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ON THE ASYMPTOTICS OF SOLUTIONS OF STOCHASTIC DIFFERENTIAL
EQUATIONS WITH JUMPS

Viktor Yuskovych UDC 519.21

Consider a one-dimensional stochastic differential equation with jumps

dX(t) = a(X(t))dt+
mX

k=1

bk(X(t−))dZk(t),

where Zk, k 2 {1, 2, . . . ,m}, are independent centered Lévy processes with finite second moments.
We prove that if the coefficient a(x) has a certain power asymptotics as x ! 1 and the coefficients bk,
k 2 {1, 2, . . . ,m}, satisfy certain growth condition, then the solution X(t) has the same asymptotics as
the solution of the ordinary differential equation dx(t) = a(x(t))dt as t ! 1 a.s.

1. Introduction

As a rule, the researchers consider two types of behavior of the solutions of stochastic differential equations
as t ! 1 , namely, tending to infinity and recurrence. In the present paper, we assume that the solution of
a stochastic differential equation tends to infinity and study its exact asymptotics.

For the first time, this problem was considered by Gikhman and Skorokhod in [3] for the one-dimensional
stochastic differential equation

dX(t) = a(X(t))dt+ b(X(t))dW (t), (1)

where W is a one-dimensionalWiener process. In particular, they established sufficient conditions for X(t)!+1
as t ! 1 and X(t) ⇠ x(t) as t ! 1 almost surely, where x is a solution of the ordinary differential equation

dx(t) = a(x(t))dt. (2)

Later, this problem was investigated in [4]. Some types of nonautonomous stochastic differential equations
were studied in [1]. Stochastic differential equations with non-Gaussian noise were investigated in [9, 10].

In the monograph [2], the author studied the problems of tending to infinity and recurrence for the solu-
tions to the system of linear stochastic differential equations and the behavior of the polar angle of solution to
a two-dimensional stochastic differential equation. In [12], the asymptotic behavior of multidimensional stochastic
differential equations was compared with the behavior of linear ordinary differential equations. In [13], we con-
sidered a multidimensional stochastic differential equation of the form (1) and studied the behavior of its solution
as t ! 1 a.s., namely, the conditions of tending to infinity for the modulus of solution, stabilization of the an-
gle X(t)/|X(t)|, and asymptotics of the modulus of solution. Similar problems for the additive Lévy noise were
studied in [11].
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The problem of asymptotic behavior of the stochastic differential equations with multiplicative Lévy noise was
not investigated in the literature. In the present paper, we consider a stochastic differential equation with jumps of
the form

dX(t) = a(X(t))dt+
mX

k=1

bk(X(t−))dZk(t),

where Zk, k 2 {1, 2, . . . ,m}, are independent centered Lévy processes with finite second moment. We prove
that if the coefficient a(t) has a certain power asymptotics as t ! 1 and the coefficients bk, k 2 {1, 2, . . . ,m},
satisfy certain growth conditions, then the solution X(t) a.s. has the same asymptotics as t ! 1 as the solution
of the ordinary differential equation (2).

The present paper is organized as follows: In Sec. 2, we prove lemmas on the asymptotic behavior of stochastic
integrals with respect to a Wiener process and with respect to a compensated Poisson measure. In Sec. 3, we es-
tablish two main results on the asymptotic behavior of solutions to stochastic differential equations with jumps,
namely, Theorem 1 in which the drift coefficient is equivalent to a positive constant and Theorem 3 in which the
drift coefficient is equivalent to a positive power function. In both theorems, certain conditions are imposed on
the growth rate of the characteristics of noise. In Sec. 4, we prove the lemma required for the proof of the theorems
presented in Sec. 3.

2. Asymptotics of Stochastic Integrals

In the present section, we obtain some additional results on the asymptotics of stochastic integrals with variable
upper bound t as t ! 1.

Let (⌦,F ,P) be a probability space with filtration F = (Ft)t≥0 , let W = W (t) be an F-Wiener pro-
cess, and let N = N(dt, du) be an F-Poisson random measure on1 R+ ⇥ R independent of W with intensity
measure dt · ⌫(du), where the measure ⌫ is such that

Z

R

u
2
⌫(du) < 1 and Ñ = Ñ(dt, du) := N(dt, du)− dt · ⌫(du).

Lemma 1. Suppose that M = M(t) is a square-integrable martingale. If EM2(t) = O (tγ) as t ! 1
for some γ < 2, then

M(t)

t
! 0 as t ! 1 a.s.

Proof. It follows from the condition that there exists T ≥ 0 such that

EM2(t)  Ct
γ
, t ≥ T,

where C ≥ 0. Let " > 0 and let k 2 N be such that 2k+1 ≥ T. We estimate the probability

P

(
sup

2kt2k+1

����
M(t)

t

���� ≥ "

)
 P

(
sup

2kt2k+1

|M(t)|
2k

≥ "

)

1 R+ denotes the set of nonnegative real numbers.
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 P

(
sup

t2k+1

|M(t)| ≥ "2k

)

 EM2(2k+1)

("2k)
2 

C
�
2k+1

�γ

"222k
=

C2γ

"2

�
2γ−2

�k (by the Doob inequality).

For n 2 N such that 2n+1 ≥ T, we have

P
⇢
lim sup
t!1

����
M(t)

t

���� ≥ "

�
 P

⇢
sup
t≥2n

����
M(t)

t

���� ≥ "

�


1X

k=n

P

(
sup

2kt2k+1

����
M(t)

t

���� ≥ "

)

 C2γ

"2

1X

k=n

�
2γ−2

�k
.

The last series converges to 0 as n ! 1 (because γ − 2 < 0). Therefore, the probability at the beginning of the
chain of inequalities is equal to 0. Since " > 0 is arbitrary, we find

P
⇢
lim sup
t!1

����
M(t)

t

���� > 0

�
= 0 =) P

⇢
lim sup
t!1

����
M(t)

t

���� = 0

�
= 1

=) P
⇢
lim
t!1

����
M(t)

t

���� = 0

�
= 1

=) P
⇢
lim
t!1

M(t)

t
= 0

�
= 1.

Q.E.D.

Corollary 1. Let a progressively measurable random process b = b(t) be such that

Eb2(t)  C(1 + t
2β), t ≥ 0,

for some C ≥ 0 and 0  β <
1

2
. Then

1

t

tZ

0

b(s)dW (s) ! 0 as t ! 1, almost surely.

Proof. We set

M(t) =

tZ

0

b(s)dW (s).
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Then

EM2(t) = E
tZ

0

b
2(s)ds (by the Itô isometry)

=

tZ

0

Eb2(s)ds 
tZ

0

C(1 + s
2β)ds = O(t2β+1), t ! 1 (by the Fubini theorem).

By using Lemma 1, we complete the proof.
By P we denote a sigma algebra generated by random fields of the form

c(t, u) = ⇣0It=0,u2U0 +

nX

k=1

⇣kIt2(tk−1,tk],u2Uk
,

where n 2 N, ⇣0 is an F0 -measurable random variable, ⇣k is an Ftk−1
-measurable random variable, k 2

{1, 2, . . . , n}, Uk 2 B(R), k 2 {0, 1, 2, . . . , n}, and 0 = t0 < t1 < . . . < tn = 1.

Corollary 2. Let a P -measurable random field c = c(t, u) be such that

E
Z

R

c
2(t, u)⌫(du)  C(1 + t

2β), t ≥ 0,

for some C ≥ 0 and 0  β <
1

2
. Then

1

t

tZ

0

Z

R

c(s, u)Ñ(ds, du) ! 0 as t ! 1, almost surely.

Proof. We set

M(t) =

tZ

0

Z

R

c(s, u)Ñ(ds, du).

Then

EM2(t) = E
tZ

0

Z

R

c
2(s, u)⌫(du)ds (by the Itô isometry)

=

tZ

0

E
Z

R

c
2(s, u)⌫(du)ds (by the Fubini theorem)


tZ

0

C(1 + s
2β)ds = O(t2β+1), t ! 1.

By using Lemma 1, we complete the proof.
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3. Asymptotics of the Solutions to Stochastic Equations

Let Wk, k 2 {1, 2, . . . ,m}, be a Wiener process and let Ñk be a compensated Poisson measure with com-
pensator dt · ⌫k(du), where the measure ⌫k is such that

Z

R

u
2
⌫k(du) < 1, k 2 {1, 2, . . . , l}.

In addition, W1,W2, . . . ,Wm and Ñ1, Ñ2, . . . , Ñl are independent.
The next theorem establishes the equivalence of solutions of stochastic and ordinary differential equations in

the case where the drift coefficient has a positive limit as t ! 1 and the characteristics of noise are not increasing
very rapidly. This theorem is an important result, which is used in what follows (see Theorem 3) to establish the
power-type character of growth of the solutions to stochastic differential equations with coefficients increasing
according to the power law.

Theorem 1. Suppose that a = a(t) and bk = bk(t), k 2 {1, 2, . . . ,m}, are progressively measurable2 ran-
dom processes, ck = ck(t, u), k 2 {1, 2, . . . , l}, are P -measurable random fields, and an F-adapted càdlàg

3

random process X = X(t) has a stochastic differential

dX(t) = a(t)dt+

mX

k=1

bk(t)dWk(t) +
lX

k=1

Z

R

ck(t, u)Ñk(dt, du).

Moreover, EX2(0) < 1. Assume that:

(A) the random process a is bounded and a(t) ! A, t ! 1, a.s., where A > 0 is a random variable;

(B) for some C ≥ 0 and 0  β <
1

2
,

mX

k=1

b
2
k(t) +

lX

k=1

Z

R

c
2
k(t, u)⌫k(du)  C(1 + |X(t−)|2β), t ≥ 0. (3)

Then X(t) ⇠ At, t ! 1, a.s.

Proof. We rewrite the process X in the integral form:

X(t) = X(0) +

tZ

0

a(s)ds+
mX

k=1

tZ

0

bk(s)dWk(s) +
lX

k=1

tZ

0

Z

R

ck(s, u)Ñk(ds, du).

Step 1. We first verify that EX2(t)  C̃(1 + t
2), t ≥ 0, for some C̃ > 0. By analogy with Lemma 3.3.2

in [6], we can show that condition (3) implies that

sup
0tT

EX2(t) < 1, T ≥ 0.

2 A random process a = a(t) is called progressively measurable if, for any t ≥ 0, the restriction of the map a to the set [0, t] ⇥ ⌦ is
measurable with respect to the sigma algebra B([0, t])⌦ Ft.
3 We say that a random process is càdlàg if its trajectories are right continuous and have left limits with probability 1.
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By the Cauchy–Schwarz inequality, we obtain

1

4
EX2(t)  EX2(0) + E

0

@
tZ

0

a(s)ds

1

A
2

+ E

2

64

0

@
mX

k=1

tZ

0

bk(s)dWk(s)

1

A
2

+

0

@
lX

k=1

tZ

0

Z

R

ck(s, u)Ñk(ds, du)

1

A
2
3

75

=: E1 + E2(t) + E3(t).

We now estimate the terms on the right-hand side:

E1 = EX2(0) < 1 by assumption,

E2(t) = E

0

@
tZ

0

a(s)ds

1

A
2

 C1t
2 for some C1 ≥ 0 because a is bounded,

E3(t) = E

2

64

0

@
mX

k=1

tZ

0

bk(s)dWk(s)

1

A
2

+

0

@
lX

k=1

tZ

0

Z

R

c
2
k(s, u)Ñk(ds, du)

1

A
2
3

75

(becauseWi, andWj and independent and Ñi and Ñj are independent for i 6= j)

= E

2

64
mX

k=1

0

@
tZ

0

bk(s)dWk(s)

1

A
2

+

lX

k=1

0

@
tZ

0

Z

R

c
2
k(s, u)Ñk(ds, du)

1

A
2
3

75

= E

2

4
mX

k=1

tZ

0

b
2
k(s)ds+

lX

k=1

tZ

0

Z

R

c
2
k(s, u)⌫(du)ds

3

5 (by the Itô isometry)

 CE
tZ

0

⇣
1 + |X(s−)|2β

⌘
ds (by condition (B))

=

tZ

0

E
⇣
C(1 + |X(s−)|2β)ds

⌘
(by the Fubini theorem)

 C

0

@t+

tZ

0

�
EX2(s−)

�β
ds

1

A (by the Jensen inequality).
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As a result, we arrive at the estimate

EX2(t)  C2(1 + t
2) + C

tZ

0

�
EX2(s−)

�β
ds,

where4 C2 := C1 ^EX2(0). By using the Wendroff inequality (see Theorem 7.3 in [8]), which is a generalization
of the Grönwall inequality, we get

EX2(t)  C3

⇣
(1− β)t+ (1 + t

2)1−β
⌘ 1

1−β
,

where C3 := (C2 ^ C)
1

1−β . This yields

EX2(t)  C̃(1 + t
2), t ≥ 0,

where C̃ ≥ 0.

Step 2. We now determine the asymptotics of the solution X(t) as t ! 1. We divide the stochastic differen-
tial equation by t > 0. This yields :

X(t)

t
=

X(0)

t
+

1

t

tZ

0

a(s)ds

+

mX

k=1

1

t

tZ

0

bk(s)dWk(s) +
lX

k=1

1

t

tZ

0

Z

R

ck(s, u)Ñk(ds, du)

=: T1(t) + T2(t) + T3(t) + T4(t).

It is necessary to study the convergence of the terms on the right-hand side as t ! 1. Thus, we have

T1(t) =
X(0)

t
! 0, t ! 1.

Under the conditions of the theorem, we obtain

lim
t!1

T2(t) = lim
t!1

1

t

tZ

0

a(s)ds = lim
t!1

a(t) = A almost surely.

To estimate the term T3, we note that

Eb2k(t)  E
⇣
C(1 + |X(t−)|2β)

⌘
= C

⇣
1 + E

�
X

2(t−)
�β⌘

4^ and _ stand for the operations of taking minimum and maximum, respectively.
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 C

⇣
1 +

�
EX2(t−)

�β⌘ (by the Jensen inequality)

 C

✓
1 +

⇣
C̃(1 + t

2)
⌘β◆

 C4(1 + t
2β), k 2 {1, 2, . . . ,m},

where C4 ≥ 0. By Corollary 1, we find

T3(t) =

mX

k=1

1

t

tZ

0

bk(s)dWk(s) ! 0, t ! 1, almost surely.

By analogy with the previous case, we get

E
Z

R

c
2
k(t, u)⌫k(du)  C4(1 + t

2β), k 2 {1, 2, . . . , l}.

Hence, by Corollary 2, we obtain

T4(t) =

lX

k=1

1

t

tZ

0

Z

R

ck(s, u)Ñk(ds, du) ! 0, t ! 1, almost surely.

By using the established convergences, we arrive at the statement of the theorem.

Replacing condition (A) in the previous theorem by the condition

(A 0 ) A−  a(t)  A+, t ≥ 0, where A− > 0 and A+ > 0 are random variables,

we can prove the following statement:

Theorem 2. Suppose that conditions (A
0
) and (B) are satisfied. Then

lim inf
t!1

a(t)  lim inf
t!1

X(t)

t
 lim sup

t!1

X(t)

t
 lim sup

t!1
a(t) a.s.

In what follows, we need the following lemma, which is proved in the Appendix (Section 4):

Lemma 2. Let ↵ 2 (0, 1), let f = f(x) be a twice continuously differentiable function such that

f(x) =

8
><

>:

0, x  0,

x
1−↵

1− ↵
, x ≥ 1,

and, in addition,

f(x)  x
1−↵

1− ↵
, 0 < x < 1;
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let c = c(x) be a measurable function such that, for some C ≥ 0 and β 2

0,

1 + ↵

2

◆
,

c
2(x)  C

⇣
1 + |x|2β

⌘
, x 2 R,

and let ⌫ = ⌫(du) be the measure on B(R) such that

Z

R

u
2
⌫(du) < 1.

Then:

(A)

Z

R

�
f(x+ c(x)u)− f(x)− f

0(x)c(x)u
�
⌫(du) ! 0, x ! +1;

(B)

Z

R

�
f(x+ c(x)u)− f(x)

�2
⌫(du)  Cx

2(β−↵)
, x ≥ 1, where C ≥ 0 is a constant.

The following theorem is the main result of the present paper:

Theorem 3. Suppose that X is a certain (not necessarily unique) solution of the stochastic differential equa-

tion

dX(t) = a(X(t))dt+

qX

k=1

hk(X(t−))dZk(t), (4)

where a = a(x) and hk = hk(x), k 2 {1, 2, . . . , q}, are locally bounded measurable functions, Zk = Zk(t),

k 2 {1, 2, . . . , q}, are independent centered Lévy processes with finite second moment, and EX2(0) < 1. Also

let ↵ 2 [0, 1). Assume that:

(A) a(x) ⇠ Ax
↵
, x ! +1, where A > 0 is a nonrandom constant;

(B) for some C ≥ 0 and 2β 2 [0, 1 + ↵),

qX

k=1

h
2
k(x)  C

⇣
1 + |x|2β

⌘
, x 2 R; (5)

(C) X(t) ! +1, t ! 1, a.s.

Then

X(t) ⇠ ((1− ↵)At)
1

1−↵ , t ! 1, a.s. (6)

Remark. Condition (C) also appears in the works [3, 5]; it is essential and does not follow from conditions (A)
and (B). It is possible to prove that condition (C) is satisfied, e.g., under the following conditions:

the coefficients a and hk, k 2 {1, 2, . . . , q}, satisfy the Lipschitz condition;

lim|x|!1
a(x)

|x|↵ > 0;
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for some k 2 {1, 2, . . . , q}, the following conditions are satisfied:

inf |x|R |hk(x)| > 0 for any R > 0,

Zk(t), t ≥ 0, has a nondegenerate Gaussian component or positive jumps with probability 1.

Proof. The validity of the theorem for ↵ = 0 follows from Theorem 1. Further, we assume that ↵ 2 (0, 1).

In view of the fact that the processes Zk, k 2 {1, 2, . . . , q}, are centered and have a finite second moment,
by the Lévy–Itô representation, we get

dZk(t) = σkdWk(t) +

Z

R

uÑk(dt, du), k 2 {1, 2, . . . , q},

where σk ≥ 0, Wk is a Wiener process, Ñk is a compensated Poisson measure with compensator dt · ⌫k(du),
the measure ⌫k is such that

Z

R

u
2
⌫k(du) < 1, k 2 {1, 2, . . . , q},

and, in addition, W1,W2, . . . ,Wq and Ñ1, Ñ2, . . . , Ñq are independent. Hence, the stochastic differential equa-
tion (4) can be rewritten in the form

dX(t) = a(X(t))dt+

mX

k=1

σkhk(X(t))dWk(t) +
lX

k=1

Z

R

hk(X(t−))uÑk(dt, du).

To simplify notation, we consider the case m = l = 1 (the general case is studied similarly) and denote

b := σ1h1, c := h1, W := W1, Ñ := Ñ1, and ⌫ := ⌫1.

Further, we consider an equation

dX(t) = a(X(t))dt+ b(X(t))dW (t) +

Z

R

c(X(t−))uÑ(dt, du).

Note that condition (5) yields the estimate

b
2(x) + c

2(x)  C0(1 + |x|2β), x 2 R,

where C0 ≥ 0 is a constant.
We take the same function f = f(x) as in Lemma 2. Denote X̃(t) = f(X(t)). By the Itô formula with

jumps (see Theorem 5.1 in [7]), we get

dX̃(t) = ã(t)dt+ b̃(t)dW (t) +

Z

R

c̃(t, u)Ñ(dt, du), (7)
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where

ã(t) = a(X(t−))f 0(X(t−)) +
1

2
b
2(X(t−))f 00(X(t−))

+

Z

R

⇣
f
�
X(t−) + c(X(t−))u

�
− f(X(t−))− c(X(t−))uf 0(X(t−))

⌘
⌫(du)

=: ã1(t) + ã2(t) + ã3(t),

b̃(t) = b(X(t−))f 0(X(t−)), c̃(t, u) = f
�
X(t−) + c(X(t−))u

�
− f(X(t−)).

We now check that the stochastic differential equation (7) satisfies the conditions of Theorem 1.
Note that the coefficient ã is bounded. To investigate its asymptotic behavior, we study the behaviors of the

terms ã1(t), ã2(t), and ã3(t) separately:

lim
t!1

ã1(t) = lim
t!1

a(X(t))f 0(X(t)) = lim
t!1

a(X(t))

X↵(t)
= lim

t!1

AX
↵(t)

X↵(t)
= A a.s.,

lim
t!1

|ã2(t)| = lim
t!1

��b2(X(t))f 00(X(t))
��

 lim
t!1

C1|↵|X2β(t)

X1+↵(t)
 C1 lim

t!1

1

X1+↵−2β(t)
= 0 a.s.

because

1 + ↵− 2β > 0 and X(t) ! 1, t ! 1, a.s.

(here, C1 ≥ 0 is such that b2(X(t))  C1X
2β(t) for X(t) ≥ 1);

lim
t!1

ã3(t) = lim
t!1

Z

R

⇣
f
�
X(t−) + c(X(t−))u

�
− f(X(t−))

− c(X(t−))uf 0(X(t−))
⌘
⌫(du) = 0, t ! 1, a.s.

by Assertion (A) of Lemma 2 because X(t) ! 1, t ! 1, a.s.
Thus, limt!1 ã(t) = A a.s.
We now estimate the coefficient b̃. If X(t−) ≥ 1, then

b̃
2(t) =

�
b(X(t−))f 0(X(t−))

�2
= b

2(X(t−))
�
f
0(X(t−))

�2

 C1X
2β(t−)

X2↵(t−)
 C1X

2(β−↵)(t−) = C1C2X̃
2(β−↵)
1−↵ (t−),

where

C2 := (1− ↵)
2(β−↵)
1−↵ .
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If X(t−) < 1, then b̃
2(t) is uniformly bounded in t by a certain nonrandom constant C3 ≥ 0 because f

0 is
bounded.

Thus,

b
2(t)  C4

⇣
1 + |X̃(t−)|2β̃

⌘
, t ≥ 0,

where

C4 := (C1C2) ^ C3 and β̃ :=
β − ↵

1− ↵
< 1.

We now estimate the coefficient c̃. If X(t−) ≥ 1, then

Z

R

c̃
2(t, u)⌫(du) =

Z

R

�
f
�
X(t−) + c(X(t−))u

�
− f(X(t−))

�2
⌫(du)

 C5X
2(β−↵)(t−) = C2C5X̃

2(β−↵)
1−↵ (t−) (by Assertion (B) of Lemma 2),

where C5 ≥ 0. If X(t−) < 1, then, by the Taylor formula, we get

⇣
f
�
X(t−) + c(X(t−))u

�
− f(X(t−))

⌘2
=
�
f
0(⇠X(t−),u)c(X(t−))u

�2  C6u
2
,

where C6 ≥ 0. Hence,
Z

R
c̃
2(t, u)⌫(du) is bounded

�
here, ⇠x,u 2

⇥
x ^ (x+ c(x)u), x _ (x+ c(x)u)

⇤�
.

Therefore,
Z

R

c̃
2(t, u)⌫(du)  C7

⇣
1 + |X̃(t−)|2β̃

⌘
,

where C7 ≥ 0.

Thus, the coefficients ã, b̃, and c̃ of the stochastic differential equation (7) satisfy the conditions of Theorem 1.
Hence, X̃(t) ⇠ At, t ! 1, a.s. Carrying out the change of variables

X̃(t) =
X

1−↵(t)

1− ↵
, X(t) ≥ 1,

and using condition (C), we establish equivalence (6).
Theorem 3 is proved.

4. Appendix

Proof of Lemma 2. For the sake of simplicity, let C ≥ 0 be a universal constant that may vary from line to
line.

Proof of Assertion (A). Let x ≥ 1. Under the conditions of the lemma, we have c
2(x)  Cx

2β
. We split the

integral as follows:
Z

R

[. . .]⌫(du) =

Z

|u|<Kx1−β

[. . .]⌫(du) +

Z

|u|≥Kx1−β

[. . .]⌫(du),
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where

[. . .] := f(x+ c(x)u)− f(x)− f
0(x)c(x)u

and K > 0 is a constant.
First, let |u| < Kx

1−β
. By the Taylor formula,

f
�
x+ c(x)u

�
− f(x)− f

0(x)c(x)u =
1

2
f
00(⇠x,u)c

2(x)u2,

where ⇠x,u 2
⇥
x ^ (x+ c(x)u), x _ (x+ c(x)u)

⇤
. We have

|⇠x,u − x|  |c(x)u|

=) (⇠x,u − x)2  (c(x)u)2 = c
2(x)u2  Cx

2β
u
2

=) |⇠x,u − x|  Cx
β |u|.

Further, we take K such that

Cx
β |u|  Cx

β
Kx

1−β = CKx  1

2
x, x ≥ 1, |u| < Kx

1−β
.

Therefore,

1

2
x  ⇠x,u  3

2
x.

Thus, we get

Z

|u|<Kx1−β

[. . .]⌫(du) =

Z

|u|<Kx1−β

f
00(⇠x,u)c

2(x)u2⌫(du)

 Cx
2β

Z

|u|<Kx1−β

u
2

⇠
↵+1
x,u

⌫(du)

 Cx
2β

✓
1

2
x

◆−(↵+1) Z

R

u
2
⌫(du)

 C

x1+↵−2β
! 0, x ! +1,

because

1 + ↵− 2β > 0 and
Z

R

u
2
⌫(du) < 1.
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We now consider the integral over the set
�
u 2 R : |u| ≥ Kx

1−β
 
. We split the analyzed integral as follows:

Z

|u|≥Kx1−β

[. . .]⌫(du) =

Z

|u|≥Kx1−β

f (x+ c(x)u) ⌫(du)

− f(x)

Z

|u|≥Kx1−β

⌫(du)− f
0(x)c(x)

Z

|u|≥Kx1−β

u⌫(du)

=: I1(x)− I2(x)− I3(x)

and estimate each term on the right-hand side separately. Note that

f(x)  |x|1−↵

1− ↵
, x 2 R.

Thus, we get

I1(x) =

Z

|u|≥Kx1−β

f (x+ c(x)u) ⌫(du)  1

1− ↵

Z

|u|≥Kx1−β

1 · |x+ c(x)u|1−↵
⌫(du)

(by the Hölder inequality)

 1

1− ↵

0

B@
Z

|u|≥Kx1−β

1
2

1+↵ ⌫(du)

1

CA

1+↵
2
0

B@
Z

|u|≥Kx1−β

⇣
|x+ c(x)u|1−↵

⌘ 2
1−↵

⌫(du)

1

CA

1−↵
2

=
1

1− ↵

0

B@
Z

|u|≥Kx1−β

⌫(du)

1

CA

1+↵
2
0

B@
Z

|u|≥Kx1−β

(x+ c(x)u)2 ⌫(du)

1

CA

1−↵
2

.

We now estimate each integral as follows:

Z

|u|≥Kx1−β

⌫(du) =

Z

u2≥K2x2−2β

⌫(du)

(by the Chebyshev inequality)

 1

K2x2−2β

Z

R

u
2
⌫(du)  C

x2−2β
, (8)

Z

|u|≥Kx1−β

(x+ c(x)u)2⌫(du) (by the Cauchy–Schwarz inequality)
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 2x2
Z

|u|≥Kx1−β

⌫(du) + 2c2(x)

Z

|u|≥Kx1−β

u
2
⌫(du)

(by relation (8))

 2x2
C

x2−2β
+ 2c2(x)

Z

|u|≥Kx1−β

u
2
⌫(du)

 Cx
2β + Cx

2β  Cx
2β
. (9)

Thus, by virtue of relations (8) and (9), we obtain

I1(x) 
1

1− ↵

✓
C

x2−2β

◆1+↵
2 ⇣

Cx
2β
⌘ 1−↵

2  C

x1+↵−2β
! 0, x ! +1,

because 1 + ↵− 2β > 0. Further, we get

I2(x) = f(x)

Z

|u|≥Kx1−β

⌫(du)

 x
1−↵

1− ↵

Z

|u|≥Kx1−β

⌫(du)

 x
1−↵

1− ↵

C

x2−2β
 C

x1+↵−2β
! 0, x ! +1 (by relation (8))

because 1 + ↵− 2β > 0. Finally, we find

|I3(x)| =

�������
f
0(x)c(x)

Z

|u|≥Kx1−β

u⌫(du)

�������

 1

x↵
Cx

β

Z

|u|≥Kx1−β

|u|⌫(du) = C

x↵−β

Z

|u|≥Kx1−β

|u|⌫(du).

We now separately estimate the integral

Z

|u|≥Kx1−β

|u|⌫(du) =
Z

|u|≥Kx1−β

1 · |u|⌫(du)



0

B@
Z

|u|≥Kx1−β

12⌫(du)

1

CA

1
2
0

B@
Z

|u|≥Kx1−β

|u|2⌫(du)

1

CA

1
2

(by the Cauchy–Schwarz inequality)



ON THE ASYMPTOTICS OF SOLUTIONS OF STOCHASTIC DIFFERENTIAL EQUATIONS WITH JUMPS 1793



0

B@
Z

|u|≥Kx1−β

⌫(du)

1

CA

1
2 0

@
Z

R

u
2
⌫(du)

1

A

1
2

 C

0

B@
Z

|u|≥Kx1−β

⌫(du)

1

CA

1
2

 C

✓
C

x2−2β

◆1
2

 C

x1−β
(by relation (8)).

Thus,

|I3(x)| 
C

x↵−β

C

x1−β
 C

x1+↵−2β
! 0, x ! +1,

because 1 + ↵− 2β > 0.

Since all three terms I1(x), I2(x), and I3(x) approach zero as x ! +1, we obtain
Z

|u|≥Kx1−β

[. . .]⌫(du) ! 0, x ! +1.

Thus, Assertion (A) of the lemma is proved.

Proof of Assertion (B). Let x ≥ 1. Under the condition of the lemma, we have

c
2(x)  Cx

2β
, x ≥ 1.

We now split the integral as follows:

Z

R

[. . .]⌫(du) =

Z

|u|<Kx1−β

[. . .]⌫(du) +

Z

|u|≥Kx1−β

[. . .]⌫(du),

where [. . .] := (f (x+ c(x)u)− f(x))2 and K > 0 is a constant.

First, let |u| < Kx
1−β

. By the mean-value theorem, we get

f (x+ c(x)u)− f(x) = f
0(⇠x,u)c(x)u,

where ⇠x,u 2
⇥
x ^ (x+ c(x)u), x _ (x+ c(x)u)

⇤
. As in the proof of Assertion (A), we have

1

2
x  ⇠x,u  3

2
x

for sufficiently small K. Therefore,

Z

|u|<Kx1−β

[. . .]⌫(du) =

Z

|u|<Kx1−β

�
f
0(⇠x,u)

�2
c
2(x)u2⌫(du)

 Cx
2β

Z

|u|<Kx1−β

u
2

⇠2↵x,u

⌫(du).
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Since ↵ > 0, we find

Z

|u|<Kx1−β

u
2

⇠2↵x,u

⌫(du) 
✓
1

2
x

◆−2↵ Z

R

u
2
⌫(du)  Cx

−2↵
.

Thus,
Z

|u|<Kx1−β

[. . .]⌫(du)  Cx
2β
Cx

−2↵  Cx
2(β−↵)

.

We now consider the integral over the set {u 2 R : |u| ≥ Kx
1−β} :

1

2

Z

|u|≥Kx1−β

[. . .]⌫(du)

(by the Cauchy–Schwarz inequality)


Z

|u|≥Kx1−β

f
2 (x+ c(x)u) ⌫(du) + f

2(x)

Z

|u|≥Kx1−β

⌫(du)

=: J1(x) + J2(x).

By using the formulas established in the proof of Assertion (A), we estimate each term on the right-hand side
as follows:

J1(x) =

Z

|u|≥Kx1−β

f
2 (x+ c(x)u) ⌫(du)

 1

(1− ↵)2

Z

|u|≥Kx1−β

1 · |x+ c(x)u|2(1−↵)
⌫(du)

(by the Hölder inequality)

 1

(1− ↵)2

0

B@
Z

|u|≥Kx1−β

1
1
↵ ⌫(du)

1

CA

↵0

B@
Z

|u|≥Kx1−β

⇣
|x+ c(x)u|2(1−↵)

⌘ 1
1−↵

⌫(du)

1

CA

1−↵

=
1

(1− ↵)2

0

B@
Z

|u|≥Kx1−β

⌫(du)

1

CA

↵0

B@
Z

|u|≥Kx1−β

(x+ c(x)u)2⌫(du)

1

CA

1−↵

 1

(1− ↵)2

✓
C

x2−2β

◆↵ ⇣
Cx

2β
⌘1−↵

 Cx
2(β−↵) (by reltions (8) and (9)),
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J2(x) = f
2(x)

Z

|u|≥Kx1−β

⌫(du) 
✓
x
1−↵

1− ↵

◆2 Z

|u|≥Kx1−β

⌫(du)


✓
x
1−↵

1− ↵

◆2
C

x2−2β
 Cx

2(β−↵) (by relation (8)).

Both these terms are estimated as Cx
2(β−↵)

. Hence,

Z

|u|≥Kx1−β

[. . .]⌫(du)  Cx
2(β−↵)

.

The lemma is proved.

The author states that there is no conflict of interest.
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