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GENERALIZATIONS OF STARLIKE HARMONIC FUNCTIONS DEFINED
BY SĂLĂGEAN AND RUSCHEWEYH DERIVATIVES

Á. O. Páll-Szabo UDC 517.5

We investigate some generalizations of the classes of harmonic functions defined by the Sălăgean and
Ruscheweyh derivatives. By using the extreme-points theory, we obtain the coefficient-estimates distor-
tion theorems and mean integral inequalities for these classes of functions.

1. Preliminaries

Let A denote a class of functions of the form

f(z) = z +

1X

k=2

akz
k, (1)

which are analytic in an open unit disk U = {z 2 C : |z| < 1}.

A continuous function f = u + iv is a complex-valued harmonic function in a complex domain G if both u

and v are real and harmonic in G. In any simply connected domain D ⇢ G, we can write f = h + g, where
h and g are analytic in D. We say that h is the analytic part and g is the coanalytic part of f. A necessary and
sufficient condition for f to be locally univalent and orientation preserving in D is that |h0(z)| > |g0(z)| in D

(see [2]).
Let H denote the family of continuous complex-valued functions that are harmonic in U. By SH we denote

the family of functions f 2 H of the form

f = h+ g, h(z) = z +

1X

k=2

akz
k, g(z) =

1X

k=2

bkz
k, (2)

which are univalent and orientation preserving in the open unit disc U. Thus, f(z) is given by

f(z) = z +

1X

k=2

akz
k +

1X

k=2

bkzk. (3)

A function f of the form (3) is said to be in S
⇤

H
(↵) if and only if (see [2, 4, 5])

@

@✓

⇣
arg f

⇣
rei✓

⌘⌘
> ↵, 0  ✓ < 2⇡, |z| = r < 1, 0  ↵ < 1. (4)
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Similarly, a function f of the form (3) is said to be in S
c
H
(↵) if and only if

@

@✓

✓
arg

@

@✓

⇣
f
⇣
rei✓

⌘⌘◆
> ↵, 0  ✓ < 2⇡, |z| = r < 1. (5)

We note that (see [7]) a harmonic function f 2 S
⇤

H
(↵) if and only if

<
JHf(z)

f(z)
> ↵, |z| = r < 1, where JHf(z) = zh0(z)− zg0(z).

Definition 1 [1]. For f 2 A, λ ≥ 0, and n 2 N, the operator Dn
λ , D

n
λ : A!A, is defined as follows:

D0
λf(z) = f(z),

Dn+1
λ f(z) = (1− λ)Dn

λ f(z) + λz (Dn
λ f(z))

0 = Dλ (D
n
λ f(z)) , z 2 U.

Remark 1. If f 2 A, then

Dn
λ f(z) = z +

1X

k=2

[1 + (k − 1)λ]n akz
k, z 2 U.

Remark 2. For λ = 1 in Definition 1, we get the Sălăgean differential operator [13].

Definition 2 [12]. For f 2 A, n 2 N, the operator Rn, Rn : A ! A, is defined as follows:

R0f(z) = f(z),

(n+ 1)Rn+1f(z) = z (Rnf(z))0 + nRnf(z), z 2 U.

Remark 3. If f 2 A, then

Rnf(z) = z +

1X

k=2

(n+ k − 1)!

n!(k − 1)!
akz

k, z 2 U,

which is the Ruscheweyh differential operator [12].

Definition 3. Let γ,λ ≥ 0 and n 2 N. By L n
we denote the operator given by L n : A ! A,

L nf(z) = (1− γ)Rnf(z) + γDn
λ f(z), z 2 U.

Remark 4. If f 2 A, then

L nf(z) = z +

1X

k=2

⇢
γ [1 + (k − 1)λ]n + (1− γ)

(n+ k − 1)!

n!(k − 1)!

�
akz

k, z 2 U.
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We consider a linear operator L n
H
: H ! H defined for a function f = h+ g 2 H by

L n
Hf := L nh+ (−1)nL ng.

For a function f 2 H of the form (3), we have

L n
Hf(z) = z +

1X

k=2

[γ⌘(k, n,λ) + (1− γ)µ(k, n)] akz
k

+ (−1)n
1X

k=2

[γ⌘(k, n,λ) + (1− γ)µ(k, n)] bkz
k, z 2 U,

where

⌘(k, n,λ) = [1 + (k − 1)λ]n and µ(k, n) =
(n+ k − 1)!

n!(k − 1)!
.

Definition 4. For −B  A < B  1 and n 2 N, by eSn
H
(A,B) we denote the class of functions f 2 H of

the form (3) such that

�����
L n+1

H
f(z)−L n

H
f(z)

BL n+1
H

f(z)−AL n
H
f(z)

����� < 1, z 2 U. (6)

Remark 5. Dziok, et al. studied the case γ = 0 in [3], while the case where γ = 1 and λ = 1 was studied
in [4].

Note that the classes eS0
H
(A,B) for the analytic case, i.e., g ⌘ 0, were introduced by Janowski [8]. Jahangiri

[6, 7] and Silverman [14] studied the classes S
⇤

H
(↵) = eS0

H
(2↵ − 1, 1) and S

c
H
(↵) = eS1

H
(2↵ − 1, 1) for the

harmonic case.

2. Coefficient Estimates

Theorem 1. A function f 2 H of the form (3) belongs to the class eSn
H
(A,B) if it satisfies the condition

1X

k=2

(↵k|ak|+ βk|bk|)  B −A, (7)

where

↵k = σ(A,B, n, γ,λ, k) + σ(1, 1, n, γ,λ, k),

βk = δ(A,B, n, γ,λ, k) + δ(1, 1, n, γ,λ, k),

σ(A,B, n, γ,λ, k) = γ⌘(k, n,λ)[(k − 1)λB +B −A]

+ (1− γ)µ(k, n)
(B −A)n+Bk −A

n+ 1
,



GENERALIZATIONS OF STARLIKE HARMONIC FUNCTIONS DEFINED BY SĂLĂGEAN AND RUSCHEWEYH DERIVATIVES 1587

δ(A,B, n, γ,λ, k) = γ⌘(k, n,λ)[(k − 1)λB +B +A]

+ (1− γ)µ(k, n)
(B +A)n+Bk +A

n+ 1
.

Proof. It follows from Definition 4 that f 2 eSn
H
(A,B) if and only if

�����
L n+1

H
f(z)−L n

H
f(z)

BL n+1
H

f(z)−AL n
H
f(z)

����� < 1, z 2 U.

It is sufficient to prove that

��L n+1
H

f(z)−L n
Hf(z)

��−
��BL n+1

H
f(z)−AL n

Hf(z)
�� < 0, z 2 U \ {0}.

Letting |z| = r, 0 < r < 1, we get

��L n+1
H

f(z)−L n
Hf(z)

��−
��BL n+1

H
f(z)−AL n

Hf(z)
��



1X

k=2


γ⌘(k, n,λ)(k − 1)λ+ (1− γ)µ(k, n)

k − 1

n+ 1

�
|ak|r

k

+

1X

k=2


γ⌘(k, n,λ) [2 + (k − 1)λ] + (1− γ)µ(k, n)

2n+ k + 1

n+ 1

�
|bk|r

k
− (B −A)r

+

1X

k=2


γ⌘ (k, n,λ) [(k − 1)λB +B −A] + (1− γ)µ(k, n)

✓
B
n+ k

n+ 1
−A

◆�
|ak|r

k

+

1X

k=2


γ⌘ (k, n,λ) [(k − 1)λB +B +A] + (1− γ)µ (k, n)

✓
B
n+ k

n+ 1
+A

◆�
|bk| r

k

 r

(
1X

k=2

(↵k|ak|+ βk|bk|)r
k−1

− (B −A)

)
< 0,

whence f 2 eSn
H
(A,B).

Theorem 1 is proved.

Lemma 1. If λ ≥ 1, γ 2 [0, 1], n ≥ 0, −B  A < B  1, k 2 N, k ≥ 2, then

↵k ≥ k(B −A), βk ≥ k(B −A),

where ↵k and βk are defined in (7).

Proof. It is known that

⌘(k, n,λ) = [1 + (k − 1)λ]n ≥ kn. (8)
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First, we prove that

µ(k, n) =
(n+ k − 1)!

n!(k − 1)!
≥ n+ 1. (9)

For the proof, we proceed by induction.

1. Let k ≥ 2 be fixed and n = 0. Then

µ(k, 0) =
(k − 1)!

0!(k − 1)!
= 1.

Let k ≥ 2 be fixed and n = 1. Then we get

µ(k, 1) =
k!

1!(k − 1)!
≥ 2 , k! ≥ 2(k − 1)! , k ≥ 2.

2. Assume that the following formula holds for n = l :

µ(k, l) =
(l + k − 1)!

l!(k − 1)!
≥ l + 1 , (l + k − 1)! ≥ l!(k − 1)!(l + 1) = (l + 1)!(k − 1)! .

3. Let n = l + 1. Thus, it is necessary to prove that

µ(k, l + 1) =
(l + k)!

(l + 1)!(k − 1)!
≥ l + 2 , (l + k)! ≥ (l + 1)!(k − 1)!(l + 2).

This is true, in view of the previous item:

(l + k)! = (l + k)(l + k − 1)! ≥ (l + k)(l + 1)!(k − 1)! ≥ (l + 2)(l + 1)!(k − 1)!.

By using (8) and (9), we now prove that ↵k ≥ k(B −A) :

↵k = σ (A,B, n, γ,λ, k) + σ (1, 1, n, γ,λ, k)

≥ γkn[(k − 1)λB +B −A]

+ (1− γ)[(B −A)n+Bk −A] + γkn(k − 1)λ+ (1− γ)(k − 1).

However,

kn[(k − 1)λB +B −A] + kn(k − 1)λ

= kn[(B −A) + (k − 1)λ(B + 1)| {z }
>0

] > kn(B −A) > k(B −A)
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and

(B −A)n+Bk −A+ (k − 1)

≥ B(k − 1) +B −A+ k − 1 = (k − 1)(B + 1) +B −A

≥ (k − 1)(B −A) +B −A = k(B −A).

Hence,

↵k ≥ γ(B −A)k + (1− γ)(B −A)k = k(B −A).

We now prove that βk ≥ k(B −A) :

βk = δ (A,B, n, γ,λ, k) + δ (1, 1, n, γ,λ, k)

≥ γkn[(k − 1)λB +B +A] + (1− γ)[(B +A)n+Bk +A]

+ γkn[(k − 1)λ+ 2] + (1− γ)[2n+ k + 1]

> γkn[(k − 1)(B + 1) +B +A+ 2]

+ (1− γ)[(B +A)n+ 2n+Bk + k +A+ 1].

But

(k − 1)(B + 1) +B +A+ 2 = kB + k + 1 +A ≥ k(B −A), B ≥ −1, A ≥ −1,

k + 1 +A ≥ −kA , k(A+ 1) +A+ 1 ≥ 0 , (k + 1)(A+ 1) ≥ 0

and

(B +A)n+ 2n+Bk + k +A+ 1 ≥ Bk + k +A+ 1 ≥ Bk −Ak,

because

k +A+ 1 ≥ −Ak , k(A+ 1) +A+ 1 ≥ 0 , (k + 1)(A+ 1) ≥ 0.

Therefore,

βk ≥ γ(B −A)k + (1− γ)(B −A)k = k(B −A).

Lemma 1 is proved.

Lemma 2. If λ ≥ 1, γ > 1, n ≥ 0, −B  A < B  1, k 2 N, k ≥ 2, then

↵k ≥ k(B −A), βk ≥ k(B −A),

where ↵k and βk is defined in (7).
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Proof. First, we note that

µ(k, n) =
(n+ k − 1)!

n!(k − 1)!
 kn, k, n 2 N, k ≥ 2. (10)

Let k be fixed. If n = 0 then (10) holds.
Suppose that (10) is true for n . Then, for n+ 1, we obtain

(n+ k)! = (n+ k)(n+ k − 1)!  (n+ k)knn!(k − 1)!

 (n+ 1)kknn!(k − 1)! = kn(n+ 1)!(k − 1)!.

Thus,

↵k ≥ γkn[(k − 1)(B + 1) +B −A]− (γ − 1)kn
(B −A)n+Bk −A

n+ 1

by virtue of (8) and (10).
However,

(B −A)n+Bk −A+ k − 1

n+ 1
< (B −A) + (k − 1)(B + 1)

and, hence,

↵k ≥ [γ − (γ − 1)][B −A+ (k − 1)(B + 1)]kn ≥ k(B −A),

βk ≥ γkn[(k − 1)(B + 1) +B +A+ 2]

+ (1− γ)kn
(B +A)n+ 2n+Bk + k +A+ 1

n+ 1

≥ kn[(k − 1)(B + 1) +B +A+ 2] ≥ k(B −A)

because

(B +A)n+ 2n+Bk + k +A+ 1 < (n+ 1)[(k − 1)(B + 1) +B +A+ 2].

Lemma 2 is proved.

Theorem 2. If f 2 H has the form (3) and f satisfies condition (7), then f 2 SH.

Proof. The theorem is true for the function f(z) ⌘ z. Let f 2 H be a function of the form (3). Assume that

there exists k 2 {2, 3, . . .} such that ak 6= 0 or bk 6= 0. Since the inequalities
↵k

B −A
≥ k and

βk
B −A

≥ k,

k = 2, 3, . . . , have been proved in Lemmas 1 and 2, in view of (7), we get

1X

k=2

(k|ak|+ k|bk|)  1 (11)
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and

��h0(z)
��−
��g0(z)

�� ≥ 1−

1X

k=2

k |ak| |z|
k
−

1X

k=2

k|bk||z|
k

≥ 1− |z|
1X

k=2

(k|ak|+ k|bk|)

≥ 1−
|z|

B −A

1X

k=2

(↵k|ak|+ βk|bk|) ≥ 1− |z| > 0, z 2 U.

In this case, the function f is locally univalent and sense-preserving in U. Moreover, if z1, z2 2 U, z1 6= z2,

then
����
zk1 − zk2
z1 − z2

���� =

�����

kX

l=1

zl−1
1 zk−l

2

����� 
kX

l=1

|z1|
l−1

|z2|
k−1 < k, k = 2, 3, . . . .

Therefore, by virtue of (11), we have

|f(z1)− f(z2)| ≥ |h(z1)− h(z2)|− |g(z1)− g(z2)|

≥

�����z1 − z2 −

1X

k=2

ak

⇣
zk1 − zk2

⌘�����−

�����

1X

k=2

bk
�
zk1 − zk2

�
�����

≥ |z1 − z2|

 
1−

1X

k=2

|ak|

����
zk1 − zk2
z1 − z2

����−
1X

k=2

|bk|

����
zk1 − zk2
z1 − z2

����

!

> |z1 − z2|

 
1−

1X

k=2

k |ak|−

1X

k=2

k |bk|

!
≥ 0.

This leads to the univalence of f and, hence, f 2 SH.

Theorem 2 is proved.

Let N denote a class of functions f = h+ g 2 H of the form (see [14])

f(z) = z −
1X

k=2

|ak|z
k + (−1)n

1X

k=2

|bk|z
k, (12)

and let eSn
HN

(A,B) denote the class N \ eSn
H
(A,B).

Theorem 3. Let f = h+ g be defined by (12). Then f 2 eSn
HN

(A,B) if and only if condition (7) is satisfied.

Proof. For the “if” part, see Theorem 1. For the “only if” part, we assume that f 2 eSn
HN

(A,B). Then,
by (6), we get

������

X1

k=2

h
σ (1, 1, n, γ,λ, k) |ak|z

k−1 + δ(1, 1, n, γ,λ, k)|bk|z
k−1
i

(B −A)−
X1

k=2

h
σ (A,B, n, γ,λ, k) |ak| z

k−1 + δ (A,B, n, γ,λ, k) |bk| z
k−1
i

������
< 1, z 2 U.
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For z = r < 1, we obtain

X1

k=2
[σ (1, 1, n, γ,λ, k) |ak|+ δ (1, 1, n, γ,λ, k) |bk|] r

k−1

(B −A)−
X1

k=2
[σ (A,B, n, γ,λ, k) |ak|+ δ (A,B, n, γ,λ, k) |bk|] r

k−1
< 1.

The denominator of the left-hand side cannot vanish for r 2 [0, 1) and, moreover, it is positive. Thus,

1X

k=2

(↵k|ak|+ βk|bk|)r
k−1

 B −A.

Hence, letting r ! 1−, we arrive at assertion (7).
Theorem 3 is proved.

3. Extreme Points

Definition 5. We say that a class F is convex if ⌘f + (1 − ⌘)g 2 F for all f and g in F and 0  ⌘  1.

The closed convex hull of F denoted by coF is the intersection of all closed convex subsets of H (with respect to

the topology of locally uniform convergence) that contain F .

Definition 6. Let F be a convex set. A function f 2 F ⇢ H is called an extreme point of F if f =

⌘f1 + (1 − ⌘)f2 implies that f1 = f2 = f for all f1 and f2 in F and 0 < ⌘ < 1. We use the notation EF to

denote the set of all extreme points of F . It is clear that EF ⇢ F .

For the extreme points, we use the Krein–Milman theorem (see [3, 4, 9]) which implies the following lemma:

Lemma 3 [3, 4]. Let F be a nonempty compact convex subclass of the class H and let J : H ! R be

a real-valued, continuous, and convex functional on F . Then

max {J (f) : f 2 F} = max {J (f) : f 2 EF} .

Since H is a complete metric space, we can use Montel’s theorem [10].

Lemma 4 [3, 4]. A class F ⇢ H is compact if and only if F is closed and locally uniformly bounded.

Theorem 4. The class eSn
HN

(A,B) is a convex and compact subset of H.

Proof. For 0  ⌘  1, let f1, f2 2 eSn
HN

(A,B) be defined by (2). Then

⌘f1(z) + (1− ⌘)f2(z) = z −
1X

k=2

(⌘|a1,k|+ (1− ⌘)|a2,k|)z
k

+ (−1)n
1X

k=2

(⌘|b1,k|+ (1− ⌘)|b2,k|z
k)

and

1X

k=2

n
↵k |⌘ |a1,k|+ (1− ⌘)|a2,k||+ βk

���⌘ |b1,k|+ (1− ⌘) |b2,k| z
k
���
o
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= ⌘

1X

k=2

{↵k |a1,k|+ βk |b1,k|}+ (1− ⌘)

1X

k=2

↵k |a2,k|+ βk |b2,k|

 ⌘(B −A) + (1− ⌘)(B −A).

Therefore, the function φ = ⌘f1 + (1 − ⌘)f2 belongs to the class eSn
HN

(A,B) and, hence, eSn
HN

(A,B) is
convex.

On the other hand, for f 2 eSn
HN

(A,B), |z|  r and 0 < r < 1, we obtain

|f(z)|  r +
1X

k=2

(|ak|+ |bk|)r
n
 r +

1X

k=2

(↵k|ak|+ βk|bk|)  r + (B −A).

This implies that eSn
HN

(A,B) is locally uniformly bounded. Let

fe(z) = z +

1X

k=2

ae,kz
k +

1X

k=1

be,kzk, z 2 U, k 2 N,

and let f 2 H. By using Theorem 3, we get

1X

k=2

(↵k|ae,k|+ βk|be,k|)  B −A, k 2 N.

If fe ! f, then |ae,k| ! |ak| and |be,k| ! |bk| as k ! 1, k 2 N. This yields condition (7). Therefore,
f 2 eSn

HN
(A,B) and the class eSn

HN
(A,B) is closed. By Lemma 3, we can now say that the class eSn

HN
(A,B) is

a compact subset of H.

Theorem 4 is proved.

Theorem 5. The set of extreme points of the class eSn
HN

(A,B) is

E eSn
HN (A,B) = {hk : k 2 N} [ {gk : k 2 {2, 3, . . .}} ,

where

h1 = z, hk(z) = z −
B −A

↵k
zk,

gk(z) = z + (−1)n
B −A

βk
zk, z 2 U, k 2 {2, 3, . . .}. (13)

Proof. If we use (7), then we can see that the functions of the indicated form are the extreme points of the
class eSn

HN
(A,B). Suppose that f 2 E eSn

HN
(A,B) and f is not of the form indicated above. Thus, there exists

m 2 {2, 3, . . .} such that

0 < |am| <
B −A

↵m
or 0 < |bm| <

B −A

βm
.
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If 0 < |am| <
B −A

↵m
, then, setting

γ =
|am|↵m

B −A
and ' =

1

1− ⌘
(f − ⌘hm) ,

we obtain

0 < ⌘ < 1, hm,' 2 eS⇤

HN (A,B), hm 6= ', and f = ⌘hm + (1− ⌘)'.

Thus, f /2 E eSn
HN

(A,B).

For 0 < |bm| <
B −A

βm
, we get the same result.

Theorem 5 is proved.

If the class F = {fk 2 H : k 2 N} is locally uniformly bounded, then its closed convex hull is

coF =

(
1X

k=1

⌘kfk :
1X

k=1

⌘k = 1, ⌘k ≥ 0, k 2 N

)
.

Corollary 1. Let hk and gk be defined by (13). Then

eSn
HN (A,B) =

(
1X

k=1

(⌘khk + δkgk) :
1X

k=1

(⌘k + δk) = 1, δ1 = 0, ⌘k, δk ≥ 0, k 2 N

)
.

For each fixed value of k 2 N and z 2 U, the following real-valued functionals are continuous and convex
on H :

J (f) = |ak|, J (f) = |bk|, J (f) = |f(z)|, J (f) =
���L k

Hf(z)
��� , f 2 H.

The real-valued functional

J (f) =

0

@ 1

2⇡

2⇡Z

0

���f
⇣
rei✓

⌘���
γ
d✓

1

A
1/γ

, f 2 H, γ ≥ 1, 0 < r < 1,

is continuous on H. For γ ≥ 1, it is also convex on H (Minkowski’s inequality).

Corollary 2. Let f 2 eSn
HN (A,B) be a function of the form (12). Then

|ak| 
B −A

↵k
, |bk| 

B −A

βk
, k = 2, 3, . . . ,

where ↵k and βk are defined by (7). The result is sharp. The extremal functions are hk and gk of the form (13).
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Theorem 6. Let f 2 eSn
HN

(A,B) and |z| = r < 1. Then

r −
B −A

↵2
r2  |f(z)|  r +

B −A

↵2
r2,

r −
(B −A) [γ(1 + λ)n + (1− γ)(n+ 1)]

↵2
r2

 |L n
Hf(z)|  r +

(B −A) [γ(1 + λ)n + (1− γ)(n+ 1)]

↵2
r2.

The result is sharp. The extremal functions h2 have the form (13).

Proof. We only prove the right inequality. The proof of the left inequality is similar and, hence, omitted.
We have

|f(z)|  r +
1X

k=2

(|ak|+ |bk|)r
k

 r +

1X

k=2

(|ak|+ |bk|)r
2

 r +

 
1

↵2

1X

k=2

↵2|ak|+
1

β2

1X

k=2

β2|bk|

!
r2

 r +
1

↵2

1X

k=2

(↵k|ak|+ βk|bk|)r
2
 r +

B −A

↵2
r2,

↵2  ↵k, ↵2  β2, β2  βk for all k ≥ 2.

Another proof can be obtained by using Lemma 3 with extreme points.
Theorem 6 is proved.

Corollary 3. If f 2 eSn
HN

(A,B), then U(r) ⇢ f(U(r)), where

r = 1−
B −A

↵2
and U(r) := {z 2 C : |z| < r  1} .

Corollary 4. Let 0 < r < 1 and ⇠ ≥ 1. If f 2 eSn
HN (A,B), then

1

2⇡

2⇡Z

0

���f
⇣
rei✓

⌘���
⇠
d✓ 

1

2⇡

2⇡Z

0

���h2
⇣
rei✓

⌘���
⇠
d✓,

1

2⇡

2⇡Z

0

���L k
Hf
⇣
rei✓

⌘���
⇠
d✓ 

1

2⇡

2⇡Z

0

���L k
Hh2

⇣
rei✓

⌘���
⇠
d✓, ⇠ = 1, 2, . . . .
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4. Radii of Starlikeness and Convexity

We note that a harmonic function f 2 S
⇤

H
(↵) if and only if

<
LHf(z)

f(z)
> ↵, |z| = r < 1,

where

LHf(z) = zh0(z)− zg0(z).

For 0  ↵ < 1, f 2 S
c
H
(↵) is equivalent to LHf(z) 2 S

⇤

H
(↵) .

Let B ✓ H. We now define the radius of starlikeness and the radius of convexity of the class B :

R⇤

↵ (B) := inf
f2B

(sup {r 2 (0, 1] : f is starlike of order ↵ 2 U (r)}) ,

Rc
↵ (B) := inf

f2B
(sup {r 2 (0, 1] : f is convex of order ↵ 2 U (r)}) .

Theorem 7. Let 0  ↵ < 1 and let ↵k and βk be defined by (7). Then

R⇤

↵

⇣
eSn
HN (A,B)

⌘
= inf

k≥2

✓
1− ↵

B −A
min

⇢
↵k

k − ↵
,

βk
k + ↵

�◆ 1
k−1

.

Proof. Let f 2 eSn
HN

(A,B) be of the form (12).
We note that f is starlike of order ↵ in U(r) if and only if (see [7])

1X

k=2

✓
k − ↵

1− ↵
|ak|+

k + ↵

1− ↵
|bk|

◆
rk−1

 1. (14)

In addition, it follows from Theorem 3 that

1X

k=2

✓
↵k

B −A
|ak|+

βk
B −A

|bk|

◆
 1.

Since ↵k < βk, k = 2, 3, . . . , condition (14) is satisfied if

k − ↵

1− ↵
rk−1


↵k

B −A
and

k + ↵

1− ↵
rk−1


βk

B −A
, k = 2, 3, . . . ,

or

r 

✓
1− ↵

B −A
min

⇢
↵k

k − ↵
,

βk
k + ↵

�◆ 1
k−1

, k = 2, 3, . . . .

Hence, the function f is starlike of order ↵ in the disk U (r⇤) , where

r⇤ := inf
k≥2

✓
1− ↵

B −A
min

⇢
↵k

k − ↵
,

βk
k + ↵

�◆ 1
k−1

.



GENERALIZATIONS OF STARLIKE HARMONIC FUNCTIONS DEFINED BY SĂLĂGEAN AND RUSCHEWEYH DERIVATIVES 1597

It follows from the function

fk = hk(z) + gk(z) = z −
B −A

↵k
zk + (−1)n

B −A

βk
zk

that the radius r⇤ cannot be made larger.
Theorem 7 is proved.

Similarly, we get the following theorem:

Theorem 8. Let 0  ↵ < 1 and let ↵k and βk be defined by (7). Then

Rc
↵

⇣
eSn
HN (A,B)

⌘
= inf

k≥2

✓
1− ↵

B −A
min

⇢
↵k

k (k − ↵)
,

βk
k(k + ↵)

�◆ 1
k−1

.

We now examine the closure properties of the class eSn
H
(A,B) under the generalized Bernardi–Libera–Livingston

integral operator Lc(f), c > −1, which is defined by

Lc(f) = Lc(h) + Lc(g),

where

Lc(h)(z) =
c+ 1

zc

zZ

0

tc−1h(t)dt and Lc(g)(z) =
c+ 1

zc

zZ

0

tc−1g(t)dt.

Theorem 9. Let f 2 eSn
H
(A,B). Then Lc(f) 2 eSn

H
(A,B).

Proof. It follows from the representation of Lc(f(z)) that

Lc(f)(z) =
c+ 1

zc

zZ

0

tc−1
h
h(t) + g(t)

i
dt

=
c+ 1

zc

2

4
zZ

0

tc−1

 
t−

1X

k=2

akt
k

!
dt+

zZ

0

tc−1

 
t+ (−1)n

1X

k=2

bktk

!
dt

3

5

= z −

1X

k=2

Akz
k + (−1)n

1X

k=2

Bkz
k,

where

Ak =
c+ 1

c+ k
ak, Bk =

c+ 1

c+ k
bk.

Therefore,

1X

k=2

(↵k|Ak|+ βk|Bk|) 

1X

k=2

✓
↵k

c+ 1

c+ k
|ak|+ βk

c+ 1

c+ k
|bk|

◆
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1X

k=2

(↵k|ak|+ βk|bk|)  B −A.

Since f 2 eSn
H
(A,B), by Theorem 1, we conclude that Lc(f) 2 eSn

H
(A,B).

Theorem 9 is proved.
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