
Ukrainian Mathematical Journal, Vol. 75, No. 6, November, 2023 (Ukrainian Original Vol. 75, No. 6, June, 2023)

PERIODIC ANDWEAKLY PERIODIC GROUND STATES CORRESPONDING
TO THE SUBGROUPS OF INDEX THREE FOR THE ISING MODEL
ON THE CAYLEY TREE OF ORDER THREE

Dilshod O. Egamov UDC 517.9

We determine periodic and weakly periodic ground states with subgroups of index three for the Ising
model on the Cayley tree of order three.

1. Introduction

The Ising model with two values of spin ±1 was considered in [11, 14]. It became extensively investigated
since the 1990’s and later (see, e.g., [1–7, 10, 12]).

Each Gibbs measure is associated with a single phase of a physical system. The existence of two or more Gibbs
measures corresponds to the existence of phase transitions. One of fundamental problems is to describe the extreme
Gibbs measures corresponding to a given Hamiltonian. It is known that the phase diagram of Gibbs measures
for a Hamiltonian is close to the phase diagram of isolated (stable) ground states of this Hamiltonian. At low
temperatures, a periodic ground state corresponds to a periodic Gibbs measure, see [13, 17]. Thus, we naturally
arrive at the problem of description of periodic and weakly periodic ground states. For the Ising model with
competing interactions on the Cayley tree, the translation-invariant and periodic ground states corresponding to
normal subgroups with even indices were studied in [1, 16]. As usual, periodic ground states are simpler and more
interesting. On the other hand, it is necessary to find weakly periodic ground states for some parameters for which
periodic ground states do not exist.

Main concepts and notation for the case of weakly periodic ground states were introduced in [18]. For the Ising
model with competing interactions, weakly periodic ground states corresponding to normal subgroups of indices
two and four were described in [18, 20]. For the Potts model, these states were studied for normal subgroups of
index 2 in [21, 22]. Moreover, for the Potts model, periodic and weakly periodic ground states were studied for the
normal subgroups of index 4 in [23].

A full description of the normal subgroups of indices 2i, i = 1, 5, for the group representation of the Cayley
tree was given in [8, 9, 19]. In addition, the existence of all subgroups of finite index for the group was proved
and a full description of (not normal) subgroups of index 3 was given in [15]. Note that there are some papers
devoted to periodic and weakly periodic ground states for normal groups of finite index. In the present paper, for
the first time, we study periodic and weakly periodic ground states for (not normal) subgroups of index 3. Note that
periodic and weakly periodic ground states depend on the subgroups (in particular, normal subgroups). Moreover,
the invariance properties are not true for the (not normal) subgroup. Note that this problem is more difficult than
to study periodic and weakly periodic ground states constructed by the normal subgroups. Thus, it is naturally of
interest to study the subgroups of index 3.

The present paper is organized as follows. In Section 2, we recall main definitions and known facts. In Sec-
tion 3, we describe periodic and weakly periodic ground states.
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2. Main Definitions and Known Facts

The Cayley Tree. The Cayley tree Γk (see [2]) of order k ≥ 1 is an infinite tree, i.e., a graph without cycles
with exactly k+1 edges originating from each its vertex. Let Γk = (V, L, i), where V is the set of vertices of Γk

,

L is the set of edges of Γk and i is the incidence function associating each edge l 2 L with its endpoints x, y 2 V.

If i(l) = {x, y}, then x and y are called nearest neighboring vertices, and we write l = hx, yi. The distance on
this tree is defined as the number of pairs of nearest neighbors in the minimal path between the vertices x and y

(where the path is the collection of pairs of nearest neighbors in which two consecutive pairs share at least a given
vertex) and denoted by d(x, y).

For a fixed x
0 2 V (as usual, x0 is called the root of the tree), we set

Wn = {x 2 V | d(x, x0) = n},

Vn = {x 2 V | d(x, x0)  n}, Ln = {l = hx, yi 2 L | x, y 2 Vn}.

We write x < y if the path from x
0 to y goes through x and |x| = d(x, x0), x 2 V.

It is known (see [6]) that there exists a one-to-one correspondence between the set V of vertices of the Cayley
tree of order k ≥ 1 and a group Gk of the free products of k + 1 cyclic groups {e, ai}, i = 1, . . . , k + 1, of the
second order (i.e., a2i = e, ai 6= e) with generators a1, a2, . . . , ak+1.

Let S(x) be the set of “direct successors” of x 2 Gk, i.e.,

S(x) = {y 2 Wn+1 | d(y, x) = 1}, x 2 Wn.

In addition, S1(x) is the set of all nearest-neighboring vertices of x 2 Gk, i.e.,

S1(x) = {y 2 Gk : hx, yi} and {x#} = S1(x) \ S(x).

The Ising Model. First, we present the main definitions and facts about the Ising model. We consider models
in which the spin takes values from the set Φ = {−1, 1}. For A ✓ V a spin configuration σA on A is defined as
a function x 2 A ! σA(x) 2 Φ; the set of all configurations is denoted by ⌦A = ΦA

. We set

⌦ = ⌦V , σ = σV , and − σA = {−σA(x), x 2 A}.

We define a periodic configuration as a configuration σ 2 ⌦ invariant under the cosets of a subgroup G
⇤
k ⇢ Gk

of finite index. More precisely, a configuration σ 2 ⌦ is called G
⇤
k -periodic if σ(yx) = σ(x) for any x 2 Gk and

y 2 G
⇤
k.

The index of a subgroup is called the period of the corresponding periodic configuration. A configuration
invariant with respect to all cosets is called translation-invariant.

Let Gk/G
⇤
k = {H1, . . . , Hr} be a family of cosets, where G

⇤
k is a subgroup of index r ≥ 1. A configura-

tion σ(x), x 2 V, is called G
⇤
k -weakly periodic if σ(x) = σij for x 2 Hi, x# 2 Hj 8x 2 Gk.

The Ising model with competing interactions has the form

H(σ) = J1

X

hx,yi2L

σ(x)σ(y) + J2

X

x,y2V :
d(x,y)=2

σ(x)σ(y), (1)

where J1, J2 2 R and σ 2 ⌦.
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For a pair of configurations σ and ' that coincide almost everywhere, i.e., everywhere except finitely many
positions, we consider a relative Hamiltonian H(σ,'), i.e., the difference between the energies of configurations σ
and ', which has the form

H(σ,') = J1

X

hx,yi2L

(σ(x)σ(y)− '(x)'(y)) + J2

X

x,y2V :
d(x,y)=2

(σ(x)σ(y)− '(x)'(y)),

where J = (J1, J2) 2 R
2 is an arbitrary fixed parameter.

Let M be the set of unit balls with vertices in V. The restriction of a configuration σ to the ball b 2 M is
called a bounded configuration σb.

The energy of a ball b for the configuration σ is defined by

U(σb) ⌘ U(σb, J) =
1

2
J1

X

hx,yi2L

σ(x)σ(y) + J2

X

d(x,y)=2

σ(x)σ(y), x, y 2 b,

where J = (J1, J2) 2 R
2
.

We say that two bounded configurations σb and σ
0
b0 belong to the same class if U(σb) = U(σ0

b0), and we
write σ

0
b0 ⇠ σb.

Let A be a set. Then | A | is the cardinality of A.

Lemma 1 [1].

1. For any configuration σb, the following relation is true:

U(σb) 2 {U0, U1, . . . , Uk+1},

where

Ui =

✓
k + 1

2
− i

◆
J1 +

✓
k(k + 1)

2
+ 2i(i− k − 1)

◆
J2, i = 0, 1, . . . , k + 1.

2. Let Ci = ⌦i [ ⌦−
i , i = 0, . . . , k + 1, where

⌦i =
�
σb : σb(cb) = +1,

��{x 2 b \ {cb} : σb(x) = −1}
�� = i

 
,

⌦−
i =

�
−σb = {−σb(x), x 2 b} : σb 2 ⌦i

 
,

and cb is the center of the ball b. Then, for σb 2 Ci, the following equality is true: U(σb) = Ui.

3. The class Ci contains
2(k + 1)!

i!(k − i+ 1)!
configurations.

Definition 1. A configuration ' is called a ground state for Hamiltonian (1) if it satisfies the condition

U('b) = min{U0, U1, . . . , Uk+1} for any b 2 M.
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Denote

Ui(J) = U(σb, J) if σb 2 Ci, i = 0, 1, . . . , k + 1.

The quantity Ui(J) is a linear function of the parameter J 2 R
2
. For any fixed m = 0, 1, . . . , k + 1, we denote

Am = {J 2 R
2 : Um(J) = min{U0(J), U1(J), . . . , Uk+1(J)}}. (2)

It is easy to see that

A0 = {J 2 R
2 : J1  0, J1 + 2kJ2  0},

Am =
�
J 2 R

2 : J2 ≥ 0, 2(2m− k − 2)J2  J1  2(2m− k)J2
 
, m = 1, 2, . . . , k,

Ak+1 = {J 2 R
2 : J1 ≥ 0, J1 − 2kJ2 ≥ 0},

and

R
2 =

k+1[

i=0

Ai.

3. Periodic and Weakly Periodic Ground States

In this section, we study periodic and weakly periodic ground states. It is known that ground states depend on
the choice of subgroups for a given Hamiltonian. For this reason, we now explain how to choose a subgroup with
index 3 of the group Gk.

Let Gk be a free product of k+1 cyclic groups of the second order with generators a1, a2, . . . , ak+1, respec-
tively. Then it follows from Theorem 1 in [16] that:

the group Gk does not have normal subgroups of odd index ( 6= 1);

the group Gk has normal subgroups of an arbitrary even index.

We now present a construction of subgroups of index 3 for the group Gk (for more detail, see [15]).
Let Nk = {1, 2, . . . , k + 1}, let B0 ⇢ Nk, 0  |B0|  k − 1, and let (B1, B2) be a partition of the set

Nk \B0. Also let mj be a minimal element of Bj , j 2 {1, 2}. Thus, we consider a homomorphism

uB1B2 : he, a1, a2, . . . , ak+1i ! he, am1 , am2i,

(where e is the identity element) given by

uB1B2(x) =

8
<

:
e, if x = ai, i 2 Nk\(B1 [B2),

amj , if x = ai, i 2 Bj , j = 1, 2.
(3)

Let l(x) be the length of x. For 1  q  s, we define

γs : he, am1 , am2i ! {e, am1 , am2}
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by the formula

γs(x) =

8
>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>:

e, if x = e,

am1am2am1 . . . amj , if x 2
n
am1am2am1 . . . amj ,| {z }

q

am2am1am2 . . . am3−j| {z }
2s+1−q

o
,

am2am1am2 . . . amj , if x 2
n
am2am1am2 . . . amj ,| {z }

q

am1am2am1 . . . am3−j| {z }
2s+1−q

o
,

γs

⇣
amj . . . γs(amjam3−j . . . am3−j| {z }

2s

)
⌘
, if x = amjam3−j . . . am3−j , l(x) > 2s,

γs

⇣
amj . . . γs(am3−jamj . . . amj| {z }

2s

)
⌘
, if x = amjam3−j . . . am3−j , l(x) > 2s.

(4)

We denote

=s
B1B2

(Gk) = {x 2 Gk | γs(uB1B2(x)) = e} .

Lemma 2 [15]. Let (B1, B2) be a partition of the set Nk \ B0, 0  |B0|  k − 1. Then x 2 =s
B1B2

(Gk)

if and only if the number l(uB1B2(x)) is divisible by 2s+ 1.

Proposition 1 [15]. For the group Gk the following equality holds:

{K | K is a subgroup of Gk of index 3} =
�
=1
B1B2

| B1, B2 is a partition of Nk \B0

 
.

We consider periodic and weakly periodic ground states on the Cayley tree of order three, i.e., k = 3. Further,
we consider all cases of subgroups of index 3 of the group G3.

1. Let B0 = {3, 4} and Bd = {d}, d 2 {1, 2}, i.e., mi = i, i 2 {1, 2}. We now consider the homomor-
phisms u(1)B1B2

: he, a1, a2, a3, a4i ! he, a1, a2i (3) and γ
(1) : he, a1, a2i ! {e, a1, a2} (4):

u
(1)
B1B2

(x) =

8
<

:

e, if x 2 {e, a3, a4},

ai if x = ai, i = 1, 2,

γ
(1)(x) =

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

e, if x = e,

a1, if x 2 {a1, a2a1},

a2, if x 2 {a2, a1a2},

γ
(1)(aia3−i . . . γ

(1)(aia3−i)), if x = aia3−i . . . a3−i, l(x) ≥ 3, i = 1, 2,

γ
(1)(aia3−i . . . γ

(1)(a3−iai)), if x = aia3−i . . . ai, l(x) ≥ 3, i = 1, 2.
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Let H(1)
1 := =1

B1B2
(G3). Then

H
(1)
1 =

n
x 2 G3

�� γ(1)(u(1)B1B2
(x)) = e

o
.

Since H
(1)
1 is a subgroup of index 3 of the group G3, we define a family of cosets:

G3/H
(1)
1 =

n
H

(1)
1 , H

(1)
2 , H

(1)
3

o
,

where

H
(1)
2 =

n
x 2 G3

�� γ(1)(u(1)B1B2
(x)) = a1

o
and H

(1)
3 =

n
x 2 G3

�� γ(1)(u(1)B1B2
(x)) = a2

o
.

2. Let B0 = {1}, B1 = {2, 3}, and B2 = {4}, i.e., m1 = 2 and m2 = 4. We now consider the
homomorphisms

u
(2)
B1B2

: he, a1, a2, a3, a4i ! he, a2, a4i (3) and γ
(2) : he, a2, a4i ! {e, a2, a4} (4) :

u
(2)
B1B2

(x) =

8
>>>><

>>>>:

e, if x 2 {e, a1},

a2, if x 2 {a2, a3},

a4, if x = a4,

γ
(2)(x) =

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

e, if x = e,

a2, if x 2 {a2, a4a2},

a4, if x 2 {a4, a2a4},

γ
(2)
�
aia6−i . . . γ

(2)(aia6−i)
�
, if x = aia6−i . . . a6−i, l(x) ≥ 3, i 2 {2; 4},

γ
(2)
�
aia6−i . . . γ

(2)(a6−iai)
�
, if x = aia6−i . . . ai, l(x) ≥ 3, i 2 {2; 4}.

Let H(2)
1 := =1

B1B2
(G3). Then

H
(2)
1 =

n
x 2 G3

�� γ(2)
⇣
u
(2)
B1B2

(x)
⌘
= e

o
.

Since H
(2)
1 is a subgroup of index 3 of the group G3, we define a family of cosets:

G3/H
(2)
1 =

n
H

(2)
1 , H

(2)
2 , H

(2)
3

o
,

where

H
(2)
2 =

n
x 2 G3

�� γ(2)
⇣
u
(2)
B1B2

(x)
⌘
= a2

o
and H

(2)
3 =

n
x 2 G3 | γ(2)

⇣
u
(2)
B1B2

(x)
⌘
= a4

o
.
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3. Let B0 = {?}, B1 = {1}, and B2 = {2, 3, 4}, i.e., m1 = 1 and m2 = 2. We now consider homomor-
phisms

u
(3)
B1B2

: he, a1, a2, a3, a4i ! he, a1, a2i (3) and γ
(3):he, a1, a2i!{e, a1, a2} (4) :

u
(3)
B1B2

(x) =

8
>>>><

>>>>:

e, if x = e,

a1, if x = a1,

a2, if x = ai, i = 2, 4,

γ
(3)(x) =

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

e, if x = e,

a1, if x 2 {a1, a2a1},

a2, if x 2 {a2, a1a2},

γ
(3)(aia3−i . . . γ

(3)(aia3−i)), if x = aia3−i . . . a3−i, l(x) ≥ 3, i 2 {1; 2},

γ
(3)(aia3−i . . . γ

(3)(a3−iai)), if x = aia3−i . . . ai, l(x) ≥ 3, i 2 {1; 2}.

Let H(3)
1 := =1

B1B2
(G3). Then

H
(3)
1 =

n
x 2 G3

�� γ(3)
⇣
u
(3)
B1B2

(x)
⌘
= e

o
.

Since H
(3)
1 is a subgroup of index 3 of the group G3, we define a family of cosets:

G3/H
(3)
1 =

n
H

(3)
1 , H

(3)
2 , H

(3)
3

o
,

where

H
(3)
2 =

n
x 2 G3

�� γ(3)
⇣
u
(3)
B1B2

(x)
⌘
= a1

o
and H

(3)
3 =

n
x 2 G3

�� γ(3)
⇣
u
(3)
B1B2

(x)
⌘
= a2

o
.

4. Let B0 = {?}, B1 = {1, 2}, and B2 = {3, 4}, i.e., m1 = 1 and m2 = 3. We consider the homomor-
phisms

u
(4)
B1B2

: he, a1, a2, a3, a4i ! he, a1, a3i (3) and γ
(4):he, a1, a3i!{e, a1, a3} (4) :

u
(4)
B1B2

(x) =

8
>>>><

>>>>:

e, if x = e,

a1, if x = ai, i = 1, 2,

a3, if x = ai, i = 3, 4,



PERIODIC AND WEAKLY PERIODIC GROUND STATES CORRESPONDING TO THE SUBGROUPS OF INDEX THREE 915

γ
(4)(x) =

8
>>>>>>>>>>><

>>>>>>>>>>>:

e, if x = e,

a1, if x 2 {a1, a3a1},

a3, if x 2 {a3, a1a3},

γ
(4)
�
aia4−i . . . γ

(4)(aia4−i)
�
, if x = aia4−i . . . a4−i, l(x) ≥ 3, i 2 {1; 3},

γ
(4)
�
aia4−i . . . γ

(4)(a4−iai)
�
, if x = aia4−i . . . ai, l(x) ≥ 3, i 2 {1; 3}.

Let H(4)
1 := =1

B1B2
(G3). Then

H
(4)
1 =

n
x 2 G3

�� γ(4)
⇣
u
(4)
B1B2

(x)
⌘
= e

o
.

Since H
(4)
1 is a subgroup of index 3 of the group G3, we define a family of cosets:

G3/H
(4)
1 =

�
H

(4)
1 , H

(4)
2 , H

(4)
3

 
,

where

H
(4)
2 =

n
x 2 G3

�� γ(4)
⇣
u
(4)
B1B2

(x)
⌘
= a1

o
and H

(4)
3 =

n
x 2 G3

�� γ(4)
⇣
u
(4)
B1B2

(x)
⌘
= a3

o
.

The H
(j)
1 -periodic configurations have the following form:

σ(x) =

8
>>>><

>>>>:

σ1, x 2 H
(j)
1 ,

σ2, x 2 H
(j)
2 ,

σ3, x 2 H
(j)
3 ,

where σi 2 Φ, i 2 {1, 2, 3}, j = 1, 4.

Note that if σ1 = σ2 = σ3, then this configuration is translation-invariant; for the full details about this
configuration, see [16].

Theorem 1. Let k = 3.

1. If (J1, J2) 2 A1 \ A2, then there exist six H
(1)
1 -periodic (with the exception of translation-invariant)

ground states corresponding to the following configurations:

σ(x) = ±

8
>>>><

>>>>:

σ1, if x 2 H
(1)
1 ,

σ2, if x 2 H
(1)
2 ,

σ3, if x 2 H
(1)
3 ,

where (σ1,σ2,σ3) 2 {(−1, 1, 1), (1,−1, 1), (1, 1,−1)}.
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2. If (J1, J2) 2 R
2\(A1 \ A2), then there exist non-H(1)

1 -periodic (with the exception of translation-
invariant) ground states.

Proof. Let (σ1,σ2,σ3) = (−1, 1, 1). Consider the following configuration:

'1(x) =

8
>>>><

>>>>:

−1, if x 2 H
(1)
1 ,

1, if x 2 H
(1)
2 ,

1, if x 2 H
(1)
3 .

Denote

A− = {x 2 S1(cb) : 'b(x) = −1}, A+ = {x 2 S1(cb) : 'b(x) = +1}, and 'i,b = ('i)b

for any i. If cb 2 H
(1)
1 , then

'1(cb) = −1, |A−| = 2, and |A+| = 2,

which implies that '1,b 2 C2. For the case, cb 2 H
(1)
2 , we get

'1(cb) = 1, |A−| = 1, and |A+| = 3,

which implies that '1,b 2 C1. Finally, if cb 2 H
(1)
3 , then

'1(cb) = 1, |A−| = 1, and |A+| = 3

which implies that '1,b 2 C1. Hence, for any b 2 M, we find '1,b 2 C1 [ C2.

It follows from (2) that

A1 \A2 =

⇢
(J1, J2) : J2 = −1

2
J1, J1  0

�
.

By Lemma 1, we conclude that the periodic configuration '1 is an H
(1)
1 -periodic ground state on the set A1 \A2.

Note that, for any b 2 M, we have '1,b ⇠ −'1,b, i.e., −'1,b 2 C1[C2 for all b 2 M. Consequently, the periodic
configuration −'1 is an H

(1)
1 -periodic ground state on the set A1 \A2.

Similar arguments can be also applied to the periodic configurations ±'2 and ±'3 corresponding to

(σ1,σ2,σ3) 2 {(1,−1, 1), (1, 1,−1)}.

Note that there exist nonperiodic (not translation-invariant) configurations not mentioned in Assertion 1.

As above, we prove that these configurations are ground states on the set A1 \ A2. Hence, if (J1, J2) 2 R
2 \

(A1 \A2), then there exist non-H
(1)
1 -periodic ground states (not translation-invariant).

Theorem 1 is proved.

Remark 1. The H
(1)
1 -periodic ground states mentioned in Theorem 1 differ from the periodic ground states

described in [1]. In addition, in [1], it was proved that, for fixed J = (J1, J2), the maximum number of periodic
ground states is equal to four. In our case, it is equal to six.
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In [20, 21], for the normal subgroups of indices two and four, the author studied weakly periodic ground states.
In [24], we studied H1 -weakly periodic ground states on the Cayley tree of order two. We now study H1 -weakly
periodic ground states corresponding to the subgroups of index 3 of the group representation of Cayley tree of
order three.

For any element x of Gk, we recall that x# on the element satisfying the following condition:

x
−1 · x# 2 {ai | i 2 Nk}.

Invariance Property. For Bi = {mi} and x, y 2 Gk, if

γ(uB1B2(x)) = γ(uB1B2(y)) and γ(uB1B2(x#)) = γ(uB1B2(y#)),

then

hhγ(uB1B2(xai)) | xai 2 S(x)ii = hhγ(uB1B2(yai)) | yai 2 S(y)ii,

where hh. . .ii stands for ordered k -tuples (for more details, see [15]).
In [15], one can find a condition imposed on subgroups of the group representation of Cayley tree such that

an invariance property is true. Generally speaking, except for the given condition, the invariance property does not
hold. The H

(z)
1 -weakly periodic configurations have the following form:

'(x) =

8
>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>:

a11, x# 2 H
(z)
1 and x 2 H

(z)
1 ,

a12, x# 2 H
(z)
1 and x 2 H

(z)
2 ,

a13, x# 2 H
(z)
1 and x 2 H

(z)
3 ,

a21, x# 2 H
(z)
2 and x 2 H

(z)
1 ,

a22, x# 2 H
(z)
2 and x 2 H

(z)
2 ,

a23, x# 2 H
(z)
2 and x 2 H

(z)
3 ,

a31, x# 2 H
(z)
3 and x 2 H

(z)
1 ,

a32, x# 2 H
(z)
3 and x 2 H

(z)
2 ,

a33, x# 2 H
(z)
3 and x 2 H

(z)
3 ,

where aij 2 Φ, i, j 2 {1, 2, 3}, z = 1, 2. For the sake of convenience, we write

'(x) = (a11, a12, a13, a21, a22, a23, a31, a32, a33)

for this weakly periodic configuration '.

Theorem 2. Let k = 3.

1. There are no H
(1)
1 -weakly periodic ground states (with the exception of translation-invariant and peri-

odic).
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2. There are no H
(l)
1 -periodic, where l = 2, 3, and weakly periodic ground states (with the exception of

translation-invariant).

3. There are no H
(4)
1 -periodic ground states (with the exception of translation-invariant).

Proof. 1. We now prove part 1 of Theorem 2.
Consider '1 = (−1,−1, 1,−1, 1, 1,−1, 1, 1).

1.1. Assume that cb 2 H
(1)
1 . Then all possible cases are as follows:

(a) if cb# 2 H
(1)
1 and '1,b(cb#) = −1, then '1,b(cb) = −1, |A−| = 3, |A+| = 1, and '1,b 2 C1;

(b) cb# 2 H
(1)
1 and '1,b(cb#) = 1; this case is impossible;

(c) cb# 2 H
(1)
2 and '1,b(cb#) = −1; this case is impossible;

(d) if cb# 2 H
(1)
2 and '1,b(cb#) = 1, then '1,b(cb) = −1, |A−| = 2, |A+| = 2, and '1,b 2 C2;

(e) if cb# 2 H
(1)
3 and '1,b(cb#) = 1, then '1,b(cb) = −1, |A−| = 3, |A+| = 1, and '1,b 2 C1,

(f) cb# 2 H
(1)
3 and '1,b(cb#) = −1; this case is impossible.

1.2. Let cb 2 H
(1)
2 , then all possible cases are as follows:

(a) if cb# 2 H
(1)
1 and '1,b(cb#) = −1, then '1,b(cb) = −1, |A−| = 1, |A+| = 3, and '1,b 2 C3;

(b) cb# 2 H
(1)
1 and '1,b(cb#) = 1, which is impossible;

(c) if cb# 2 H
(1)
2 and '1,b(cb#) = −1, then '1,b(cb) = 1, |A−| = 2, |A+| = 2, and '1,b 2 C2;

(d) if cb# 2 H
(1)
2 and '1,b(cb#) = 1, then '1,b(cb) = 1, |A−| = 1, |A+| = 3, and '1,b 2 C1;

(e) if cb# 2 H
(1)
3 and '1,b(cb#) = 1, then '1,b(cb) = 1, |A−| = 1, |A+| = 3, and '1,b 2 C1;

(f) cb# 2 H
(1)
3 and '1,b(cb#) = −1; this is impossible.

1.3. If cb 2 H
(1)
3 , then all possible cases are as follows:

(a) if cb# 2 H
(1)
1 and '1,b(cb#) = −1, then '1,b(cb) = 1, |A−| = 1, |A+| = 3, and '1,b 2 C1;

(b) cb# 2 H
(1)
1 and '1,b(cb#) = 1, which is impossible;

(c) if cb# 2 H
(1)
2 and '1,b(cb#) = −1, then '1,b(cb) = 1, |A−| = 2, |A+| = 2, and '1,b 2 C2;

(d) if cb# 2 H
(1)
2 and '1,b(cb#) = 1, then '1,b(cb) = 1, |A−| = 1, |A+| = 3, and '1,b 2 C1;

(e) if cb# 2 H
(1)
3 and '1,b(cb#) = 1, then '1,b(cb) = 1, |A−| = 1, |A+| = 3, and '1,b 2 C1;

(f) cb# 2 H
(1)
3 and '1,b(cb#) = −1 , this case is impossible.

Hence, we have proved that '1,b 2 C1 [ C2 [ C3 for all b 2 M.

It follows from (2) that

A1 \A2 \A3 = {(J1, J2) 2 R
2 : J1 = J2 = 0}.

This implies that the configuration '1 is a non-H(1)
1 -weakly periodic ground state. The same conclusion can be

made for the remaining configurations. The remaining part of the proof is performed by analogy with the proof of
part 1 of Theorem 2 and Theorem 1.

Theorem 2 is proved.
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Remark 2. In [24], for k = 2, the authors found both periodic (not translation-invariant) and weakly periodic
(not translation-invariant and nonperiodic) ground states.

Remark 3. The H
(l)
1 -subgroups with l = 2, 3 do not possess the invariance property.

The H
(m)
1 -weakly periodic configurations have the following form:

'(x) =

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

a12, x# 2 H
(m)
1 and x 2 H

(m)
2 ,

a13, x# 2 H
(m)
1 and x 2 H

(m)
3 ,

a21, x# 2 H
(m)
2 and x 2 H

(m)
1 ,

a23, x# 2 H
(m)
2 and x 2 H

(m)
3 ,

a31, x# 2 H
(m)
3 and x 2 H

(m)
1 ,

a32, x# 2 H
(m)
3 and x 2 H

(m)
2 ,

where aij 2 Φ, i, j 2 {1, 2, 3}, m = 3, 4.

In what follows, we write '(x) = (a12, a13, a21, a23, a31, a32) for this weakly periodic configuration '.

Theorem 3. Let k = 3. Then the following assertions hold:

1(a). There exist exactly six H(4)
1 -weakly periodic ground states on

⇢
J2 =

1

2
J1, J1 ≥ 0

�
that are nonperi-

odic and have the form '1,2 = ±(i, j, i, j, i, j), '3,4 = ±(i, j, i, j, j, i), and '5,6 = ±(i, j, j, i, j, i),

where i 6= j, i, j 2 Φ.

1(b). There are exactly two H
(4)
1 -weakly periodic ground states on

⇢
J2 = −1

2
J1, J1  0

�
that are

nonperiodic and have the form '7,8 = ±(i, j, j, i, i, j), where i 6= j, i, j 2 Φ.

2. If (J1, J2) 2 R
2 \ ((A1 \A2)[ (A2 \A3)), then there exist non-H

(4)
1 -weakly periodic ground states

(with the exception of translation-invariant).

Proof. The proof is performed by using the same method as in the proof of part 1 of Theorem 2.

Remark 4. The results of Theorems 1 and 3 do not depend on the choice of elements of Nk; however, they
depend only on the power of partition sets of Nk.

Remark 5. The weakly periodic ground states obtained in Theorem 3 differ from the weakly periodic ground
states determined in [20].
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