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ON THE RATE OF CONVERGENCE IN THE INVARIANCE PRINCIPLE

FOR WEAKLY DEPENDENT RANDOM VARIABLES

A. K. Mukhamedov UDC 519.21

We consider nonstationary sequences of ϕ -mixing random variables. By using the Levy–Prokhorov dis-
tance, we estimate the rate of convergence in the invariance principle for nonstationary ϕ -mixing random
variables. The obtained results extend and generalize several known facts established for nonstationary
ϕ -mixing random variables.

1. Introduction

Let {ξkn, k = 1, 2, . . . , k(n), n = 1, 2, . . .} be a sequence of random variables (r.v.) in a probability
space {Ω,�, P} and let

M b
a(n) = σ{ξkn, a ≤ k ≤ b}, 1 ≤ a ≤ b ≤ k(n).

For any m ≥ 1, we define (see [11])

α(m) = sup
k,n

sup
A∈Mk

1 (n), B∈Mk(n)
k+m(n)

|P (A ∩B)− P (A)P (B)|,

β(m) = E

⎧⎨⎩sup
k,n

sup
A∈Mk(n)

k+m(n)

∣∣∣P (A/Mk
1 (n))− P (A)

∣∣∣
⎫⎬⎭ ,

ϕ(m) = sup
k,n

sup
A∈Mk

1 (n), B∈Mk(n)
k+m(n)

|P (B/A)− P (B)|, P (A) > 0.

A sequence is said to be strongly mixing (s.m.), absolutely regular (a.r.), or uniformly strong mixing (u.s.m.)
if α(m) → 0, β(m) → 0, or ϕ(m) → 0 as m → ∞, respectively.

Let

Skn =
∑
j≤k

ξjn, Sn = Sk(n)n, B2
kn = ES2

kn, B2
n = B2

k(n)n, S0n = B2
0n = 0,

Lns = B−s
n

∑
j≤k(n)

E |ξjn|s , Eξkn = 0, ϕ(0) = 1.

By C(·) with or without indices, we denote positive constants (generally speaking, different in different
formulas) that depend only on the quantities in parentheses; by C we denote an absolute positive constant.
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We now consider the following points:

tkn =
max1≤i≤k B

2
in

max1≤i≤k(n)B
2
in

from the interval [0; 1]. Further, we order these points and construct a continuous random polygon Wn(t) on the

interval [0; 1] with vertices
(
tkn;

Skn

Bn

)
. If some tkn are identical, i.e.,

B2
k1n = B2

k2n = . . . = B2
krn, ki �= kj ,

then we choose any of these points
(
tkrn;

Skin

Bn

)
.

Consider the space C[0; 1] of continuous functions on [0; 1] equipped with the norm

‖x(t)‖ = sup
0≤t≤1

|x(t)|,

which generates a σ -algebra �C . If Wn is the distribution of the process {Wn(t), t ∈ [0; 1]} and W is the
distribution of the standard Wiener process {W (t), t ∈ [0; 1]}, then the weak convergence Wn to W means that

lim
n→∞P (Wn(t) ∈ A) = P (W (A))

for any Borel set A such that W (∂A) = 0. This fact is usually called the invariance principle (IP). Donsker [8]
proved the IP for i.i.d. (independent identically distributed) random variables. At the same time, Yu. Prokhorov [16]
proved the IP for triangular arrays

{
ξkn, k = 1, 2, . . . , k(n), n = 1, 2, . . .

}
of independent (in each series) r.v.

under Lundeberg’s condition:

Λn(ε) =
1

B2
n

n∑
k=1

E
{
X2

kn; |Xkn| > εBn

} → 0 as n → ∞ for all ε > 0.

Under Lundeberg’s condition, T. Zuparov and A. Muhamedov [26] and M. Peligrad and S. Utev [15] proved
the IP for nonstationary ϕ-mixing and α-mixing r.v., respectively.

By L(P ;Q) we denote the Levy–Prokhorov distance between the distributions P and Q in C[0; 1] (see [3,
p. 327]):

L(P ;Q) = inf {ε > 0 : P (A) ≤ Q (Aε) + ε and Q(A) ≤ P (Aε) + ε for all A ∈ �C} ,

where Aε is a ε-neighborhood of A. Thus, the IP can be rewritten as L (Wn;W ) → 0 as n → ∞.

It is known that

L (Wn;W ) = max {ε : P (‖Wn(·)−W (·)‖ > ε)} . (1)

In order to estimate (1), it is sufficient to establish the estimate for P (‖Wn(·)−W (·)‖ > ε) . The rate of
convergence in the IP was studied in detail in the case where the sequences of r.v. are independent. The first
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estimation in this case was proposed by Prokhorov [16]. He proved that

L (Wn;W ) = o
(
L
1/4
n3 ln2 Ln3

)
, n → ∞.

This estimate was improved in the i.i.d. case by Heyde [10], Dudley [7], and other researchers. A. Borov-
kov [4] proved that

L (Wn;W ) = C(s)L1/(s+1)
ns , 2 < s ≤ 3. (2)

It should be emphasized that the one probability space method was used in all estimates presented above.
R. Dudley [7] and A. Borovkov [4] showed that neither the Prokhorov method, nor the Skorokhod method can be
used to get (2) in the case where s > 5. J. Komlos, P. Major, and G. Tusnady (KMT) [13] proposed a method,
which allowed them to prove (1) in the i.i.d. case for all s > 2. Modifying the KMT method, A. Sakhanenko
[17–21] extended (2) to the general case.

The fact that (2) is the best possible estimate was proved by several authors: Borovkov [4], Sakhanenko [17–
21], T. Arak [1], Komlos, Major and Tusnady [14]. I. Berkes and W. Philipp [2] and Borovkov, Sakhanenko [5],
Zuparov, and Muhamedov [26, 27] proposed the methods that can be used to obtain estimates for the Levy–
Prokhorov distances for different classes of weakly dependent sequences.

Yoshihara [25] obtained the first result:

L (Wn;W ) = O
(
n−1/8 ln1/2 n

)
for a.r. strictly stationary sequence {ξk, k ∈ N} satisfying the inequality

∞∑
k=1

k · (β(k))δ/(4+δ) < ∞,

under the condition of existence of the absolute moment of order 4 + δ, δ > 0. Kanagawa [12] obtained the rate
of convergence for the u.s.m. and s.m. strictly stationary sequences of r.v..

By the Prokhorov method, the best estimate in the IP was obtained in [9] for the stationary case with s.m.
conditions, namely,

(i) if the coefficients α(k) of s.m. exponentially decrease to zero and

0 < σ = Eξ21 + 2
∞∑
i=2

Eξ1ξi < ∞, (3)

then

L (Wn;W ) = O
(
n
− s−2

2(s−1) ln
2s+1

6 n
)
;

(ii) if the coefficients α(k) of s.m. decrease to zero as follows:

α(k) ≤ Cn−θs(s−1)/(s−2)2 , C > 0, θ > 1,

and condition (3) is satisfied, then

L (Wn;W ) = O
(
n
− (s−2)(θ−1)

6(θ+1)+2(θ−1)(s−2)
√
lnn

)
.
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For the u.s.m. case and weak stationary sequences {ξk, k ∈ N}, S. Utev [23] showed that

L (Wn;W ) = C(s; g;σ)

(
n−s/2

n∑
i=1

E|ξi|s
)1/(s+1)

, 2 < s < 5,

under conditions (3) for

φ(k) ≤ A · k−g(s), g(s) > j(u)(j(u)− 1),

u = (2 + 5s)/2(5− s), and j(u) = 2min{k ∈ N : 2k ≥ u}.

Zuparov and Muhamedov [27] announced the following estimate for nonstationary u.s.m. sequences:

L (Wn;W ) ≤ C(s; θ;K)L
1

s+1
ns

for 2 < s < 6 and φ(k) ≤ Ak−θ(s); here, θ(s) > 2s.

In the present paper, by using the Levy–Prokhorov distance, Bernstein’s method, the Berkes–Philipp approx-
imation theorems [2], Utev’s moment inequalities [24], and the results obtained by Sakhanenko [19], we find the
best possible rate of convergence for the IP and extend and generalize several known results for nonstationary
ϕ-mixing random variables.

The paper is organized as follows. Our main results are presented in Section 2. In Section 3, we give some
auxiliary lemmas. In Section 4, we present the proofs of our results.

2. Main Results

Theorem 2.1. Suppose that, for any numbers θ and s such that

θ > max(4, s, s(s− 2)/4), s > 2,

the following conditions are satisfied:

ϕ(τ) ≤ Kτ−θ, K > 0,

E |ξkn|s < ∞, k = 1, 2, . . . , k(n), n = 1, 2, . . . .

Then there exist a Wiener process {W (t), t ∈ [0; 1]} and a constant C(s; θ;K) such that inequality

P (‖Wn(t)−W (t)‖ > x) ≤ C(s; θ;K)
Lns

xs

holds for all x > 0.

Corollary. Under the conditions of Theorem 2.1, the following inequality takes place:

L (Wn;W ) ≤ C(s; θ;K)L
1

s+1
ns .
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Theorem 2.2. Under the conditions of Theorem 2.1, for θ > max(4, s, 3s(s − 2)/4), there exist a Wiener
process {W (t), t ∈ [0; 1]} and a constant C(s; θ;K) such that inequality

E ‖Wn(t)−W (t)‖s ≤ C(s; θ;K)Lns

holds.

Remark. In [24], Utev proved that E ‖Wn(t)−W (t)‖s converges to zero. The inequality in Theorem 2.2
for a nonstationary sequence of ϕ-mixing random variables is obtained for the first time.

Concerning the existence of sequences satisfying the conditions of Theorems 2.1 and 2.2, we can make the
following remarks:

In Theorem 3.3 from [6], Bradley proved that if X := (Xk, k ∈ Z) is a Markov chain (not necessarily
stationary) and ϕ (n) < 1/2 for some n ≥ 1, then ϕ (n) → 0 at least exponentially rapidly as n → ∞.

By using a strictly stationary sequence of Markov chains

X := (Xk, k ∈ Z) ,

we construct a nonstationary sequence ξ := (ξkn, 1 ≤ k ≤ n) as follows: ξ2k−1n = −X2k−1, 1 ≤ 2k − 1 ≤ n,

and ξ2kn = X2k, 1 ≤ 2k ≤ n, for every series. As X := (Xk, k ∈ Z) , strictly stationary sequences satisfy the
ϕ-mixing condition exponentially rapidly as n → ∞. Thus, the sequence ξ := (ξkn, 1 ≤ k ≤ n) also satisfies
the ϕ-mixing condition exponentially rapidly as n → ∞. In addition, if E |Xk|s , s > 2, then the nonstationary
sequence ξ := (ξkn, 1 ≤ k ≤ n) satisfies the conditions of the main theorems.

3. Auxiliary Lemmas

Lemma 3.1 (see [11]). Let the r.v. ξ and η be measurable with respect to the σ -algebras Mk
1 and M

k(n)
k+τ ,

respectively, where k ≥ 1 and k + τ ≤ k(n). If E|ξ|p < ∞ and E|η|q < ∞ for p > 1 and q > 1 such

that
1

p
+

1

q
= 1, then

|Eξ · η − Eξ · Eη| ≤ 2ϕ
1
p (τ)E

1
p |ξ|pE 1

q |η|q.

Lemma 3.2 (see [2]). Let {(Sk,σk) , k ≥ 1} be a sequence of complete separable metric spaces. Also let
{Xk, k ≥ 1} be a sequence of random variables with values in Sk and let {Bk, k ≥ 1} be a sequence of σ -fields
such that Xk is Bk -measurable. Suppose that, for some ϕk ≥ 0,

|P (AB)− P (A)P (B)| ≤ ϕkP (A)

for all B ∈ Bk, A ∈ ⋃
j<k

Bj . Then, without changing the distribution, we can redefine the sequence {Xk, k ≥ 1}
on a richer probability space together with a sequence {Yk, k ≥ 1} of independent random variables such that
Yk has the same distribution as Xk and

P (σk(Xk, Yk) ≥ 6ϕk) ≤ 6ϕk, k = 1, 2, . . . .

Lemma 3.3 (see [24]). Let {Xk, k ≥ 1} be a sequence of random variables satisfying the u.s.m. condition

and let ϕ(p) <
1

4
. Then there exists a constant C(ϕ(p)) depending only on ϕ(p) and such that, for all t ≥ 1 and
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all 1 ≤ q ≤ t, the following inequality takes place:

E max
1≤k≤n

∣∣∣∣∣∣
k∑

j=1

Xj

∣∣∣∣∣∣
t

≤ (C(ϕ(p)t))t

⎧⎪⎨⎪⎩ptE max
1≤k≤n

|Xk|t + max
1≤k≤n

⎛⎝E

∣∣∣∣∣∣
k∑

j=1

Xj

∣∣∣∣∣∣
q⎞⎠

t
q

⎫⎪⎬⎪⎭ .

Lemma 3.4 (see [19]). Let {Xk, k ≥ 1} be a sequence of independent random variables such that

EXk = 0 and
n∑

k=1

EX2
k = 1.

Suppose that

t0 = 0, tk =

k∑
i=1

EX2
i , k = 1, 2, . . . , n,

and

Lns =

n∑
i=1

E|X|s.

Let S(t) be a continuous random polygon with vertices
(
tk, S(tk) =

∑k

j=1
Xj

)
. Then, for any numbers s ≥ 2

and b ≥ 1, there exists a Wiener process {W (t), t ∈ [0, 1]} such that the inequality

P
(
‖S(t)−W (t)‖ ≥ C1sbx

)
≤
(
Lns

bx

)b

+ P

(
max
1≤i≤n

|Xi| > x

)
is true for all x > 0.

We introduce the following notation:

ξjn(x) = ξjnI {|ξjn| ≤ CxBn}− EξjnI {|ξjn| ≤ CxBn} , ξ̄jn(x) = ξjn − ξjn(x),

where x > 0 is an arbitrary real number,

Skn(b) =
b+k∑

j=b+1

ξjn, Skn(b, x) =
b+k∑

j=b+1

ξjn(x), S̄kn(b, x) =
b+k∑

j=b+1

ξ̄jn(x), Sn(x) = Sk(n)n(0, x),

B2
kn(b) = ES2

kn(b), B2
kn(b, x) = ES2

kn(b, x), B2
n(x) = ES2

n(x), ϕt =

k(n)+1∑
i=0

ϕ1/t(i),

Lns = B−s
n

∑
j≤k(n)

E|ξjn|s, Lnsx(a, b) = B−s
n

b∑
j=a+1

E|ξjn(x)|s, s > 2,

ϕ̄t =

k(n)+1∑
i=0

(i+ 1)ϕ1/t(i).
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We now define the positive integers mi by using the following algorithm:

m0 = 0,

mi+1 = min

⎧⎨⎩m : mi < m < n : E

⎛⎝ m+1∑
k=mi+1

ξkn(x)

⎞⎠2

> h(n)

⎫⎬⎭ for i = 1, 2, . . . ,M − 1,

where M − 1 is the last number for which we can define mM−1, i.e.,

E

⎛⎝ k(n)∑
j=mM−1+1

ξjn(x)

⎞⎠2

< h(n),

where h(n) is a sequence of positive numbers.
By ηj and ηj(x), respectively, we denote

ηj =

mj∑
i=mj−1+1

ξin and ηj(x) =

mj∑
i=mj−1+1

ξin(x).

The positive integers li are described by using the outlined algorithm:

l0 = 0,

li+1 = min

⎧⎨⎩l : li < l < M : E

⎛⎝ l+1∑
k=li+1

ηk(x)

⎞⎠2

> T (n)

⎫⎬⎭ for i = 1, 2, . . . , N − 1,

where M − 1 is the last number for which we can define lN−1, i.e.,

E

⎛⎝ M∑
j=lN−1+1

ηj(x)

⎞⎠2

< T (n),

where T (n) is a sequence of positive numbers. The sequences T (n) and h(n) are selected in what follows.
By ψj and ψj(x), respectively, we denote

ψj =

lj−1∑
i=lj−1+1

ηi and ψj(x) =

lj−1∑
i=lj−1+1

ηi(x).

Lemma 3.5. The following inequalities are true:∣∣B2
kn(b)−B2

kn(b, x)
∣∣ ≤ C(ϕs)B

2
nx

2−sLns(b), (4)

max
1≤k≤N

∣∣∣∣∣∣
k∑

j=1

(Dψj −Dψj(x))

∣∣∣∣∣∣ ≤ C(ϕs)B
2
nx

2−sLns, (5)
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max
1≤k≤N

∣∣∣∣∣∣B2
mk

−
k∑

j=1

Dψj(x)

∣∣∣∣∣∣ ≤ C(ϕ2)N · h(n), (6)

Eψ2
j (x) ≤ T (n) + θ · h(n), |θ| ≤ C(ϕ2), (7)

M ≤ C (ϕ̄2)
B2

n(x)

h(n)
, N ≤ C (ϕ̄2)

B2
n(x)

T (n)
. (8)

Proof. It is obvious that

∣∣B2
kn(b)−B2

kn(b, x)
∣∣ =

∣∣∣∣∣∣E
⎛⎝ b+k∑

j=b+1

(
ξjn(x) + ξ̄jn(x)

)⎞⎠2

− E

⎛⎝ b+k∑
j=b+1

ξjn(x)

⎞⎠2∣∣∣∣∣∣
≤
∣∣∣∣∣∣

∑
b+1≤i �=j≤b+k

Eξin(x)ξ̄jn(x)

∣∣∣∣∣∣+
∣∣∣∣∣∣

∑
b+1≤i �=j≤b+k

Eξ̄in(x)ξjn(x)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

b+1≤i �=j≤b+k

Eξ̄in(x)ξ̄jn(x)

∣∣∣∣∣∣ .
We now estimate the first term on the right-hand side of the inequality. The other terms can be estimated

similarly. By virtue of Lemma 3.1 and the Hölder inequality, we find∣∣∣∣∣∣
∑

b+1≤i �=j≤b+k

Eξin(x)ξ̄jn(x)

∣∣∣∣∣∣ ≤
∑

b+1≤i �=j≤b+k

ϕ1/s(|j − i|)E1/s|ξin(x)|sE(s−1)/s
∣∣ξ̄jn(x)∣∣s(s−1)

≤ C

⎛⎝k(n)∑
i=0

ϕ1/s(i)

⎞⎠B2
nx

2−sLks(b)

≤ C(ϕs)B
2
nx

2−sLks(b).

Inequality (4) is proved. Inequality (5) can be obtained in a similar way.
We now prove inequality (6). To do this, we estimate the difference∣∣∣∣∣∣B2

n(x)−
N∑
j=1

Dψj(x)

∣∣∣∣∣∣ for k = N.

The other cases are proved similarly. It is clear that

B2
n(x) = E

⎛⎝ N∑
j=1

(ψj(x) + ηlj (x))

⎞⎠2

.



1394 A. K. MUKHAMEDOV

By Lemma 3.1, we get∣∣∣∣∣∣B2
n(x)−

N∑
j=1

Eψ2
j (x)

∣∣∣∣∣∣ =
∣∣∣∣∣∣E

⎛⎝ N∑
j=1

(ψj(x) + ηlj (x))

⎞⎠2

−
N∑
j=1

Eψ2
j (x)

∣∣∣∣∣∣
≤
∣∣∣∣∣∣2

∑
1≤j≤l≤N

E(ψj(x) + ηlj (x))(ψk(x) + ηlk(x))

∣∣∣∣∣∣
≤ 2

∣∣∣∣∣∣
N∑
j=1

E(ψj(x) + ηlj (x))

⎛⎝ N∑
l=j+1

E(ψk(x) + ηlk(x))

⎞⎠∣∣∣∣∣∣
≤ 2

∣∣∣∣∣∣
N∑
j=1

E

⎛⎝ lj∑
i=1

ηi(x)

⎞⎠⎛⎝ lM∑
i=lj+1

ηi(x)

⎞⎠∣∣∣∣∣∣
≤ 2

k(n)∑
i=1

(i+ 1)ϕ1/2(i)N · h(n)

≤ C(ϕ̄2)N · h(n).

Proof of inequality (7). By the definitions of random variables ψj(x) and ηij(x), we obtain

Eη2mj+1n(x) ≤ h(n)

and

Eψ2
j (x) ≤ T (n) < E

(
ψj(x) + ηlj (x)

)2
≤ Eψ2

j (x) + 2Eψj(x)ηlj (x) + Eη2lj (x)

≤ T (n) + 2E

⎛⎝ lj∑
i=lj−1+1

ηi(x)

⎞⎠ ηlj (x) + Eη2lj (x)

≤ T (n) + 2

N∑
i=1

ϕ1/2(i)E1/2η2li(x)E
1/2η2lj+1(x) + Eη2lj+1(x)

≤ T (n) + C(ϕ2)h(n).

Relations (4) and (5) imply that

B2
n(x) ≥

N∑
i=1

Dψj(x)− C(ϕ2)N · h(n)
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≥
N−1∑
i=1

Dψj(x)− C(ϕ2)N · h(n)

≥ (N − 1) · T (n)− C(ϕ2)N · h(n).

Hence, we get the second inequality in (8). Since h(n) = o(T (n)), the first inequality in (8) is estimated similarly.
Therefore, Lemma 3.5 is proved.

4. Proofs of Theorems

Proof of Theorem 2.1. We denote by Wnx(t) a random polygon with vertices
(
tkn;

Sk(x)

Bn

)
. A polygon

with vertices
(
tmkn;

Smk
(x)

Bn

)
is denoted by Wnx(t). Let W and Ŵnx(t) be random polygons with vertices

⎛⎜⎝tmkn;

∑k

j=1
ψj(x)

Bn

⎞⎟⎠ and

⎛⎜⎝tmkn;

∑k

j=1
ψ̂j(x)

Bn

⎞⎟⎠ ,

respectively, where ψ̂j(x), j = 1, 2, . . . , N, are independent r.v. whose marginal distributions coincide with the
distributions of r.v. ψj(x). A polygon with vertices

⎛⎜⎜⎝
√∑k

j=1
Dψj(x)√∑N

j=1
Dψj(x)

;

∑k

j=1
ψ̂j(x)√∑N

j=1
Dψj(x)

⎞⎟⎟⎠
is denoted by W̃nx(t).

It is obvious that

P (‖Wn(t)−W (t)‖ > x)

≤ P
(
‖Wn(t)−Wnx(t)‖ >

x

6

)
+ P

(∥∥∥Wnx(t)−Wnx(t)
∥∥∥ >

x

6

)
+ P

(∥∥Wnx(t)−Wnx(t)
∥∥ >

x

6

)
+ P

(∥∥∥Wnx(t)− Ŵnx(t)
∥∥∥ >

x

6

)

+ P
(∥∥∥Ŵnx(t)− W̃nx(t)

∥∥∥ >
x

6

)
+ P

(∥∥∥W̃nx(t)−W (t)
∥∥∥ >

x

6

)
=

6∑
i=1

Pi. (9)

To prove Theorem 2.1, we now estimate each term on the right-hand side of (9). Without loss of generality,
we can assume that Lns < 1. Let

T (n) = C(s, θ,K)B2
nx

2(t−s)
t−2 L

2
t−2
ns , t > s.
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Then

N ≤ C(s, θ,K)
B2

n(x)

T (n)
� C(s, θ,K)x−

2(t−s)
t−2 L

− 2
t−2

ns .

Estimate P1. It is clear that

P1 = P
(
‖Wn(t)−Wnx(t)‖ >

x

6

)
≤ P

(
max
k≤k(n)

|ξkn| > C1Bnx

)
≤ C

Lns

xs
.

Estimate P2. By virtue of the Chebyshev inequality and Lemmas 3.3 and 3.5, for q = 2 and t > s, we get

P2 = P
(∥∥Wnx(t)−Wnx(t)

∥∥ >
x

6

)
≤

∑
j≤N

P

(
max

mj−1≤k≤mj

|Skn(x)− Smj−1n(x)| > C
xBn

12

)

≤ C
1

xtBt
n

∑
j≤N

E max
mj−1≤k≤mj

|Skn(x)− Smj−1n(x)|t

≤ C(t, θ,K)

[
Lnt(x)

xt
+

1

xt

(
T (n)

B2
n

)t−2
2

]

≤ C(s, θ,K)
Lns

xs
.

Estimate P3. It is obvious that

P3 = P
(∥∥∥Wnx(t)−Wnx(t)

∥∥∥ >
x

6

)
≤ P

⎛⎝max
k≤N

∣∣∣∣∣∣
∑
j≤k

ηmj (x)

Bn

∣∣∣∣∣∣ > x

6

⎞⎠ .

We now estimate P3. By analogy with P2, we obtain

P3 = P
(∥∥∥Wnx(t)−Wnx(t)

∥∥∥ >
x

6

)
≤ C(s, θ,K)

Lns

xs
.

Estimate P4. It is clear that

P
(∥∥∥Wnx(t)− Ŵnx(t)

∥∥∥ >
x

6

)
≤ P

⎛⎝max
k≤N

∣∣∣∣∣∣
∑
j≤k

(
ψj(x)

Bn
− ψ̂j(x)

Bn

)∣∣∣∣∣∣ > x

6

⎞⎠ .

By using the Berkes–Philipp approximation theorem (see Lemma 3.2) and Lemmas 3.3 and 3.4, we get

P4 ≤
∑
j≤N

P

(∣∣∣∣∣ψj(x)

Bn
− ψ̂j(x)

Bn

∣∣∣∣∣ > x

6N

)
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≤
∑
j≤N

P

(∣∣∣∣∣ψj(x)

Bn
− ψ̂j(x)

Bn

∣∣∣∣∣ > 6ϕ(p)

)

≤ 6Nϕ(p) for
x

6Nϕ(p)
> 6 or 36Nϕ(p) ≤ x,

where

p = min
j≤N

(mj −mj−1).

To obtain the estimate

P4 ≤ C(s, θ,K)
Lns(x)

xs
,

we find p from the condition

Nϕ(p) ≤ Cx, Nϕ(p) ≤ C
Lns

xs
.

In view of Lemma 3.5, this yields

Nϕ(p) ≤ nKp−θ ≤ C(s, θ,K)x−
2(t−s)
t−2 L

− 2
t−2

ns p−θ ≤ C(s, θ,K)min

(
x,

Lns

xs

)
.

Hence,

p ≥ C(s, θ,K)

(
max

(
x−

3t−2(s+1)
t−2 L

− 2
t−2

ns ;x
t(s−2)
t−2 L

− t
t−2

ns

)) 1
θ

.

Estimate P5. It is clear that

P
(∥∥∥Ŵnx(t)− W̃nx(t)

∥∥∥ >
x

5

)

≤ P

⎛⎜⎜⎝max
k≤N

∣∣∣∣∣∣∣∣
⎛⎜⎜⎝1− Bn√∑

j≤N
Dψ̂j(x)

⎞⎟⎟⎠∑
j≤k

(
ψ̂j

Bn

)∣∣∣∣∣∣∣∣ >
x

5

⎞⎟⎟⎠

≤ P

⎛⎜⎜⎝max
k≤N

∣∣∣∣∣∣∣∣
∑
j≤k

⎛⎜⎜⎝ ψ̂j(x)√∑
j≤N

Dψ̂j(x)

⎞⎟⎟⎠
∣∣∣∣∣∣∣∣ >

xBn

√∑
j≤N

Dψ̂j(x)

5

(
Bn −

√∑
j≤N

Dψ̂j(x)

)
⎞⎟⎟⎠

≤ C

∣∣∣∣∣∣∣∣
Bn −

√∑
j≤N

Dψ̂j(x)

xBn

∣∣∣∣∣∣∣∣
t

E

⎛⎜⎜⎝max
k≤N

∣∣∣∣∣∣∣∣
∑
j≤k

⎛⎜⎜⎝ ψ̂j(x)√∑
j≤N

Dψ̂j(x)

⎞⎟⎟⎠
∣∣∣∣∣∣∣∣
t⎞⎟⎟⎠ .
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Thus, by Lemma 3.3, we obtain

E

⎛⎜⎜⎝max
k≤N

∣∣∣∣∣∣∣∣
∑
j≤k

⎛⎜⎜⎝ ψ̂j(x)√∑
j≤N

Dψ̂j(x)

⎞⎟⎟⎠
∣∣∣∣∣∣∣∣
t⎞⎟⎟⎠ ≤ C(t, θ,K). (10)

Since

Bn −
√∑

j≤N
Dψ̂j(x)

Bn
=

B2
n −

∑
j≤N

Dψ̂j(x)

Bn

(
Bn +

√∑
j≤N

Dψ̂j(x)

)
and

Dψ̂j(x) = Dψj(x),

it follows from Lemma 3.5 that ∑
j≤N

Dψj(x) = B2
n(1 + o(1)).

As a result, it suffices to estimate B2
n −

∑
j≤N

Dψ̂j(x) . Let

h(n) = T (n)x
t−s
t L

1
t
ns.

Thus, Lemma 3.5 implies that∣∣∣∣∣B2
n −∑

j≤N Dψj(x)

xB2
n

∣∣∣∣∣ ≤ C(ϕ2)

(
Nh(n) +B2

nx
2−sLns

xB2
n

)
= C(ϕ2)

(
h(n)

xT (n)
+ x1−sLns

)

≤ C(t,ϕ2)

(
x−

s
tL

1
t
ns + x1−sLns

)
. (11)

This yields

P5 = P
(∥∥∥Ŵnx(t)− W̃nx(t)

∥∥∥ >
x

6

)

≤ C(t,ϕ2)

(
x−

s
tL

1
t
ns + x1−sLns

)t

≤ C(t,ϕ2)

(
Lns

xs
+

(
x
Lns

xs

)t
)
. (12)

It is clear that if 0 < x ≤ 1, then

P5 ≤ C(t,ϕ2)
Lns

xs
.
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Now let x ≥ 1. Thus, to estimate P5 ≤ C(t,ϕ2)
Lns

xs
, the second term of inequality (12) should satisfy the

condition (
x
Lns

xs

)t

≤ Lns

xs
.

This inequality holds for x ≥ L
t−1

s(t−1)−t
ns . Hence, inequality P4 ≤ C(t,ϕ2)

Lns

xs
is true for all x > 0.

Estimate P6. By using Lemma 3.4, we obtain

P6 = P
(∥∥∥W̃nx(t)−W (t)

∥∥∥ >
x

6

)
≤ C

(
1

x

)t

⎛⎜⎜⎝∑
j≤N

E

∣∣∣∣∣∣∣∣
ψ̂j(x)√∑
j≤N

Dψ̂j(x)

∣∣∣∣∣∣∣∣
t⎞⎟⎟⎠ .

We now estimate ∑
j≤N

E
∣∣∣ψ̂j(x)

∣∣∣t .
Since ψ̂j(x) are independent r.v. whose marginal distributions coincide with the distributions of r.v. ψj(x),

by Lemmas 3.3 and 3.5, we find

∑
j≤N

E |ψj(x)|t ≤
∑
j≤N

⎛⎝ lj∑
i=lj−1

E|ηi(x)|t + (Dψj(x))
t/2

⎞⎠

≤ C(t)

⎛⎝k(n)∑
i=1

E|ξin(x)|t +N(T (n))t/2

⎞⎠ . (13)

Hence, it follows from Lemma 3.5 and the definition of T (n) that

P6 = P
(∥∥∥W̃nx(t)−W (t)

∥∥∥ >
x

5

)

≤ C(t,ϕ)

(
1

xt
Lnt +

1

xt

(
T (n)

B2
n

)t−2
2

)
≤ C(t,ϕ)

Lns

xs
. (14)

We now demonstrate the possibility of splitting of the above-mentioned isolated groups, namely, as n → ∞,

the conditions

B2
n, T (n), h(n) → ∞, T (n) = o(B2

n), h(n) = o(T (n)), and Lns → 0

should be satisfied, and explain the necessity of curtailing in order to prove Theorem 2.1. These conditions are
clear in the stationary case. In this case, the following asymptotic relations are true, i.e.,

Lns ≈ n− s−2
2 for s > 2, T (n) ≈ n

t−s
t−2 for some t, t > s,
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and

h(n) ≈ n
2t2−(3s−2)t+2s−4

2t(t−2) for some t, t > t0 =
3s− 2 +

√
9s2 − 28s+ 36

4
> s,

p � n
t(s−2)
2θ(t−2) , N � n

t(s−2)
s(t−2) , and θ > max

(
4, s,

s(s− 2)

4

)
.

To obtain the required estimate for P2 and P4, it is necessary to have a moment of t, which is larger than s. This
is why, curtailing is necessary.

Theorem 2.1 is proved.

As indicated above, the Levy–Prokhorov distance between the distributions Wn and W is determined in (1).

Selecting ε = x = L
1

s+1
ns in relation (1) and Theorem 2.1, respectively, we obtain the proof of the corollary.

Proof of Theorem 2.2. The method used to prove Theorem 2.2 remains the same as in Theorem 2.1. Here,
we only list the places where it is necessary to make certain changes.

As in the proof of Theorem 2.1, the following inequality is true:

E ‖Wn(t)−W (t)‖s ≤ E ‖Wn(t)−Wnx(t)‖s + E
∥∥Wnx(t)−Wnx(t)

∥∥s
+ E

∥∥∥Wnx(t)−Wnx(t)
∥∥∥s + E

∥∥∥Wnx(t)− Ŵnx(t)
∥∥∥s

+ E
∥∥∥Ŵnx(t)− W̃nx(t)

∥∥∥s + E
∥∥∥W̃nx(t)−W (t)

∥∥∥s = 6∑
i=1

Ei. (15)

Thus, in order to prove Theorem 2.2, we estimate each term on the right-hand side of (15) and take x = L
1/s
ns .

Hence, we get

T (n) = B2
nL

2t
s(t−2)
ns , h(n) = T (n)L1/s

ns = B2
nL

3t−2
s(t−2)
ns ,

N =
B2

n

T (n)
= L

− 2t
s(t−2)

ns ,
h(n)

T (n)
= L

1
s
ns.

Estimate E1. It is clear that

E1 = E ‖Wn(t)−Wnx(t)‖s ≤ E

(
max
k≤k(n)

|ξkn|s/Bs
n

)
≤ Lns.

Estimate E2. Based on the moment inequality, Lemmas 3.3 (for q = 2 and t > s) and 3.5, and the definition
of T (n), we get the following inequality:

E2 = E
∥∥Wnx(t)−Wnx(t)

∥∥s ≤ Es/t
∥∥Wnx(t)−Wnx(t)

∥∥t
≤
⎛⎝∑

j≤N

E

(
max

mj−1≤k≤mj

∣∣Skn(x)− Smj−1n(x)
∣∣t /Bt

n

)⎞⎠s/t
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≤ C

⎛⎝∑
j≤N

E

(
1

Bt
n

max
mj−1≤k≤mj

∣∣Skn(x)− Smj−1n(x)
∣∣t)⎞⎠s/t

≤ C(t, θ,K)

(
Lnt(x) +

(
T (n)

B2
n

) t−2
2

)s/t

≤ C(s, θ,K)Lns. (16)

Estimate E3. It is obvious that

E3 = E
∥∥∥Wnx(t)−Wnx(t)

∥∥∥s ≤ Emax
k≤N

∣∣∣∣∣∣
∑
j≤k

ηmj (x)

Bn

∣∣∣∣∣∣
s

.

We now estimate E3. By analogy with E2, we obtain

E3 = E
∥∥∥Wnx(t)−Wnx(t)

∥∥∥s ≤ C(s, θ,K)Lns.

Estimate E4. By Lemmas 3.2, 3.3, and 3.5, following the paper [24], we can estimate E4 as follows:

E4 ≤ E

⎛⎝max
k≤N

∣∣∣∣∣∣
∑
j≤k

(
ψj(x)

Bn
− ψ̂j(x)

Bn

)∣∣∣∣∣∣
s⎞⎠

≤ N smax
j≤N

E

∣∣∣∣∣ψj(x)

Bn
− ψ̂j(x)

Bn

∣∣∣∣∣
s

≤ N s

(
(6ϕ(p))s +max

j≤N

(
E

∣∣∣∣∣ψj(x)

Bn
− ψ̂j(x)

Bn

∣∣∣∣∣
s

, 6ϕ(p) <

∣∣∣∣∣ψj(x)

Bn
− ψ̂j(x)

Bn

∣∣∣∣∣ ≤ 1

))

+N smax
j≤N

E

∣∣∣∣∣ψj(x)

Bn
− ψ̂j(x)

Bn

∣∣∣∣∣
t

≤ CN s

(
ϕs(p) + max

j≤N
P

(∣∣∣∣∣ψj(x)

Bn
− ψ̂j(x)

Bn

∣∣∣∣∣ ≥ 6ϕ(p)

)
+

(
T (n)

B2
n

)t/2
)

≤ Lns.

In this case, the mixing coefficients decrease as N sϕ(p) ≤ Lns. In turn,

N sϕ(p) ≤ L
− 2t

t−2
ns p−θ ≤ Lns ⇒ p ≥ L

− 3t−2
θ(t−2)

ns

for θ > max

(
4, s,

3s(s− 2)

4

)
.
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Estimate E5. It is obvious that

E
∥∥∥Ŵnx(t)− W̃nx(t)

∥∥∥s

≤ C

⎛⎜⎜⎝Bn −
√∑

j≤N
Dψ̂j(x)

Bn

⎞⎟⎟⎠
s

E

⎛⎝max
k≤N

∣∣∣∣∣∣
∑
j≤k

⎛⎝ ψ̂j(x)√∑
j≤N Dψ̂j(x)

⎞⎠∣∣∣∣∣∣
s⎞⎠ .

By Lemma 3.5 and inequalities (10), (11), we get

E
∥∥∥Ŵnx(t)− W̃nx(t)

∥∥∥s ≤ C(s,ϕ2)

∣∣∣∣∣∣∣∣
Bn −

√∑
j≤N

Dψ̂j(x)

Bn

∣∣∣∣∣∣∣∣
s

≤
(
h(n)

T (n)
+ x2−sLns

)s

≤ Lns.

Estimate E6. Due to moment inequality and similar estimates for (13), (14), and (16), by Lemmas 3.3
and 3.4, we obtain

E
∥∥∥W̃nx(t)−W (t)

∥∥∥s ≤ Es/t
∥∥∥W̃nx(t)−W (t)

∥∥∥t

≤

⎛⎜⎜⎝∑
j≤N

E

∣∣∣∣∣∣∣∣
ψ̂j(x)√∑
j≤N

Dψ̂j(x)

∣∣∣∣∣∣∣∣
t⎞⎟⎟⎠

s/t

≤ C(t,K, θ)

(
Lnt(x) +

(
T (n)

B2
n

) t−2
2

)s/t
≤ C(t,K, θ)Lns.

Theorem 2.2 is proved.

Acknowledgment

The author would like to thank Prof. O. Sh. Sharipov for detailed and helpful suggestions and discussions.

REFERENCES

1. T. V. Arak, “An estimate of A. A. Borovkov,” Theory Probab. Appl., 20, No. 2, 380–381 (1976).
2. I. Berkes and W. Philipp, “Approximation theorems for independent and weakly dependent random vectors,” Ann. Probab., 7, No. 1,

29–54 (1979).
3. P. Billingsley, Convergence of Probability Measures, Wiley, New York (1968).
4. A. A. Borovkov, “On the convergence rate in the invariance principle,” Theory Probab. Appl., 29, No. 3, 550–553 (1985).
5. A. A. Borovkov and A. I. Sakhanenko, “On the estimates of the rate of convergence in the invariance principle for Banach spaces,”

Theory Probab. Appl., 25, No. 4, 734–744 (1981).
6. R. C. Bradley, “Basic properties of strong mixing conditions. A survey and some open questions,” Probab. Surv., 2, 107–144 (2005).
7. R. M. Dudley, “Distance of probability measures and random variables,” Ann. Math. Statist., 39, 1563–1572 (1968).
8. M. Donsker, “An invariance principle for certain probability limit theorems,” Mem. Amer. Math. Soc., 6, 250–268 (1951).



ON THE RATE OF CONVERGENCE IN THE INVARIANCE PRINCIPLE FOR WEAKLY DEPENDENT RANDOM VARIABLES 1403

9. V. V. Gorodetsky, “On the rate of convergence in the invariance principle for strongly mixing sequences,” Theory Probab. Appl., 28,
No. 4, 780–785 (1983).

10. C. C. Heyde, “Some properties of metrics on a study on convergence to normality,” Z. Wahrscheinlichkeitstheorie Verw. Gebiete, 11,
No. 3, 181–192 (1969).

11. I. A. Ibragimov and V. Linnik, Independent and Stationary Sequences of Random Variables, Wolters-Noordhoff, Groningen (1971).
12. S. Kanagawa, “Rates of convergence of the invariance principle for weakly dependent random variables,” Yokohama Math. J., 30,

No. 1-2, 103–119 (1982).
13. J. Komlos, P. Major, and G. Z. Tusnady, “An approximation of partial sums of independent RV’s and the sample DF. I,” Z. Wahrschein-

lichkeitstheorie Verw. Gebiete, 32, No. 2, 111–131 (1975).
14. J. Komlos, P. Major, and G. Z. Tusnady, “An approximation of partial sums of independent RV’s and the sample DF. II,” Z. Wahrschein-

lichkeitstheorie Verw. Gebiete, 34, No. 1, 33–58 (1976).
15. M. Peligrad and S. Utev, “A new maximal inequality and invariance principle for stationary sequences,” Ann. Probab., 33, No. 2,

798–815 (2005).
16. Yu. V. Prokhorov, “Convergence of random processes and limit theorems in probability theory,” Theory Probab. Appl., 1, No. 2,

157–214 (1956).
17. A. I. Sakhanenko, “Estimates for the rate of convergence in the invariance principle,” Dokl. Akad. Nauk SSSR, 219, 1076–1078 (1974).
18. A. I. Sakhanenko, “Estimates in the invariance principle,” Trudy Inst. Mat. SO RAN [in Russian], Vol. 5, Nauka, Novosibirsk (1985),

pp. 27–44.
19. A. I. Sakhanenko, “On the accuracy of normal approximation in the invariance principle,” Trudy Inst. Mat. SO RAN [in Russian],

Vol. 19, Nauka, Novosibirsk (1989), pp. 40–66.
20. A. I. Sakhanenko, “Estimates in the invariance principle in terms of truncated power moments,” Sib. Math. J., 47, No. 6, 1113–1127

(2006).
21. A. I. Sakhanenko, “A general estimate in the invariance principle,” Sib. Math. J., 52, No. 4, 696–710 (2011).
22. A. V. Skorokhod, Research on the Theory of Stochastic Processes, Kiev University Press, Kiev (1961).
23. S. A. Utev, “Inequalities for sums of weakly dependent random variables and estimates of rate of convergence in the invariance

principle,” Limit Theorems for Sums of Random Variables, Tr. Inst. Mat. [in Russian], 3 (1984), pp. 50–77.
24. S. A. Utev, “Sums of ϕ-mixing random variables,” Asymptotic Analysis of Distributions of Random Processes [in Russian], Nauka,

Novosibirsk (1989), pp. 78–100.
25. K. Yoshihara, “Convergence rates of the invariance principle for absolutely regular sequence,” Yokohama Math. J., 27, No. 1, 49–55

(1979).
26. T. M. Zuparov and A. K. Muhamedov, “An invariance principle for processes with uniformly strongly mixing,” Proc. Funct. Random

Processes and Statistical Inference, Fan, Tashkent (1989), pp. 27–36.
27. T. M. Zuparov and A. K. Muhamedov, “On the rate of convergence of the invariance principle for ϕ-mixing processes,” Proc. Rep. VI

USSR–Japan Symp. Probab. Theory and Math. Statistics, Kiev, August 5–10 (1991), p. 65.


