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BOJANOV–NAIDENOV PROBLEM FOR DIFFERENTIABLE FUNCTIONS
AND THE ERDŐS PROBLEM FOR POLYNOMIALS AND SPLINES

Volodymyr Kofanov UDC 517.5

We solve an extremal problem
��x(k)

±
��
Lp[a,b]

! sup, k = 0, 1, . . . , r − 1, p > 0,

in a class of pairs (x, I) of functions x 2 Sk
' such that '(i) are the comparison functions for x(i),

i = 0, 1, . . . , k, and the intervals I = [a, b] satisfy the conditions

L(x)p  A, µ
�
supp[a,b] x

(k)
±
 
 µ,

where

L(x)p := sup

(✓Z b

a

|x(t)|pdt
◆1

p

: a, b 2 R, |x(t)| > 0, t 2 (a, b)

)
.

In particular, we solve the same problems on the classes W r
1(R) and on bounded sets of spaces of

trigonometric polynomials and splines, as well as the Erdős problem for the positive (negative) parts of
polynomials and splines.

1. Introduction

Let G = R or G = [↵,β]. Consider the spaces Lp(G), 0 < p  1, of all Lebesgue-measurable functions
x : G ! R such that kxkLp(G) < 1, where

kxkLp(G) :=

8
>>><

>>>:

✓ Z

G
|x(t)|pdt

◆1/p

for 0 < p < 1,

vrai supt2G |x(t)| for p = 1.

For r 2 N and p, s 2 (0,1], by Lr
p,s we denote the space of all functions x 2 Lp(R) with locally absolutely

continuous derivatives up to the (r − 1) th order, inclusively, such that, in addition, x(r) 2 Ls(R). We write kxkp
instead of kxkLp(R) and Lr

1 instead of Lr
1,1.

It is known (see, e.g., [1, p. 47]) that the problem of determination of the exact constant C in the Kolmogorov–
Nagy-type inequality

��x(k)
��
q
 Ckxk↵p

��x(r)
��1−↵

s
(1.1)

in the class of functions x 2 Lr
p,s, where

↵ =
r − k + 1/q − 1/s

r + 1/p− 1/s
, q, p, s ≥ 1,
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and the parameters

r 2 N and k 2 N0 := N
[

{0}, k < r,

satisfy the condition

↵  (r − k)/r,

is equivalent to the extremal problem
��x(k)

��
q
! sup (1.2)

on the class of functions x 2 Lr
p,s with the following restrictions:

��x(r)
��
s
 Ar and kxkp  A0, (1.3)

where A0 and Ar are given positive numbers.
There are numerous works devoted to this class of problems (for the detailed bibliography, see [1–3]). Note

that the problem of coincidence of the exact constants in inequalities of type (1.1) for periodic functions and the
same inequalities for functions nonperiodic on the axis was investigated in [4]. Despite a great number of works
devoted to inequalities of the form (1.1), the exact constant C in this inequality is known for all r 2 N and
all k < r only in a few cases. For this reason, it is of interest to analyze the Bojanov–Naidenov modification of
problem (1.2) with restrictions (1.3) proposed in [5].

We say that f 2 L1
1 is a comparison function for x 2 L1

1 if kx±k1  kf±k1 and the equality

x(⇠) = f(⌘), ⇠, ⌘ 2 R,

yields the inequality

|x0(⇠)|  |f 0(⌘)|

provided that the indicated derivatives exist.
We say that an odd 2!-periodic function ' 2 L1

1 is an S-function if it has the following properties: ' is even
with respect to !/2 and |'| is convex upward on [0,!] and strictly monotone on [0,!/2]. For k = 0, 1, 2, . . . and
an S-function ' 2 Lk+1

1 , by Sk
' we denote a class of functions x 2 Lk+1

1 such that '(i) is a comparison function
for x(i), i = 0, 1, . . . , k. As examples of the classes Sk

', we can mention the Sobolev classes

n
x 2 Lr

1 :
��x(r)

��
1  Ar, kxk1  A0

o
,

bounded subsets of the spaces Tn (of trigonometric polynomials of degree  n), and the spaces Sn,r (of splines
of order r with defect 1 and nodes at the points l⇡/n, l 2 Z).

For an arbitrary segment [↵,β] ⇢ R, in [5], Bojanov and Naidenov solved the following problem:

βZ

↵

Φ
�
|x(k)(t)|

�
dt ! sup, k = 1, 2, . . . ,

on the class Sk
', where Φ is a continuously differentiable function on [0,1) such that Φ(t)/t is nondecreasing

and Φ(0) = 0. As a result, they solved the Erdős problem of characterization of a trigonometric polynomial [6]
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with fixed uniform norm whose graph has the maximal length on a given segment [↵,β] ⇢ R. For continuous
splines on the axis, this problem was solved in [7].

By W we denote a class of continuous, nonnegative, and convex functions Φ defined on [0,1) and such
that Φ(0) = 0. For p > 0, we set [8]

L(x)p := sup

8
><

>:

0

@
bZ

a

|x(t)|pdt

1

A

1
p

: a, b 2 R, |x(t)| > 0, t 2 (a, b)

9
>=

>;
. (1.4)

Note that

L(x)1 = kxk1 and L(x0)1  2kxk1.

In [9–11], the Bojanov–Naidenov problem was also solved for k = 0, namely,

βZ

↵

Φ(|x(t)|p)dt ! sup, Φ 2 W, p > 0, (1.5)

on a class of functions S0
' satisfying the condition L(x)p  L(')p. As a result, we obtained the solution of the

problem

βZ

↵

Φ
�
|x(k)(t)|

�
dt ! sup, Φ 2 W, k = 1, 2, . . . , (1.6)

on the classes of functions x 2 Sk
' .

The Bojanov–Naidenov problem and the Kolmogorov–Nagy-type inequalities for functions with asymmetric
restrictions imposed on the higher derivative were studied in [12, 13]. Among other works devoted to the investi-
gation of problems of this kind, we can mention [14, 15].

In the present paper, we solve the problem (Theorem 1)

bZ

a

Φ
�
xp±(t)

�
dt ! sup, Φ 2 W, p > 0, (1.7)

on a class of pairs (x, I) of functions x 2 S0
' and segments I = [a, b] such that L(x)p  L(')p and the following

condition is satisfied:

µ
�
supp[a,b] x±

�
 µ, µ > 0. (1.8)

In addition, we also solve the problem (Theorem 2)

bZ

a

Φ
�
x
(k)
± (t)

�
dt ! sup, Φ 2 W, k = 1, 2, . . . , (1.9)

on a class of pairs (x, I) of functions x 2 Sk
' and segments I = [a, b] for which the following condition is

satisfied:

µ
⇣
supp[a,b] x

(k)
±

⌘
 µ, µ > 0, (1.10)
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where

supp[a,b] x :=
�
t 2 [a, b] : |x(t)| > 0

 
.

In particular, problems (1.7) and (1.9) with restrictions (1.8) and (1.10) are solved, respectively, on the classes

⌦r
p(A0, Ar) :=

�
x 2 Lr

1 :
��x(r)

��
1  Ar, L(x)p  A0

 

(Theorem 3) and on bounded subsets of the spaces Tn and Sn,r (Theorems 4 and 5).
In addition, we obtain the solution (Theorem 6) of an analog of the Erdős problem of characterization of

a pair (x, I) formed by a polynomial T 2 Tn with given uniform norm and a segment I whose support mea-
sure µ

�
suppI T

0
±
�
is bounded by a given number and is such that the total length of arcs of the graph of positive

(negative) part of the polynomial T± is maximal on the segment I . A similar problem is solved by the same
theorem for splines from the set

S̃n,r :=
�
s(·+ ⌧) : s 2 Sn,r, ⌧ 2 R

 
.

2. Auxiliary Statements

Note that if a function x 2 S0
' satisfies the condition L(x)p < 1 with some p > 0, |x(t)| > 0 for t 2 (a, b),

and moreover, a = −1 or b = +1, then

x(t) ! 0 as t ! −1 or t ! +1.

In this case, we assume that x(−1) = 0 or x(+1) = 0.

For a summable function x on the segment [a, b], by r(x, t) we denote the permutation of the function |x|
(see, e.g., [16], Sec. 1.3). Moreover, we set r(x, t) = 0 for t > b− a.

Lemma 1. Suppose that ' is a function with period 2!, p > 0, Φ 2 W, and a function x 2 S0
' satisfies

the condition

L(x)p  L(')p, (2.1)

where the quantity L(x)p is given by equality (1.4).
If a (finite or infinite) interval (a±, b±) ⇢ R and a segment [A±, B±] ⇢ R are such that

x(a±) = x(b±) = 0, x±(t) > 0, t 2 (a±, b±), (2.2)

and

'(A±) = '(B±) = 0, '±(t) > 0, t 2 (A±, B±), (2.3)

then, for any ⇠ > 0 and any function Φ 2 W, the following inequalities are true:

a±+⇠Z

a±

Φ
�
xp±(t)

�
dt 

A±+⇠Z

A±

Φ
�
'p
±(t)

�
dt (2.4)
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and

b±Z

b±−⇠

Φ
�
xp±(t)

�
dt 

B±Z

B±−⇠

Φ
�
'p
±(t)

�
dt, (2.5)

where x± is the restriction of x± to (a±, b±) and '± is the restriction of '± to [A±, B±]. Moreover, outside
the corresponding intervals, the functions x± and '± are set equal to zero.

In addition, if

b± − a±  B± −A±, (2.6)

then, for any segment [↵±,β±] ⇢ [A±, B±] such that

β± − ↵± = b± − a±, (2.7)

the following inequality is true:

b±Z

a±

Φ
�
xp±(t)

�
dt 

β±Z

↵±

Φ
�
'p
±(t)

�
dt, Φ 2 W. (2.8)

Proof. We fix a function x and segments (a±, b±) and [A±, B±] satisfying the conditions of the lemma.
We now establish inequality (2.4) [inequality (2.5) is proved similarly].

We first establish the inequality

⇠Z

0

rp(x±, t)dt 
⇠Z

0

rp('±, t)dt, ⇠ > 0. (2.9)

To do this, we first show that the difference

δ±(t) := r(x±, t)− r('±, t)

changes its sign (from minus to plus) on [0,1) at most once. To prove this, we note that

δ±(0)  kx±k1 − k'k1  0 (2.10)

because x 2 S0
'. In view of this inequality and relations (2.2) and (2.3), for any z± 2

⇥
0, kx±kL1[a±,b±]

�
, there

exist points

t±i 2 [a±, b±], i = 1, . . . ,m, m ≥ 2,

y±j 2 [A±, B±], j = 1, 2,

such that

z± = x±(t
±
i ) = '±(y

±
j ). (2.11)
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In view of the inclusion x2S0
', the following inequality holds for points t

±
i and y±j satisfying relation (2.11):

��x0±(t±i )
�� 

��'0
±(y

±
j )
��. (2.12)

If the points ✓±1 , ✓
±
2 > 0 are chosen such that

z± = r(x±, ✓
±
1 ) = r('±, ✓

±
2 ),

then, by the theorem on the derivative of permutation (see, e.g., [16], Proposition 1.3.2), in view of inequal-
ity (2.12), we get

��r0(x±, ✓±1 )
�� =

"
mX

i=1

��x0±(t±i )
��−1

#−1



2

4
2X

j=1

��'0
±(y

±
j )
��−1

3

5
−1

=
��r0('±, ✓

±
2 )
��.

By virtue of (2.10), this implies that the difference δ±(t) := r(x±, t)− r('±, t) changes its sign (from minus
to plus) on [0,1) at most once. The same is also true for the difference

δ±p (t) := rp(x±, t)− rp('±, t).

Consider an integral

I±p (⇠) :=

⇠Z

0

δ±p (t)dt, ⇠ ≥ 0.

It is clear that I±p (0) = 0 and, in view of condition (2.1), for ⇠ ≥ max{b± − a±, B± −A±}, we get

I±p (⇠)  L(x±)p − L
�
'±

�
p
 0.

Moreover, the derivative (I±p )0(t) = δ±p (t) changes its sign (from minus to plus) at most once. Thus,

I±p (⇠)  0

for all ⇠ ≥ 0. Inequality (2.9) is true. By the Hardy–Littlewood–Pólya theorem (see, e.g., [16], Theorem 1.3.11),
this inequality implies that

b±Z

a±

Φ
�
xp±(t)

�
dt 

B±Z

A±

Φ
�
'p
±(t)

�
dt, Φ 2 W. (2.13)

We now establish inequality (2.4). Passing to the shifts of the functions x and ', we can assume that

a± = A± = 0. (2.14)
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In view of the inclusion x 2 S0
', the difference ∆±(t) := x±(t) − '±(t) changes its sign (from minus to plus)

on [0,1) at most once. Since the functions f(t) = tp and Φ 2 W are monotonically increasing, the same is also
true for the difference

∆±
Φ(t) := Φ

�
xp±(t)

�
− Φ

�
'p
±(t)

�
.

We set

I±Φ (⇠) :=

⇠Z

0

∆±
Φ(t)dt, ⇠ ≥ 0.

It is clear that I±Φ (0) = 0. Further, by using inequality (2.13) and assumption (2.14), we obtain

I±Φ (⇠) 
b±Z

a±

Φ
�
xp±(t)

�
dt−

B±Z

A±

Φ
�
'p
±(t)

�
dt  0

for ⇠ ≥ max{b± − a±, B± − A±}. In addition, the derivative (I±Φ )0(t) = ∆±
Φ(t) changes its sign (from minus

to plus) on [0,1) at most once. Thus,

I±Φ (⇠)  0 for all ⇠ ≥ 0.

In view of assumption (2.14), this is equivalent to inequality (2.4).
It remains to establish inequality (2.8) under conditions (2.6) and (2.7). Assume that the last two conditions

are satisfied. Thus, passing, if necessary, to a shift of the function x, we can assume that

a± = ↵±, b± = β±. (2.15)

Hence, by using the inclusion x 2 S0
' and condition (2.2), we arrive at the inequality

x±(t)  '±(t), t 2 [a±, b±].

In view of assumption (2.15), this directly yields inequality (2.8).
Lemma 1 is proved.

In the proof of Lemma 1, we have established inequality (2.13). Thus, the following corollary is true:

Corollary 1. Under the conditions of Lemma 1, for any function Φ 2 W, the inequality

b±Z

a±

Φ
�
xp±(t)

�
dt 

B±Z

A±

Φ
�
'p
±(t)

�
dt =

2!Z

0

Φ
�
'p
±(t)

�
dt (2.16)

is true.

Lemma 2. Suppose that ' is an S-function with period 2!, p > 0, Φ 2 W, and [a, b] ⇢ R. If the function
x 2 S0

' satisfies the condition
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L(x)p  L(')p, (2.17)

where the quantity L(x)p is given by equality (1.4), and one of the requirements

δ± := µ
⇣
supp[a,b] x±

⌘
 !, (2.18)

then, for any function Φ 2 W, the following inequality is true:

bZ

a

Φ
�
xp±(t)

�
dt 

m±+⇥±Z

m±−⇥±

Φ
�
'p
±(t)

�
dt. (2.19)

Here, m± are points of local maximum of the functions '± and the numbers ⇥± > 0 are such that

'(m± −⇥±) = '(m± +⇥±) (2.20)

and, moreover,

2⇥± = δ±. (2.21)

Proof. We fix a function x 2 S0
' and a segment [a, b] satisfying the conditions of Lemma 2. Inequality (2.19)

is established for x+ (for x−, the proof is similar). Suppose that the segment [a, b] satisfies the corresponding
requirement (2.18). Assume that

x+(a) > 0, x+(b) > 0 (2.22)

[if at least one of these inequalities is not true, then the proof of inequality (2.19) is simplified].
Assume that the function x does not have zeros on (a, b). Since L(x)p < 1 by condition (2.17), there exists

a (finite or infinite) interval (c, d) such that (a, b) ⇢ (c, d) and, in addition,

x+(c) = x+(d) = 0, x+(t) > 0, t 2 (c, d).

By x+ we denote the restriction of x+ to (c, d). Moreover, by '+ we denote the restriction of '+ to [0, 2!].

Applying inequality (2.16) to the interval (c, d), we arrive at the estimate

dZ

c

Φ
�
xp+(t)

�
dt 

2!Z

0

Φ
�
'p
+(t)

�
dt,

which can be rewritten in the form

d−cZ

0

Φ
�
rp(x+, t)

�
dt 

2!Z

0

Φ
�
rp('+, t)

�
dt. (2.23)
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As in the proof of Lemma 1, we can show that the difference

δΦ(t) := Φ
�
rp(x+, t)

�
− Φ

�
rp('+, t)

�

changes its sign (from minus to plus) on [0,1) at most once. In view of this fact and inequality (2.23), we get the
following inequality:

⇠Z

0

Φ
�
rp(x+, t)

�
dt 

⇠Z

0

Φ
�
rp('+, t)

�
dt, ⇠ > 0.

It is clear that this inequality also holds if x+ is the restriction of x+ to (a, b). For the same restriction x+,

we conclude that

bZ

a

Φ
�
(xp+(t)

�
dt =

b−aZ

0

Φ
�
rp(x+, t)

�
dt 

b−aZ

0

Φ
�
rp('+, t)

�
dt =

m++⇥+Z

m+−⇥+

Φ
�
'p
+(t)

�
dt,

where m+ is a point of local maximum of the spline '+ and ⇥+ > 0 satisfies conditions (2.20) and (2.21).
Moreover, δ+ = b− a. Thus, in the case where x does not have zeros on (a, b), inequality (2.19) is true.

We now assume that x has zeros on (a, b). We set

a0 := inf
�
t 2 (a, b) : x+(t) = 0

 
and b0 := sup

�
t 2 (a, b) : x+(t) = 0

 
.

In view of (2.22), the support supp[a,b] x+ has the form

supp[a,b] x+ = (a, a0)
[

(b0, b)
[ [

k

(ak, bk), (2.24)

where (ak, bk) ⇢ (a0, b0). Moreover,

x(ak) = x(bk) = 0, x+(t) > 0, t 2 (ak, bk)

(the set of these intervals (ak, bk) can be empty). In view of relation (2.18), assumption (2.22), and the definitions
of the numbers a0 and b0, we obtain

δ+ = (a0 − a) + (b− b0) +
X

k

(bk − ak)  !. (2.25)

Let A+ and B+ be two neighboring zeros of the function ' and, moreover, '+(t) > 0 for t 2 (A+, B+).

In view of (2.17), we have L(x)p < 1. Hence, there exist (finite or infinite) intervals (↵0, a0) and (b0,β0) such
that

x+(↵
0) = x+(a

0) = 0, x+(t) > 0, t 2 (↵0, a0),

and

x+(b
0) = x+(β

0) = 0, x+(t) > 0, t 2 (b0,β0).
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Applying inequalities (2.4) and (2.5) to the intervals (↵0, a0) and (b0,β0) and the segment [A+, B+], we find

bZ

b0

Φ
�
xp+(t)

�
dt 

A++⇠Z

A+

Φ
�
'p
+(t)

�
dt, ⇠ = b− b0, (2.26)

and

a0Z

a

Φ
�
xp+(t)

�
dt 

B+Z

B+−⌘

Φ
�
'p
+(t)

�
dt, ⌘ = a0 − a (2.27)

[in view of (2.25), x+ in inequality (2.4) can be replaced by x+, whereas '+ can be replaced by '+ ]. By virtue
of (2.25), there exist mutually disjoint intervals (↵k,βk) such that

(↵k,βk) ⇢ (A+ + ⇠, B+ − ⌘) and βk − ↵k = bk − ak.

According to relation (2.8), for these intervals, the following inequality is true:

bkZ

ak

Φ
�
xp+(t)

�
dt 

βkZ

↵k

Φ
�
'p
+(t)

�
dt. (2.28)

By using estimates (2.26)–(2.28) and relation (2.24), we get

bZ

a

Φ
�
xp+(t)

�
dt =

a0Z

a

Φ
�
xp+(t)

�
dt+

bZ

b0

Φ
�
xp+(t)

�
dt+

X

k

bkZ

ak

Φ
�
xp+(t)

�
dt


A++⇠Z

A+

Φ
�
'p
+(t)

�
dt+

B+Z

B+−⌘

Φ
�
'p
+(t)

�
dt+

X

k

βkZ

↵k

Φ
�
'p
+(t)

�
dt.

Since βk − ↵k = bk − ak, in view of (2.25), we can write

⇠ + ⌘ +
X

k

(βk − ↵k) = δ+.

Thus, the sum of integrals on the right-hand side of the obtained estimate does not exceed

δ+Z

0

r
�
Φ
�
'p
+

�
, t
�
dt =

m++⇥+Z

m+−⇥+

Φ
�
'p
+(t)

�
dt,

where m+ is the point of local maximum of the function '+ and ⇥+ > 0 satisfies relations (2.20) and (2.21).
Inequality (2.19) is proved.

Lemma 2 is proved.
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Corollary 2. Under the conditions of Lemma 2 and in the case where one of the following assumptions
is true:

µ
�
supp[a,b] x±

�
 !,

the corresponding inequality

bZ

a

Φ
�
xp±(t)

�
dt 

2!Z

0

Φ
�
'p
±(t)

�
dt (2.29)

holds.

3. Solving of the Bojanov–Naidenov Problem in the Classes of Functions with Given Comparison Function

Let p,! > 0 and let ' be an S-function with period 2!. We set

L'(p,!) :=
�
x 2 S0

' : L(x)p  L(')p
 
, (3.1)

where the quantity L(x)p is given by equality (1.4). We fix a number µ > 0 and introduce a class L±
' (p,!, µ) of

pairs (x, I) of functions x and segments I = [a, b] by the formula

L±
' (p,!, µ) :=

�
(x, I) : x 2 L'(p,!), µ(suppI x±)  µ

 
. (3.2)

We rewrite the number µ in the form

µ = n · ! + 2⇥, n 2 N
[

{0}, ⇥ 2 [0,!/2). (3.3)

Note that if the numbers ⌧± 2 R and the segment [A,B] are such that

B −A = 2n! + 2⇥, (3.4)

'±(A+⇥+ ⌧±) = '±(B −⇥+ ⌧±) = k'k1, (3.5)

then
�
'(·+ ⌧±), [A,B]

�
2 L±

' (p,!, µ).

Theorem 1. Suppose that p,!, µ > 0, and ' is an S-function with period 2!. Then, for any func-
tion Φ 2 W,

sup

8
<

:

bZ

a

Φ
�
xp±(t)

�
dt : (x, [a, b]) 2 L±

' (p,!, µ)

9
=

; =

BZ

A

Φ
�
'p
±(t+ ⌧±)

�
dt,

where the sets L±
' (p,!, µ), the numbers ⌧

±, and the segment [A,B] are given by relations (3.1)–(3.5).
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Proof. We fix an arbitrary pair (x, I)2L±
' (p,!, µ) formed by a function x and a segment I=[a, b]. We prove

the theorem for x+ (for x−, the proof is similar). To do this, we first establish the inequality

I :=

bZ

a

Φ
�
xp+(t)

�
dt 

BZ

A

Φ
�
'p
+(t+ ⌧+)

�
dt := I(µ). (3.6)

We first consider the case where supp[a,b] x+ = µ. Since µ satisfies relation (3.3), the segment [a, b] can be
rewritten in the form

[a, b] =

n[

k=1

[↵k,βk]
[

[↵.β],

Moreover, the intervals (↵k,βk) and (↵,β) are mutually disjoint and

µ(supp[↵k,βk]
x+) = !, µ(supp[↵,β] x+) = 2⇥.

Hence,

bZ

a

Φ
�
xp+(t)

�
dt =

nX

k=1

βkZ

↵k

Φ
�
xp+(t)

�
dt+

βZ

↵

Φ
�
xp+(t)

�
dt.

To estimate the integrals on the right-hand side of this equality, we apply inequalities (2.29) and (2.19) and
obtain

bZ

a

Φ
�
xp+(t)

�
dt  n

2!Z

0

Φ
�
'p
+(t)

�
dt +

m++⇥Z

m+−⇥

Φ
�
'p
+(t)

�
dt =

BZ

A

Φ
�
'p
+(t+ ⌧+)

�
dt,

where m+ is the point of local maximum of the function ', and the last equality in this sequence of relations
follows from (3.4). Thus, inequality (3.6) is established in the case where supp[a,b] x+ = µ.

Now let

µ1 := supp[a,b] x+ < µ.

Note that the number µ can be uniquely represented in the form (3.3). Hence, the segment [A,B] and the num-
ber ⌧+ are uniquely (to within a shift) determined by this number. Therefore, the integral I(µ) on the right-hand
side of (3.6) is uniquely determined by the number µ. Moreover, it is clear that I(µ) does not decrease as a func-
tion of µ. Hence, repeating the reasoning used in the previous case, we obtain the following estimate for the
integral I on the left-hand side of (3.6):

I  I(µ1)  I(µ).

Thus, the proof of inequality (3.6) is completed. Note that, for the pair

�
'(·+ ⌧±), [A,B]

�
2 L±

' (p,!, µ)

formed by a function x(·) = '(·+ ⌧+) and a segment [A,B] given by relations (3.3)–(3.5), inequality (3.6) turns
into the equality.

Theorem 1 is proved.
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Let k 2 N, let ! > 0, and let ' be an S-function with period 2! such that ' 2 Lk+1
1 , x 2 Sk

'. Thus, '
(i) is

a comparison function for x(i), i = 0, 1, . . . , k. Therefore,

L(x(k))1  2
��x(k−1)

��
1  2

��'(k−1)
��
1 = L('(k))1. (3.7)

Hence, x(k) 2 S'(k)(1,!). We fix a number µ > 0 and introduce a class of pairs (x, I) of functions x and
segments I = [a, b] by the formula

S±
',k(!, µ) :=

�
(x, I) : x 2 Sk

', µ
�
suppI x

(k)
±
�
 µ

 
. (3.8)

By using these definitions and relation (3.7), we arrive at the implication

(x, I) 2 S±
', k(!, µ) ) (x(k), I) 2 L±

'(k)(1,!, µ), (3.9)

where the sets L±
' (p,!, µ) are determined by using (3.2).

We represent the number µ in the form

µ = n! + 2⇥, n 2 N
[

{0}, ⇥ 2 (0,!/2). (3.10)

Further, we choose the numbers ⌧±k 2 R and the segment [A,B] such that

B −A = 2n! + 2⇥, (3.11)

'
(k)
± (A+⇥+ ⌧±k ) = '

(k)
± (B −⇥+ ⌧±k ) =

��'(k)
��
1. (3.12)

Then
�
'(·+ ⌧±), [A,B]

�
2 S±

',k(!, µ).

Theorem 2. Suppose that k 2 N, !, µ > 0, and ' is an S-function with period 2! such that ' 2 Lk+1
1 .

Then, for any function Φ 2 W,

sup

8
<

:

bZ

a

Φ
⇣
x
(k)
± (t)

⌘
dt : (x, I) 2 S±

',k(!, µ)

9
=

; =

BZ

A

Φ
⇣
'
(k)
± (t+ ⌧±k )

⌘
dt,

where the set S±
',k(!, µ), the numbers ⌧

±
k , and the segment [A,B] are given by relations (3.8)–(3.12).

Proof. In view of implication (3.9), if (x, I) 2 S±
', k(!, µ), then (x(k), I) 2 L±

'(k)(1,!, µ), where the set

L±
' (p,!, µ) is given by (3.2). Thus, by applying Theorem 1 to the class L±

'(k)(1,!, µ), we arrive at the assertion
of Theorem 2.

Theorem 2 is proved.

Setting Φ(t) = tq/p in Theorem 1 and Φ(t) = tq in Theorem 2, we get the following corollary:

Corollary 3. Let k 2 N, let p,!, µ > 0, let ' be an S-function with period 2!, and let Φ 2 W. Then,
for any q ≥ p,
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sup

8
<

:

bZ

a

xq±(t)dt : (x, I) 2 L±
' (p,!, µ)

9
=

; =

BZ

A

'q
±(t+ ⌧±)dt,

where the sets L±
' (p,!, µ), the numbers ⌧

±, and the segment [A,B] are given by relations (3.1)–(3.5).

In addition, if k 2 N, µ > 0, and ' 2 Lk+1
1 , then, for any q ≥ 1,

sup

8
<

:

bZ

a

⇣
x
(k)
± (t)

⌘q
dt : (x, I) 2 S±

', k(!, µ)

9
=

; =

BZ

A

⇣
'
(k)
± (t+ ⌧±k )

⌘q
dt,

where the sets S±
',k(!, µ), the numbers ⌧

±
k , and the segment are given by relations (3.8)–(3.12).

4. Solving of the Bojanov–Naidenov Problem in Sobolev Classes

By 'r(t), r 2 N, we denote a shift of the r th 2⇡-periodic integral with mean value zero over a period
of the function '0(t) = sgn sin t. This quantity satisfies the condition 'r(0) = 0. For λ > 0, we set

'λ,r(t) := λ−r'r(λt).

Let Ar, A0, p > 0. We choose λ > 0 such that

A0 = ArL('λ,r)p, (4.1)

where the quantity L(x)p is given by equality (1.4), and set

'(t) := Ar'λ,r(t). (4.2)

It is clear that ' is an S-function with period 2⇡/λ; moreover,

��'(r)
��
1 = Ar and L(')p = A0.

Consider a class of functions

⌦r
p(A0, Ar) :=

�
x 2 Lr

1 : kx(r)k1  Ar, L(x)p  A0

 
. (4.3)

Lemma 3 [11]. Suppose that r 2 N and A0, Ar, p > 0. Then, for any k = 0, 1, . . . , r − 1,

⌦r
p(A0, Ar) ⇢ Sk

',

where the function ' is defined by equality (4.2) and the number λ is given by equality (4.1).

Let r 2 N, k = 0, 1, . . . , r − 1, and µ > 0. Consider the set of pairs (x, I) of functions x and segments
I = [↵,β] given by the formula

⌦r,k
p (A0, Ar)± :=

n
(x, I) : x 2 ⌦r

p(A0, Ar), µ
�
suppI x

(k)
±
�
 µ

o
. (4.4)
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We represent the number µ in the form

µ = n
⇡

λ
+ 2⇥, n 2 N

[
{0}, ⇥ 2 (0,⇡/(2λ)). (4.5)

Further, we choose numbers ⌧± 2 R and a segment [A,B] such that

B −A = 2n
⇡

λ
+ 2⇥, (4.6)

�
'λ,r−k

�
±(A+⇥+ ⌧±) =

�
'λ,r−k

�
±(B −⇥+ ⌧±k ) =

��'λ,r−k

��
1. (4.7)

Thus,
�
'λ,r(·+ ⌧±), [A,B]

�
2 ⌦r,k

p (A0, Ar)±.

Theorems 1 and 2 and Lemma 3 imply the following statement:

Theorem 3. Suppose that r 2 N, A0, Ar, p > 0, and Φ 2 W. Then

sup

8
<

:

βZ

↵

Φ
�
xp±(t)

�
dt :

�
x, [↵,β]

�
2 ⌦r,0

p (A0, Ar)±

9
=

; =

BZ

A

Φ
�
(Ar'λ,r)

p
±(t+ ⌧±)

�
dt.

At the same time, if k 2 N, k < r, then

sup

8
<

:

βZ

↵

Φ(x
(k)
± (t))dt :

�
x, [↵,β]

�
2 ⌦r,k

p (A0, Ar)±

9
=

; =

BZ

A

Φ
�
Ar('λ,r−k)±(t+ ⌧±)

�
dt,

where the classes ⌦r,k
p (A0, Ar)±, the numbers λ and ⌧±, and the segment [A,B] are given by (4.3)–(4.7).

Setting Φ(t) = tq/p, q ≥ p, in the first relation of Theorem 3 and Φ(t) = tq, q ≥ 1, in the second
relation, we obtain, as in Corollary 3, sharp estimates for the norms

��x(k)±
��
Lq [↵,β]

, k = 0, 1, . . . , r − 1, in the

classes ⌦r,k
p (A0, Ar)±.

Theorem 3 is proved.

5. Solving of the Bojanov–Naidenov Problem in the Spaces of Trigonometric Polynomials

By Tn we denote the space of trigonometric polynomials of degree at most n. For A0, p > 0, we set

Tn(A0, p) :=
�
T 2 Tn : L(T )p  A0L(sinn(·))p

 
,

where the quantity L(x)p is given by equality (1.4).

Lemma 4 [11]. Suppose that n 2 N and A0, p > 0. Then, for any k = 0, 1, . . . ,

Tn(A0, p) ⇢ Sk
',

where '(t) = A0 sinnt.
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Let k 2 N
S
{0} and let µ > 0. We introduce a set of pairs (T, I) formed by polynomials T and the segment

I = [↵,β] by the formula

T±
n,k(A0, p, µ) :=

n
(T, I) : T 2 Tn(A0, p), µ

�
suppI T

(k)
±

�
 µ

o
. (5.1)

The number µ is represented in the form

µ = m
⇡

n
+ 2⇥, m 2 N

[
{0}, ⇥ 2 (0, ⇡/(2n)). (5.2)

Further, we choose the numbers ⌧± 2 R and the segment [A,B] such that

B −A = 2m
⇡

n
+ 2⇥, (5.3)

�
sinn

�
A+⇥+ ⌧±

��
± =

�
sinn

�
B −⇥+ ⌧±

��
± = 1. (5.4)

By Theorems 1 and 2 and Lemma 4, we obtain the following statement:

Theorem 4. Suppose that A0, p, µ > 0 and Φ 2 W. Then

sup

8
<

:

βZ

↵

Φ(T p
±(t))dt :

�
T, [↵,β]

�
2 T±

n,0(A0, p, µ)

9
=

; =

BZ

A

Φ

✓⇣
A0 sinn

�
t+ ⌧±

�⌘p
±

◆
dt

and, for any k 2 N,

sup

8
<

:

βZ

↵

Φ(T
(k)
± (t))dt :

�
T, [↵,β]

�
2 T±

n,k(A0, p, µ)

9
=

; =

BZ

A

Φ

✓
nkA0

⇣
sinn

�
t+ ⌧±

�⌘

±

◆
dt,

where the classes T±
n,k(A0, p, µ), the numbers ⌧±, and the segment [A,B] are given by (5.1)–(5.4).

6. Solving of the Bojanov–Naidenov Problem in the Spaces of Splines

By Sn,r we denote a space of 2⇡-periodic polynomial splines of order r with defect 1 and nodes at the points
k⇡/n, k 2 Z. For A0, p > 0, we set

Sn,r(A0, p) :=
�
s(·+ ⌧) : s 2 Sn,r, L(s)p  A0L('n,r)p, ⌧ 2 R

 
,

where the quantity L(x)p is given by equality (1.4).

Lemma 5 [11]. Suppose that r, n 2 N and A0, p > 0. Then, for any k = 0, 1, . . . , r − 1,

Sn,r(A0, p) ⇢ Sk
',

where '(t) = A0'n,r(t).
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Let r, n 2 N, k = 0, 1, . . . , r − 1, and µ > 0. We consider the set of pairs (s, I) of splines s and segments
I = [↵,β] given by the formula

Sk
n,r(A0, p, µ)± :=

n
(s, I) : s 2 Sn,r(A0, p), µ

⇣
suppI s

(k)
±

⌘
 µ

o
. (6.1)

We rewrite the number µ in the form

µ = m
⇡

n
+ 2⇥, m 2 N

[
{0}, ⇥ 2

�
0,⇡/(2n)

�
. (6.2)

Further, we choose the numbers ⌧± 2 R and the segment [A,B] such that

B −A = 2m
⇡

n
+ 2⇥, (6.3)

('n,r−k)±
�
A+⇥+ ⌧±

�
=
�
'n,r−k

�
±
�
B −⇥+ ⌧±

�
= k'n,r−kk1. (6.4)

By using Theorems 1 and 2 and Lemma 5, we obtain the following statement:

Theorem 5. Suppose that r, n 2 N, A0, p, µ > 0, and Φ 2 W. Then

sup

8
<

:

βZ

↵

Φ(sp±(t))dt :
�
s, [↵,β]

�
2 S0

n,r(A0, p, µ)±

9
=

; =

BZ

A

Φ
�
(A0'n,r)

p
±(t+ ⌧±)

�
dt

and, for any k = 1, 2, . . . , r − 1,

sup

8
<

:

βZ

↵

Φ(s
(k)
± (t))dt : s 2 Sk

n,r(A0, p, µ)±

9
=

; =

βZ

↵

Φ
�
A0('n,r−k)±(t+ ⌧±)|

�
dt,

where the classes Sk
n,r(A0, p, µ)±, the numbers ⌧±, and the segment [A,B] are given by (6.1)–(6.4).

7. Solving of the Erdős Problem in the Spaces of Trigonometric Polynomials and Splines

In [5], Bojanov and Naidenov solved the Erdős problem [6] of characterization of a trigonometric polyno-
mial T 2 Tn with fixed uniform norm whose graph has the maximal length on a given segment [↵,β] ⇢ R .

In the next theorem, we solve a similar problem of characterization of a pair (T, I) formed by a polyno-
mial T 2 Tn with given uniform norm and a segment I whose support measure µ

�
suppI T

0
±
�
is bounded by

a given number and is such that the total length of arcs of the graph of positive (negative) part of the polynomial T
on the segment I is maximal. In this theorem, the same problem is solved for splines from the set

S̃n,r :=
�
s(·+ ⌧) : s 2 Sn,r, ⌧ 2 R

 
.

It is known that the length of an arc l[a, b] of the graph of a function x 2 L1[a, b] is given by the formula

l[a, b] =

bZ

a

p
1 + x0(t)2 dt.
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It is clear that, for the function Φ0(t) =
p
1 + t2, the inclusion Φ0 2 W is true. Setting Φ = Φ0, k = 1,

and p = 1 in Theorems 4 and 5, we obtain the following assertion:

Theorem 6. Suppose that n 2 N, M, µ > 0, and µ has the form

µ = m
⇡

n
+ 2⇥, m 2 N

[
{0}, ⇥ 2

�
0,⇡/(2n)

�
.

Among all pairs (x, I) of polynomials x 2 Tn with given uniform norm M and segments I from the family

S :=
�
I ⇢ R : µ

�
suppI x

0
±
�
 µ

 
,

the maximal total length of arcs of the graph of positive (negative) part x± on the segment I has the polynomial

x(t) = M sinn(t+ ⌧±)

on the segment [A,B] such that

B −A = 2m
⇡

n
+ 2⇥, (7.1)

�
sinn

�
A+⇥+ ⌧±

��
± =

�
sinn

�
B −⇥+ ⌧±

��
± = 1.

Among all pairs (x, I) of shifts of the splines x 2 S̃n,r with given uniform norm M and segments I of the
family S, the maximal total length of arcs of the graph of positive (negative) part x± on the segment I is observed
for the shift of the spline

x(t) =
M

k'n,rk1
'n,r(t+ ⌧±)

on the segment [A,B] such that equality (7.1) is true and, in addition,

('n,r−1)±
�
A+⇥+ ⌧±

�
= ('n,r−1)±

�
B −⇥+ ⌧±

�
= k'n,r−1k1.
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