAAS), apart 
from its key role in blood pressure control and cardiovas-
cular homeostasis, is considered to contribute to eryth-
ropoiesis as well. Specifically, angiotensin II stimulates 
erythropoiesis via an increase in the production of EPO and 
by acting like a growth factor in the bone marrow, espe-
cially on erythrocyte precursors [66, 67]. Moreover, it has 
been suggested that a functional unit of the juxtaglomeru-
lar apparatus in which angiotensin II acts is modulated by 
hematocrit values, thus named the critmeter [68]. Angioten-
sin II causes increased oxygen demands in the area adjacent 

to the proximal tubule by stimulating several processes in 
the area such as sodium reabsorption or ammoniagenesis 
[68].

Hyporeninemic hypoaldosteronism is very common 
among patients with T1DM, and it is characterized by low 
EPO and Hb levels in these patients [69, 70]. Reduced 
plasma renin activity (PRA) is common among patients 
with DM and arterial hypertension, but not in diabetic 
patients who display normal blood pressure levels and 
have no other complications of DM [71]. In this group 
of patients, reduced PRA goes in parallel with the occur-
rence of the other complications of DM such as arterial 
hypertension, retinopathy and nephropathy [72]. The most 
likely mechanisms responsible for reduced PRA and con-
sequently suppression of the RAAS system are hyalinosis 
of the efferent arteriole, diminished levels of circulating 
catecholamines, nonactive prorenin and expansion of the 
intravascular volume [69, 72]. Suppression of the RAAS 
system leads to inhibition of the beneficial role of angio-
tensin II in erythropoiesis and anemia occurring in patients 
with mild CKD [70].

The two most widely used groups of antihypertensive 
drugs in patients with DN, which act on the RAAS system, 
angiotensin-converting enzyme inhibitors (ACEIs) and 
angiotensin receptor blockers (ARBs), might also worsen 
anemia in these patients [73]. RAAS stimulation causes 
afferent arteriolar dilation and efferent arteriolar constric-
tion in order to preserve steady levels of the GFR, thus 
causing reduced renal blood flow and oxygen supply in the 
peritubular capillaries as well as the renal medulla and sub-
sequently increased EPO production [30]. Moreover, there 
is a direct effect of angiotensin II in the bone marrow [66]. 
Consequently, inhibition of the RAAS system reverses all 
the above mechanisms and results in anemia. Additionally, 
these medications increase the concentration of the tetra-
peptide N-acetyl-seryl-aspartyllysyl-proline, which is a 
natural inhibitor of erythropoiesis [73]. However, Hayashi 
et al. [74] did not demonstrate any correlation between Hb 
levels and the use of ACEI, whereas according to a more 
recent report, use of ARBs has better correlation with the 
severity of anemia in diabetic patients with CKD compared 
to ACEI [75].

Role of renal tubular epithelial cells

The main functions of proximal renal tubule cells include 
reabsorption of filtered substances such as glucose, sodium 
or proteins, excretion of metabolic products as well as syn-
thesis and release of growth factors in the peritubular capil-
laries, such as transforming growth factor-β (TGF-β) and 
connective tissue growth factor (CTGF) [76, 77]. During 
the early stages of DN, renal tubular epithelial cell func-
tion is suppressed because of both morphological changes 
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like cell hypertrophy and functional changes involv-
ing increased metabolic demands and oxygen consump-
tion [76, 78]. As a result, in the setting of glucosuria and 
increased supply of glucose in the proximal tubule, there 
is enhanced reabsorption of sodium through the sodium–
glucose cotransporter (SGLT1) [79]. The increased sodium 
reabsorption in the proximal tubule leads to diminished 
sodium delivery in the macula densa, stimulation of the 
RAAS system and augmentation of aldosterone-mediated 
sodium reabsorption, thus causing expansion of the intra-
vascular volume and increased ultrafiltration [80]. The end 
result of this energy-consuming process is reduced oxygen 
supply to the renal parenchyma and tissue hypoxia which 
stimulate EPO production. Indeed, EPO production is posi-
tively correlated with sodium reabsorption in patients with 
DN [68], whereas inhibition of sodium reabsorption with 
acetazolamide results in decreased EPO concentrations in 
normal subjects [81]. However, considering the fact that 
anemia occurs early during the course of disease in patients 
with DN, reduced Hb levels and increased sodium reab-
sorption are probably opposite stimuli for the production of 
EPO in diabetic nephrons [30].

As already mentioned, in CKD, the EPO plasma con-
centration is within the normal range, despite low Hb levels 
[82]. In addition, reduced fractional reabsorption of sodium 
diminishes oxygen consumption in the epithelial renal 
tubular cells [83], thus resulting in increased tissue oxygen-
ation of the renal parenchyma [84] and suppression of EPO 
production and excretion [85].

Finally, recent evidence regarding EPO production by 
the nephron suggests that EPO is produced by cortical 
nephrons mainly in the intercalated cells and not in the 
peritubular cells in normal conditions and by mainly peritu-
bular cells in hypoxia, thus highlighting additional roles of 
the renal tubular cells in the pathogenesis of anemia [86]. 
Thus, ongoing research is expected to shed light on the role 
of renal tubular epithelium on the anemia of DN.

Erythropoietin‑independent mechanisms

Renal blood cells disorders

Patients with DM demonstrate significant hyperglycemia-
induced metabolic and functional disorders of the RBC 
such as cell membrane lipid abnormalities [87], suppres-
sion of RBC filterability [88] and deformability [89] and 
alteration of RBC adhesion properties [90].

Impaired activity of the Na+/K+-ATPase pump which 
leads to RBC swelling [88] together with protein oxidation 
and accumulation of AGEs on the RBC cell membrane are 
the main mechanisms responsible for erythrocyte dysfunc-
tion [91, 92], thus leading to shortened RBC lifespan [93, 

94]. In addition, hyperglycemia promotes the expression of 
aminophospholipids such as phosphatidylserine on the sur-
face of RBC, which results in their recognition and trap-
ping by the reticuloendothelial system [92].

Medications

There is strong evidence that some of the medications fre-
quently prescribed to diabetic patients may worsen ane-
mia, which is referred to as iatrogenic anemia. Apart from 
the antihypertensives ACEIs and ARBs mentioned earlier, 
other culprits are thiazolidinediones and fibrates.

The hypoglycemic agents, thiazolidinediones, decrease 
glucose plasma levels, improve the action of insulin in the 
peripheral tissues and augment pancreatic insulin secre-
tion [95]. Fluid retention and weight gain are among the 
most common side effects of these agents, thus resulting in 
increased plasma volume and peripheral edema [95]. The 
main mechanisms responsible for the edema formation are 
increased sodium reabsorption by the distal nephron, vas-
cular dilation due to improved insulin sensitivity, increased 
activity of the autonomic nervous system and increased 
endothelial permeability [96]. Increased plasma volume 
causes hemodilution, thus reducing plasma Hb values [30]. 
In addition, large doses of thiazolidinediones may directly 
suppress the bone marrow [97]. Results from a recent study 
showed that the occurrence of anemia after use of thiazoli-
dinediones is not only dose dependent, but it also worsens 
with simultaneous administration of ACEI or ARBs [98].

Accumulating experimental evidence investigates the 
possible therapeutic potential of fibrates in DN [99]. One 
the other hand, earlier studies have indicated that fibrates 
are related to anemia in patients with DN [100]. Their 
mode of action involves certain nuclear receptors (perixo-
some proliferator-activated receptors); however, their exact 
mechanism of action has not been completely elucidated 
[30, 101]. Fibrates reduce the oxygen affinity of Hb and 
cause oxygen release in the tissues, thus removing the stim-
ulating role of tissue hypoxia for EPO synthesis [102–104].

Conclusions

Diabetic nephropathy is the most common cause of CKD. 
Anemia in patients with DN occurs earlier and is more 
severe than anemia in other CKD patients. On the other 
hand, anemia in CKD is an important predictor of quality 
of life and contributes to increased cardiovascular morbid-
ity and mortality in this group of patients. Further research 
is required to elucidate the pathogenesis of anemia in DN 
as existing evidence indicates that several, diabetes-related 
complex and interacting mechanisms are implicated.
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