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VALIRON-TYPE AND VALIRON–TITCHMARSH-TYPE THEOREMS
FOR SUBHARMONIC FUNCTIONS OF SLOW GROWTH

M. V. Zabolotskyy,1,2 T. M. Zabolotskyy,3 and S. I. Tarasyuk4 UDC 517.53

Let u be a subharmonic function of order zero in Rm
, m ≥ 2, with Riesz measure µ on the neg-

ative semiaxis Ox1, n(r, u) = µ
��

x 2 Rm : |x|  r
 �

, dm = m − 2 for m ≥ 3, d2 = 1,

and N(r, u) = dm

Z r

1

n(t, u)

tm−1
dt. Under the condition of slow growth of N(r, u), we determine the

asymptotics of u(x) as |x| = r ! +1. We also study the inverse relationship between the regular
growth of u and the behavior of N(r, u) as r ! +1.

1. Introduction

Let f be an entire transcendental (in what follows, entire) function, let n(r) = n(r, 0, f) be the number of
zeros of f in the disk {z : |z|  r}, and let ⇢ be the order of f.

If the zeros of f are negative, ⇢ is a noninteger number, 0 < ∆ < +1, and

n(r) ⇠ ∆r⇢, r ! +1, (1)

then, by the Valiron results [1],

ln
��f
�
rei✓

��� ⇠ ⇡∆

sin⇡⇢
r⇢ cos ⇢✓, |✓| < ⇡, r ! +1.

Conversely, if f has only negative zeros, ⇢ is a noninteger number, 0 < ∆ < +1, and

ln |f(r)| ⇠ ⇡∆

sin⇡⇢
r⇢, r ! +1,

then relation (1) is true.
The simplest proof of the last assertion was proposed by Titchmarsh [2]. For this reason, theorems speci-

fying the relationships between the regular behaviors of n(r) and ln |f(z)| are called Valiron-type and Valiron–
Titchmarsh-type theorems.

Similar problems for entire functions of order zero were studied in [3], where, in particular, it was proved that
the asymptotic equalities

n(r) = rλ(r) + o
�
rλ(r)

�
and n(r) = rλ(r) + o

�
"(r)rλ(r)

�
, r ! +1,
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are, respectively, necessary and sufficient conditions for the relation

ln |f(r)| =
rZ

1

tλ(t)−1dt+ o
⇣
rλ(r)

⌘
, r ! +1,

to be true. Here, f is an entire function of order zero with negative roots, λ(r) is the zero proximate order (see,
e.g., [4, p. 69]), rλ(r) % +1, and "(r) = λ(r) + rλ0(r) ln r ! 0 as r ! +1.

Later, the Valiron-type theorem and the Valiron–Titchmarsh-type theorem were proved in [5] and [6], respec-
tively, for functions of noninteger order subharmonic in Rn, n ≥ 3 .

In the present paper, we analyze the relationship between the regular behaviors of a function u of order zero
subharmonic in Rm, m ≥ 2, and a Nevanlinna counting function N(r, u) of its Riesz measure in the case where
N(r, u) is a slowly increasing function.

2. Definitions and Statement of the Results

Assume that u is a function subharmonic in Rm, m ≥ 2, u-harmonic in a unit neighborhood of the point O,

u(0) = 0, µ is its Riesz measure,

n(t, u) = µ({x : |x|  t}), dm = m− 2 for m ≥ 3, d2 = 1,

N(t, u) =

rZ

1

n(⌧)/⌧m−1d⌧, u+(x) = max{u(x); 0},

cm = 2⇡m/2/Γ(m/2) is the surface area of the unit sphere
�
x 2 Rm : |x| = 1

 
, dσ(x) is an element of the

surface area of the sphere S(0, r) = {x : |x| = r}, and

T (r, u) =
1

cmrm−1

Z

S(0,r)

u+(x) dσ(x)

is the Nevanlinna characteristic of the function u. We say that u is a function of zero kind (zero order) if

T (r, u) = o(r) (ln T (r, u) = o(ln r)) as r ! +1.

By SHm(0) we denote a class of functions of order zero subharmonic in Rm. Further, by SH−
m(0) we denote

a subclass of functions u from SHm(0) such that u are harmonic functions beyond the negative semiaxis Ox1.

A nonnegative nondecreasing unbounded function on [0; +1) is called a comparison function. By L we
denote the set of continuously differentiable comparison functions v such that tv0(t)/v(t) ! 0 as t ! +1. It is
easy to see that rλ(r) 2 L if λ(r) is the same zero proximate order as above. Without loss of generality, we can
assume that v(t) = 0 on [0, δ], 0 < δ < 1. It is also easy to see that, with an accuracy to within equivalent func-
tions, L coincides with the set of slowly increasing functions l, i.e., positive nondecreasing functions on [0,+1)

such that l(2t) ⇠ l(t), t ! +1 (see, e.g., [7, p. 15]).
For v 2 L, we set

v1(r) =

rZ

1

v(t)

t
dt. (2)
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It is clear that v1 2 L and v(r) = o(v1(r)) as r ! +1. We set

P (t, r, ✓;↵) =
�
t2 + 2tr cos ✓ + r2

�−↵
, ↵ > 0, (3)

J(r, ✓;↵, (t)) =

+1Z

0

 (t)P (t, r, ✓;↵)dt, (4)

J(r, ✓;↵,β) = J
�
r, ✓;↵, tβ

�
, 0 < β < 2↵− 1, (5)

where  is a function locally integrable on [0; +1) such that the integral in equality (4) converges.
For m ≥ 3, we set

A(m) =
m−2X

k=1

Ck
m−1Im−1(m− 2− k),

where

In(k) =

+1Z

1

tkdt

(t+ 1)n
, n 2 N, n ≥ 2, k = 0, 1, . . . , n− 2.

Clearly, the following recurrence relation is true:

In(k) =
1

2n−1(n− 1− k)
+ kIn(k − 1), In(0) =

1

(n− 1)2n−1
.

Theorem 1. Suppose that m ≥ 3, u 2 SH−
m(0), v 2 L,

r = |x|, x1 = r cos ✓, and x = (r cos ✓, x2, . . . , xm).

If

N(t, u) = (1 + o(1))v(t), t ! +1, (6)

then

u(x) =

✓
mJ

✓
1, ✓;

m+ 2

2
,m− 1

◆
sin2 ✓

+ (m− 1)J
⇣
1, ✓;

m

2
,m− 2

⌘
cos ✓

◆
v(r) + o(v(r)), r ! +1, (7)

for |✓| < ⇡. Moreover, (7) holds uniformly in ✓ on the set {✓ : |✓| < ⇡ − δ}, 0 < δ < 1.

Remark 1. The integrals in (7) are convergent because the integrands

tm−1P (t, 1, ✓; (m+ 2)/2) ⇠ 1

t3
and tm−2P (t, 1, ✓;m/2) ⇠ 1

t2

as t ! +1.
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Theorem 2. Suppose that u 2 SH−
m(0), m ≥ 3, v 2 L, and u(r) = u(r, 0, . . . , 0).

(A) If

N(t, u) = v1(t) + o(v(t)), t ! +1, (8)

then

u(r) = v1(r) +A(m)v(r) + o(v(r)), r ! +1. (9)

(B) Conversely, if (9) is true, then

N(t, u) = (1 + o(1))v1(t), t ! +1. (10)

Remark 2. Since

(m− 1)J
⇣
1, 0;

m

2
,m− 2

⌘
= (m− 1)

+1Z

0

tm−2

(t+ 1)m
dt = (m− 1)B(m− 1, 1) = 1,

for ✓ = 0, under the condition that N(t, u) = (1 + o(1))v1(t) as t ! +1, it follows from relation (7) that

u(r) = u(r, 0, . . . , 0) = (1 + o(1))v1(r), r ! +1,

which is weaker than (9).

Remark 3. In fact, we prove that (9) yields the following asymptotic equality:

n(t, u) =
1 + o(1)

m− 2
tm−2v(t), t ! +1, (11)

which leads to (10). The inverse implication is not true, i.e., (10) does not imply (11).

Theorem 3. Suppose that u 2 SH−
2 (0), v 2 L, x = (r cos ✓, r sin ✓), and

n(r, u) = (1 + o(1))v(t), t ! +1.

Then

u(x) = N(r, u) + o(v(r)), r ! +1 (12)

for |✓| < ⇡. In addition, the last asymptotic equality holds uniformly in ✓ on the set {✓ : |✓| < ⇡−δ}, 0 < δ < 1.

Theorem 4. Suppose that u 2 SH−
2 (0), v 2 L, and u(r) = u(r, 0).

(A) If

n(t, u) = v(t) + o(tv0(t)), t ! +1,
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then

u(r) = v1(r) + o(v(r)), r ! +1. (13)

(B) Conversely, if (13) is true, then

n(t, u) = (1 + o(1))v(t), t ! +1.

The following theorem generalizes assertion (A) of Theorem 4:

Theorem 5. Suppose that u 2 SH−
2 (0), v 2 L,

x = (r cos ✓, r sin ✓), and n(t, u) = v1(t) + o(tv0(t)), t ! +1.

Then, for |✓| < ⇡,

u(x) = N(r, u) +
1

2

✓
⇡2

3
− ✓2

◆
v(r) + o(v(r)), r ! +1. (14)

3. Auxiliary Results

In the proofs of the theorems, we use the following statements:

Lemma 1. Suppose that v 2 L, g is a differentiable function, g0 is a nonincreasing function on [1,+1),

and K 2 R. If

g(t) =

tZ

1

v(⌧)

⌧
d⌧ +Kv(t) + o(v(t)), t ! +1,

then

g0(t) =
v(t)

t
+ o

✓
v(t)

t

◆
, t ! +1.

The proof of this lemma is similar to the proof of Lemma 4 in [3].

Lemma 2 [7, pp. 63–65]. Suppose that l is a slowly varying function, φ is a locally integrable function

on [0,+1), a > 0, and for some ⌘ > 0, the integral

+1Z

a

t⌘φ(t) dt

0

@
aZ

0

t−⌘φ(t)dt

1

A

is convergent. Then

+1Z

a

φ(t)l(xt) dt ⇠ l(x)

+1Z

a

φ(t)dt

0

@
aZ

0

φ(t)l(xt)dt ⇠ l(x)

aZ

0

φ(t)dt

1

A, x ! +1.



1744 M. V. ZABOLOTSKYY, T. M. ZABOLOTSKYY, AND S. I. TARASYUK

Lemma 3. Let p ≥ 3 and v 2 L. Then

I(r) =

+1Z

0

d
�
tp−2v(t)

�

(t+ r)p−1
= (1 + o(1))

v(r)

r
, r ! +1.

Proof. By using the assertion of Lemma 2 with ⌘ =
1

2
and integrating by parts, we get

I(r) = (p− 1)

+1Z

0

tp−2v(t)dt

(t+ r)p
=

p− 1

r

+1Z

0

v(⌧r)
⌧p−2d⌧

(1 + ⌧)p

= (1 + o(1))
(p− 1)v(r)

r
B(p− 1, 1)

= (1 + o(1))
(p− 1)v(r)

r

Γ(p− 1)Γ(1)

Γ(p)

= (1 + o(1))
v(r)

r
, r ! +1.

Lemma 4 [8]. Suppose that 0 < b < a + 1, k = [b], ↵ and β are functions positive and nondecreasing

on [0,+1), ↵ is a differentiable function, ↵(x) ! +1 as x ! +1, a↵(x) < x↵0(x) < β↵(r) for x ≥ x0,

and

F (x) =

+1Z

1

d↵(t)

(x+ t)k+1
, G(x) =

+1Z

1

dβ(t)

(x+ t)k+1
.

If F (x) ⇠ G(x), then ↵(x) ⇠ β(x) as x ! +1.

Lemma 5. Suppose that v 2 L and "(r) is a function locally integrable on [1,+1) and such that "(r) ! 0

as r ! +1. Then

(i) for ↵ < 1,

rZ

1

"(t)v(t)dt

t↵
= o

✓
v(r)

r↵−1

◆
, r ! +1;

(ii) for ↵ > 1,

+1Z

r

"(t)v(t)dt

t↵
= o

✓
v(r)

r↵−1

◆
, r ! +1.

By using the L’Hospital rule, we can easily prove the assertions of this lemma.

Lemma 6. Suppose that m ≥ 3 and u is a function of zero kind subharmonic in Rm
and harmonic outside

the negative semiaxis Ox1, r = |x|, x = (r cos ✓, x2, . . . , xm), |✓| < ⇡. Then

u(x) = mr2J

✓
r, ✓;

m+ 2

2
, tm−1N(t)

◆
sin2 ✓ + (m− 1)rJ

⇣
r, ✓;

m

2
, tm−2N(t)

⌘
cos ✓. (15)
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Proof. Under the conditions of the lemma, we have (see, e.g., [9, p. 174])

u(x) =

Z

|⇠|<+1

�
|⇠|2−m − |x− ⇠|2−m

�
dµ⇠, ⇠ 2 Rm,

where µ is the Riesz measure of u. If u is harmonic in Rm everywhere except the negative semiaxis Ox1, t = |⇠|,
and j = (−1, 0, . . . , 0) is an m-dimensional vector, then [see (3)]

u(x) =

+1Z

0

�
t2−m − |x+ jt|2−m

�
dn(t)

=

+1Z

0

✓
t2−m − P

✓
t, r, ✓;

m− 2

2

◆◆
dn(t)

= (m− 2)

+1Z

0

⇣
t1−m − (t+ r cos ✓)P

⇣
t, r, ✓;

m

2

⌘⌘
n(t)dt

=

+1Z

0

⇣
1− tm−1(t+ r cos ✓)P

⇣
t, r, ✓;

m

2

⌘⌘
dN(t) (16)

because

n(0) = 0, n(t) =
tm−1

m− 2

d

dt
N(t),

P

✓
t, r, ✓;

2−m

2

◆
− tm−2

tm−2P

✓
t, r, ✓;

2−m

2

◆ = (1 + o(1))
(m− 2)r cos ✓

tm−1
,

n(t) = o
�
tm−1

�
as t ! +1.

Since

N(0) = 0, 1− tm−1(t+ r cos ✓)P
⇣
t, r, ✓;

m

2

⌘
= (1 + o(1))

(m− 1)r cos ✓

t
,

N(t) = o(t) as t ! +1,

as a result of integration by parts, it follows from (16) that

u(x) = mr2 sin2 ✓

+1Z

0

tm−1N(t)P

✓
t, r, ✓;

m+ 2

2

◆
dt
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+ (m− 1)r cos ✓

+1Z

0

tm−2N(t)P
⇣
t, r, ✓;

m

2

⌘
dt,

i.e., we get (15) [see (4) and (5)].

4. Proofs of the Results

Proof of Theorem 1. By the change of variables ⌧ = rt, we get the following relation from (15):

u(x) = m sin2 ✓

+1Z

0

⌧m−1N(r⌧)P

✓
⌧, 1, ✓;

m+ 2

2

◆
d⌧

+ (m− 1) cos ✓

+1Z

0

⌧m−2N(r⌧)P
⇣
⌧, 1, ✓;

m

2

⌘
d⌧. (17)

If N(t) = v(t) + "(t)v(t), where "(t) ! 0 as t ! +1, then, by using Lemma 2 with ⌘ = 1/2 and
relations (15) and (17), as r ! +1, we obtain [see (4) and (5)]:

u(x) =

✓
mJ

✓
1, ✓;

m+ 2

2
,m− 1

◆
sin2 ✓ + (m− 1)J

⇣
1, ✓;

m

2
,m− 2

⌘
cos ✓

◆
v(r)

+mr2J

✓
r, ✓;

m+ 2

2
; tm−1"(t)v(t)

◆
sin2 ✓ + (m− 1)rJ

⇣
r, ✓;

m

2
; tm−2"(t)v(t)

⌘
cos ✓

+ o(v(r)). (18)

Since [4, p. 92]
��t2 + 2tr cos ✓ + r2

�� =
���t+ rei✓

���
2
≥ (t+ r)2 sin2 δ

for |✓|  ⇡ − δ, 0 < δ < 1, by virtue of Lemma 5 and the estimate

r2 sinm+2 δ

����J
✓
r, ✓;

m+ 2

2
, tm−1"(t)v(t)

◆���� 
1

rm

rZ

1

"(t)v(t)

t1−m
dt+ r2

+1Z

r

"(t)v(t)

t3
dt,

we get

mr2J

✓
r, ✓;

m+ 2

2
, tm−1"(t)v(t)

◆
sin2 ✓ = o(v(r)), r ! +1.

Similarly, we can show that

(m− 1)rJ
⇣
r, ✓;

m

2
, tm−2"(t)v(t)

⌘
cos ✓ = o(v(r)), r ! +1.

By using this result and relation (18), we obtain (7).
Theorem 1 is proved.
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Proof of Theorem 2. If N(t) = v1(t) + "(t)v(t), where "(t) ! 0 as t ! +1, then, as above, for ✓ = 0,

we obtain

u(r) = (m− 1)rJ
⇣
r, 0;

m

2
, tm−2v1(t)

⌘
+ o(v(r))

= (m− 1)r

8
<

:

rZ

0

tm−2v1(t)

(t+ r)m
dt+

+1Z

r

tm−2v1(t)

(t+ r)m
dt

9
=

;+ o(v(r)), r ! +1. (19)

Since, for t < r and t > r, we get

1

(t+ r)m
=

1

(m− 1)!

+1X

n=0

(−1)n(m+ n− 1)!

n!rm+n
tn,

1

(t+ r)m
=

1

(m− 1)!

+1X

n=0

(−1)n(m+ n− 1)!

n!r−n
t−m−n,

respectively, it follows from relation (19) that

u(r) =
1

(m− 2)!

 
+1X

n=0

(−1)n(m+ n− 1)!

n!rm+n−1
an(r; v1)

+
+1X

n=0

(−1)n(m+ n− 1)!

n!r−n−1
bn(r; v1)

!
+ o(v(r)), r ! +1,

where

an(r; v1) =

rZ

0

tm+n−2v1(t)dt,

bn(r; v1) =

+1Z

r

t−n−2v1(t)dt.

The possibility of term-by-term integration of the series is substantiated as in [3]. Further, (rv01(r) = v(r)) ,

an(r; v1) =
rm+n−1

m+ n− 1
v1(r)−

1

m+ n− 1

rZ

0

tm+n−2tv01(t)dt

=
rm+n−1

m+ n− 1
v1(r)−

1

m+ n− 1
an(r; v),

and, similarly,

bn(r; v1) =
r−n−1

n+ 1
v1(r) +

1

n+ 1
bn(r; v).
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Hence,

u(r) =
1

(m− 2)!

 
+1X

n=0

✓
(−1)n(m+ n− 2)!

n!
+

(−1)n(m+ n− 1)!

(n+ 1)!

◆
v1(r)

−
+1X

n=0

(−1)n(m+ n− 2)!

n!rm+n−1
an(r; v) +

+1X

n=0

(−1)n(m+ n− 1)!

(n+ 1)!r−n−1
bn(r; v)

!
+ o(v(r))

= v1(r)−
1

(m− 2)!

rZ

0

+1X

n=0

(−1)n(m+ n− 2)!

n!rm+n−1
tm+n−2v(t)dt

+
1

(m− 2)!

+1Z

r

+1X

n=0

(−1)n(m+ n− 1)!

(n+ 1)!r−n−1
t−n−2v(t)dt+ o(v(r))

= v1(r)−
rZ

0

tm−2v(t)

(t+ r)m−1
dt

+
1

(m− 2)!

+1Z

r

tm−2
+1X

n=1

(−1)n(m+ n− 2)!

n!r−n
t−m−n+1v(t)dt+ o(v(r))

= v1(r)−
rZ

0

tm−2v(t)

(t+ r)m−1
dt+

+1Z

r

✓
1

t
− tm−2

(t+ r)m−1

◆
v(t)dt+ o(v(r)), r ! +1.

By the change of variables t = r⌧, in view of Lemma 2 with ⌘ = 1/2, from the last equality, we obtain

u(r) = v1(r)−
1Z

0

⌧m−2v(r⌧)

(⌧ + 1)m−1
d⌧ +

+1Z

1

(⌧ + 1)m−1 − ⌧m−1

⌧(⌧ + 1)m−1
v(r⌧)d⌧ + o(v(r))

= v1(r)− v(r)

1Z

0

⌧m−2d⌧

(⌧ + 1)m−1
+

m−1X

k=1

Ck
m−1

+1Z

1

⌧m−1−kv(r⌧)

⌧(⌧ + 1)m−1
d⌧ + o(v(r))

= v1(r) +A(m)v(r) + o(v(r)), r ! +1,

where

A(m) =
m−2X

k=1

Ck
m−1

+1Z

1

tm−2−k

(t+ 1)m−1
dt,

which proves assertion (A) in Theorem 2.



VALIRON-TYPE AND VALIRON–TITCHMARSH-TYPE THEOREMS FOR SUBHARMONIC FUNCTIONS OF SLOW GROWTH 1749

We now prove assertion (B). In view of (16), the function

u0(r) = (m− 2)

+1Z

0

dn(t)

(t+ r)m−1

does not increase on [0,+1). Hence, by virtue of Lemma 1, it follows from relation (9) that

u0(r) =
v(r)

r
+ o

✓
v(r)

r

◆
, r ! +1.

In view of Lemma 3, the last two relations imply that

(m− 2)

+1Z

0

dn(t)

(t+ r)m−1
= (1 + o(1))

+1Z

0

d(tm−2v(t))

(t+ r)m−1
, r ! +1.

Since

t
�
tm−2v(t)

�0
= (1 + o(1))(m− 2)tm−2v(t) as t ! +1,

we find
✓
(m− 2)− 1

4

◆
tm−2v(t) < t

�
tm−2v(t)

�0
<

✓
(m− 2) +

1

4

◆
tm−2v(t), t ≥ 2.

Further, by Lemma 5 with

k =


(m− 2) +

1

4

�
= m− 2,

we get

n(t, u) =
1 + o(1)

m− 2
tm−2v(t), t ! +1.

By using this fact and the definition of N(t, u), we obtain relation (10), which completes the proof of Theorem 2.

Proof of Theorems 3–5. For m = 2, instead of x = (x1, x2) = (|x| cos ✓, |x| sin ✓), we write z = rei✓,

−⇡  ✓ < ⇡. Further, if u 2 SH−
2 (0), then (see, e.g., [9, p. 174]) we get (⇠ = (−t, 0), |⇠| = t)

u(z) =

+1Z

0

ln

����
⇠ − z

⇠

���� dµ⇠ =

+1Z

0

ln
���1 +

z

t

��� dn(t) = Re

+1Z

0

ln
⇣
1 +

z

t

⌘
dn(t). (20)

If n(t, u) = (1 + o(1))v(t) or n(t, u) = v1(t) + o(v(t)) as t ! +1, then, as in the proof of Theorem 1
in [3], for −⇡ < ✓ < ⇡, we obtain (12) and, hence,

+1Z

0

ln
⇣
1 +

z

t

⌘
dn(t) = v1(r) + i✓v(r) + o(v(r)), r ! +1.

By using the last asymptotic equality and relation (20) for ✓ = 0, we obtain (13). Together with (12), this
proves Theorem 3 and Assertion (A) in Theorem 4.
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Assume that (13) is true. It follows from relation (20) with ✓ = 0 that the function

u0(r) =

+1Z

0

1

t+ r
dn(t)

does not increase on [0,+1) and, in view of (13) and Lemma 1, we find

u0(r) =
v(r)

r
+ o

✓
v(r)

r

◆
, r ! +1.

Since [3] (Lemma 4)

+1Z

0

dv(t)

t+ r
= (1 + o(1))

v(r)

r
, r ! +1,

the last relations imply that

+1Z

0

dn(t)

t+ r
= (1 + o(1))

+1Z

0

dv(t)

t+ r
, r ! +1.

By virtue of Lemma 4 with k = 0, we get

n(t, u) = (1 + o(1))v(t), t ! +1,

because

tv0(t) = o(v(t)) as t ! +1

and, hence,

tv0(t) <
1

2
v(t).

Assertion (B) of Theorem 4 is thus proved.

Assume that the conditions of Theorem 5 are satisfied. Then, as in the proof of Theorem 1 in [10], we get

+1Z

0

ln
⇣
1 +

z

t

⌘
dn(t) = N(r, u) + i✓v1(r) +

1

2

✓
⇡2

3
− ✓2

◆
v(r) + o(v(r)), r ! +1.

This result, together with (20), yields relation (14), which completes the proof of Theorem 5.
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