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ON THE POLYCONVOLUTIONWITHWEIGHT FUNCTION γ(y) = cos y
FOR HARTLEY INTEGRAL TRANSFORMS H1, H2, H1 AND
INTEGRAL EQUATIONS

N. M. Khoa1 and T. V. Thang2,3 UDC 517.5

We construct and study a new polyconvolution with weight function γ(y) = cos y for Hartley integral
transforms H1, H2, H1 and apply it to the solution of integral equations and a system of integral
equations of polyconvolution type.

1. Introduction

In 1997, Kakichev [7] proposed the polyconvolution for n+1 arbitrary integral transforms K,K1,K2, . . . ,Kn

with a weight function γ(y) of functions f1, f2, . . . , fn satisfying the following factorization identity:

K
h
γ
⇤ (f1, f2, . . . , fn)

i
(y) = γ(y) (K1f1) (y) (K2f2) (y) . . . (Knfn) (y).

In recent years, there were some polyconvolutions [13, 14] related to the Hartley integral transforms and some
differential integral transforms. At the same time, there were some polyconvolutions [10, 11] related only to the
Hartley integral transforms and some differential integral transforms.

In the present paper, we construct and study a new polyconvolution with weight function γ(y) = cos y re-
lated to the Hartley integral transforms H1, H2, H1. We apply this polyconvolution to solve some nonstandard
integral equations and system of integral equations. We realize that, for these integral equations, the possibility of
representation of their solutions in a closed form is an interesting open problem [4, 8, 9].

In this section, we recall some known convolutions and generalized convolutions. The Hartley integral trans-
form H1, H2 was introduced in [3]:

(Hf)n 1

2

o(x) =
1

p
2⇡

+1Z

−1

f(x) cas (±xy)dy, y 2 R.

Here, cas (±✓) = cos ✓ ± sin ✓. The convolution for the Hartley integral transform H1 [5, 6, 12], i.e.,

✓
f ⇤
H1

g

◆
(x) =

1

2
p
2⇡

1Z

−1

f(u) [g (x+ u) + g (x− u) + g (u− x) −f (−x− u)] du, (1.1)

1 Department of Mathematics, Electric Power University, Hanoi, Vietnam; e-mail: khoanm@epu.edu.vn.
2 Department of Mathematics, Electric Power University, Hanoi, Vietnam; e-mail: thangtv@epu.edu.vn.
3 Corresponding author.

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 74, No. 4, pp. 568–576, April, 2023. Ukrainian DOI: 10.37863/umzh.v75i4.6971.
Original article submitted November 28, 2021.

652 0041-5995/23/7504–0652 © 2023 Springer Science+Business Media, LLC

DOI 10.1007/s11253-023-02221-7



ON THE POLYCONVOLUTION WITH WEIGHT FUNCTION γ(y) = cos y FOR HARTLEY INTEGRAL TRANSFORMS 653

satisfies the factorization identity

H1

✓
f ⇤
H1

g

◆
(y) = (H1f) (y)(H1g)(y).

The Hartley integral transform H1, H1, H2 was introduced in [3]

✓
f ⇤
H1,H1,H2

g

◆
(x) =

1

2
p
2⇡

1Z

−1

[f (x+ y) + f (x− y)− f (−x+ y) + f(−x− y)] g(y)dy

and satisfies the factorization identity

H1

✓
f ⇤
H1,H1,H2

g

◆
(y) = (H1f) (y)(H2g)(y).

2. Polyconvolution withWeight Function γ(y) = cos y for the Hartley Integral Transforms H1, H2, H1

Definition 2.1. The polyconvolution with weight function γ(y) = cos y for Hartley integral transforms of the
functions f, g and h is defined as follows:

[
γ
⇤ (f, g, h)](x) =

1

8⇡

1Z

−1

1Z

−1

[f(x+ v + w + 1) + f(x+ v + w − 1)

+ f(x− v − w + 1) + f(x− v − w − 1)]g(v)h(w)dvdw, x 2 R. (2.1)

Theorem 2.1. Let f, g, and h be functions in L(R). Then the polyconvolution with weight function γ(y) =

cos y (2.1) for the Hartley integral transforms of the functions f, g, and h belongs to L(R) and the following
factorization identity is true:

H1

h
γ
⇤ (f, g, h)

i
(y) = cos y(H1f)(y)(H2g)(y)(H1h)(y) 8y 2 R. (2.2)

Proof. First, we prove that [
γ
⇤(f, g, h)](x) 2 L(R). Indeed, we have

1Z

−1

���
γ
⇤ (f, g, h) (x)

��� dx


1

8⇡

1Z

−1

|g(v)| dv

1Z

−1

|h(w)| dw

1Z

−1

1Z

−1

[|f(x+ v + w + 1)|

+ |f(x+ v + w − 1)|+ |f(x− v − w + 1)|+ |f(x− v − w − 1)|]dx.
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It is easy to see that

1Z

−1

h
|f(x+ v + w + 1)|+ |f(x+ v + w − 1)|

+ |f(x− v − w + 1)|+ |f(x− v − w − 1)|
i
dx = 4

1Z

−1

|f(u)|du.

For this reason, we obtain

1Z

−1

���
γ
⇤ (f, g, h) (x)

��� dx 
1

2⇡

1Z

−1

|g(v)| dv

1Z

−1

|h(w)| dw

1Z

−1

|f(u)| du < +1.

Hence,
γ
⇤(f, g, h)(x) belongs to L(R). We now prove the factorization identity (2.2). Since

2⇡
p

2⇡ cos y(H1f)(y)(H2g)(y)(H1h)(y)

=

1Z

−1

1Z

−1

1Z

−1

cos y cas (yu) cas (−yv) cas (yw) f(u)g(v)h(w)dudvdw,

in view of the trigonometric identity, we get

cos y cas (yu) cas (yv) cas (yw)

=
1

4

h
cas y (u+ v + w + 1) + cas y (u+ v + w − 1) + cas y (u− v − w + 1)

+ cas y (u− v − w − 1)
i
.

Thus,

cos y(H1f)(y)(H2g)(y)(H1h)(y)

=
1

8⇡
p
2⇡

1Z

−1

1Z

−1

1Z

−1

h
cas y (u+ v + w + 1) + cas y (u+ v + w − 1)

+ cas y (u− v − w + 1) + cas y (u− v − w − 1)
i
f(u)g(v)h(w)dudvdw

=
1

8⇡
p
2⇡

1Z

−1

1Z

−1

1Z

−1

cas (yt)
h
f (t− v − w − 1) + f (t− v − w + 1)
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+ f (t+ v + w − 1) + f (t+ v + w + 1)
i
g(v)h(w)dtdvdw

= H1

h
γ
⇤ (f, g, h)

i
(y) 8y 2 R.

Theorem 2.1 is proved.

Corollary 2.1. In the space L(R), polyconvolution (2.1) satisfies the following equality:

h
γ
⇤ (f, g, h)

i
(x) =

h
γ
⇤ (h, g, f) (x)

i
.

Proof. From the factorization identity (2.2), we obtain

H

h
γ
⇤ (f, g, h)

i
(y) = (H1f)(y)(H2g)(y)(H1h)(y)

= (H1h)(y)(H2g)(y)(H1f)(y) = H

h
γ
⇤ (h, g, f)

i
(y).

Therefore,

[
γ
⇤ (f, g, h)](x) = [

γ
⇤ (h, g, f) (x)].

Theorem 2.2. If f, g, and h belong to L(R), then the following inequality holds:
���
γ
⇤ (f, g, h)

���  kfk kgk khk.

Proof. From the proof of Theorem 2.1, we get

1Z

−1

���
γ
⇤ (f, g, h) (x)

��� dx 
1

2⇡

1Z

−1

|f(t)| dt

1Z

−1

|g(v)| dv

1Z

−1

|h(w)| dw

=
1

3
p
2⇡

1Z

−1

|f(t)| dt
1

3
p
2⇡

1Z

−1

|g(v)| dv
1

3
p
2⇡

1Z

−1

|h(w)| dw.

Hence,
���
γ
⇤ (f, g, h)

���  kfk kgk khk .

Theorem 2.2 is proved.

Theorem 2.3. Let g 2 Lp(R), h 2 Lq(R), and f 2 Lr(R) be such that

p, q, r > 1 and
1

p
+

1

q
+

1

r
= 2.

Then the following inequality holds:

���
γ
⇤ (f, g, h)

��� 
1

2⇡
kgkpLp(R khkqLq(R kfkrLr(R .
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Proof. By using (2.1), we get the following estimation:

���
γ
⇤ (f, g, h) (x)

��� 
1

8⇡

1Z

−1

1Z

−1

|g(v)| |h(w)| |f(x+ v + w + 1)| dvdw

+
1

8⇡

1Z

−1

1Z

−1

|g(v)| |h(w)| |f(x+ v + w − 1)| dvdw

+
1

8⇡

1Z

−1

1Z

−1

|g(v)| |h(w)| |f(x− v − w + 1)| dvdw

+
1

8⇡

1Z

−1

1Z

−1

|g(v)| |h(w)| |f(x− v − w − 1)| dvdw. (2.3)

Let I1, I2, . . . , I4 be the corresponding integral terms in this expression. Without loss of generality, we consider

I1 =
1

8⇡

1Z

−1

1Z

−1

|g(v)| |h(w)| |f(x+ v + w + 1)| dvdw, x 2 R.

Let p1, q1, and r1 be the conjugate exponentials for p, q, and r and let

A1(u, v) = |h(w)|q/p1 |f(x+ v + w + 1)|q/p1 2 Lp1(R2),

A2(u, v) = |f(x+ v + w + 1)|r/q1 |g(v)|p/q1 2 Lq1(R2),

A3(u, v) = |g(v)|p/r1 |h(w)|q/r1 2 Lr1(R2).

We see that

A1.A2.A3 = |g(v)| |h(w)| |f(x+ v + w + 1)|.

By the definition of norm in the space Lp1(R)2, with the help of the Fubini theorem, we get

kA1k
p1
Lp1 (R2)

=

1Z

−1

1Z

−1

n
|h(w)|q/p1 |f(x+ v + w + 1)|r/p1

op1

=

1Z

−1

|h(w)|q

0

@
1Z

−1

|f(x+ v + w + 1)|rdv

1

A dw

=

1Z

−1

|h(w)|qkfkrLr(R)dw = khkqLq(R)kfk
r
Lr(R).
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Similarly, we have

kA2k
q1
Lq1 (R2)

= kfkrLr(R)kgk
p
Lp(R),

kA3k
r1
Lr1 (R2)

= kgkpLp(R)khk
q
Lq(R).

(2.4)

From the hypothesis
1

p
+

1

q
+

1

r
= 2, it follows that

1

p1
+

1

q1
+

1

r1
= 1. By using the Hölder inequality and (2.4),

we obtain the following estimation:

I1 =
1

8⇡

1Z

−1

1Z

−1

A1A2A3dvdw


1

8⇡

0

@
1Z

−1

1Z

−1

Ap1
1 dvdw

1

A

1
p1

0

@
1Z

−1

1Z

−1

Aq1
2 dvdw

1

A

1
q1

0

@
1Z

−1

1Z

−1

Ar1
3 dvdw

1

A

1
r1

=
1

8⇡
kA1k

p1
Lp1 (R2)

kA2k
q1
Lq1 (R2)

kA3k
r1
Lr1 (R2)

=
1

8⇡
kgkpLp(R)khk

q
Lq(R)kfk

r
Lr(R). (2.5)

In the same way, we get the following estimations for I2, I3, and I4 :

Ik 
1

8⇡
kgkpLp(R)khk

q
Lq(R)kfk

r
Lr(R) (2.6)

for all k = 2, 3, 4. Furthermore, it follows from (2.3)–(2.6) that

���
γ
⇤ (f, g, h)

��� 
1

2⇡
kgkpLp(R khkqLq(R kfkrLr(R .

Theorem 2.3 is proved.

Theorem 2.4 (Titchmarch-type theorem). Let f, g, h 2 L(R). If
γ
⇤ (f, g, h) (x) ⌘ 0 for all x 2 R, then

either f(x) = 0, or g(x) = 0, or h(x) = 0 for all x 2 R.

Proof. The hypothesis
γ
⇤ (f, g, h) (x) ⌘ 0 implies that H1[

γ
⇤ (f, g, h)](y) = 0 8y 2 R. By virtue of Theo-

rem 2.1, we get

cos y(H1f)(y)(H2g)(y)(H1h)(y) = 0 8y 2 R. (2.7)

As (H1f)(y), (H2g)(y), and (H1h)(y) are analytic for all y 2 R, relation (2.7) implies that either (H1f) = 0

8y 2 R, or (H2g) = 0 8y 2 R, or (H1h) = 0 8y 2 R.
Therefore, we have either f(x) = 0 8x 2 R, or g(x) = 0 8x 2 R, or h(x) = 0 8x 2 R.
Theorem 2.4 is proved.
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3. Application to Solving an Integral Equation and a System of Integral Equations of the
Polyconvolution Type

3.1. A Single Integral Equation. In this section, we apply the obtained result to solve an integral equation
of the polyconvolution type. To deal with this equation, we prove the existence of solution and present it in the
closed form. We examine the following integral equation:

f(x) +
1

8⇡

1Z

−1

1Z

−1

[f(x+ v + w + 1) + f(x+ v + w − 1)

+ f(x− v − w + 1) + f(x− v − w − 1)]g(v)h(w)dvdw = k(x) 8y 2 R. (3.1)

Here, g, h, and k are functions of L(R) and f is an unknown function.

Theorem 3.1. Let k, g, h 2 L(R) be given. Equation (3.1) has a unique solution

f(x) = k(x)−

✓
k ⇤

H

l

◆
(x)

in L(R) if

1 + cos y(H2g)(y)(H1h)(y) 6= 0 8y 2 R.

Here, l 2 L(R). Moreover, it is determined by the equation

(Hl) (y) =
cos y(H2g)(y)(H1h)(y)

1 + cos y(H2g)(y)(H1h)(y)
.

Proof. Equation (3.1) can be rewritten in the form

f(x) +
h
γ
⇤g (f, g, h)

i
(x) = k(x).

In view of Theorem 2.1, we obtain

(H1f)(y) + cos y(H1f)(y)(H2g)(y)(H1h)(y) = (H1k)(y) 8y 2 R.

This yields

(H1f)(y) [1 + cos y(H2g)(y)(H1h)(y)] = (H1k)(y).

Under the condition

1 + cos y(H2g)(y)(H1h)(y) 6= 0 8y 2 R,

we get

(H1f)(y) = (H1k)(y)


1−

cos y(H2g)(y)(H1h)(y)

1 + cos y(H2g)(y)(H1h)(y)

�
.
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Therefore, by the Wiener–Levy theorem [1, 12], there exists a function l 2 L(R) such that

(H1l) (y) =
cos y(H2g)(y)(H1h)(y)

1 + cos y(H2g)(y)(H1h)(y)
.

Hence,

(H1f)(y) = (H1k)(y)− (H1k)(y) (H1l) (y)

= (H1k)(y)−H1

✓
k ⇤

H

l

◆
(y).

Therefore,

f(x) = k(x)−

✓
k ⇤

H1

l

◆
(x).

Theorem 3.1 is proved.

3.2. A System of Two Integral Equations of the Polyconvolution Type.

f(x) +
1

8⇡

1Z

−1

[f(x+ v + w + 1) + f(x+ v + w − 1)

+ f(x− v − w + 1) + f(x− v − w − 1)]'(v) (w)dvdw = h(x),

(3.2)

1

2
p
2⇡

1Z

−1

f(v) [p(x+ v) + p(x− v) + p(−x+ v)− p(−x− v)] dv + g(x) = k(x), x 2 R.

Here, ',  , p, h, and k are given functions in L(R) and f and g are the unknown functions.

Theorem 3.2. Assume that

1−H1

h
γ
⇤ (p,', )

i
(y) 6= 0 8y 2 R

and there exists a unique solution of (3.2) in L(R) defined as follows:

f(x) = h(x) +

✓
h ⇤
H1

l

◆
(x)−

h
γ
⇤ (k,', )

i
(x)−

⇢h
γ
⇤ (k,', )

i
⇤
H1

l

�
(x),

g(x) = k(x) +

✓
k ⇤
H1

l

◆
(x)−

✓
h ⇤
H1

p

◆
(x)−

✓
h ⇤
H1

p

◆
⇤
H1

l

�
(x).

Here, l 2 L(R) and defined by the equations

(H1l) (y) =
H1

h
γ
⇤(p,', )

i
(y)

1−H1

h
γ
⇤(p,', )

i
(y)

.
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Proof. System (3.2) can be rewritten in the form

f(x) +
h
γ
⇤(g,', )

i
(x) = h(x),

✓
f ⇤
H1

p

◆
(x) + g(x) = k(x), x 2 R.

By using the factorization property of polyconvolution (2.1) and convolution (1.1), we obtain the following linear
system of algebraic equations for (H1f)(y) and (H1g)(y) :

(H1f)(y) + cos y(H1g)(y) (H2') (y) (H1 ) (y) = (H1h)(y),

(H1f)(y)(H1p)(y) + (H1g)(y) = (H1k)(y), y 2 R.

We now find the determinants of the system

∆ =

������

1 cos y(H2')(y)(H1 )(y)

(H1p) (y) 1

������

= 1− cos y(H1p)(y)(H2')(y)(H1 )(y) = 1−H1

h
γ
⇤ (p,', )

i
(y),

∆1 =

������

(H1h)(y) cos y(H2')(y)(H1 )(y)

(H1k)(y) 1

������

= (H1h)(y)−H1

h
γ
⇤ (k,', )

i
(y),

∆2 =

������

1 (H1h) (y)

(H1p) (y) (H1k) (y)

������
= (H1k) (y)−H1

✓
h ⇤
H1

p

◆
(y).

Since

1−H1

h
γ
⇤ (p,', )

i
(y) 6= 0 8y 2 R,

we find

(H1f)(y) =
n
(H1h)(y)−H1

h
γ
⇤ (k,', )

i
(y)

o 1

1−H1

h
γ
⇤ (p,', )

i
(y)

=
n
(H1h)(y)−H1

h
γ
⇤ (k,', )

i
(y)

o
8
<

:1 +
H1

h
γ
⇤ (p,', )

i
(y)

1−H1

h
γ
⇤ (p,', )

i
(y)

9
=

; .
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Furthermore, according to the Wiener–Levy theorem [1, 12], there exists a function l 2 L(R) such that

(H1l) (y) =
H1

h
γ
⇤ (p,', )

i
(y)

1−H1

h
γ
⇤ (p,', )

i
(y)

.

This yields

(H1f)(y) =
n
(H1h)(y)−H1

h
γ
⇤ (k,', )

i
(y)

o
{1 + (H1l) (y)}

= (H1h)(y) +H1

✓
h ⇤
H1

l

◆
(y)−H1

h
γ
⇤ (k,', )

i
(y)

−H1

⇢h
γ
⇤ (k,', )

i
⇤
H1

l

�
(y).

Hence,

f(x) = h(x) +

✓
h ⇤
H1

l

◆
(x)−

h
γ
⇤ (k,', )

i
(x)−

⇢h
γ
⇤ (k,', )

i
⇤
H1

l

�
(x) 2 L(R).

In the same way, we obtain

(H1g)(y) =

⇢
(H1k)(y)−H1

✓
h ⇤
H1

p

◆
(y)

�
{1 + (H1l) (y)}

= (H1k)(y) +H1

✓
k ⇤
H1

l

◆
(y)−H1

✓
h ⇤
H1

p

◆
(y)−H1

✓
h ⇤
H1

p

◆
⇤
H1

l

�
(y).

Thus, we can write

g(x) = k(x) +

✓
k ⇤
H1

l

◆
(x)−

✓
h ⇤
H1

p

◆
(x)−

✓
h ⇤
H1

p

◆
⇤
H1

l

�
(x) 2 L(R).

Theorem 3.2 is proved.
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