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ROTATIONAL INTERVAL EXCHANGE TRANSFORMATIONS

Alexey Teplinsky UDC 517.5

We prove the equivalence of two possible definitions of rotational interval exchange transformations: by
the first definition, this is the first return map for the rotation of a circle onto a union of finitely many
circle arcs, whereas by the second definition, this is an interval exchange with a scheme (in a sense of
interval rearrangement ensemble) whose dual is also an interval exchange scheme.

1. Introduction

In [1], we have proposed a new concept of interval rearrangement ensembles (IREs) that generalizes the con-
struction of interval exchange transformations classical for the theory of dynamical systems [2–7]. The cornerstone
of our concept is the duality involution in the space of schemes (i.e., discrete components) of IREs that produces
a dual IRE scheme for every given IRE scheme, and this duality reverses time for the Rauzy–Veech-type induction.
Interval exchange schemes form a partial case of IRE schemes and, as it was shown, their dual schemes may be or
may be not interval exchange schemes themselves. In a certain sense, the space of all IRE schemes is an extension
of the space of all (multisegment) interval exchange schemes with respect to the duality operation. On the other
hand, in the space of all interval exchange schemes, there is a subspace formed by the schemes whose duals are
also interval exchange schemes. Interval exchange transformations with schemes from this subspace are called
rotational because these exchanges are related to circle rotations, namely, they are the first return maps for circle
rotations onto a union of finitely many its arcs. In fact, we speak about two approaches to the definition of the same
object (in a certain sense, they are equivalent): the first approach is based on the duality of IRE schemes, while
the second approach is based on the use of first return maps on the circle. The aim of the present work is to give
the exact description of the relationship between these approaches. Our results are formulated in the form of three
statements in Theorem 1 and proved in the corresponding sections of our paper.

We believe that the investigation of rotational interval exchanges within the framework of the IRE concept
opens a way for getting new results in the solution of still open problems of the rigidity theory for circle diffeo-
morphisms with multiple breaks similar to the results obtained earlier for circle diffeomorphisms with single break
(see [8, 9]). This is explained by the fact that the most promising tool in the investigation of circle rotations with
special points is the renormalization group approach, which replaces the initial map by a sequence of first return
maps onto the unions of small neighborhoods of special points renormalized from exponentially small to macro-
scopic lengths. In a sequence of the first return maps, the next map is obtained from the previous one by applying
the Rauzy–Veech-type induction and, therefore, the duality allowing to reverse time in this process serves as an
important tool in our subsequent studies.

If special points of an irrational circle diffeomorphism are nondegenerate (i.e., the left derivative is not equal
to the right derivative but both are positive), then the renormalized first return maps approach certain finite-
dimensional spaces as the lengths of the analyzed neighborhoods decrease. As was first shown in [10], these
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spaces consist of linear-fractional maps. In the case where the product of all break sizes is equal to 1, the limit
spaces consist of affine maps as demonstrated, in particular, in [11, 12].

The next logical step is to extend the duality from the space of IRE schemes to the corresponding spaces of
linear-fractional maps. We currently work on this problem and plan to publish the corresponding results elsewhere.

The structure of this paper is as follows: In Section 2, we recall basic notions of our theory of interval rear-
rangement ensembles. In Section 3, we formulate our main result in the form of a theorem with three statements,
and then prove Statements 1–3 of the indicated theorem in Sections 4–6, respectively.

2. Basic Notions for IREs and Interval Exchanges

In the present section, we recall basic notions in theory of interval rearrangement ensembles presented in [1].
Let A be an alphabet with d ≥ 1 symbols; these are labels for intervals in our rearrangement ensemble.

Consider a doubled alphabet Ā = A ⇥ {b, e} (here, the letters “b” and “e” come from the words “beginning”
and “ending,” respectively) and any permutation σ of this doubled alphabet, i.e., a bijective map from Ā onto Ā.

We call this permutation a scheme of an interval rearrangement ensemble (i.e., an “IRE scheme”), while an interval
rearrangement ensemble (i.e., an “IRE”) itself is a pair (σ,x) in which the scheme σ is equipped with a vector of
endpoints x 2 RĀ whose coordinates satisfy the equalities

x↵b + x↵e − xσ(↵b) + xσ(↵e) = 0 for all ↵ 2 A. (1)

A vector x satisfying (1) is called allowed by the scheme σ. For a given IRE (σ,x), the vector of lengths v 2 RA

is defined coordinate-wise as follows:

v↵ = xσ(↵b) − x↵b = x↵e − xσ(↵e), ↵ 2 A. (2)

Two IREs are called shift equivalent if both their schemes and vectors of lengths are identical. A vector
v 2 RA is called a vector of lengths allowed by the scheme σ if there exists a vector of endpoints allowed by
this scheme and satisfying (2). A pair (σ,v) in which the vector of lengths v is allowed by the scheme σ is
called a floating IRE, unlike the “fixed” IRE (σ,x). A floating IRE can be regarded as an equivalence class of
shift-equivalent fixed IREs.

In the present paper, we mainly work with floating IREs and regularly apply the following simple criterion of
admissibility of a vector of lengths for the analyzed scheme. The key fact in this case is that a scheme σ, as an
arbitrary permutation, can be decomposed into N ≥ 1 disjoint cycles of the form

c = c(⇠̄) = (⇠̄,σ(⇠̄), . . . ,σk(⇠̄)), ⇠̄ 2 Ā,

where k ≥ 0, σk+1(⇠̄) = ⇠̄, σi(⇠̄) 6= ⇠̄ for 0 < i  k, and the cycles c(⇠̄) and c(σi(⇠̄)) are regarded as identical.

Proposition 1. A vector of lengths v is allowed by a scheme σ if and only if, for any its cycle c = c(⇠̄),

⇠̄ 2 Ā, the following equality is true :
X

↵ : ↵b2c
v↵ =

X

↵ : ↵e2c
v↵. (3)

Proof. Assume that the vector of lengths v is allowed by the scheme σ. Then there exists a vector of end-
points x such that equalities (2) hold. According to these equalities, xσ(⌘̄) − x⌘̄ = v↵ for ⌘̄ = ↵b,
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and xσ(⌘̄) − x⌘̄ = −v↵ for ⌘̄ = ↵e. Equalities (3) follow from the equivalences

X

⌘̄2c(⇠̄)

(xσ(⌘̄) − x⌘̄) = (xσ(⇠̄) − x⇠̄) + (xσ2(⇠̄) − xσ(⇠̄)) + . . .+ (x⇠̄ − xσk(⇠̄)) = 0

along each cycle c(⇠̄).

We now assume that the vector v satisfies all equalities (3). For each cycle c(⇠̄) in the scheme σ, we take
an arbitrary number as a coordinate of an endpoint x⇠̄ and determine the remaining endpoints by using the follow-
ing algorithm: If the value of x⌘̄ is already determined but the value of xσ(⌘̄) is not yet known, then we set

xσ(⌘̄) = x⌘̄ + v↵ for ⌘̄ = ↵b or xσ(⌘̄) = x⌘̄ − v↵ for ⌘̄ = ↵e.

In view of equalities (3), the same relations hold for ⌘̄ = σk(⇠̄). Therefore, the vector of endpoints x is allowed
and v satisfies (2).

Proposition is proved.

The cornerstone of our theory of IREs is the notion of duality, which reverses time in the application of the
Rauzy–Veech-type induction to the IRE schemes (in Sec. 5.1 in what follows, we recall the definitions of elemen-
tary steps of this induction). Two IRE schemes σ and σ⇤ are called dual to each other if

σ⇤(↵b) = σ(↵e), σ⇤(↵e) = σ(↵b) for all ↵ 2 A. (4)

By using this duality, we define rotational interval exchange schemes in the next section.
An IRE scheme is called irreducible, if the equality σ(Ā0) = Ā0, where Ā0 = A0 ⇥ {b, e} and A0 ⇢ A,

implies that A0 2 {?,A}. It is easy to see from the definition of duality (4) that σ(Ā0) = σ⇤(Ā0) for any subset
A0 ⇢ A and, hence, the irreducibility of σ implies the irreducibility of σ⇤, and vice versa. If a scheme is not
irreducible, then an IRE with this scheme is efficiently decomposed into two or more totally independent IREs and,
for this reason, in analyzing their dynamics, it is reasonable to consider only IREs with irreducible schemes.

It follows from Proposition 2 in [1] that, in the case of an irreducible scheme σ, exactly N − 1 out of N

equalities (3) are linearly independent (the sum of all equalities (3) is a trivial equivalence; hence, any N − 1 of
these inequalities are linearly independent).

An IRE is called positive if its vector of lengths is positive. An IRE scheme is called positive, if it allows
a positive vector of lengths.

A positive IRE should be regarded as an ensemble of 2d intervals coupled into d pairs with labels ↵ 2 A .
In each of these pairs, the beginning interval I↵b = [x↵b, xσ(↵b)) and the ending interval I↵e = [xσ(↵e), x↵e) with
the same label ↵ have the same length v↵. According to cycles in the scheme, all beginning and ending intervals
with the corresponding subscripts are connected at their endpoints into N closed chains, i.e., one-dimensional
polygonal lines. It is possible to consider a closed polygonal chain of this kind as a path going from x⇠̄ to xσ(⇠̄),

then from xσ(⇠̄) to xσ2(⇠̄), and so on, until returning to x⇠̄ . On this path, every beginning interval is passed from
left to right and every ending interval is passed from right to left. A parallel translation of any of these N closed
one-dimensional polygonal lines as a whole, obviously, does not affect equalities (2) and does not change the
lengths of the intervals; this is the reason why we say that a pair (σ,v) is a “floating IRE,” while the corresponding
fixed IRE are called “shift equivalent”.

We now consider a special case where every cycle in the scheme σ of a positive IRE can be split into two
arcs one of which consists solely of the beginning intervals, and the other is formed only by the ending intervals
(i.e., every cycle has the form c = (↵1b, . . . ,↵mb,βne, . . . ,β1e) for some labels ↵1, . . . ,↵m, β1, . . . ,βn 2 A,

n,m ≥ 1). It is natural to call this IRE interval exchange and associate it with a discrete dynamical system
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(mapping) on a disjoint union of segments J1, . . . , JN corresponding to the cycles c1, . . . , cN (namely, a segment

J = [x↵1b, xβne) =

m[

i=1

I↵ib =

n[

i=1

Iβie

corresponds to the cycle c given above); this mapping shifts every beginning interval onto the ending interval
with the same label from the alphabet A. In this case, Proposition 1 says that a vector of lengths is allowed for
a scheme if and only if, for any segment J, the sum of lengths of all beginning segments contained in it is equal
to the sum of lengths of all ending segments contained in it. We use the same name “interval exchange” for
a pair (σ,x), as well as for an associated mapping and an induced one-dimensional dynamical system. In this
case, σ is called an interval exchange scheme. By analogy with the general IREs, we can consider floating interval
exchanges (σ,v) by focusing our attention only on the lengths of intervals and allowing the segments J1, . . . , JN
to shift freely along the axis, i.e., factorizing the space of all interval exchanges w.r.t. the shift equivalence.

For cycles of the indicated form (↵1b, . . . ,↵mb,βne, . . . ,β1e), it is convenient to use a clearer “two-row
notation,” namely,

c =

"
↵1 . . . ↵m

β1 . . . βn

#

(the entire interval exchange scheme can be also represented in the two-row form as the set of all its cycles σ =

{c1, . . . , cN}, N ≥ 1). In the terminology of [1], this “two-row” cycle is called a cycle with zero twist number.
To be precise, the twist number of a cycle in an IRE scheme σ is the number of positions in this cycle, where
a beginning element is followed by an ending element, i.e., σ(↵b) = βe for some ↵,β 2 A, minus one. If a cycle
is formed either solely by the beginning elements or solely by the ending elements, then its twist number is −1.

However the condition of positivity makes this case impossible. The twist number T (σ) of a scheme is the sum of
the twist numbers of all its cycles. Therefore, in this terminology, an interval exchange scheme is a positive IRE
scheme with twist number zero, and an interval exchange itself is a positive IRE with scheme of this kind.

The definition presented above determines a classical interval exchange transformation if its scheme consists of
a single cycle and the left endpoint of the corresponding segment lies at the origin. In our opinion, these restrictions
do not look natural and, hence, we use the term “interval exchange” only for a more general structure on multiple
segments. In Sec. 3 of [1], prior to the definition of IRE, the author formulated the definition of a multi-segment
interval exchange transformation in the classical form. Thus, it is easy to see that the definition of interval exchange
given within the framework of the IRE concept is much simpler than the classical-like definition.

3. Rotational Schemes and the Main Result

For an interval-exchange scheme σ, its dual σ⇤ is not necessarily an interval exchange scheme (but can be a
scheme of this kind) and the schemes possessing this property form an important special class, which is studied
in the present paper. Thus, we say that an interval exchange scheme is rotational if its dual is also an interval
exchange scheme. An interval exchange with rotational scheme is called a rotational interval exchange.

The twist total of an IRE scheme σ (see [1]) is the number T (σ) + T (σ⇤), i.e., the sum of the twist numbers
of the schemes σ and σ⇤. In these terms, a rotational scheme is an IRE scheme, which is positive together with
its dual and has zero twist total. At the same time, a rotational interval exchange is a positive IRE with a scheme
of this kind. According to Sec. 10 in [1], these are exactly the schemes whose positive natural extensions generate
translation surfaces of genus g = 1, i.e., 2D tori without singular points.

It is clear that the class of all rotational schemes is closed w.r.t. this duality operation. Note that we call these
interval exchanges and their schemes “rotational” because they are directly related to circle rotations. The exact
formulation of this relationship is the main result of the present paper given in what follows.
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A rotation of a circle of length L > 0 by a distance M is described by a map of the form

RL,M : a 7! a+M, a 2 R/LZ, (5)

where the factor space R/LZ is actually a circle of length L . A circle rotation is called irrational if its rotation
number ⇢ = {M/L} 62 Q. Here, { · } denotes the fractional part of a real number.

Alternatively, we can interpret a circle rotation as its projection onto an arbitrarily chosen half open segment
[x0, x0 + L), x0 2 R, i.e., as a piecewise linear map

RL,M : x 7! x+M −

x+M − x0

L

�
L, x 2 [x0, x0 + L). (6)

It is easy to see that this map is itself a rotational exchange of (two) intervals. Here, [ · ] denotes the integer part of
a real number.

Any half-open segment on a circle is called an arc. In what follows, we consider the unions of finitely many
arcs and, according to the alternative definition (6), interpret them as the union of finitely many half-open segments
of the real line. If this union of arcs (we omit the words “finitely many” because we consider only finite unions)
does not cover the entire circle, then it is natural to choose x0 as the projection onto R of any circle point that does
not belong to the interior of any arc. It is also natural to consider, as separate segments of this union, the maximal
segments (i.e., if two arcs overlap or touch at the endpoints, then their projections onto R should be combined into
a single segment). In the case where the union of arcs is the entire circle, the endpoint x0 can be chosen arbitrarily
and the analyzed union of arcs can be regarded as the entire real segment [x0, x0 + L).

Finally, we can formulate our main result.
Note that the third statement of this theorem is its main part, while the first two are, in fact, additional because

the qualitative (discrete) data prove to be more important than the quantitative (real) data because the space of
allowed lengths is determined by its IRE scheme, but not vice versa. However, the chosen order of three statements
of the theorem is explained by the logic of their proving: the proof of the third statement is based on the proofs of
the first two statements and, moreover, a part the third statement is a direct consequence of the first two results (see
Sec. 6, for more details). The proof of this theorem is constructive in a sense that the existence of all mentioned
objects is established by their algorithmic construction. In particular, it is necessary to mention the canonical
form of rotational interval exchange introduced in Sec. 5.7, connected with the so-called dynamical partitions of
a circle (see [9]), and playing the role of the most convenient “intermediary” between the general rotational interval
exchanges and circle rotations.

Theorem 1.

1. For any irrational circle rotation, the first return map onto any subset, which is a union of arcs, is an
irreducible rotational interval exchange.

2. For any irreducible rotational interval exchange, there exists a first return map for a circle rotation onto
the union of arcs, which is shift equivalent to the indicated interval exchange.

3. An irreducible interval exchange scheme is rotational if and only if there exists a first return map for
an irrational circle rotation onto the union of arcs, which is an interval exchange with this scheme.

Remark 1. The theorem is formulated for irreducible schemes and interval exchanges, and a (single) circle
rotation corresponds to each of these cases. If an interval exchange scheme consists of several irreducible compo-
nents, then the dynamical system splits into the same number of dynamically independent components, and the first
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return map should be considered for the union of the same number of circle rotations. Hence, Statements 2 and 3
of the theorem can be reformulated by omitting the requirement of irreducibility and replacing a circle rotation by
the union of circle rotations (irrational circle rotations in Statement 3) whose number is equal to the number of
irreducible components of the scheme.

Remark 2. It is necessary to explain why the fact of irrationality of a circle rotation is mentioned in State-
ments 1 and 3 but not mentioned in Statement 2. To do this, we indicate that if an interval exchange is the first
return map onto the union of arcs for an irrational circle rotation, then small perturbations of the parameters of this
system produce an interval exchange with the same scheme, which is the first return map onto a union of arcs for
a rational circle rotation (close to the original irrational rotation). Due to this fact, every scheme of this kind (and,
due to the third statement of the theorem, this is true for all rotational schemes) admits both irrational and ratio-
nal (in the above-mentioned sense) interval exchanges. However, on the other hand, there exist interval exchange
schemes allowing only rational interval exchanges, namely, the schemes containing a chain of cycles of the form

("
↵1

↵2

#
;

"
↵2

↵3

#
; . . . ;

"
↵m

↵1

#)

or a single cycle of the form

↵

↵

�
. Actually, these periodic chains of cycles in the scheme are characteristic

of rational interval exchanges: an arc moves along a certain path over the circle and finally returns onto itself.
The scheme dual to this IRE scheme contains a couple of cycles

("
↵m . . . ↵1

?

#
;

"
?

↵m . . . ↵1

#)

(here, ? denotes the absence of elements in a row) and, clearly, is not positive. The interval exchange schemes
of this kind have negative twist total and their natural extensions do not form any translation surfaces. Therefore,
we do not call these schemes (and interval exchanges with these schemes) rotational, despite the fact that these
interval exchanges can be the first return maps for the circle rotations (only rational) onto certain unions of arcs.

4. Proof of the First Part of the Theorem

4.1. First Return Maps Are Finite. Recall the definition of a first return map for a dynamical system with
discrete time onto a subset of its phase space. Assume that the analyzed dynamical system is given by a map
f : X ! X and a nonempty subset Γ ⇢ X has the following property: for any point x 2 Γ, there exists a positive
integer n such that fn(x) 2 Γ, i.e., the trajectory of the point x returns to the set Γ after a certain time n. Denote
by n(x, f,Γ) the first return time of x under the action of f to Γ, i.e., the smallest of the following parameters:
f i(x) 62 Γ for all 1  i < n(x, f,Γ), and fn(x,f,Γ)(x) 2 Γ. The map

fΓ : x 7! fn(x,f,Γ)(x)

is called the first return map for f into Γ. Clearly, this map defines on the indicated subset a new (induced)
dynamical system fΓ : Γ ! Γ.

According to this definition, for a given number n ≥ 1, all points x 2 Γ such that n(x, f,Γ) = n form a set

Γn = Γ \ f−n(Γ)\f−(n−1)(Γ)\ . . . \f−1(Γ).
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Moreover, we have a disjoint splitting

Γ =
+1[

n=1

Γn, Γn \ Γm = ?

for n 6= m and, moreover, fΓ(x) = fn(x) for all x 2 Γn, n ≥ 1.

We now show that, in the case of a circle rotation R = RM,L, the first return map to any union of finitely
many arcs Γ is always finite, i.e., the set of first return times for all points of this union {n(x, f,Γ)|x 2 Γ} is
bounded.

If the rotation number is rational, i.e., ⇢ = M/L = p/q, where p and q are mutually prime positive integers,
then the equivalence Rq(x) ⌘ x holds. Therefore, n(x,R,Γ)  q for all x on the circle and, hence, the first
return map for a rational circle rotation to any subset (not only to a union of arcs) is always defined and finite.

Further, assume that the rotation number ⇢ is irrational. In this case, the trajectory of any point x is everywhere
dense on the circle and, therefore, for any δ > 0, there exists a positive integer n0 such that the circle does not
contain any arc of length δ free from the points of a finite segment of this trajectory (Ri(x))n0

i=1. Moreover, since
all trajectories of the circle rotation have identical spacing, this n0 does not depend on x. Taking the length of the
shortest arc from the union Γ as δ, we obtain the following bound: n(x,R,Γ)  n0 for all x on the circle.

Thus, we have shown that the first return map for R to Γ is indeed finite:

Γ =

n0[

n=1

Γn

for finite n0. Further, since both the intersection and union of any two finite unions of arcs are also finite unions
of arcs, we conclude that each set Γn is a finite union of arcs, as well. On each of these arcs, the first return map
RΓ is a shift (by a distance nM ). Interpreting circle arcs as intervals of the real line inside a certain segment
[x0, x0 + L), we obtain the following statement:

Proposition 2. For any circle rotation, the first return map onto any finite union of arcs is an interval ex-
change transformation.

If a circle rotation is irrational, then the obtained interval exchange is irreducible due to minimality of this
rotation as a dynamical system.

4.2. First Return Maps Are Rotational. Consider an irrational circle rotation (5), (6) and a finite union of
arcs Γ interpreted as a set of pairwise disconnected half open segments of the real line contained in [x0, x0 + L).

By Proposition 2, the first return map RΓ : Γ ! Γ is an interval exchange. We now show that the scheme of this
interval exchange, regarded as an IRE, is rotational by definition, i.e., that its dual IRE scheme is also an interval
exchange scheme.

In order to determine the IRE scheme for the interval exchange RΓ, we denote every interval in this exchange
by its own symbol, thus forming an alphabet A. The set Γ is, on the one hand, the union of all pairwise disjoint
intervals I↵b, ↵ 2 A and, on the other hand, the union of their (also pairwise disjoint) images I↵e = Γ(I↵b),

↵ 2 A. In its turn, each disconnected segment in Γ is also split, on the one hand, into several beginning intervals
I↵1b, . . . , I↵mb (count from the left to the right) and, on the other hand, into several ending intervals Iβ1e, . . . , Iβne

(also count in the left–right direction); in the scheme σ, this segment is encoded by a cycle

(↵1b, . . . ,↵mb,βne, . . . ,β1e), {↵i}mi=1, {βj}nj=1 ⇢ A, n,m ≥ 1.

The total array of endpoints x 2 RĀ, where x↵b is the left endpoint of a beginning interval I↵b and xβe is the
right endpoint of an ending interval Iβe, ↵,β 2 A, forms a real component of the IRE (σ,x).
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All endpoints of a given interval exchange are naturally split into four types: type L (left) containing the
left endpoints of disconnected segments in the composition of Γ (in the example presented above, this is the
point x↵1b ); type R (right) containing the right endpoints of disconnected segments in Γ (in the example presented
above, this is xβ1e ); type MB (middle beginning) containing the points corresponding to the connection of two
neighboring beginning intervals (in the example presented above, these are x↵ib, i 6= 1), and type ME (middle
ending) containing the points corresponding to the connection of two neighboring ending intervals (in the example
presented above, these are xβje, j 6= 1). From the IRE point of view, the indicated types are actually specified not
for the real numbers x⇠̄ themselves but for the symbols attached, namely, ⇠̄ 2 Ā corresponds to type L if ⇠̄ = ⇠b

and σ−1(⇠̄) = ⌘e; to type R if ⇠̄ = ⇠e and σ−1(⇠̄) = ⌘b; to type MB if ⇠̄ = ⇠b and σ−1(⇠̄) = ⌘b; and to type ME
if ⇠̄ = ⇠e and σ−1(⇠̄) = ⌘e for some ⇠, ⌘ 2 A.

It is worth noting, that every disconnected segment in the composition of Γ (corresponding to a disconnected
cycle in the permutation σ ) possesses exactly one endpoint of type L and exactly one endpoint of type R (these are
actually the left and right endpoints of Γ , respectively). At the same time, the number of endpoints of types MB
and ME lying on this set can be arbitrary (including zero).

We consider an arbitrary type-MB endpoint x⇠1b (hence, σ−1(⇠1b) = ⌘1b and ⇠1, ⌘1 2 A) and trace the
dynamic trajectories of its left x−⇠1b = (x⇠1b − ", x⇠1b), " ! 0, and right x+⇠1b = (x⇠1b, x⇠1b + "), " ! 0,

infinitesimally small half neighborhoods (it is obvious that, for sufficiently small " > 0, the consecutive images of
these half neighborhoods under the action of RΓ do not cover any endpoint for sufficiently long time; in particular,
they do not split into smaller intervals and, therefore, the indicated infinitesimal consideration is well defined).

The interval I⇠1b with the left endpoint x⇠1b is mapped by RΓ onto the interval I⇠1e. Hence, a right half
neighborhood of x+⇠1b is mapped onto a right half neighborhood of the left endpoint of I⇠1e, i.e., onto x+σ(⇠1e).

Thus, there are two possible cases: this endpoint is either of type ME (and, hence, σ(⇠1e) = ⌘⇤e, ⌘⇤ 2 A) or of
type L (and, hence, σ(⇠1e) = ⇠2b, ⇠2 2 A). In the first case, we stop. However, in the second case, we continue
to trace the trajectory of the chosen half neighborhood. By analogy with the initial step, x+σ(⇠1e) = x+⇠2e is mapped
onto x+σ(⇠2e), and we again get the following two cases: the endpoint xσ(⇠2e) is either of type ME (and, hence,
σ(⇠2e) = ⌘⇤e, ⌘⇤ 2 A) or of type L (and, hence, σ(⇠2e) = ⇠3b, ⇠3 2 A). In the first case, we stop, whereas in the
second case, we continue to trace the trajectory. At a certain step of the algorithm, the process terminates because
the number of type-L endpoints is finite and the map RΓ does not have periodic trajectories due to the irrationality
of the original circle rotation. Therefore, after termination, we get a sequence of symbols

⇠1b, ⇠2b = σ(⇠1b), . . . , ⇠mb = σ(⇠m−1b), ⌘⇤e = σ(⇠mb)

and the corresponding sequence of half neighborhoods

x+⇠1b, x
+
⇠2b

= RΓ(x
+
⇠1b

), . . . , x+⇠mb = RΓ(x
+
⇠m−1b

), x+⌘⇤e = RΓ(x
+
⇠mb),

where the endpoints x⇠1b, x⇠2b, . . . , x⇠mb, x⌘⇤e are of types MB, L, . . . , L, ME respectively; ⇠1, . . . , ⇠m, and
⌘⇤ 2 A, m ≥ 1.

We now consider the trajectory of the left half neighborhood of the same starting endpoint of type MB . The in-
terval I⌘1b with right endpoint x⇠1b is mapped by RΓ onto the interval I⌘1e. Therefore, the left half neighborhood
of x−⇠1b is mapped onto the left half neighborhood of the right endpoint of I⌘1e, i.e., in fact, on x−⌘1e. There are two
possible cases: The analyzed endpoint is either of type ME (and, hence, ⌘1e = σ(⇠⇤e), ⇠⇤ 2 A) or of type R (and,
hence, ⌘1e = σ(⌘2b), ⌘2 2 A). In the first case, we stop. In the second case, we continue to trace the trajectory
of the chosen half neighborhood. By analogy with the initial step, the interval I⌘2b with the right endpoint x⌘1e
is mapped onto the interval I⌘2e and, hence, x−⌘1e is mapped onto x−⌘2e. We again have the following two cases:
x⌘2e is either of type ME (and, hence, ⌘2e = σ(⇠⇤e), ⇠⇤ 2 A) or of type R (and, hence, ⌘2e = σ(⌘3b), ⌘3 2 A).
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In the first case, we stop. In the second case, we continue the procedure of tracing. After a certain number of steps,
the process stops because RΓ does not have periodic trajectories. Finally, we get a sequence of symbols

⇠1b, ⌘1b = σ−1(⇠1b), ⌘2b = σ−1(⌘1e), . . . , ⌘nb = σ−1(⌘n−1b)

and a sequence of half neighborhoods

x−⇠1b, x
−
⌘1e = RΓ(x

−
⇠1b

), x−⌘2e = RΓ(x
−
⌘1e), . . . , x

−
⌘ne = RΓ(x

−
⌘n−1e),

where the endpoints x⇠1b, x⌘1e, . . . , x⌘ne are of types MB, R, . . . , R, ME, respectively, and ⌘1, . . . , ⌘n 2 A,

n ≥ 1.

It remains to show that (necessarily) x⌘ne = x⌘⇤e and, therefore, ⌘⇤ = ⌘n. This is true because RΓ is the first
return map for a circle rotation to the union of arcs Γ. A circle rotation R is a continuous map and, hence, the left
and right half neighborhoods of any point never separate under its action. Therefore, at the time when an inner
point (such as a type-MB endpoint) of the set Γ returns to the inner point (endpoint of type ME ) of the set Γ for the
first time, its left and right half neighborhoods meet each other again, although prior to this they could, at certain
times, appear on the boundary (endpoints of types L and R ) of the set Γ. Moreover, the total return times (in terms
of the number of iterations of R) of two half neighborhoods measured from their splitting at the point x⇠1b till
their reunion at the point x⌘ne are identical for both these neighborhoods. This means the following: We recall that
any beginning interval I↵b of the exchange RΓ is included in a certain set Γk of points returning to Γ exactly after
k iterations of a circle rotation R, 1  k  k0, and denote this time by k↵, ↵ 2 A. Hence, for the investigated
trajectory of the right half neighborhood x+⇠1b, the total time of its coming to the point x⌘ne measured in terms of
the number of iterations of R is equal to k⇠1 + . . . + k⇠m , while, for the left half neighborhood x−⇠1b this time is
equal to k⌘1 + . . .+ k⌘n . As shown above, these times are necessarily equal and, therefore, we get

mX

i=1

k⇠i =
nX

j=1

k⌘j

for any endpoint of type MB of the interval exchange RΓ.

We can now explicitly present an interval exchange with IRE scheme dual to σ. This dual scheme σ⇤ consists
of all cycles (⇠1b, . . . , ⇠mb, ⌘ne, . . . , ⌘1e) constructed for all endpoints of type MB in the interval exchange RΓ.

All these cycles are disjoint because the analyzed interval exchange is bijective. On the other hand, any element
of Ā belongs to one of these cycles because we take into account all endpoints of typeMB; the number of endpoints
of type ME is the same as the number of type-MB endpoints, and a half neighborhood of any type-L or type-R
endpoint necessarily hits a type-ME endpoint after a certain number of iterations; therefore, we have also taken
into account all other endpoints. The duality of σ⇤ to σ can be easily checked by using definition (4) in view of
the relations obtained in the investigation of the trajectories of half neighborhoods of the endpoint x⇠1b. In order
to show that the scheme σ⇤ is positive, we set

y⇠ib =

i−1X

s=1

k⇠s , 1  i  m, and y⌘je =

jX

t=1

k⌘t , 1  j  n,

for any cycle presented above. This enables us to determine the vector of endpoints y allowed by the scheme σ⇤

due to the equalities
mX

i=1

k⇠i =

nX

j=1

k⌘j .
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The corresponding vector of lengths consists of positive (and even integer-valued) components k⇠, ⇠ 2 A.

Hence, the IRE (σ⇤,y) is indeed an interval exchange.
Statement 1 of Theorem 1 is proved.

Remark 3. To prove this statement, for an interval exchange induced on a subset of a circle by its rotation,
we constructed a dual dynamical system of interval exchange with the use of time intervals exchanged as in the
case of space intervals.

5. Proving the Second Part of the Theorem

In this section, we prove Statement 2 of Theorem 1 by using an algorithm for the construction of an irrational
circle rotation and the union of arcs such that the corresponding first return map is shift-equivalent to a given
rotational interval exchange.

Thus, we assume that a rotational interval exchange (σ,x) is given. Since our aim is to analyze shift-equivalent
interval exchanges, it suffices to consider, from the very beginning, a floating IRE (σ,v) , i.e., restrict ourselves to
the analysis of the lengths of intervals without taking into account the coordinates of endpoints.

For this IRE, we successively apply two types of operations: the first type is the reverse step of induction
(which produces a new dynamical system for which the initial system is the first return map). The second type
of operations is merging of two neighboring intervals into a single interval (this does not change the dynamical
system at all but the number of exchanging intervals decreases).

5.1. Elementary Steps of Induction. In this section, we recall four elementary steps of induction ⇧rb
↵β , ⇧

re
↵β ,

⇧lb
↵β , and ⇧le

↵β , which were defined in [1]. They are the operations of transformation, which can be applied either
to the IREs (and, in particular, to interval exchanges) or separately to their schemes generalizing the classical steps
of the Rauzy–Veech induction. According to their action, these four steps are called “cropping a beginning interval
on the right,” “cropping an ending interval on the right,” “cropping a beginning interval on the left,” and “cropping
an ending interval on the left,” respectively. The general formulas for the four elementary steps of induction were
presented in Sec. 7 of the work [1], where it was also explained that the steps ⇧rb

↵β and ⇧re
↵β can be applied to

an IRE scheme σ under the condition σ(↵b) = βe, whereas the steps ⇧lb
↵β and ⇧le

↵β are applicable under the
condition σ(βe) = ↵b. In terms of cycles in the permutation σ, these operations act as follows: the step ⇧rb

↵β

(the steps ⇧re
↵β , ⇧

lb
↵β , and ⇧le

↵β ) moves an element βe (elements ↵b, βe, and ↵b) from its current position into
the position right in front of ↵e (right after βb, right after ↵e, and right in front of βb). In the vector of lengths v,
one component changes: the steps ⇧rb

↵β and ⇧lb
↵β subtract the quantity vβ from the component v↵, while the steps

⇧re
↵β and ⇧le

↵β subtract the quantity v↵ from the component vβ . The reverse steps (⇧rb
↵β)

−1, (⇧re
↵β)

−1, (⇧lb
↵β)

−1,

or (⇧le
↵β)

−1 are applicable to the IRE scheme σ under the conditions σ(βe) = ↵e, σ(βb) = ↵b, σ(↵e) = βe,

or σ(↵b) = βb, respectively. For the lengths: the reverse steps (⇧rb
↵β)

−1 and (⇧lb
↵β)

−1 add the quantity vβ to the
component v↵, while the steps (⇧re

↵β)
−1 and (⇧le

↵β)
−1 add the quantity v↵ to the component vβ .

Further, we now demonstrate how these steps work for (floating) interval exchanges with the help of two-row
notation for the cycles in their schemes. In fact, the classical Rauzy–Veech induction works in exactly the same
way. However, it acts on a single segment and only at its right end but we consider interval exchanges on multiple
segments and apply induction steps at both ends of the segments.

In order to guarantee that an interval exchange remains an interval exchange after applying an induction step or
a reverse induction step, it is necessary to guarantee that (in addition to the conditions listed above) all components
of the vector of lengths remain positive and that the twist total of the scheme is equal to zero (in other words, the
twist number of every cycle must be equal to zero and, hence, the cycle must remain “two-row;” see the definition
in Sec. 2).
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Consider the step ⇧rb
↵β in more detail. The condition of its applicability σ(↵b) = βe means that the beginning

interval I↵b and the ending interval Iβe lie at the right edge of the same segment J, which means that, in the two-

row notation, one cycle of the scheme has the form

. . . ↵

. . . β

�
. Since ⇧rb

↵β subtracts the length vβ from the length

v↵ (by cutting the ending interval Iβe from the segment and, hence, by “cropping the beginning interval I↵b on the
right” by vβ ), the resulting vector of lengths remains positive if and only if v↵ > vβ , i.e., I↵b must be longer than
Iβe. If this condition is satisfied, then the interval Iβe cannot be the sole ending interval on the segment J because
the sum of lengths of the ending intervals on a segment is always equal to the sum of lengths of the beginning
intervals and, hence, some other ending interval Iγe lies on J straight to the left of Iβe, i.e., σ(βe) = γe for some
γ 2 A. In the two-row notation, the scheme is transformed as follows (we show only the cycles engaged in the
transformation; all other cycles do not change):

⇧rb
↵β :

"
. . . ↵

. . . γ β

#
,

"
. . .

. . . ↵ . . .

#
7!

"
. . . ↵

. . . γ

#
,

"
. . .

. . . ↵ β . . .

#
.

Here, the first cycle corresponds to the segment J, while the second cycle corresponds to a segment containing the
ending interval I↵e ; the role of the latter can be played by the same segment J. In this case, we have

⇧rb
↵β :

"
. . . ↵

. . . ↵ . . . γ β

#
7!

"
. . . ↵

. . . ↵ β . . . γ

#
.

If γ = ↵, then the scheme σ does not change under the action of ⇧rb
↵β , and only its length v↵ changes.

In all cases, under the action of ⇧rb
↵β , the segment J is cropped on the right by vβ , which is the length of the

interval Iβe. The intervals I↵b and I↵e are also cropped on the right by vβ and the interval Iβe moves to a new
position straight to the right of the interval I↵e (cropped by the length of Iβe ). We also see that, in all cases, all
cycles remain untwisted (the twist number is equal to zero), and this is true for all (straight!) elementary steps of
induction.

It is easy to see that the dynamical system of interval exchange obtained under the described action of ⇧rb
↵β

upon (σ,v) is nothing else but the first return map for the original dynamical system on the union of segments,
where the segment J is cropped on the right by vβ . Indeed, all points in this union return to it for time 1, except the
points of the interval Iβb, which return for time 2: First they hit the cut-out interval Iβe of the original dynamical
system, and then the map brings them to the interval Iβe of the new dynamical system (in the original system, this
interval was the right part of the interval I↵e ).

The remaining three steps of induction act similarly, and every time the result of their action is the first return
map for the original dynamical system onto a union of segments one of which is cropped either from the right or
from the left. For the sake of clarity, we describe their action on the schemes just as this has been done above for
the step ⇧rb

↵β and note that the step ⇧lb
↵β transforms an interval exchange into an interval exchange if and only if

v↵ > vβ , whereas the steps ⇧re
↵β and ⇧le

↵β do this if and only if v↵ < vβ :

⇧re
↵β :

"
. . . γ ↵

. . . β

#
,

"
. . . β . . .

. . .

#
7!

"
. . . γ

. . . β

#
,

"
. . . β ↵ . . .

. . .

#
,

⇧lb
↵β :

"
↵ . . .

β γ . . .

#
,

"
. . .

. . . ↵ . . .

#
7!

"
↵ . . .

γ . . .

#
,

"
. . .

. . . β ↵ . . .

#
,

⇧le
↵β :

"
↵ γ . . .

β . . .

#
,

"
. . . β . . .

. . .

#
7!

"
γ . . .

β . . .

#
,

"
. . . ↵ β . . .

. . .

#
.
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Each of these steps decreases the larger of the two lengths v↵ and vβ by the smaller of these lengths and does
not affect all other lengths.

The elementary reverse steps of induction (⇧rb
↵β)

−1, (⇧re
↵β)

−1, (⇧lb
↵β)

−1, or (⇧le
↵β)

−1 are applicable to an IRE
scheme σ under the conditions σ(βe) = ↵e, σ(βb) = ↵b, σ(↵e) = βe, or σ(↵b) = βb, respectively (see
Proposition 3 in [1]). The scheme obtained from an interval exchange scheme σ by applying the reverse steps of
induction (⇧rb

↵β)
−1, (⇧re

↵β)
−1, (⇧lb

↵β)
−1, or (⇧le

↵β)
−1 has zero twist total if and only if there exists an element

γ 2 A such that σ(↵b) = γe, σ−1(βe) = γb, σ−1(↵b) = γe, or σ(βe) = γb, respectively. Since the action of
the steps (⇧rb

↵β)
−1 and (⇧lb

↵β)
−1 upon the real component of the IRE v adds the length vβ to v↵ and the action

of the steps (⇧re
↵β)

−1 and (⇧le
↵β)

−1 adds the length v↵ to vβ , the positivity of the original IRE yields the positivity
of the resulting IRE, and one length only increases.

Proposition 3. An interval exchange obtained from a rotational interval exchange by applying an elementary
step of induction, is also rotational.

Proof. According to Proposition 6 in [1], the induction steps do not change the twist total of a scheme.
Therefore, in this case it remains equal to zero. According to Theorem 1 in [1], in the case where an IRE scheme
is transformed under the action of an elementary step of induction, its dual scheme transforms under the action of
a certain reverse step. Further, since the action of a reverse step of induction on the positive IRE only increases one
length by the value of another length, the dual scheme remains positive. Proposition is proved.

A similar statement for reverse steps of induction is, general speaking, false, as shown by the following coun-
terexample:

Consider a scheme

σ =

⇢
γ ↵ δ

δ β

�
,


β

↵ γ

��
.

It has zero twist number and is positive: Thus, the vector of lengths v = (v↵, vβ , vγ , vδ) = (1, 2, 1, 1) is allowed.
The dual scheme

σ⇤ =

⇢
↵ β

γ β δ

�
,


δ γ

↵

��

is also untwisted and positive. For example, the vector of lengths w = (w↵, wβ , wγ , wδ) = (2, 1, 1, 1) is allowed.
Therefore, the IRE (σ,v) is a rotational interval exchange. The reverse step of induction (⇧le

γ↵)
−1 is applicable,

and the obtained scheme

σ0 =

⇢
↵ δ

δ β

�
,


γ β

↵ γ

��

is also untwisted and positive, as the vector of lengths v = (1, 2, 1, 1) is transformed into v0 = (2, 2, 1, 1).

Therefore, the obtained IRE (σ0,v0) = (⇧le
γ↵)

−1(σ,v) is an interval exchange. However, this interval exchange is
not rotational. Indeed, the scheme

(σ0)⇤ = ⇧le
↵γσ

⇤ =

⇢
β

γ β δ

�
,


δ ↵ γ

↵

��

dual to σ0 also has zero twist number but, clearly, is not positive because the vectors of lengths u = (u↵, uβ , uγ , uδ)

allowed by this scheme are determined by the condition uγ + uδ = 0.
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5.2. Operation of Merging Intervals. If an interval exchange has two neighboring intervals shifted by the
same distance, then it is natural to merge them into a single interval; as a result, the dynamical system does not
change. This situation takes place if σ(↵b) = βb and σ(βe) = ↵e for some ↵ 6= β. We now define the
operation of merging intervals ⌃↵β applicable to an IRE (σ,v) under the above-mentioned condition imposed on
the scheme σ and acting in the following way: the symbol β is removed from the alphabet A, the elements βb

and βe are removed from the corresponding cycles, and the length v↵ increases by vβ .

Formally, ⌃↵β(σ,v) = (σ0,v0), where σ0 is a permutation of the reduced double alphabet Ā0 = A0 ⇥
{b, e}, A0 = A\{β}, given by the following equalities: In the case σ(βb) 6= βe, these are σ0(↵b) = σ(βb),

σ0(σ−1(βe)) = ↵e, and σ0(⇠̄) = σ(⇠̄) for ⇠̄ 2 Ā0\{↵b,σ−1(βe)}. At the same time, in the case σ(βb) = βe,

these are σ(↵b) = ↵e and σ0(⇠̄) = σ(⇠̄) for ⇠̄ 2 Ā0\{↵b}; the new vector of lengths v0 2 RA0
is given

by v0↵ = v↵ + vβ , and v0⇠ = v⇠ for ⇠ 2 A0\{↵}.
Note that, for a rotational scheme σ, the case σ(βb) = βe is impossible because this equality implies the

relation σ⇤(βe) = βe for the dual scheme σ⇤, which makes the latter definitely nonpositive because every vector
of lengths w allowed by the scheme σ⇤ contains a component wβ = 0.

The condition σ(↵b) = βb, σ(βe) = ↵e, for the applicability of ⌃↵β to σ is equivalent to the condition

σ⇤(↵e) = βb, σ⇤(βb) = ↵e, for the dual scheme σ⇤. This means that σ⇤ contains a two-element cycle

β

↵

�
.

Applying the operation of merging intervals ⌃↵β to σ, we remove this two-element cycle from σ⇤ and replace βe

by ↵e in the cycle of σ⇤ containing the element βe.

Proposition 4. The operation of merging intervals applied to a rotational interval exchange leaves it rota-
tional.

Proof. It is clear from the definition of this operation that the twist numbers of cycles do not change and
only one cycle (untwisted, as all these cycles) in the dual scheme completely disappears. Therefore, the twist total
remains equal to zero. One of the lengths increases by the value of another length. Hence, the vector of lengths
remains positive. Prior to applying the operation, the dual scheme contained an allowed positive vector of lengths
w such that w↵ = wβ . Therefore, the vector w0 with the same components (only the component wβ is removed)
is obviously positive and allowed by the scheme dual to the scheme obtained by applying the operation ⌃↵β .

Proposition is proved.

5.3. Idea of the Algorithm. We now describe an algorithm of consecutive transformations of an arbitrary
irreducible rotational interval exchange, which eventually leads to the construction of the first return map on a cir-
cle sought in Statement 2 of Theorem 1. It proves to be convenient to operate with dual schemes. The idea is as
follows: We consecutively apply elementary induction steps to one cycle in the dual scheme. This cycle is eventu-
ally reduced to a two-element cycle and removed from consideration as a result of merging of the corresponding
intervals. Performing this procedure, in turn, for each cycle of the dual scheme, as long as the number of cycles is
greater than one, we eventually get a dual scheme that consists of a single cycle. At this point, the algorithm stops,
we analyze the resulting (very special) interval exchange and show how to construct a circle rotation and a union
of arcs for which this interval exchange is the first return map.

It is important to keep the dual scheme positive after each new transformation (not to get the effect described
in the counterexample presented at the end of Sec. 5.1). In this case, by Proposition 3, the scheme always remains
rotational and, therefore, the transformed interval exchange also remains rotational.

The following two lemmas are necessary for what follows.

5.4. Lemma on Unsplittability. We call an interval exchange scheme σ splittable (for a cycle c0 ) if its
alphabet A can be split into two nonempty subalphabets A1 and A2 (A1 [ A2 = A, A1 6= ?, and A2 6= ?)
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such that the following property holds: one cycle

c0 = (⇠̄,σ(⇠̄)), . . . ,σk(⇠̄)), ⇠̄ 2 Ā, k ≥ 1, σk+1(⇠̄) = ⇠̄,

in the scheme σ = {c0, c1, . . . , cn}, n ≥ 0, can be split into two nonempty arcs a1 = (⇠̄,σ(⇠̄), . . . ,σi(⇠̄)) and
a2 = (σi+1(⇠̄), . . . ,σk(⇠̄)), 0  i < k, and the remaining cycles can be split into two sets ⌧1 = {c1, . . . , cj} and
⌧2 = {cj+1, . . . , cn}, 0  j  n, such that all elements of a1 and cycles from ⌧1 belong to Ā1 = A1 ⇥ {b, e},
while all elements of a2 and cycles from ⌧2 belong to Ā2 = A2 ⇥ {b, e}. Otherwise, the scheme is called
unsplittable.

It is easy to see that, for an interval exchange with splittable scheme, the sum of lengths of all beginning
intervals in the arc a1 is equal to the sum of lengths of all ending intervals in the arc a1, and the same is true
for the intervals in the arc a2. This follows from the fact that, by Proposition 1, the indicated property (the sum
of lengths of all beginning intervals from a certain collection is equal to the sum of lengths of all ending intervals
from the same collection) holds, on one hand, for each particular cycle and, therefore, for the set of all intervals
indexed by the elements of cycles from ⌧1 ; on the other hand, this property also holds for the collection of all
intervals indexed by the elements of Ā1. Moreover, these two collections of intervals differ exactly by the set of
all intervals from the arc a1.

In particular, the property established above implies that any arc, a1 or a2, in a splittable interval exchange
scheme σ cannot consist solely of the beginning elements or solely of the ending elements because, in this case,
the sum of the corresponding lengths allowed by the scheme would be equal to zero and, hence, the scheme would
not be positive. Since the cycle c0 has zero twist, one of these arcs necessarily starts from an ending element and
ends at a beginning element, whereas the other arc starts from a beginning element and ends at an ending element.
For definiteness, we assume that the first arc is a1 and the second arc is a2. Thus, we have ⇠̄ = ↵e, σi(⇠̄)) = βb,

σi+1(⇠̄) = γb, and σk(⇠̄) = δe for some ↵,β 2 A1 and δ, γ 2 A2.

The property of splittability of a scheme becomes quite clear if we consider the corresponding floating interval
exchange (σ,v) . This simply means that the segments of this interval exchange can be fixed in positions such
that every interval of the fixed interval exchange (σ,x) thus obtained is entirely contained either in the half line
(−1, 0) or in the half line [0,+1) ; the labels of all intervals from the first set belong to A1 and the labels of all
intervals from the second set belong to A2 . Moreover, precisely for one segment (corresponding to the cycle c0 )
the origin is its inner point and x↵e = xγb = 0 for ↵ and γ determined in the previous paragraph. In fact, the
entire set of intervals in (σ,x) is separated by the point zero into two arrays: the intervals lying to the left of zero
are indexed by the elements of Ā1, while the intervals lying to the right of zero are indexed by the elements of Ā2.

Lemma 1. If an interval exchange scheme is splittable, then it cannot be rotational.

Proof. According to the above-mentioned properties of a splittable scheme σ, the sets of elements Ā1 and
Ā2 are connected with this scheme at (exactly) two places, namely, there exist elements ↵,β 2 A1 and δ, γ 2 A2

such that σ(βb) = γb and σ(δe) = ↵e, whereas for all ⇠̄ 2 Ā1\{βb} and all ⌘̄ 2 Ā2\{δe}, we have σ(⇠̄) 2 Ā1

and σ(⌘̄) 2 Ā2. The corresponding property also holds for the dual scheme σ⇤ , namely, we have σ⇤(βe) = γb and
σ⇤(δb) = ↵e but, for all ⇠̄ 2 Ā1\{βe} and all ⌘̄ 2 Ā2\{δb}, we get σ⇤(⇠̄) 2 Ā1 and σ⇤(⌘̄) 2 Ā2. Therefore,
one cycle in the scheme σ⇤ can be split into two nonempty arcs a01 = (↵e, . . . ,βe) and a02 = (γb, . . . , δb), while
the remaining cycles can be split into two sets ⌧ 01 and ⌧ 02 such that all elements of a01 and cycles from ⌧ 01 belong
to Ā1 and all elements of a02 and cycles from ⌧ 02 belong to Ā2. Let w = (w⇠)⇠2A be a vector of lengths allowed
by the scheme σ⇤. The sum of lengths of all beginning intervals in any cycle is equal to the sum of lengths of all
ending intervals in this cycle, and the same is obviously true for a set of cycles. Hence, we get the equality

X

⇠ : ⇠b2⌧ 01

w⇠ =
X

⇠ : ⇠e2⌧ 01

w⇠
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(here, a somewhat incorrect but demonstrative notation ⇠b 2 ⌧ 01 means that the element ⇠b belongs to a cycle from
the set ⌧ 01 and the same is true for ⇠e). Since

X

⇠ : ⇠b2Ā1

w⇠ =
X

⇠2A1

w⇠ =
X

⇠ : ⇠e2Ā1

w⇠,

and the set of all elements of the cycles from ⌧ 01 differs from Ā1 exactly by the set of all elements of the arc a01,

subtracting the former equality from the latter, we get

X

⇠ : ⇠b2a01

w⇠ =
X

⇠ : ⇠e2a01

w⇠.

If we assume that the splittable interval exchange scheme σ is rotational, then the dual scheme σ⇤ must be
positive and untwisted. However, if all cycles in σ⇤ have zero twist, then the nonempty arc a01 determined above
contains only ending elements. Therefore,

X

⇠ : ⇠e2a01

w⇠ = 0

and the scheme σ⇤ is not positive.
Lemma is proved.

5.5. Lemma on Unequal Lengths. For a given IRE scheme σ, we say that the lengths v↵ and vβ , ↵,β 2 A,

are equal with necessity if the equality v↵ = vβ holds for any allowed vector of lengths v . It is clear that all
relations between the lengths are determined by equalities (3). However, if the scheme is sufficiently complicated,
then the equality with necessity can be not evident for a certain pair of lengths.

Consider a situation in which, for some interval exchange, the beginning interval I↵b and the ending interval
Iβe are both adjacent either to the left end or to the right end of the same segment J. In the two-row notation,

the scheme contains a cycle c0, which has the following form:

↵ . . .

β . . .

�
or


. . . ↵

. . . β

�
, i.e., σ(βe) = ↵b or

σ(↵b) = βe , ↵,β 2 A, respectively, and this cycle is not a two-element cycle. In the general case, the lengths
v↵ and vβ can be equal with necessity but not in the case of a rotational interval exchange, as shown in the next
statement.

Lemma 2. If, for an interval exchange scheme σ, we have σ(βe) = ↵b or σ(↵b) = βe for some ↵,β 2 A
and the corresponding cycle c0 is not two-element but the lengths v↵ and vβ are equal with necessity, then this
scheme cannot be rotational.

Proof. We restrict ourselves to the case where σ(βe) = ↵b (in the case where σ(↵b) = βe, the proof is
similar). In fact, we prove that, under the conditions listed above, the scheme σ is splittable and, hence, according
to Lemma 1, it cannot be rotational. First, we note that, for ↵ = β, the scheme σ is obviously splittable (at the
cycle c0 with subalphabets A1 = {↵} and A2 = A\{↵}). Thus, in the remaining part of the proof we assume
that ↵ 6= β.

Let v be a positive vector of lengths allowed by the scheme σ. If there exists a (looped) sequence of labels
β1 = β,β2, . . . ,βk,βk+1 = β, k ≥ 1, distinct from ↵ and such that βi+1e 2 c(βib) for all 1  i  k, then
a simultaneous increase in all lengths vβi

, 1  i  k, by the same positive quantity does not affect the validity
of all equalities (3) and, therefore, the lengths v↵ and vβ are not equal with necessity. Since this contradicts the
conditions of the lemma, the indicated looped sequence does not exist.
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We now consider a set of cycles ⌧1 gathered according to the following algorithm: First, we include the cycle
c1 = c(βb). Then we add all cycles c(γb) for which γ 6= ↵ and the element γe belongs to one of the cycles that
have been already added to ⌧1. In fact, the set ⌧1 is formed by cycles of the form c(βkb) for every existing finite
sequence of labels β1 = β,β2, . . . ,βk, k ≥ 1, distinct from ↵ and such that βi+1e 2 c(βib) for all 1  i < k.

The cycle c0 does not belong to the set ⌧1 according to the result obtained in the previous paragraph.
Consider the set A0 ⇢ A of all labels γ 6= ↵ such that γe 2 ⌧1 (as earlier, this somewhat incorrect notation

means that a given element belongs to a cycle from the set ⌧1 ). According to our construction, we have γb 2 ⌧1
for all γ 2 A0 . Since c0 does not belong to the set ⌧1, we have βe 62 ⌧1 and ↵b 62 ⌧1. If ↵e 62 ⌧1, then the set
of labels of all ending elements of cycles from the set ⌧1 is A0, while the set of labels of all beginning elements
of these cycles includes the set A0 and contains (at least) one more label β 62 A0, which contradicts Proposition 1
for a positive scheme. Hence, ↵e 2 ⌧1 and the set of labels of all ending elements of cycles from the set ⌧1
is A0[{↵}, while the set of labels of all beginning elements of these cycles contains the set A0[{β} and, in fact,
coincides with this set due to Proposition 1 and the equality of lengths v↵ and vβ .

Hence, we can see that, in the case where ↵ 6= β, the interval exchange scheme σ is splittable (at the cycle c0
with sub-alphabets A1 = A0 [ {↵,β} and A2 = A\A1 ) and, hence, it is not rotational.

Lemma is proved.

5.6. Realization of the Algorithm. Consider a given floating rotational interval exchange (σ,v) and the
rotational interval exchange scheme σ⇤ dual to σ. If this scheme contains two-element cycles, then the appropriate
operations of merging intervals are applied to (σ,v) . As a result of these operations, the dual scheme σ⇤ does
not contain two-element cycles any longer. If the scheme σ⇤ contains more than one cycle, then we choose one
of these cycles arbitrarily and consecutively apply to this cycle elementary steps of induction of the form ⇧lb

↵β

or ⇧le
↵β , where ↵ and β are the leftmost labels in the two-row notation of this cycle

c0 =


↵ . . .

β . . .

�
,

the top and bottom, respectively (i.e., σ⇤(βe) = ↵b), until this cycle would become two-element. In this process,
the interval exchange (σ,v) is transformed under the action of reverse induction steps, (⇧re

↵β)
−1 or (⇧le

β↵)
−1, ac-

cording to Theorem 1 in [1]. It is also necessary to check that the scheme σ⇤ remains an interval exchange scheme
(i.e., in the analyzed case, simply remains positive). Indeed, according to Proposition 3, it remains rotational in
this case and, hence, the interval exchange (σ,v) also remains rotational under the corresponding transformations.
We now describe the choice, in each case, of one of two steps, ⇧lb

↵β or ⇧le
↵β , applied to the dual scheme σ⇤ (note

that the labels ↵ and β vary according to the changes in the transformed cycle c0 ; we do not want to make our no-
tation too complicated and preserve the notation (σ,v), σ⇤, c0, ↵, and β for the objects that are actually variable
in the course of operation of the algorithm). We immediately note that ↵ 6= β; otherwise, σ⇤ is not rotational.

The following four situations are now possible:

Situation 1: ↵e 62 c0 and βb 62 c0. If this is a two-element cycle, then we merge the corresponding intervals
in (σ,v), remove this cycle, and pass to the next cycle. If this is not true, then, by Lemma 2, there exists a positive
vector of lengths w allowed by the scheme σ⇤ and such that w↵ 6= wβ . If w↵ > wβ , then we apply the step
⇧lb

↵β to σ⇤. At the same time, if w↵ < wβ , then we apply the step ⇧le
↵β . This leaves the scheme σ⇤ positive and,

therefore, rotational, thus decreasing the number of elements in the cycle c0 ; in the first case, the element βe is
moved to the cycle containing ↵e; in the second case, the element ↵b is moved to the cycle containing βb.

Situation 2: ↵e 62 c0 and βb 2 c0. We choose any positive vector of lengths w allowed by the scheme σ⇤.

Since the length wβ appears in exactly one equality (3) written for (σ⇤,w) both from the left and from the right,
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there are no restrictions imposed on this length and, therefore, it can be replaced by any positive number smaller
than w↵ (e.g., by setting wβ = w↵/2). Thus, there exists a positive vector of lengths w allowed by the scheme σ⇤

in which w↵ > wβ . We now apply the step ⇧lb
↵β to σ⇤. This leaves the scheme σ⇤ positive and, hence, rotational,

and move the element βe from the cycle c0 to the cycle that contains ↵e.

Situation 3: ↵e 2 c0 and βb 62 c0. This situation is similar to Situation 2 but it is now allowed to arbitrarily
change the length w↵ in the positive vector of lengths w allowed by the scheme σ⇤. In particular, there exists
a vector satisfying the inequality w↵ < wβ . Therefore, the application of the step ⇧le

↵β leaves the scheme σ⇤

positive and, therefore, rotational, and moves the element ↵b from the cycle c0 to the cycle containing βb.

Situation 4: ↵e 2 c0 and βb 2 c0. Consider a cycle c0 in the two-row notation. Assume that there are
m ≥ 1 labels in the bottom row to the left of ↵ and n ≥ 1 labels in the top row to the left of β, i.e.,

c0 =

"
↵1 ↵2 . . . ↵n β . . .

β1 β2 . . . βm ↵ . . .

#
, ↵1 = ↵, β1 = β.

As in Situations 2 and 3, the lengths w↵ and wβ in the positive vector of lengths w allowed by the scheme σ⇤

can be chosen arbitrarily and, hence, the application of any of the two steps ⇧lb
↵β or ⇧le

↵β leaves the scheme σ⇤

rotational. However, in this case, the number of elements in the cycle c0 does not decrease. At the same time,
if we apply ⇧lb

↵β (or ⇧le
↵β ), then the labels appearing in the bottom row to the left of ↵e (in the top row to the left

of βb) are cyclically rearranged:

⇧lb
↵β1

:

"
↵ . . . . . .

β1 β2 . . . βm ↵ . . .

#
7!

"
↵ . . . . . .

β2 . . . βm β1 ↵ . . .

#
,

⇧le
↵1β :

"
↵1 ↵2 . . . ↵n β . . .

β . . . . . .

#
7!

"
↵2 . . . ↵n ↵1 β . . .

β . . . . . .

#
.

If among the labels βi, 1 < i  m, there is a label such that βib 62 c0, then we consecutively apply the
induction steps ⇧lb

↵β1
, . . . ,⇧lb

↵βi−1
and arrive at Situation 3. Similarly, if among the labels ↵j , 1 < j  n,

there is a label such that ↵je 62 c0, then we consecutively apply the induction steps ⇧le
↵1β

, . . . ,⇧le
↵j−1β

and arrive
at Situation 2. In both cases, the next step decreases the number of elements in the cycle c0 . We now assume
that all elements ↵1e, . . . ,↵ne and all elements β1b, . . . ,βmb belong to the cycle c0. The sets {↵2, . . . ,↵n} and
{β2, . . . ,βm} cannot coincide because, in this case, the scheme σ⇤ would be either splittable (by the cycle c0 )
with subalphabets A1 = {↵2, . . . ,↵n,↵,β} and A2 = A\A1 and, hence, not rotational according to Lemma 1
or reducible (if c0 does not contain elements not included in A1 ⇥ {b, e}). Since the scheme σ⇤ is rotational and
irreducible, at least one of the sets {β2, . . . ,βm}\{↵2, . . . ,↵n} and {↵2, . . . ,↵n}\{β2, . . . ,βm} is nonempty.
If the first of these sets is nonempty, i.e., there exists βi 62 {↵2, . . . ,↵n}, 1 < i  m, then we consecutively apply
the steps ⇧lb

↵β1
, . . . ,⇧lb

↵βi−1
and finally arrive at Situation 4 with elevated n (in this case, this is the number of

labels in the top row to the left of βi, which is larger than the former n because βi is located to the right of β ).
If the set {β2, . . . ,βm}\{↵2, . . . ,↵n} is empty, then the set {↵2, . . . ,↵n}\{β2, . . . ,βm} is nonempty and we
arrive, in a similar way at Situation 4, but this time with elevated m. Since n and m are bounded, this process
cannot be continued infinitely and, therefore, we eventually necessarily arrive at Situations 2 or 3.

In all cases, summarizing the outlined algorithm of actions for a chosen cycle c0 containing more than two
elements, we reduce the number of its elements by one after finitely many induction steps. Hence, if we continue
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to apply the algorithm to the chosen cycle, then we eventually transform it into a two-element cycle. After this,
we apply the operation of merging the corresponding intervals to the interval exchange (σ,v) and get a new
scheme σ⇤ with the number of cycles smaller than for the previous scheme by one.

If we continue to choose cycles in σ⇤ and apply the described algorithm to these cycles, then we successively
get rid of them (one by one) and stop when only one cycle remains in the scheme σ⇤ . According to our construction,
the resulting interval exchange (obtained as a result of consecutive application of the corresponding reverse steps
of induction and operations of merging intervals to (σ,v)) is rotational and, as a dynamical system, the original
interval exchange is the first return map to the corresponding segments for the resulting interval exchange.

5.7. Canonical Form of the Rotational Interval Exchange. Hence, we reach the situation in which the dual
scheme σ⇤ consists of a single cycle. A specific property of interval exchange with a scheme of this kind is that
among all its endpoints there is only one of type L and only one of type R (see their classification in Subsection 4.2),
whereas all remaining endpoints are either of type MB or of type ME. Hence, for the interval exchange (σ,v),

the set of all its endpoints contains only one endpoint of type MB and only one endpoint of type ME, while all
other endpoints are of type L or of type R. This means that we have only one site with σ(↵b) = βb and only one
site with σ(γe) = δe, ↵,β, γ, δ 2 A (among these four labels, the only possible equalities are ↵ = γ or β = δ;

any other equality is impossible because the schemes σ and σ⇤ are positive); at all other sites, an ending element
is followed by a beginning element, and a beginning element is followed by an ending element.

There are two possible cases: If ↵b and γe belong to two different cycles in the permutation σ, then these

cycles have the form

↵ β



�
and


λ

δ γ

�
, λ, 2 A (the equality λ =  is possible), and all remaining cycles

are two-element. In the opposite case, we have a cycle

↵ β

δ γ

�
, and all other cycles are two-element.

In view of relations (3), we can easily see that the positivity of the schemes σ and σ⇤ takes place only if the
set of all two-element cycles in σ (in the first case) can be split into the following three finite sequences:

"
↵i+1

↵i

#
, 1  i < m, where ↵1 = ↵, ↵m = γ, m ≥ 1,

"
βj+1

βj

#
, 1  j < n, where β1 = β, βn = δ, n ≥ 1,

"
λk+1

λk

#
, 1  k < s, where λ1 = λ, λs = , s ≥ 1

(any of these sequences can be empty). In the second case, we have only the first two sequences. A single cycle
in the dual scheme σ⇤ can be written as

"
β1 . . . βn λ1 . . . λs ↵1 . . . ↵m

↵1 . . . ↵m λ1 . . . λs β1 . . . βn

#

in the first case or as
"
β1 . . . βn ↵1 . . . ↵m

↵1 . . . ↵m β1 . . . βn

#

in the second case.
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Equalities (3) imply, in particular, that v↵ = vγ and vβ = vδ in both cases and yield an additional relation
vλ = v = v↵ + vβ in the first case.

The first case
⇣
i.e., the case where a single cycle in σ⇤ has the form


β1 . . . βn λ1 . . . λs ↵1 . . . ↵m

↵1 . . . ↵m λ1 . . . λs β1 . . . βn

�

with s ≥ 1
⌘
, is reduced to the second case by consecutive application of the induction steps ⇧le

β1↵1
, . . . ,⇧le

βn↵1

to σ⇤. As in Situation 4 from the previous section, the labels to the left of ↵1 in the top row are cyclically rearranged
(in this case, the scheme remains positive and, therefore, rotational, due to the absence of restrictions imposed on
lengths) and, finally, form a sequence λ1, . . . ,λs,β1, . . . ,βn, which coincides with the sequence in the top row to
the right of ↵m.

Hence, in all cases, we finally get at a situation in which the rotational scheme σ takes the canonical form

σcan =

("
↵1 β1

βn ↵m

#
;

"
↵i+1

↵i

#
, 1  i < m;

"
βj+1

βj

#
, 1  j < n

)
(7)

for a certain set of pairwise different labels ↵1, . . . ,↵m,β1, . . . ,βn and certain positive integers m and n. Taken
together with an allowed positive vector of lengths v = vcan, the rotational scheme in the canonical form consti-
tutes a rotational interval exchange (σcan,vcan) in the canonical form. The components of the vector of lengths
satisfy the relations v↵1 = . . . = v↵m and vβ1 = . . . = vβm . We denote these two lengths simply by v↵ and vβ ,

respectively (it is not impossible for them to be equal).
Thus, in the last two sections, we have, in fact, presented a constructive proof of the following proposition:

Proposition 5. Any irreducible rotational interval exchange can be transformed into the canonical form by
the consecutive application of finitely many reverse elementary steps of induction and operations of merging in-
tervals. Moreover, at each step of this process, the transformed IRE remains an irreducible rotational interval
exchange.

Remark 4. As follows from the presented algorithm, in order to transform a rotational interval exchange
into the canonical form it is, in fact, sufficient to restrict ourselves to the use only of reverse elementary steps of
induction of two types, namely (⇧le

↵β)
−1 and (⇧re

↵β)
−1. Similarly, it would be sufficient to apply only the other

two types of reverse elementary steps of induction, namely, (⇧lb
↵β)

−1 and (⇧rb
↵β)

−1. According to Theorem 1
in [1], in the application to the dual rotational scheme, the indicated two reverse steps correspond to the elementary
induction steps ⇧re

↵β and ⇧rb
β↵ , respectively.

5.8. Construction on a Circle. For the rotational interval exchange (σcan,vcan) in the canonical form (7)
obtained from the original rotational interval exchange (σ,v), we take sufficiently large integers k1 and k2 and
construct a circle rotation RL,M with M = vβ +k2v↵ and L = v↵+k1M. This circle rotation is considered in its
projection onto the segment [−v↵, k1M) according to (6) with x0 = −v↵, i.e, as the map

RL,M : x 7!

8
<

:
x+M, x 2 [−v↵, (k1 − 1)M),

x+M − L, x 2 [(k1 − 1)M,k1M).

We now mark on [−v↵, k1M) the points ai = Ri
L,M (0), 0  i < q, of a trajectory segment of length

q = 1 + k1 + k2k1 starting from the point a0 = 0 under the action of RL,M . It is easy to see that the indicated
1 + k1 + k2k1 points are ordered as follows (from left to right): ak1 = −v↵, a0 = 0, then we place the array
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of k2 + 1 points ak2k1+1 = vβ , a(k2−1)k1+1 = vβ + v↵, . . . , ak1+1 = vβ + (k2 − 1)v↵, a1 = M and then,
consecutively, k1−1 more arrays of this kind shifted by 1  j < k1 rotations RL,M , i.e., the arrays of k2+1 points
ak2k1+1+j = vβ+jM, a(k2−1)k1+1+j = vβ+v↵+jM, . . . , ak1+1+j = vβ+(k2−1)v↵+jM, a1+j = (1+j)M,

where the last point a1+(k1−1) = k1M in the last array (for j = k1 − 1) is the right endpoint of the segment
[−v↵, k1M) whose projection coincides with its left endpoint ak1 = −v↵ already included in the list. We also
note that aq = Rq

L,M (0) = vβ − v↵.

In view of this order and the equalities ak1 = −v↵, a0 = 0, and ak2k1+1 = vβ , it is easy to see that the points
ai, 0  i < q, split the circle [−v↵, k1M) into k1 arcs of length vβ , namely, the arcs Ri

L,M [0, vβ), 0  i < k1,

and k2k1+1 arcs of length v↵, namely, the arcs Ri
L,M [−v↵, 0), 0  i < k2k1+1. Any two of these 1+k1+k2k1

arcs do not overlap, and their union covers the entire circle. Moreover, the arcs

Rk1
L,M [0, vβ) = [ak1 , aq) = [−v↵, vβ − v↵)

and

Rk2k1+1
L,M [−v↵, 0) = [aq, ak2k1+1) = [vβ − v↵, vβ)

also do not overlap and there union is the arc [−v↵, vβ), which is also the union of the arcs [0, vβ) and [−v↵, 0).

Having in mind this construction realized on the circle, we select an arc [−v↵, vβ), any m − 1 arcs among
Ri

L,M [−v↵, 0), 0  i < k2k1 + 1, and any n− 1 arcs among Ri
L,M [0, vβ), 0  i < k1, in such a way that there

are no pairs of selected arcs touching by their endpoints (this is, clearly, possible if k1 and k2 are sufficiently large).
According to our construction, the dynamical system determined by the first return map for the circle rotation RL,M

to the chosen union of n +m − 1 arcs is identical to the dynamical system of the rotational interval exchange in
the canonical form (σcan,vcan). Since the indicated interval exchange in the canonical form is obtained by the
consecutive application of reverse induction steps and operations of merging intervals to the original rotational
interval exchange (σ,v), the dynamical system of this interval exchange is, in turn, determined by the first return
map to a certain finite union of segments in the phase space of the dynamical system (σcan,vcan). If we choose
a union of arcs on the circle corresponding to the indicated union of segments, then we get a finite union of arcs
such that the first return map to this union for the circle rotation RL,M is shift equivalent to the original irreducible
rotational interval exchange (σ,x).

Statement 2 of Theorem 1 is thus proved.

6. Proof of Statement 3 of Theorem 1

In the third part of Theorem, we formulate a criterion for an interval exchange scheme to be rotational in terms
of the first return map to the union of arcs for an irrational circle rotation. In fact, this statement almost follows
from the first two statements of the theorem, which have been already proved. Indeed, the first statement implies
that if the indicated first return map exists, then the corresponding irreducible IRE scheme is rotational. The sec-
ond statement implies that, for an irreducible rotational scheme there exists a first return map with this scheme.
Actually, it remains to show that, for an irreducible rotational scheme, there exists the required first return map just
for the irrational circle rotation. To do this, we return to the algorithm of transformation of a rotational interval
exchange to the canonical form used in the previous section.

Thus, we assume that an irreducible rotational interval exchange scheme σ is given. To this scheme, we add
an arbitrary allowed vector of lengths v and obtain a rotational interval exchange (σ,v). It is transformed into
the canonical form (σcan,vcan) according to Proposition 5. In Section 5.8, it is shown that the canonical interval
exchange with lengths v↵ and vβ is the first return map for the circle rotation RL,M with M = vβ + k2v↵ and
L = v↵ + k1M for certain positive integers k1 and k2. The rotation number of this circle rotation ⇢ = M/L =

1/(k1 + 1/(k2 + ⇢0)), where ⇢0 = vβ/v↵, is either rational, or irrational, depending on rationality or irrationality
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of the number ⇢0. Hence, if the lengths v↵ and vβ are incommensurable, then the required irrational circle rotation
is already constructed.

Assume that the lengths v↵ and vβ are commensurable, i.e., that ⇢0 = vβ/v↵ 2 Q. In this case, we simply
change these lengths by adding small perturbations guaranteeing that they are no longer commensurable, e.g., by re-
placing the lengths vβ with v0β = vβ+", where 0 < " ⌧ 1, "/vβ 62 Q. Further, we realize the entire algorithm of
transformation into the canonical form, but in the opposite direction. The interval exchange (σcan,vcan) was ob-
tained from (σ,v) by applying finitely many reverse steps of induction and operations of merging intervals. Thus,
moving backward, we consecutively apply the corresponding direct induction steps and operations of splitting the
intervals (into specified parts). Clearly, each of these operations is robust in a sense that, after its application, small
perturbations of the real components (lengths) of an interval exchange remain small and, therefore, discrete com-
ponents (schemes) remain unchanged. Hence, starting from the perturbed (as indicated above) canonical interval
exchange (σcan,v0

can) and applying the algorithm of transformation in the opposite direction, we obtain a perturbed
interval exchange (σ,v0) with the same scheme σ specified at the beginning, and this perturbed interval exchange
is actually the first return map for the irrational circle rotation with rotation number ⇢0 = 1/(k1 + 1/(k2 + ⇢00)),

where ⇢00 = (vβ + ")/v↵ 62 Q.

Statement 3 of Theorem 1 is proved.
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