GENERALIZATIONS OF STARLIKE HARMONIC FUNCTIONS DEFINED BY SĂLĂGEAN AND RUSCHEWEYH DERIVATIVES

\acute{A} . O. Páll-Szabo UDC 517.5

We investigate some generalizations of the classes of harmonic functions defined by the Sălăgean and Ruscheweyh derivatives. By using the extreme-points theory, we obtain the coefficient-estimates distortion theorems and mean integral inequalities for these classes of functions.

1. Preliminaries

Let *A* denote a class of functions of the form

$$
f(z) = z + \sum_{k=2}^{\infty} a_k z^k,
$$
 (1)

which are analytic in an open unit disk $U = \{z \in \mathbb{C} : |z| < 1\}$.

A continuous function $f = u + iv$ is a complex-valued harmonic function in a complex domain G if both u and *v* are real and harmonic in *G*. In any simply connected domain $D \subset G$, we can write $f = h + \overline{g}$, where *h* and *g* are analytic in *D.* We say that *h* is the analytic part and *g* is the coanalytic part of *f.* A necessary and sufficient condition for *f* to be locally univalent and orientation preserving in *D* is that $|h'(z)| > |g'(z)|$ in *D* (see [2]).

Let H denote the family of continuous complex-valued functions that are harmonic in *U*. By S_H we denote the family of functions $f \in \mathcal{H}$ of the form

$$
f = h + \overline{g}, \quad h(z) = z + \sum_{k=2}^{\infty} a_k z^k, \quad g(z) = \sum_{k=2}^{\infty} b_k z^k,
$$
 (2)

which are univalent and orientation preserving in the open unit disc U. Thus, $f(z)$ is given by

$$
f(z) = z + \sum_{k=2}^{\infty} a_k z^k + \overline{\sum_{k=2}^{\infty} b_k z^k}.
$$
 (3)

A function *f* of the form (3) is said to be in $S^*_{\mathcal{H}}(\alpha)$ if and only if (see [2, 4, 5])

$$
\frac{\partial}{\partial \theta} \left(\arg f \left(r e^{i\theta} \right) \right) > \alpha, \quad 0 \le \theta < 2\pi, \quad |z| = r < 1, \quad 0 \le \alpha < 1. \tag{4}
$$

Babeş-Bolyai University, Cluj-Napoca, Romania; e-mail: pallszaboagnes@math.ubbcluj.ro, agnes.pallszabo@econ.ubbcluj.ro.

Published in Ukrains'kyi Matematychnyi Zhurnal, Vol. 74, No. 10, pp. 1388–1400, October, 2022. Ukrainian DOI: 10.37863/ umzh.v74i10.6157. Original article submitted June 7, 2020.

Similarly, a function *f* of the form (3) is said to be in $S_{\mathcal{H}}^{c}(\alpha)$ if and only if

$$
\frac{\partial}{\partial \theta} \left(\arg \frac{\partial}{\partial \theta} \left(f \left(r e^{i\theta} \right) \right) \right) > \alpha, \quad 0 \le \theta < 2\pi, \quad |z| = r < 1. \tag{5}
$$

We note that (see [7]) a harmonic function $f \in \mathcal{S}^*_{\mathcal{H}}(\alpha)$ if and only if

$$
\Re \frac{J_{\mathcal{H}}f(z)}{f(z)} > \alpha, \quad |z| = r < 1, \quad \text{where} \quad J_{\mathcal{H}}f(z) = zh'(z) - \overline{zg'(z)}.
$$

Definition 1 [1]. For $f \in A$, $\lambda \ge 0$, and $n \in \mathbb{N}$, the operator $\mathscr{D}_{\lambda}^{n}$, $\mathscr{D}_{\lambda}^{n}$: $A \rightarrow A$, is defined as follows:

$$
\mathscr{D}^0_\lambda f(z) = f(z),
$$

$$
\mathscr{D}_{\lambda}^{n+1}f(z) = (1 - \lambda)\mathscr{D}_{\lambda}^{n}f(z) + \lambda z\left(\mathscr{D}_{\lambda}^{n}f(z)\right)' = \mathscr{D}_{\lambda}\left(\mathscr{D}_{\lambda}^{n}f(z)\right), \quad z \in U.
$$

Remark 1. If $f \in \mathcal{A}$, then

$$
\mathscr{D}_{\lambda}^{n} f(z) = z + \sum_{k=2}^{\infty} \left[1 + (k-1)\lambda \right]^{n} a_{k} z^{k}, \quad z \in U.
$$

Remark 2. For $\lambda = 1$ in Definition 1, we get the Salăgean differential operator [13].

Definition 2 [12]. For $f \in A$, $n \in \mathbb{N}$, the operator \mathcal{R}^n , \mathcal{R}^n : $A \to A$, is defined as follows:

$$
\mathscr{R}^0 f(z) = f(z),
$$

$$
(n+1)\mathscr{R}^{n+1}f(z) = z\left(\mathscr{R}^n f(z)\right)' + n\mathscr{R}^n f(z), \quad z \in U.
$$

Remark 3. If $f \in \mathcal{A}$, then

$$
\mathscr{R}^n f(z) = z + \sum_{k=2}^{\infty} \frac{(n+k-1)!}{n!(k-1)!} a_k z^k, \quad z \in U,
$$

which is the Ruscheweyh differential operator [12].

Definition 3. Let $\gamma, \lambda \geq 0$ and $n \in \mathbb{N}$. By \mathcal{L}^n we denote the operator given by \mathcal{L}^n : $\mathcal{A} \to \mathcal{A}$,

$$
\mathscr{L}^n f(z) = (1 - \gamma)\mathscr{R}^n f(z) + \gamma \mathscr{D}_{\lambda}^n f(z), \quad z \in U.
$$

Remark 4. If $f \in A$, then

$$
\mathscr{L}^n f(z) = z + \sum_{k=2}^{\infty} \left\{ \gamma \left[1 + (k-1)\lambda \right]^n + (1-\gamma) \frac{(n+k-1)!}{n!(k-1)!} \right\} a_k z^k, \quad z \in U.
$$

We consider a linear operator $\mathcal{L}_{\mathcal{H}}^n$: $\mathcal{H} \to \mathcal{H}$ defined for a function $f = h + \overline{g} \in \mathcal{H}$ by

$$
\mathscr{L}_{\mathcal{H}}^n f := \mathscr{L}^n h + (-1)^n \overline{\mathscr{L}^n g}.
$$

For a function $f \in \mathcal{H}$ of the form (3), we have

$$
\mathcal{L}_{\mathcal{H}}^{n} f(z) = z + \sum_{k=2}^{\infty} \left[\gamma \eta(k, n, \lambda) + (1 - \gamma) \mu(k, n) \right] a_k z^k
$$

$$
+ (-1)^n \sum_{k=2}^{\infty} \left[\gamma \eta(k, n, \lambda) + (1 - \gamma) \mu(k, n) \right] \overline{b_k} \overline{z}^k, \quad z \in U,
$$

where

$$
\eta(k, n, \lambda) = [1 + (k - 1)\lambda]^n
$$
 and $\mu(k, n) = \frac{(n + k - 1)!}{n!(k - 1)!}$.

Definition 4. For $-B \le A < B \le 1$ and $n \in \mathbb{N}$, by $\widetilde{S}_{\mathcal{H}}^n(A, B)$ we denote the class of functions $f \in \mathcal{H}$ of *the form (3) such that*

$$
\left| \frac{\mathcal{L}_{\mathcal{H}}^{n+1} f(z) - \mathcal{L}_{\mathcal{H}}^n f(z)}{B \mathcal{L}_{\mathcal{H}}^{n+1} f(z) - A \mathcal{L}_{\mathcal{H}}^n f(z)} \right| < 1, \quad z \in U. \tag{6}
$$

Remark 5. Dziok, et al. studied the case $\gamma = 0$ in [3], while the case where $\gamma = 1$ and $\lambda = 1$ was studied in [4].

Note that the classes $\tilde{\mathcal{S}}_{\mathcal{H}}^0(A, B)$ for the analytic case, i.e., $g \equiv 0$, were introduced by Janowski [8]. Jahangiri [6, 7] and Silverman [14] studied the classes $S^*_{\mathcal{H}}(\alpha) = \tilde{S}^0_{\mathcal{H}}(2\alpha - 1, 1)$ and $S^c_{\mathcal{H}}(\alpha) = \tilde{S}^1_{\mathcal{H}}(2\alpha - 1, 1)$ for the harmonic case.

2. Coefficient Estimates

Theorem 1. A function $f \in H$ of the form (3) belongs to the class $\tilde{S}_{\mu}^{n}(A, B)$ if it satisfies the condition

$$
\sum_{k=2}^{\infty} \left(\alpha_k |a_k| + \beta_k |b_k| \right) \le B - A,\tag{7}
$$

where

$$
\alpha_k = \sigma(A, B, n, \gamma, \lambda, k) + \sigma(1, 1, n, \gamma, \lambda, k),
$$

$$
\beta_k = \delta(A, B, n, \gamma, \lambda, k) + \delta(1, 1, n, \gamma, \lambda, k),
$$

$$
\sigma(A, B, n, \gamma, \lambda, k) = \gamma \eta(k, n, \lambda)[(k-1)\lambda B + B - A]
$$

$$
+ (1 - \gamma)\mu(k, n)\frac{(B - A)n + Bk - A}{n + 1},
$$

$$
\delta(A, B, n, \gamma, \lambda, k) = \gamma \eta(k, n, \lambda) [(k - 1)\lambda B + B + A]
$$

$$
+ (1 - \gamma)\mu(k, n) \frac{(B + A)n + Bk + A}{n + 1}.
$$

Proof. It follows from Definition 4 that $f \in \mathcal{S}_{\mathcal{H}}^n(A, B)$ if and only if

$$
\left| \frac{\mathcal{L}_{\mathcal{H}}^{n+1} f(z) - \mathcal{L}_{\mathcal{H}}^{n} f(z)}{B \mathcal{L}_{\mathcal{H}}^{n+1} f(z) - A \mathcal{L}_{\mathcal{H}}^{n} f(z)} \right| < 1, \quad z \in U.
$$

It is sufficient to prove that

$$
\left|\mathscr{L}^{n+1}_{\mathcal{H}}f(z)-\mathscr{L}^{n}_{\mathcal{H}}f(z)\right|-\left|B\mathscr{L}^{n+1}_{\mathcal{H}}f(z)-A\mathscr{L}^{n}_{\mathcal{H}}f(z)\right|<0,\quad z\in U\setminus\{0\}.
$$

Letting $|z| = r$, $0 < r < 1$, we get

$$
\begin{split}\n\left|\mathcal{L}_{\mathcal{H}}^{n+1}f(z) - \mathcal{L}_{\mathcal{H}}^{n}f(z)\right| &= \left|B\mathcal{L}_{\mathcal{H}}^{n+1}f(z) - A\mathcal{L}_{\mathcal{H}}^{n}f(z)\right| \\
&\leq \sum_{k=2}^{\infty} \left[\gamma\eta(k,n,\lambda)(k-1)\lambda + (1-\gamma)\mu(k,n)\frac{k-1}{n+1}\right]|a_{k}|r^{k} \\
&\quad + \sum_{k=2}^{\infty} \left[\gamma\eta(k,n,\lambda)[2+(k-1)\lambda] + (1-\gamma)\mu(k,n)\frac{2n+k+1}{n+1}\right]|b_{k}|r^{k} - (B-A)r \\
&\quad + \sum_{k=2}^{\infty} \left[\gamma\eta(k,n,\lambda)[(k-1)\lambda B + B - A] + (1-\gamma)\mu(k,n)\left(B\frac{n+k}{n+1} - A\right)\right]|a_{k}|r^{k} \\
&\quad + \sum_{k=2}^{\infty} \left[\gamma\eta(k,n,\lambda)[(k-1)\lambda B + B + A] + (1-\gamma)\mu(k,n)\left(B\frac{n+k}{n+1} + A\right)\right]|b_{k}|r^{k} \\
&\leq r \left\{\sum_{k=2}^{\infty} (\alpha_{k}|a_{k}| + \beta_{k}|b_{k}|)r^{k-1} - (B-A)\right\} < 0,\n\end{split}
$$

whence $f \in \widetilde{\mathcal{S}}_{\mathcal{H}}^n(A, B)$. Theorem 1 is proved.

Lemma 1. *If* $\lambda \ge 1$ *,* $\gamma \in [0,1]$ *,* $n \ge 0$ *,* −*B* ≤ *A* < *B* ≤ 1*,* $k \in \mathbb{N}$ *,* $k \ge 2$ *, then*

$$
\alpha_k \ge k(B-A), \quad \beta_k \ge k(B-A),
$$

where α_k *and* β_k *are defined in (7).*

Proof. It is known that

$$
\eta(k, n, \lambda) = [1 + (k - 1)\lambda]^n \ge k^n.
$$
\n⁽⁸⁾

First, we prove that

$$
\mu(k,n) = \frac{(n+k-1)!}{n!(k-1)!} \ge n+1.
$$
\n(9)

For the proof, we proceed by induction.

1. Let $k \geq 2$ be fixed and $n = 0$. Then

$$
\mu(k,0) = \frac{(k-1)!}{0!(k-1)!} = 1.
$$

Let $k \geq 2$ be fixed and $n = 1$. Then we get

$$
\mu(k,1) = \frac{k!}{1!(k-1)!} \ge 2 \iff k! \ge 2(k-1)! \iff k \ge 2.
$$

2. Assume that the following formula holds for $n = l$:

$$
\mu(k,l) = \frac{(l+k-1)!}{l!(k-1)!} \ge l+1 \Leftrightarrow (l+k-1)! \ge l!(k-1)!(l+1) = (l+1)!(k-1)!.
$$

3. Let $n = l + 1$. Thus, it is necessary to prove that

$$
\mu(k, l+1) = \frac{(l+k)!}{(l+1)!(k-1)!} \ge l+2 \Leftrightarrow (l+k)! \ge (l+1)!(k-1)!(l+2).
$$

This is true, in view of the previous item:

$$
(l+k)! = (l+k)(l+k-1)! \ge (l+k)(l+1)!(k-1)! \ge (l+2)(l+1)!(k-1)!.
$$

By using (8) and (9), we now prove that $\alpha_k \geq k(B - A)$:

$$
\alpha_k = \sigma(A, B, n, \gamma, \lambda, k) + \sigma(1, 1, n, \gamma, \lambda, k)
$$

\n
$$
\geq \gamma k^n [(k-1)\lambda B + B - A]
$$

\n
$$
+ (1 - \gamma)[(B - A)n + Bk - A] + \gamma k^n (k-1)\lambda + (1 - \gamma)(k-1).
$$

However,

$$
k^{n}[(k-1)\lambda B + B - A] + k^{n}(k-1)\lambda
$$

= $k^{n}[(B - A) + (k-1)\lambda(B + 1)] > k^{n}(B - A) > k(B - A)$
>0

and

$$
(B - A)n + Bk - A + (k - 1)
$$

\n
$$
\ge B(k - 1) + B - A + k - 1 = (k - 1)(B + 1) + B - A
$$

\n
$$
\ge (k - 1)(B - A) + B - A = k(B - A).
$$

Hence,

$$
\alpha_k \ge \gamma (B - A)k + (1 - \gamma)(B - A)k = k(B - A).
$$

We now prove that $\beta_k \geq k(B - A)$:

$$
\beta_k = \delta(A, B, n, \gamma, \lambda, k) + \delta(1, 1, n, \gamma, \lambda, k)
$$

\n
$$
\geq \gamma k^n [(k - 1)\lambda B + B + A] + (1 - \gamma)[(B + A)n + Bk + A]
$$

\n
$$
+ \gamma k^n [(k - 1)\lambda + 2] + (1 - \gamma)[2n + k + 1]
$$

\n
$$
> \gamma k^n [(k - 1)(B + 1) + B + A + 2]
$$

\n
$$
+ (1 - \gamma)[(B + A)n + 2n + Bk + k + A + 1].
$$

But

$$
(k-1)(B+1) + B + A + 2 = kB + k + 1 + A \ge k(B-A), \quad B \ge -1, \quad A \ge -1,
$$

$$
k+1+A \ge -kA \iff k(A+1) + A + 1 \ge 0 \iff (k+1)(A+1) \ge 0
$$

and

$$
(B+A)n + 2n + Bk + k + A + 1 \geq Bk + k + A + 1 \geq Bk - Ak,
$$

because

$$
k + A + 1 \ge -Ak \Leftrightarrow k(A+1) + A + 1 \ge 0 \Leftrightarrow (k+1)(A+1) \ge 0.
$$

Therefore,

$$
\beta_k \ge \gamma (B - A)k + (1 - \gamma)(B - A)k = k(B - A).
$$

Lemma 1 is proved.

Lemma 2. *If* $\lambda \ge 1$ *,* $\gamma > 1$ *,* $n \ge 0$ *,* −*B* ≤ *A* < *B* ≤ 1*,* $k \in \mathbb{N}$ *,* $k \ge 2$ *, then*

$$
\alpha_k \ge k(B-A), \quad \beta_k \ge k(B-A),
$$

where α_k *and* β_k *is defined in (7).*

Proof. First, we note that

$$
\mu(k,n) = \frac{(n+k-1)!}{n!(k-1)!} \le k^n, \quad k, n \in \mathbb{N}, \quad k \ge 2.
$$
\n(10)

Let *k* be fixed. If $n = 0$ then (10) holds.

Suppose that (10) is true for *n*. Then, for $n + 1$, we obtain

$$
(n+k)! = (n+k)(n+k-1)! \le (n+k)k^n n!(k-1)!
$$

$$
\le (n+1)kk^n n!(k-1)! = k^n (n+1)!(k-1)!
$$

Thus,

$$
\alpha_k \ge \gamma k^n [(k-1)(B+1) + B - A] - (\gamma - 1)k^n \frac{(B-A)n + Bk - A}{n+1}
$$

by virtue of (8) and (10) .

However,

$$
\frac{(B-A)n + Bk - A + k - 1}{n+1} < (B-A) + (k-1)(B+1)
$$

and, hence,

$$
\alpha_k \geq [\gamma - (\gamma - 1)][B - A + (k - 1)(B + 1)]k^n \geq k(B - A),
$$

$$
\beta_k \geq \gamma k^n [(k - 1)(B + 1) + B + A + 2]
$$

$$
+ (1 - \gamma)k^n \frac{(B + A)n + 2n + Bk + k + A + 1}{n + 1}
$$

$$
\geq k^n [(k - 1)(B + 1) + B + A + 2] \geq k(B - A)
$$

because

$$
(B+A)n + 2n + Bk + k + A + 1 < (n+1)[(k-1)(B+1) + B + A + 2].
$$

Lemma 2 is proved.

Theorem 2. *If* $f \in H$ *has the form* (3) *and* f *satisfies condition* (7), *then* $f \in S_H$.

Proof. The theorem is true for the function $f(z) \equiv z$. Let $f \in H$ be a function of the form (3). Assume that there exists $k \in \{2, 3, ...\}$ such that $a_k \neq 0$ or $b_k \neq 0$. Since the inequalities $\frac{\alpha_k}{B-A} \geq k$ and $\frac{\beta_k}{B-A} \geq k$,
 $b=2, 3$ based been proved in Lemmas 1 and 2 in view of (7) we get $k = 2, 3, \ldots$, have been proved in Lemmas 1 and 2, in view of (7), we get

$$
\sum_{k=2}^{\infty} (k|a_k| + k|b_k|) \le 1
$$
\n(11)

and

$$
|h'(z)| - |g'(z)| \ge 1 - \sum_{k=2}^{\infty} k |a_k| |z|^k - \sum_{k=2}^{\infty} k |b_k| |z|^k
$$

$$
\ge 1 - |z| \sum_{k=2}^{\infty} (k|a_k| + k|b_k|)
$$

$$
\ge 1 - \frac{|z|}{B - A} \sum_{k=2}^{\infty} (\alpha_k |a_k| + \beta_k |b_k|) \ge 1 - |z| > 0, \quad z \in U.
$$

In this case, the function *f* is locally univalent and sense-preserving in *U*. Moreover, if $z_1, z_2 \in U$, $z_1 \neq z_2$, then

$$
\left|\frac{z_1^k - z_2^k}{z_1 - z_2}\right| = \left|\sum_{l=1}^k z_1^{l-1} z_2^{k-l}\right| \le \sum_{l=1}^k |z_1|^{l-1} |z_2|^{k-1} < k, \quad k = 2, 3, \dots
$$

Therefore, by virtue of (11), we have

$$
|f(z_1) - f(z_2)| \ge |h(z_1) - h(z_2)| - |g(z_1) - g(z_2)|
$$

\n
$$
\ge |z_1 - z_2 - \sum_{k=2}^{\infty} a_k (z_1^k - z_2^k) - \left| \sum_{k=2}^{\infty} b_k (z_1^k - z_2^k) \right|
$$

\n
$$
\ge |z_1 - z_2| \left(1 - \sum_{k=2}^{\infty} |a_k| \left| \frac{z_1^k - z_2^k}{z_1 - z_2} \right| - \sum_{k=2}^{\infty} |b_k| \left| \frac{z_1^k - z_2^k}{z_1 - z_2} \right| \right)
$$

\n
$$
> |z_1 - z_2| \left(1 - \sum_{k=2}^{\infty} k |a_k| - \sum_{k=2}^{\infty} k |b_k| \right) \ge 0.
$$

This leads to the univalence of *f* and, hence, $f \in S_H$.

Theorem 2 is proved.

Let *N* denote a class of functions $f = h + \overline{g} \in H$ of the form (see [14])

$$
f(z) = z - \sum_{k=2}^{\infty} |a_k| z^k + (-1)^n \sum_{k=2}^{\infty} |b_k| \overline{z}^k,
$$
 (12)

and let $\widetilde{S}_{\mathcal{HN}}^n(A, B)$ denote the class $\mathcal{N} \cap \widetilde{S}_{\mathcal{H}}^n(A, B)$.

Theorem 3. Let $f = h + \overline{g}$ be defined by (12). Then $f \in \widetilde{S}_{\mathcal{HN}}^n(A, B)$ if and only if condition (7) is satisfied. *Proof.* For the "if" part, see Theorem 1. For the "only if" part, we assume that $f \in \widetilde{\mathcal{S}}_{\mathcal{HN}}^n(A, B)$. Then,

by (6) , we get

$$
\left| \frac{\sum_{k=2}^{\infty} \left[\sigma\left(1,1,n,\gamma,\lambda,k\right) | a_k | z^{k-1} + \delta(1,1,n,\gamma,\lambda,k) | b_k | \overline{z}^{k-1} \right]}{\left(B-A \right) - \sum_{k=2}^{\infty} \left[\sigma\left(A, B, n, \gamma, \lambda,k \right) | a_k | z^{k-1} + \delta\left(A, B, n, \gamma, \lambda,k \right) | b_k | \overline{z}^{k-1} \right]} \right| < 1, \quad z \in U.
$$

For $z = r < 1$, we obtain

$$
\frac{\sum_{k=2}^{\infty}\left[\sigma\left(1,1,n,\gamma,\lambda,k\right)|a_{k}|+\delta\left(1,1,n,\gamma,\lambda,k\right)|b_{k}|\right]r^{k-1}}{\left(B-A\right)-\sum_{k=2}^{\infty}\left[\sigma\left(A,B,n,\gamma,\lambda,k\right)|a_{k}|+\delta\left(A,B,n,\gamma,\lambda,k\right)|b_{k}|\right]r^{k-1}}<1.
$$

The denominator of the left-hand side cannot vanish for $r \in [0, 1)$ and, moreover, it is positive. Thus,

$$
\sum_{k=2}^{\infty} (\alpha_k |a_k| + \beta_k |b_k|) r^{k-1} \leq B - A.
$$

Hence, letting $r \to 1^-$, we arrive at assertion (7).

Theorem 3 is proved.

3. Extreme Points

Definition 5. We say that a class F is convex if $\eta f + (1 - \eta)g \in F$ for all f and g in F and $0 \le \eta \le 1$. *The closed convex hull of* $\mathcal F$ *denoted by* $\overline{co} \mathcal F$ *is the intersection of all closed convex subsets of* $\mathcal H$ *(with respect to the topology of locally uniform convergence) that contain F.*

Definition 6. Let F be a convex set. A function $f \in \mathcal{F} \subset \mathcal{H}$ is called an extreme point of F if $f =$ $\eta f_1 + (1 - \eta)f_2$ implies that $f_1 = f_2 = f$ for all f_1 and f_2 in F and $0 < \eta < 1$. We use the notation EF to *denote the set of all extreme points of* \mathcal{F} *. It is clear that* $E\mathcal{F} \subset \mathcal{F}$ *.*

For the extreme points, we use the Krein–Milman theorem (see [3, 4, 9]) which implies the following lemma:

Lemma 3 [3, 4]. Let F be a nonempty compact convex subclass of the class H and let $\mathcal{J} : \mathcal{H} \to \mathbb{R}$ be *a real-valued, continuous, and convex functional on F. Then*

$$
\max \{ \mathcal{J}(f) : f \in \mathcal{F} \} = \max \{ \mathcal{J}(f) : f \in E\mathcal{F} \}.
$$

Since H is a complete metric space, we can use Montel's theorem [10].

Lemma 4 [3, 4]. *A class* $\mathcal{F} \subset \mathcal{H}$ *is compact if and only if* \mathcal{F} *is closed and locally uniformly bounded.*

Theorem 4. The class $\widetilde{S}_{\text{H,N}}^n(A, B)$ is a convex and compact subset of H.

Proof. For $0 \le \eta \le 1$, let $f_1, f_2 \in \tilde{S}_{\mathcal{H},\mathcal{N}}^n(A, B)$ be defined by (2). Then

$$
\eta f_1(z) + (1 - \eta) f_2(z) = z - \sum_{k=2}^{\infty} (\eta |a_{1,k}| + (1 - \eta) |a_{2,k}|) z^k
$$

$$
+ (-1)^n \sum_{k=2}^{\infty} (\eta |b_{1,k}| + (1 - \eta) |b_{2,k}| \overline{z}^k)
$$

and

$$
\sum_{k=2}^{\infty} \left\{ \alpha_k |\eta| a_{1,k} | + (1 - \eta) |a_{2,k}|| + \beta_k |\eta| b_{1,k} | + (1 - \eta) |b_{2,k}| z^k \right\} \right\}
$$

$$
= \eta \sum_{k=2}^{\infty} {\alpha_k |a_{1,k}| + \beta_k |b_{1,k}|} + (1 - \eta) \sum_{k=2}^{\infty} \alpha_k |a_{2,k}| + \beta_k |b_{2,k}|
$$

$$
\leq \eta (B - A) + (1 - \eta)(B - A).
$$

Therefore, the function $\phi = \eta f_1 + (1 - \eta)f_2$ belongs to the class $\mathcal{S}_{\mu,\mathcal{N}}^n(A, B)$ and, hence, $\mathcal{S}_{\mu,\mathcal{N}}^n(A, B)$ is convex.

On the other hand, for $f \in \tilde{S}_{\text{H,N}}^n(A, B)$, $|z| \leq r$ and $0 < r < 1$, we obtain

$$
|f(z)| \le r + \sum_{k=2}^{\infty} (|a_k| + |b_k|) r^n \le r + \sum_{k=2}^{\infty} (\alpha_k |a_k| + \beta_k |b_k|) \le r + (B - A).
$$

This implies that $\tilde{S}_{\text{H,N}}^n(A, B)$ is locally uniformly bounded. Let

$$
f_e(z) = z + \sum_{k=2}^{\infty} a_{e,k} z^k + \overline{\sum_{k=1}^{\infty} b_{e,k} z^k}, \quad z \in U, \quad k \in \mathbb{N},
$$

and let $f \in \mathcal{H}$. By using Theorem 3, we get

$$
\sum_{k=2}^{\infty} (\alpha_k |a_{e,k}| + \beta_k |b_{e,k}|) \le B - A, \quad k \in \mathbb{N}.
$$

If $f_e \to f$, then $|a_{e,k}| \to |a_k|$ and $|b_{e,k}| \to |b_k|$ as $k \to \infty$, $k \in \mathbb{N}$. This yields condition (7). Therefore, $f \in \widetilde{\mathcal{S}}_{\mathcal{H} \mathcal{N}}^n(A, B)$ and the class $\widetilde{\mathcal{S}}_{\mathcal{H} \mathcal{N}}^n(A, B)$ is closed. By Lemma 3, we can now say that the class $\widetilde{\mathcal{S}}_{\mathcal{H} \mathcal{N}}^n(A, B)$ is a compact subset of *H.*

Theorem 4 is proved.

Theorem 5. *The set of extreme points of the class* $\widetilde{S}_{\mathcal{H},\mathcal{N}}^n(A, B)$ *is*

$$
E\widetilde{\mathcal{S}}_{\mathcal{HN}}^n(A,B) = \{h_k : k \in \mathbb{N}\} \cup \{g_k : k \in \{2,3,\ldots\}\},\
$$

where

$$
h_1 = z, \quad h_k(z) = z - \frac{B - A}{\alpha_k} z^k,
$$

$$
g_k(z) = z + (-1)^n \frac{B - A}{\beta_k} \overline{z}^k, \quad z \in U, \quad k \in \{2, 3, \ldots\}.
$$
 (13)

Proof. If we use (7), then we can see that the functions of the indicated form are the extreme points of the class $\widetilde{S}_{\sharp\downarrow\mathcal{N}}^n(A, B)$. Suppose that $f \in E\widetilde{S}_{\sharp\downarrow\mathcal{N}}^n(A, B)$ and f is not of the form indicated above. Thus, there exists $m \in \{2, 3, \ldots\}$ such that

$$
0 < |a_m| < \frac{B-A}{\alpha_m} \qquad \text{or} \qquad 0 < |b_m| < \frac{B-A}{\beta_m}.
$$

 $\text{If } 0 < |a_m| < \frac{B-A}{\alpha}$ $\frac{1}{\alpha_m}$, then, setting

$$
\gamma = \frac{|a_m| \alpha_m}{B - A} \quad \text{and} \quad \varphi = \frac{1}{1 - \eta} \left(f - \eta h_m \right),
$$

we obtain

$$
0 < \eta < 1, \quad h_m, \varphi \in \widetilde{\mathcal{S}}_{\mathcal{HN}}^*(A, B), \quad h_m \neq \varphi, \quad \text{and} \quad f = \eta h_m + (1 - \eta) \varphi.
$$

Thus, $f \notin E\overline{\mathcal{S}}_{\mathcal{H} \mathcal{N}}^n(A, B)$. $\text{For } 0 < |b_m| < \frac{B-A}{\beta_m}$ $\frac{1}{\beta_m}$, we get the same result. Theorem 5 is proved.

If the class $\mathcal{F} = \{f_k \in \mathcal{H} : k \in \mathbb{N}\}\$ is locally uniformly bounded, then its closed convex hull is

$$
\overline{\mathrm{co}}\mathcal{F} = \left\{ \sum_{k=1}^{\infty} \eta_k f_k : \sum_{k=1}^{\infty} \eta_k = 1, \ \eta_k \ge 0, \ k \in \mathbb{N} \right\}.
$$

Corollary 1. Let h_k *and* g_k *be defined by (13). Then*

$$
\widetilde{S}_{\mathcal{HN}}^n(A, B) = \left\{ \sum_{k=1}^{\infty} \left(\eta_k h_k + \delta_k g_k \right) : \sum_{k=1}^{\infty} \left(\eta_k + \delta_k \right) = 1, \ \delta_1 = 0, \ \eta_k, \delta_k \ge 0, \ k \in \mathbb{N} \right\}.
$$

For each fixed value of $k \in \mathbb{N}$ and $z \in U$, the following real-valued functionals are continuous and convex on *H*:

$$
\mathcal{J}(f) = |a_k|, \quad \mathcal{J}(f) = |b_k|, \quad \mathcal{J}(f) = |f(z)|, \quad \mathcal{J}(f) = \left| \mathcal{L}^k_{\mathcal{H}} f(z) \right|, \quad f \in \mathcal{H}.
$$

The real-valued functional

$$
\mathcal{J}(f) = \left(\frac{1}{2\pi} \int\limits_{0}^{2\pi} \left| f\left(re^{i\theta}\right) \right|^{\gamma} d\theta \right)^{1/\gamma}, \quad f \in \mathcal{H}, \quad \gamma \ge 1, \quad 0 < r < 1,
$$

is continuous on *H*. For $\gamma \geq 1$, it is also convex on *H* (Minkowski's inequality).

Corollary 2. Let $f \in \widetilde{S}_{\text{H,N}}^n(A, B)$ *be a function of the form (12). Then*

$$
|a_k| \le \frac{B-A}{\alpha_k}, \quad |b_k| \le \frac{B-A}{\beta_k}, \quad k=2,3,\ldots,
$$

where α_k *and* β_k *are defined by (7). The result is sharp. The extremal functions are* h_k *and* g_k *of the form (13).*

Theorem 6. Let $f \in \widetilde{S}_{\text{H,N}}^n(A, B)$ and $|z| = r < 1$. Then

$$
r - \frac{B - A}{\alpha_2} r^2 \le |f(z)| \le r + \frac{B - A}{\alpha_2} r^2,
$$

$$
r - \frac{(B - A) [\gamma (1 + \lambda)^n + (1 - \gamma)(n + 1)]}{\alpha_2} r^2
$$

$$
\le |\mathcal{L}_H^n f(z)| \le r + \frac{(B - A) [\gamma (1 + \lambda)^n + (1 - \gamma)(n + 1)]}{\alpha_2} r^2.
$$

The result is sharp. The extremal functions h_2 *have the form (13).*

Proof. We only prove the right inequality. The proof of the left inequality is similar and, hence, omitted. We have

$$
|f(z)| \le r + \sum_{k=2}^{\infty} (|a_k| + |b_k|)r^k
$$

\n
$$
\le r + \sum_{k=2}^{\infty} (|a_k| + |b_k|)r^2
$$

\n
$$
\le r + \left(\frac{1}{\alpha_2} \sum_{k=2}^{\infty} \alpha_2 |a_k| + \frac{1}{\beta_2} \sum_{k=2}^{\infty} \beta_2 |b_k|\right) r^2
$$

\n
$$
\le r + \frac{1}{\alpha_2} \sum_{k=2}^{\infty} (\alpha_k |a_k| + \beta_k |b_k|)r^2 \le r + \frac{B-A}{\alpha_2}r^2,
$$

\n
$$
\alpha_2 \le \alpha_k, \quad \alpha_2 \le \beta_2, \quad \beta_2 \le \beta_k \quad \text{for all} \quad k \ge 2.
$$

Another proof can be obtained by using Lemma 3 with extreme points. Theorem 6 is proved.

Corollary 3. If $f \in \mathcal{S}_{\mathcal{HN}}^n(A, B)$ *, then* $U(r) \subset f(U(r))$ *, where*

$$
r = 1 - \frac{B - A}{\alpha_2}
$$
 and $U(r) := \{ z \in \mathbb{C} : |z| < r \leq 1 \}.$

Corollary 4. Let $0 < r < 1$ *and* $\xi \geq 1$ *. If* $f \in \widetilde{S}_{\text{H,N}}^n(A, B)$ *, then*

$$
\frac{1}{2\pi} \int_{0}^{2\pi} \left| f\left(re^{i\theta}\right) \right|^{\xi} d\theta \le \frac{1}{2\pi} \int_{0}^{2\pi} \left| h_2\left(re^{i\theta}\right) \right|^{\xi} d\theta,
$$

$$
\frac{1}{2\pi} \int_{0}^{2\pi} \left| \mathscr{L}_{\mathcal{H}}^k f\left(re^{i\theta}\right) \right|^{\xi} d\theta \le \frac{1}{2\pi} \int_{0}^{2\pi} \left| \mathscr{L}_{\mathcal{H}}^k h_2\left(re^{i\theta}\right) \right|^{\xi} d\theta, \quad \xi = 1, 2,
$$

4. Radii of Starlikeness and Convexity

We note that a harmonic function $f \in S^*_{\mathcal{H}}(\alpha)$ if and only if

$$
\Re \frac{\mathscr{L}_{\mathcal{H}}f(z)}{f(z)} > \alpha, \quad |z| = r < 1,
$$

where

$$
\mathscr{L}_{\mathcal{H}}f(z)=zh'(z)-\overline{zg'(z)}.
$$

For $0 \le \alpha < 1$, $f \in S^c_\mathcal{H}(\alpha)$ is equivalent to $\mathcal{L}_\mathcal{H} f(z) \in S^*_{\mathcal{H}}(\alpha)$.

Let $\mathcal{B} \subseteq \mathcal{H}$. We now define the radius of starlikeness and the radius of convexity of the class \mathcal{B} :

$$
R_{\alpha}^{*}(\mathcal{B}) := \inf_{f \in \mathcal{B}} \left(\sup \left\{ r \in (0,1] : f \text{ is starlike of order } \alpha \in U(r) \right\} \right),\,
$$

$$
R_{\alpha}^{c}(\mathcal{B}) := \inf_{f \in \mathcal{B}} \left(\sup \left\{ r \in (0,1] : f \text{ is convex of order } \alpha \in U(r) \right\} \right).
$$

Theorem 7. *Let* $0 \le \alpha < 1$ *and let* α_k *and* β_k *be defined by (7). Then*

$$
R_{\alpha}^* \left(\widetilde{\mathcal{S}}_{\mathcal{HN}}^n(A, B) \right) = \inf_{k \ge 2} \left(\frac{1 - \alpha}{B - A} \min \left\{ \frac{\alpha_k}{k - \alpha}, \frac{\beta_k}{k + \alpha} \right\} \right)^{\frac{1}{k - 1}}.
$$

Proof. Let $f \in \tilde{S}_{\text{H,N}}^n(A, B)$ be of the form (12).

We note that *f* is starlike of order α in $U(r)$ if and only if (see [7])

$$
\sum_{k=2}^{\infty} \left(\frac{k-\alpha}{1-\alpha} \left| a_k \right| + \frac{k+\alpha}{1-\alpha} \left| b_k \right| \right) r^{k-1} \le 1.
$$
\n(14)

In addition, it follows from Theorem 3 that

$$
\sum_{k=2}^{\infty} \left(\frac{\alpha_k}{B-A} |a_k| + \frac{\beta_k}{B-A} |b_k| \right) \le 1.
$$

Since $\alpha_k < \beta_k$, $k = 2, 3, \ldots$, condition (14) is satisfied if

$$
\frac{k-\alpha}{1-\alpha}r^{k-1} \le \frac{\alpha_k}{B-A} \quad \text{and} \quad \frac{k+\alpha}{1-\alpha}r^{k-1} \le \frac{\beta_k}{B-A}, \quad k=2,3,\ldots,
$$

or

$$
r \leq \left(\frac{1-\alpha}{B-A} \min\left\{\frac{\alpha_k}{k-\alpha}, \frac{\beta_k}{k+\alpha}\right\}\right)^{\frac{1}{k-1}}, \quad k=2,3,\ldots.
$$

Hence, the function *f* is starlike of order α in the disk $U(r^*)$, where

$$
r^* := \inf_{k \ge 2} \left(\frac{1 - \alpha}{B - A} \min \left\{ \frac{\alpha_k}{k - \alpha}, \frac{\beta_k}{k + \alpha} \right\} \right)^{\frac{1}{k - 1}}.
$$

It follows from the function

$$
f_k = h_k(z) + \overline{g_k(z)} = z - \frac{B-A}{\alpha_k} z^k + (-1)^n \frac{B-A}{\beta_k} \overline{z}^k
$$

that the radius r^* cannot be made larger.

Theorem 7 is proved.

Similarly, we get the following theorem:

Theorem 8. *Let* $0 \le \alpha < 1$ *and let* α_k *and* β_k *be defined by (7). Then*

$$
R_{\alpha}^{c}\left(\widetilde{\mathcal{S}}_{\mathcal{HN}}^{n}(A,B)\right)=\inf_{k\geq 2}\left(\frac{1-\alpha}{B-A}\min\left\{\frac{\alpha_{k}}{k\left(k-\alpha\right)},\frac{\beta_{k}}{k\left(k+\alpha\right)}\right\}\right)^{\frac{1}{k-1}}.
$$

We now examine the closure properties of the class $\tilde{S}_{\mu}^{n}(A, B)$ under the generalized Bernardi–Libera–Livingston integral operator $\mathcal{L}_c(f)$, $c > -1$, which is defined by

$$
\mathcal{L}_c(f) = \mathcal{L}_c(h) + \overline{\mathcal{L}_c(g)},
$$

where

$$
\mathcal{L}_c(h)(z) = \frac{c+1}{z^c} \int\limits_0^z t^{c-1} h(t) dt \quad \text{and} \quad \mathcal{L}_c(g)(z) = \frac{c+1}{z^c} \int\limits_0^z t^{c-1} g(t) dt.
$$

Theorem 9. Let $f \in \mathcal{S}_{\mathcal{H}}^n(A, B)$. Then $\mathcal{L}_c(f) \in \mathcal{S}_{\mathcal{H}}^n(A, B)$.

Proof. It follows from the representation of $\mathcal{L}_c(f(z))$ that

$$
\mathcal{L}_c(f)(z) = \frac{c+1}{z^c} \int_0^z t^{c-1} \left[h(t) + \overline{g(t)} \right] dt
$$

= $\frac{c+1}{z^c} \left[\int_0^z t^{c-1} \left(t - \sum_{k=2}^\infty a_k t^k \right) dt + \int_0^z t^{c-1} \left(t + (-1)^n \sum_{k=2}^\infty b_k t^k \right) dt \right]$
= $z - \sum_{k=2}^\infty A_k z^k + (-1)^n \sum_{k=2}^\infty B_k z^k$,

where

$$
A_k = \frac{c+1}{c+k} a_k, \qquad B_k = \frac{c+1}{c+k} b_k.
$$

Therefore,

$$
\sum_{k=2}^{\infty} (\alpha_k |A_k| + \beta_k |B_k|) \le \sum_{k=2}^{\infty} \left(\alpha_k \frac{c+1}{c+k} |a_k| + \beta_k \frac{c+1}{c+k} |b_k| \right)
$$

$$
\leq \sum_{k=2}^{\infty} (\alpha_k |a_k| + \beta_k |b_k|) \leq B - A.
$$

Since $f \in \mathcal{S}_{\mathcal{H}}^n(A, B)$, by Theorem 1, we conclude that $\mathcal{L}_c(f) \in \mathcal{S}_{\mathcal{H}}^n(A, B)$.

Theorem 9 is proved.

REFERENCES

- 1. F. M. Al-Oboudi, "On univalent functions defined by a generalized Sălăgean operator," *Int. J. Math. Math. Sci.*, 27, 1429–1436 (2004).
- 2. J. Clunie and T. Sheil-Small, "Harmonic univalent functions," *Ann. Acad. Sci. Fenn. Math.*, 9, 3–25 (1984).
- 3. J. Dziok, M. Darus, J. Sokol, and T. Bulboaca, "Generalizations of starlike harmonic functions," ˘ *C. R. Math. Acad. Sci. Paris*, 354, 13–18 (2016).
- 4. J. Dziok, J. Jahangiri, and H. Silverman, "Harmonic functions with varying coefficients," *J. Inequal. Appl.*, 139 (2016); DOI 10.1186/s13660-016-1079-z.
- 5. P. L. Duren, "Harmonic mappings in the plane," *Cambridge Tracts Math.*, 156 (2004).
- 6. J. M. Jahangiri, "Coefficient bounds and univalence criteria for harmonic functions with negative coefficients," *Ann. Univ. Mariae Curie-Skłodowska Sect. A*, 52, No. 2, 57–66 (1998).
- 7. J. M. Jahangiri, "Harmonic functions starlike in the unit disk," *J. Math. Anal. Appl.*, 235, 470–477 (1999).
- 8. W. Janowski, "Some extremal problems for certain families of analytic functions," *Ann. Polon. Math.*, 28, 297–326 (1973).
- 9. M. Krein and D. Milman, "On the extreme points of regularly convex sets," *Studia Math.*, 9, 133–138 (1940).
- 10. P. Montel, "Sur les families de functions analytiques qui admettent des valeurs exceptionelles dans un domaine," *Ann. Sci. Ec. Norm. ´ Supér* (3), 23, 487–535 (1912).
- 11. G. Murugusundaramoorthy, K. Vijaya, and R. K. Raina, "A subclass of harmonic functions with varying arguments defined by Dziok–Srivastava operator," *Arch. Math. (Brno)*, 45, No. 1, 37–46 (2009).
- 12. St. Ruscheweyh, "New criteria for univalent functions," *Proc. Amer. Math. Soc.*, 49, 109–115 (1975).
- 13. G. S. Sălăgean, "Subclasses of univalent functions," *Lecture Notes Math.*, 1013, 362–372 (1983).
- 14. H. Silverman, "Harmonic univalent functions with negative coefficients," *J. Math. Anal. Appl.*, 220, 283–289 (1998).