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EMBEDDINGS INTO COUNTABLY COMPACT HAUSDORFF SPACES

Taras Banakh,1 Serhii Bardyla,2,3 and Alex Ravsky4 UDC 515.122

We consider the problem of characterization of topological spaces embedded into countably compact
Hausdorff topological spaces. We study the separation axioms for subspaces of Hausdorff countably
compact topological spaces and construct an example of a regular separable scattered topological space
that cannot be embedded into an Urysohn countably compact topological space.

It is well known that a topological space X is homeomorphic to a subspace of a compact Hausdorff space
if and only if X is a Tychonoff space.

In the present paper, we discuss the following problem:

Problem 1. What topological spaces are homeomorphic to subspaces of countably compact Hausdorff spaces?

A topological space X is:

compact if each open cover of X has a finite subcover;

!-bounded if each countable set in X has a compact closure in X;

countably compact if each sequence in X has an accumulation point in X;

totally countably compact if each infinite set in X contains an infinite subset with compact closure in X;

ultracompact if each sequence in X has a p-limit for every ultrafilter p on !;

Lindelöf if each open cover or X has a countable subcover.

These properties are related to each other as follows:

compact +3

↵◆

!-bounded +3

↵◆

totally countably compact

↵◆

Lindelöf ultracompact +3 countably compact.

Countably compact topological spaces were investigated in [2, 8–12]. The problem of construction of embed-
dings into !-bounded or ultracompact spaces was considered in [2] and [1] (see also [7] for the basic information
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about ultracompact spaces). Since the class of countably compact spaces in not closed with respect to the Ty-
chonoff product, there is no possibility to apply the technique of reflections (applied in [1]) for the construction of
embeddings into countably compact spaces.

Nevertheless, in the present paper, we establish some properties of subspaces of countably compact Hausdorff
spaces and, hence, establish some necessary conditions of embeddability of topological spaces into Hausdorff
countably compact spaces. Moreover, we construct an example of regular separable first-countable scattered topo-
logical space that cannot be embedded into an Urysohn countably compact topological space.

Let F be a family of closed subsets of a topological space X. The topological space X is called

F-regular if, for any set F 2 F and a point x 2 X \ F, there exist disjoint open sets U, V ⇢ X such
that F ⇢ U and x 2 V.

We recall [6, § 3.6] that theWallman extension W (X) of a topological space X consists of closed ultrafilters,
i.e., families U of closed subsets of X satisfying the following conditions:

? /2 U ;

A \B 2 U for any A,B 2 U ;

a closed set F ⇢ X belongs to U if F \ U 6= ? for every U 2 U .

The Wallman extension W (X) of X carries a topology generated by a base formed by the sets

hUi =
�
F 2 W (X) : 9F 2 F , F ⇢ U

 
,

where U runs over open subsets of X.

By (the proof of) Theorem 3.6.21 in [6], the Wallman extension W (X) is compact.
If X is a T1-space, then we can consider a map jX : X ! W (X) by assigning to each x 2 X a principal

ultrafilter formed by all closed sets F ⇢ X containing the point x. It is easy to see that the image jX(X) is dense
in W (X). By [6, Theorem 3.6.21], the map jX : X ! W (X) is a topological embedding. Hence, we can identify
the T1-space X with its image jX(X) in W (X).

In the Wallman extension W (X), we consider a subspace

W!X =
S�

jX(C) : C ⇢ X, |C|  !
 
,

which is the union of the closures of countable subsets of jX(X) in W (X). The space W!X is called theWallman
!-bounded extension of X. By Proposition 3.2 from [2], the space W!X is !-bounded. In [2] (resp., [1]),
the Wallman extension was used to construct embeddings of topological spaces into Hausdorff !-compact (resp.,
ultracompact) spaces. In what follows, we apply the Wallman extension in Examples 1 and 3.

A topological space X is called

locally countable if each x 2 X possesses a countable open neighborhood;

first-countable at a point x 2 X if it has a countable neighborhood base at x;

of countable pseudocharacter at a point x 2 X if {x} =
T

U for a countable family U of open sets
in X;

Fréchet–Urysohn at a point x 2 X if, for each subset A of X with x 2 A, there exists a sequence
{an}n2! ⇢ A that converges to x;
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regular at a point x 2 X if any neighborhood of x contains a closed neighborhood of x;

completely regular at a point x 2 X if, for any neighborhood U ⇢ X of x, there exists a continuous
function f : X ! [0, 1] such that f(x) = 1 and f(X \ U) ⇢ {0}.

A topological space X is first-countable (resp., Fréchet–Urysohn, regular, completely regular, or of countable
pseudocharacter) if X has the corresponding property at every point x 2 X.

Theorem 1. Let X be a subspace of a countably compact Hausdorff space Y. If X is first-countable at
a point x 2 X, then X is regular at the point x.

Proof. We fix a countable neighborhood base {Un}n2N at x and assume that X is not regular at x. Con-
sequently, there exists a neighborhood U0 of x such that V 6⇢ U0 for any neighborhood V of x. Replacing
each basic neighborhood Un with

T
kn Uk, we can assume that Un ⇢ Un−1 for every n 2 N. The choice of

the neighborhood U0 ensures that, for every n 2 N, the set Un \ U0 contains a point xn. Since the space Y is
countably compact and Hausdorff, the sequence (xn)n2! has an accumulation point y 2 Y. Since

U0 \ {xn}n2! = ?,

the point y does not coincide with x. Further, since Y is Hausdorff, there exists a neighborhood V ⇢ Y of x
such that y /2 V . Finally, we find n 2 ! such that Un ⇢ V and observe that Oy := Y \ V is a neighborhood of y
for which

Oy \ {xi : i 2 !} ⇢ {xi}i<n,

which means that y is not an accumulating point of the sequence (xi)i2!.

Remark 1. Example 6.1 from [2] shows that, in Theorem 1, the regularity of X at the point x cannot be
improved up to the complete regularity at x.

Corollary 1. Let X be a subspace of a countably compact Hausdorff space Y. If X is first-countable, then
X is regular.

The following example shows that Theorem 1 cannot be generalized over the Fréchet–Urysohn spaces with
countable pseudocharacter.

Example 1. There exists a Hausdorff space X such that:

(1) X is locally countable and, hence, has a countable pseudocharacter;

(2) X is separable and Fréchet–Urysohn;

(3) X is not regular;

(4) X is a subspace of a totally countably compact Hausdorff space.

Proof. We choose any point 1 /2 !⇥! and consider a space Y = {1}[ (!⇥!) endowed with a topology
formed by the sets U ⇢ Y such that if 1 2 U, then, for every n 2 !, the complement ({n} ⇥ !) \ U is finite.
The definition of this topology ensures that Y is Fréchet–Urysohn at the unique nonisolated point 1 of Y.

Let F be the family of closed infinite subsets of Y that do not contain the point 1. The definition of the topol-
ogy on Y implies that, for any F 2 F and n 2 !, the intersection ({n}⇥!)\F is finite. By the Kuratowski–Zorn
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lemma, the family F contains a maximal almost disjoint subfamily A ⇢ F . The maximality of A guarantees that
every set F 2 F has an infinite intersection with some set A 2 A.

Consider the space X = Y [ A endowed with the topology formed by the sets U ⇢ X such that U \ Y is
open in Y and, for any A 2 A \ U, the set A \ U ⇢ ! ⇥ ! is finite.

We claim that the space X has properties (1)–(4). The definition of the topology of X implies that X is
separable, Hausdorff, and locally countable, which implies that X has a countable pseudocharacter. Moreover,
X is first-countable at all points except 1. At the point 1, the space X is Fréchet–Urysohn (because its open
subspace Y is Fréchet–Urysohn at 1).

The maximality of the maximal almost disjoint family A guarantees that every neighborhood U ⇢ Y ⇢ X of
1 has an infinite intersection with some set A 2 A, which implies that A 2 U and, hence, U 6⇢ Y. This means
that X is not regular (at 1).

In the Wallman extension W (X) of the space X, we consider a subspace

Z := X [W!A = Y [W!A.

We claim that the space Z is Hausdorff and totally countably compact. To prove that Z is Hausdorff, we take two
distinct ultrafilters a, b 2 Z. If the ultrafilters a and b are principal, then, in view of the fact that X is Hausdorff,
they have disjoint neighborhoods in W (X) and, hence, in Z. We now assume that one of the ultrafilters (a or b)
is principal and the other is not principal. Without lose of generality, we can assume that a is principal and b is
not principal. If a 6= 1, then we can use the regularity of the space X at a and prove that a and b have disjoint
neighborhoods in W (X) ⊃ Z. Hence, we can assume that a = 1. It follows from b 2 Z = X [W!A that the
ultrafilter b contains a countable set {An}n2! ⇢ A. We consider a set

V =
[

n2!

✓
{An} [An \

[

kn

{k}⇥ !

◆

and note that V has a finite intersection with every set {k}⇥!, which implies that Y \V is a neighborhood of 1.

Then hY \ V i and hV i are disjoint open neighborhoods of a = 1 and b in W (X).

Finally, we assume that both ultrafilters a and b are not principal. Since a, b 2 W!A are distinct, there are
disjoint countable sets {An}n2!, {Bn}n2! ⇢ A such that {An}n2! 2 a and {Bn}n2! 2 b. Note that the sets

V =
[

n2!

✓
{An} [An \

[

kn

Bk

◆
and W =

[

n2!

✓
{Bn} [Bn \

[

kn

Ak

◆

are disjoint and open in X. Thus, hV i and hW i are disjoint open neighborhoods of the ultrafilters a and b

in W (X), respectively.
To see that Z is totally countably compact, we take an arbitrary infinite set I ⇢ Z. It is necessary to find

an infinite set J ⇢ I with compact closure J in Z. Without loss of generality, we can assume that I is countable
and 1 /2 I. If J = I \W!A is infinite, then J is compact by the !-boundedness of W!A (see [2]). If I \W!A
is finite, then

I \ Z \W!A = I \ Y = I \ (! ⇥ !)

is infinite. If, for some n 2 !, the set Jn = I \ ({n} ⇥ !) is infinite, then Jn = Jn [ {1} is compact by the
definition of topology in the space Y. If, for every n 2 !, the set I \ ({n}⇥ !) is finite, then I \ (! ⇥ !) 2 F
and, by the maximality of the family A, for some set A 2 A, the intersection J = A \ I is infinite and, hence,
J = J [ {A} is compact.
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A topological space X is called locally countably compact if, for each x 2 X, there exists an open neighbor-
hood U of x such that U is countably compact.

Theorem 2. A first-countable topological space X can be embedded as an open subspace into a Hausdorff
countably compact topological space Y if and only if X is locally countably compact.

Proof. Assume that a first-countable topological space X is an open subspace of a countably compact topo-
logical space Y and that X is not locally countably compact. Then there exists x 2 X such that, for each open
neighborhood U of x, the closure of U in X is not countably compact. We fix any countable base {Un}n2!
at the point x such that Un ⇢ Um, whenever n > m. Then there exists a family {An}n2! of closed discrete
subsets of X such that An ⇢ Un for each n 2 !. Since Y is countably compact for each n 2 !, the set An has
an accumulation point yn 2 Y. Since An is closed in X, we have yn 2 Y \X, n 2 !. By using the countable
compactness of Y once again, we can find an accumulation point z of the set {yn}n2!. Since X is open in Y,

we coincide that z 2 Y \X. It is easy to see that z 2 Un for all n 2 !, which contradicts the Hausdorffness of Y.
Let X be a locally countably compact topological space. We set Y = X [ {1}, where 1 /2 X. Let ⌧ be

a topology on Y, which satisfies the following conditions:

X is an open subspace of Y ;

if 1 2 U 2 ⌧, then X \ U is closed and countably compact.

It is easy to check that the space Y is Hausdorff and countably compact.

The following example shows that Theorem 2 does not hold for the topological spaces of character !1.

Example 2. By [0,!1] we denote the ordinal !1 + 1 endowed with the order topology. Further, by X we
denote a subspace {!1} [ {↵ 2 !1 | ↵ is isolated in [0,!1]} of [0,!1]. Obviously, X is not locally countably
compact (at the point !1 ) and the character of X equals !1. Nevertheless, X can be embedded as an open
subspace into a Hausdorff countably compact space Y. Let Y be the set !1 + 1 endowed with the topology ⌧

satisfying the following conditions:

X is open in Y ;

if ↵ 2 U 2 ⌧, then there exists an ordinal β  ↵ such that {γ | β < γ  ↵} ⇢ U.

Note that Y \ {!1} is homeomorphic to !1 endowed with the order topology. At this point, it is easy to see
that Y is countably compact.

A topological space X is called weakly 1-regular if, for any infinite closed subset F ⇢ X and a point
x 2 X \ F, there exist disjoint open sets V, U ⇢ X such that x 2 V and U \ F is infinite.

Proposition 1. Every subspace X of a Hausdorff countably compact space Y is weakly 1-regular.

Proof. Given an infinite closed subset F ⇢ X and a point x 2 X \F, we consider the closure F of F in Y

and observe that x /2 F . By the countable compactness of Y, the infinite set F has an accumulation point y 2 F .

Since Y is Hausdorff, there are two disjoint open sets V, U ⇢ Y such that x 2 V and y 2 U. Since y is
an accumulation point of the set F, the intersection F \ U is infinite. Then V \X and U \X are two disjoint
open sets in X such that x 2 V \ X and F \ U \ X is infinite, which means that the space X is weakly
1-regular.
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A subset D of a topological space X is called:

strictly discrete if each point x 2 D has a neighborhood Ox ⇢ X such that the family (Ox)x2D is
disjoint in a sense that Ox \Oy = ? for any distinct points x, y 2 D;

strongly discrete if each point x 2 D has a neighborhood Ox ⇢ X such that the family (Ox)x2D is
disjoint and locally finite in X.

It is clear that, for every subset D ⇢ X, we have the following implications:

strongly discrete ) strictly discrete ) discrete.

Theorem 3. Let X be a subspace of a countably compact Hausdorff space Y. Then every infinite subset
I ⇢ X contains an infinite subset D ⇢ I, which is strictly discrete in X.

Proof. By the countable compactness of Y, the set I has an accumulation point y 2 Y. We choose any point
x0 2 I \ {y}. By using the Hausdorffness of Y, we find disjoint open neighborhoods V0 and U0 of the points x0
and y, respectively. Further, we choose any point y1 2 U0 \ I \ {y} and, in view of the Hausdorffness of Y,

select open disjoint neighborhoods V1 ⇢ U0 and U1 ⇢ U0 of the points x1 and y, respectively. Proceeding by
induction, we construct a sequence (xn)n2! of points of X and sequences (Vn)n2! and (Un)n2! of open sets
in Y such that, for every n 2 N, the following conditions are satisfied:

(1) xn 2 Vn ⇢ Un−1;

(2) y 2 Un ⇢ Un−1;

(3) Vn \ Un = ?.

The inductive conditions imply that the sets Vn, n 2 !, are pairwise disjoint, which means that the set
D = {xn}n2! ⇢ I is strictly discrete in X.

Theorem 4. Let X be a Lindelöf subspace of a countably compact Hausdorff space Y. Then each infinite
closed discrete subset I ⇢ X contains an infinite subset D ⇢ I, which is strongly discrete in X.

Proof. By the countable compactness of Y, the set I has an accumulation point y 2 Y. Since I is closed
and discrete in X, the point y does not belong to the space X. Further, since Y is Hausdorff, for every x 2 X,

there are disjoint open sets Vx,Wx ⇢ Y such that x 2 Vx and y 2 Wx. Moreover, since the space X is Lindelöf,
the open cover {Vx : x 2 X} has a countable subcover {Vxn}n2!. For every n 2 !, we consider an open
neighborhood Wn =

\
kn

Wxk
of y.

We choose an arbitrary point y0 2 I \ {y} and, by using the Hausdorffness of Y, find disjoint open neighbor-
hoods V0 and U0 ⇢ W0 of the points y0 and y, respectively. We also choose an arbitrary point

y1 2 U0 \W1 \ I \ {y}

and, by using the Hausdorffness of Y, choose open disjoint neighborhoods V1 ⇢ U0 and U1 ⇢ U0 \ W1 of the
points y1 and y, respectively. Proceeding by induction, we can construct a sequence (yn)n2! of points of X

and sequences (Vn)n2! and (Un)n2! of open sets in Y such that, for every n 2 N, the following conditions are
satisfied:

(1) yn 2 Vn ⇢ Un−1 \Wn;
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(2) y 2 Un ⇢ Un−1 \Wn;

(3) Vn \ Un = ?.

The inductive conditions imply that the sets in the family (Vn)n2! are pairwise disjoint, thus witnessing that
the set D = {yn}n2! ⇢ I is strictly discrete in X. To prove that D is strongly discrete, it remains to show that
the family (Vn)n2! is locally finite in X. Given any point x 2 X, we find n 2 ! such that x 2 Vxn and observe
that, for every i > n,

Vi \ Vxn ⇢ Wi \ Vxn ⇢ Wn \ Vxn = ?.

A topological space X is called !̈-regular if it is F-regular for the family F of countable closed discrete
subsets in X.

Proposition 2. Each countable closed discrete subset D of a (Lindelöf) !̈-regular T1-space X is strictly
discrete (strongly discrete) in X.

Proof. The space X is Hausdorff being an !̈-regular T1-space. If the subset D ⇢ X is finite, then D is
strongly discrete because X is Hausdorff. Hence, we assume that D is infinite and, therefore, D = {zn}n2!
for some pairwise distinct points zn. By the !̈-regularity there are two disjoint open sets V0,W0 ⇢ X such that
z0 2 V0 and {zn}n≥1 ⇢ W0.

Proceeding by induction, we can construct sequences of open sets (Vn)n2! and (Wn)n2! in X such that, for
every n 2 !, the following conditions are satisfied:

zn 2 Vn ⇢ Wn−1;

{zk}k>n ⇢ Wn ⇢ Wn−1;

Vn \Wn = ?.

These conditions imply that the family (Vn)n2! is disjoint, thus witnessing that the set D is strictly discrete in X.

We now assume that the space X is Lindelöf and

V =
[

n2!
Vn.

By the !̈-regularity of X, each point x 2 X \ V has a neighborhood Ox ⇢ X whose closure Ox does not
intersect a closed discrete subset D of X. Since X is Lindelöf, there exists a countable set {xn}n2! ⇢ X \ V

such that

X = V [
[

n2!
Oxn .

For every n 2 !, we consider an open neighborhood

Un := Vn \
[

kn

Oxk

of zn and observe that the family (Un)n2! is disjoint and locally finite in X, which means that the set D is
strongly discrete in X.
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The following proposition shows that the property described in Theorem 3 remains true for !̈-regular spaces.

Proposition 3. Every infinite subset I of an !̈-regular T1-space X contains an infinite subset D ⇢ I, which
is strictly discrete in X.

Proof. If I has an accumulation point in X, then a strictly discrete infinite subset can be constructed by
repeating the argument used in the proof of Theorem 3. Thus, we assume that I has no accumulation points in X

and, hence, I is closed and discrete in X. Replacing I by a countable infinite subset of I, we can assume that I
is countable. By Proposition 2, the set I is strictly discrete in X.

A topological space X is called superconnected [3] if, for any nonempty open sets U1, . . . , Un, the intersec-
tion U1 \ · · · \ Un is not empty. It is clear that a superconnected space containing more than one point is not
regular. An example of a superconnected second-countable Hausdorff space can be found in [3].

Proposition 4. Any first-countable superconnected Hausdorff space X with |X| > 1 contains an infinite set
I ⇢ X such that every infinite subset D ⇢ I is not strictly discrete in X.

Proof. For every point x 2 X, we fix a countable neighborhood base {Ux,n}n2! at x such that Ux,n+1 ⇢
Ux,n for every n 2 !.

Choose any two distinct points x0, x1 2 X and, for every n ≥ 2, choose a point xn 2
T

k<n Uxk,n. We claim
that the set I = {xn}n2! is infinite. In the opposite case, we use Hausdorffness and find a neighborhood V of x0
such that V \ I = {x0}. Further, we find m 2 ! such that Ux0,m ⇢ V and x0 /2 Ux1,m. Note that

xm 2 I \ Ux0,m \ Ux1,m = ?,

which is a desired contradiction showing that the set I is infinite.
Further, we show that any infinite subset D ⇢ I is not strictly discrete in X. To get a contradiction, we assume

that D is strictly discrete. Then each point x 2 D has a neighborhood Ox ⇢ X such that the family (Ox)x2D is
disjoint. We choose any point xk 2 D and find m 2 ! such that Uxk,m ⇢ Oxk

. Replacing m by a larger number,
we can assume that m > k and xm 2 D. Since xm 2 Uxk,m ⇢ Oxk

, the intersection Oxm \ Ox,k is nonempty,
which contradicts the choice of the neighborhoods Ox, x 2 D.

We now establish one property of the subspaces of functionally Hausdorff countably compact spaces. We recall
that a topological space X is functionally Hausdorff if, for any distinct points x, y 2 X, there exists a continuous
function f : X ! [0, 1] such that f(x) = 0 and f(x) = 1.

A subset U of a topological space X is called functionally open if U = f
−1(V ) for some continuous function

f : X ! R and some open set V ⇢ R.
A subset K of a topological space X is called functionally compact if each open cover of K by functionally

open subsets of X has a finite subcover.

Proposition 5. If X is a subspace of a functionally Hausdorff countably compact space Y, then no infinite
closed discrete subspace D ⇢ X is contained in a functionally compact subset of X.

Proof. To get a contradiction, we assume that D is contained in a functionally compact subset K of X.

By the countable compactness of Y, the set D has an accumulation point y 2 Y. Since D is closed and discrete
in X, the point y does not belong to X and, hence, y /2 K. Since Y is functionally Hausdorff, for every x 2 K,

there exists a continuous function fx : Y ! [0, 1] such that

fx(x) = 0 and fx(y) = 1.
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By the functional compactness of K, the cover
⇢
f
−1
x

✓
0,
1

2

◆◆
: x 2 K

�
contains a finite subcover

⇢
f
−1
x

✓
0,
1

2

◆◆
: x 2 E

�
,

where E is a finite subset of K. Then

D ⇢ K ⇢ f
−1

✓
0,

1

2

◆◆

for the continuous function f = maxx2E fx : Y ! [0, 1] and f
−1

✓✓
1

2
, 1

�◆
is a neighborhood of y, which is

disjoint with the set D. However, this is impossible as y is an accumulation point of D.

Finally, we construct an example of a regular separable first-countable scattered space that can be embedded
into a Hausdorff countably compact space but cannot be embedded into Urysohn countably compact spaces.

Example 3. There exists a topological space X such that:

(1) X is regular, separable, and first-countable;

(2) X cannot be embedded as an open subspace into a Hausdorff countably compact space;

(3) X cannot be embedded into an Urysohn countably compact space;

(4) X can be embedded into an Hausdorff totally countably compact space.

Proof. In the construction of the space X, we use almost disjoint dominating subsets of !!
. We recall [5]

that a subset D ⇢ !
! is called dominating if, for any x 2 !

!
, there exists y 2 D such that x ⇤

y, which
means that x(n)  y(n) for all but finitely many numbers n 2 !. By d we denote the smallest cardinality of
a dominating subset D ⇢ !

!
. It is clear that !1  d  c.

We say that a family of functions D ⇢ !
! is almost disjoint if, for any distinct x, y 2 D, the intersection x\y

is finite. Here, we identify a function x 2 !
! with its graph {(n, x(n)) : n 2 !} and, hence, identify the set of

functions !! with a subset of the family [! ⇥ !]! of all infinite subsets of ! ⇥ !.

Claim 1. There exists an almost disjoint dominating subset D ⇢ !
! of cardinality |D| = d.

Proof. By the definition of d, there exists a dominating family {x↵}↵2d ⇢ !
!
. It is well known that [!]!

contains an almost disjoint family {A↵}↵2c of cardinality continuum. For every ↵ < d, we choose a strictly
increasing function y↵ : ! ! A↵ such that x↵  y↵. Then the set D = {y↵}↵2d is dominating and almost
disjoint.

By Claim 1, there exists an almost disjoint dominating subset D ⇢ !
! ⇢ [! ⇥ !]!. For every n 2 !,

we consider the set λn = {n} ⇥ ! and note that the family L = {λn}n2! is disjoint and the family D [ L ⇢
[! ⇥ !]! is almost disjoint.

Consider a space

Y = (D [ L) [ (! ⇥ !)

endowed with the topology formed by the sets U ⇢ Y such that, for every y 2 (D[L)\U, the set y\U ⇢ !⇥! is
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finite. Observe that all points from !⇥! are isolated in Y. In view of the almost disjointness of the family D[L,

it can be shown that the space Y is regular, separable, locally countable, scattered, and locally compact.
We choose an arbitrary point 1 /2 ! ⇥ Y and consider a space Z = {1} [ (! ⇥ Y ) endowed with the

topology formed by the sets W ⇢ Z such that

for every n 2 !, the set {y 2 Y : (n, y) 2 W} is open in Y

and

if 1 2 W, then there exists n 2 ! such that
S

m≥n{m}⇥ Y ⇢ W.

It is easy to see that Z = {1} [ (! ⇥ Y ) is first-countable, separable, scattered, and regular.
Let ⇠ be the smallest equivalence relation on Z such that

(2n,λ) ⇠ (2n+ 1,λ) and (2n+ 1, d) ⇠ (2n+ 2, d)

for any n 2 !, λ 2 L and d 2 D.

Let X be the quotient space Z/⇠ of Z by the equivalence relation ⇠ . It is easy to see that the equivalence
relation ⇠ has at most two-element equivalence classes and the quotient map q : Z ! X is closed and, hence,
perfect. Applying [6, Theorem 3.7.20], we conclude that the space X is regular. It is easy to see that X is
separable, scattered, and first-countable. Note that X is not locally countably compact at the point 1. Thus,
Theorem 2 implies that X cannot be embedded as an open subspace into a Hausdorff countably compact space.
It remains to show that X has the properties (3) and (4) from Example 3. This is proved in the following two
claims:

Claim 2. The space X does not admit an embedding into an Urysohn countably compact space.

Proof. To arrive at a contradiction, we assume that X = q(Z) is a subspace of an Urysohn countably compact
space C. By the countable compactness of C, the set q({0} ⇥ L) ⇢ X ⇢ C has an accumulation point c0 2 C.

The point c0 is distinct from q(1), as q(1) is not an accumulation point of the set q({0}⇥ L) in X. Let l 2 !

be the largest number such that c0 is an accumulation point of the set q({l}⇥ L) in C.

We now show that the number l is well defined. Indeed, by the Hausdorffness of the space C, there exists
a neighborhood W ⇢ C of q(1) such that c0 6⇢ W. By the definition of the topology of the space Z, there exists
m 2 ! such that

[

k≥m

{k}⇥ Y ⇢ q
−1(W ).

Then c0 is not an accumulation point of the set
S

k≥m q({k} ⇥ L). Hence, the number l is well defined and
we have l < m.

The definition of the equivalence relation ⇠ implies that the number l is odd. By the countable compactness
of C, the infinite set q({l+1}⇥L) has an accumulation point c1 2 C. The maximality of l ensures that c1 6= c0.

Since C is Urysohn, the points c0 and c1 have open neighborhoods U0, U1 ⇢ C with disjoint closures in C.

For every i 2 {0, 1}, we consider the set

Ji =
�
n 2 ! : q(l + i,λn) 2 Ui

 
,

which is infinite because ci is an accumulation point of the set

q({l + i}⇥ L) =
�
q(l + i,λn) : n 2 !

 
.
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For every n 2 Ji, the open set q
−1(Ui) ⇢ Z contains the pair (l + i,λn). By the definition of topology

at (l + i,λn), the set

({l + i}⇥ λn) \ q−1(Ui) ⇢ {l + i}⇥ {n}⇥ !

is finite and, hence, is contained in the set {l+i}⇥{n}⇥[0, fi(n)] for some number fi(n) 2 !. By the dominating
property of the family D, we can choose a function f 2 D such that f(n) ≥ fi(n) for any i 2 {0, 1} and n 2 Ji.

This implies that, for every i 2 {1, 2}, the set

{l + i}⇥ f ⇢ {l + i}⇥ (! ⇥ !)

has infinite intersections with the preimage q
−1(Ui) and, hence,

{(l + i, f)} 2 q−1(Ui) ⇢ q
−1(U i).

In view of the fact that the number l is odd, we conclude that

q(l, f) = q(l + 1, f) 2 U0 \ U1 = ?,

which is the desired contradiction. This completes the proof of the claim.

Claim 3. The space X admits an embedding into a Hausdorff totally countably compact space.

Proof. By using the Kuratowski–Zorn lemma, we can enlarge an almost disjoint family D [L to a maximal
almost disjoint family M ⇢ [! ⇥ !]!. Consider a space YM = M [ (! ⇥ !) endowed with the topology formed
by the sets U ⇢ YM such that, for every y 2 M \ U, the set y \ U ⇢ ! ⇥ ! is finite. This implies that YM is
a regular locally compact first-countable space containing Y as an open dense subspace. The maximality of M
implies that each sequence in ! ⇥ ! contains a subsequence that converges to some point of the space YM . This
property implies that the subspace Ỹ := (W!M)[(!⇥!) of the Wallman extension W (YM ) is totally countably
compact. Repeating the argument from Example 1, we can show that the space Ỹ is Hausdorff.

Let Z̃ = {1} [ (! ⇥ Ỹ ), where 1 /2 ! ⇥ Ỹ . The space Z̃ is endowed with the topology consisting of the
sets W ⇢ Z̃ such that

for every n 2 !, the set {y 2 Ỹ : (n, y) 2 W} is open in Ỹ

and

if 1 2 W, then there exists n 2 ! such that
S

m≥n{m}⇥ Ỹ ⇢ W.

In view of the fact that the space Ỹ is Hausdorff and totally countably compact, we can prove that the same is
true for the space Z̃.

Let ⇠ be the smallest equivalence relation on Z̃ such that

(2n,λ) ⇠ (2n+ 1,λ) and (2n+ 1, d) ⇠ (2n+ 2, d)

for any n 2 !, λ 2 W!L, and d 2 W!D.

Let X̃ be the quotient space Z̃/⇠ of Z̃ by the equivalence relation ⇠ . It is easy to see that the space X̃ is
Hausdorff totally countably compact and contains the space X as a dense subspace.
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However, we do not know the answer for the following intriguing problem (from Lviv Scottish Book [4]):

Problem 2. Is it true that each (scattered, functionally Hausdorff) regular topological space can be embedded
into a Hausdorff countably compact topological space?
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