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BOUNDARY-VALUE PROBLEM FOR A CLASS OF NONLINEAR SYSTEMS
OF PARTIAL DIFFERENTIAL EQUATIONS OF HIGHER ORDERS

S. S. Kharibegashvili' and B. G. Midodashvili*3 UDC 517.957

We study a boundary-value problem for a class of nonlinear systems of partial differential equations of
higher orders. For this problem, we establish the existence, uniqueness, and absence of solutions.

1. Statement of the Problem

In the Euclidean space R™*! of variables = (z1,...,,) and ¢, we consider a nonlinear system of partial
differential equations of the form

0%k "9 ou
f 8t4k lJZ:: an < 1] 8$1> + f(u) ) ( )
where f = (f1,...,fn), FF = (F1,...,Fy) are given vector functions, v = (uq,...,un), N > 2, is the

required vector function, A;; are given square matrices of order IV such that, in addition, A;; = Aj;, 4,j =
1,...,n, n > 2, and k is a natural number.

For system (1.1), we consider the following boundary-value problem: In a cylindrical domain D := X
(0,T), where € is an open Lipschitz domain in R™, it is necessary to find the solution u = u(x,t) of system (1.1)
with the following boundary conditions:

=0, (1.2)

d'u

— =0, 7=0,...,2k—-1 1.3
8tz ’ ? ’ ’ ’ ( )

OQUQ

where I' := 02 x (0,7) is the lateral part of the boundary of a cylindrical domain Dp, Qy: = € Q, t = 0,

and Qp: x € Q, t = T, are, respectively, the lower and upper bases of the cylinder, B: T' — RV*¥ is a given
continuous square matrix of order V;
N
ou ou
- Aii oy
an — 2 g,
,j=1

(in the scalar case, this derivative coincides with the derivative along the conormal), v = (v1, ..., Vp, Vp11) is the

unit vector of the outer normal to Dy, and vy, 41|p = 0.
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Note that, in [1], we considered the boundary-value problem for Eq. (1.1) with conditions (1.3) in the scalar
case, i.e., for N = 1, in the cylindrical domain D7 but with a homogeneous Dirichlet condition u|r = 0 instead
of (1.2). The initial and mixed problems for semilinear partial differential equations of higher orders with structures
different from (1.1) were studied in numerous works (see, e.g., [2-12] and the references therein).

By C?#(Dr) we denote a space of vector functions u = (uy,...,uy) continuous in Dy with continuous

u

877 W, w, i,j:1,...,n, lzl,...,4k, lnDT We set
€Ty T;0Z 4

partial derivatives

_ _ O
Co**(Dr) = {u € C*"(Dr) : =

—0,i=0,...,2k—1%.
QoUQr

We also introduce a Hilbert space VVO1 ’Qk(DT) obtained by completion with respect to the norm

2
Jull gy = |
D

T

o\t N ou\?
2
u +;<8ﬂ> +;<8xi> ]dwdt (1.4)

_ N
of the classical space Cg ’4k(DT), u? = g , 1u?.
1=

7

5,
Remark 1.1. Tt follows from (1.4) that u € Wy (Dr) and a—;j € Lo(Dy), i =1,...,2k, if u e Wy (Dy).

Here, W} (Dr) is the well-known Sobolev space formed by elements of Lo(Dr) with generalized first-order
derivatives that belong to Lo (D7) [13, p. 56].

Further, we impose the following restrictions on the nonlinear vector function f = (f1,..., fy) from (1.1):
feCRY), |f(w)] < My + Ms|u|®, ueRY, (1.5)
where | - | is the norm in the space RY, M; = const > 0, i = 1,2, and
n+1

0 < a = const < (1.6)

n—1

Remark 1.2. The embedding operator i: W3 (d;) — Ly(Dr) is a linear and continuous compact operator
2(n+1)

for1 < g < , n > 1[13, p. 81]. At the same time, the Nemytskii operator K : Lq(D7) — Lo(Dr)
n p—

acting by the formula

Ku = f(u),
where u = (u1,...,un) € Ly(Dr) and the vector function f = (fi,..., fn) satisfies condition (1.5), is contin-

1
uous and bounded for ¢ > 2« [14, pp. 66, 67]. Thus, if o < L—Fl, then there exists a number ¢ such that
n J—
2 1
1<q<(717—|—1) and ¢ > 2a.
n pa—

Hence, in this case, the operator

Ko = KI: W) (Dr) — Lyo(Dr) 1.7
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is continuous and compact. Since u € W (Dr), we conclude that f(u) € Lo(Dr) and if u™ — u in the space
W21 (DT>, then

fW™) = f(u) in Ly(Dr).

Here and in what follows, the fact that a vector function v = (vy,...,vy) belongs to a certain space X means
that each component v;, 1 <17 < N, of this vector belongs to the space X.

Remark 1.3. Let A;; = Aij(z) € CYQ), i,j = 1,...,n, and let u € C§’4k(DT) be the solution of
problem (1.1)—(1.3). Multiplying scalarly both sides of system (1.1) by an arbitrary vector function ¢ & 002 Ak (D7)
and integrating the obtained equality by parts over the domain D7, we obtain

0%k 0% - ou Oy
Ajj———|dxdt
/ RIETE +MZ1 S0 025 |

Dr

+/Bu-gpdf+/f(u)-g0dmdt
r Dy

= /F-apdxdt Vo € C2*(Dy), (1.8)

Dy

N
where the symbol 7 - £ denotes the scalar product of /NV-dimensional vectors, i.e., Z¢:1 n; - &.

Equality (1.8) is used as basic in the definition of a weak generalized solution of problem (1.1)—(1.3).

Definition 1.1. Assume that a vector function f satisfies conditions (1.5) and (1.6) and that F' € La(Dr).
A vector function u € I/VO1 ’Qk(DT) is called a weak generalized solution of problem (1.1)—(1.3) if the integral

equality (1.8) holds for any vector function ¢ € Wol’%(DT), ie.,

0%k 0% - ou Oy
Ayt 2P
/ o g+ 2 Augy g, | drd

Dr b

+/Bu-<pdf+/f(u)-<pdazdt
r Dr

= /F'gpdxdt Vo € Wy (D). (1.9)

Dy

Note that, according to Remark 1.2, the integral f(u) - pdzdt in equality (1.9) is well defined because
Dt

the fact that u € Wol’zk(DT) implies that f(u) € La(Dr) and, hence, f(u) - ¢ € Li(Dr).
It is easy to see that if the solution u of problem (1.1)—(1.3) belongs to the class Cg 4k (ﬁT) in a sense of
Definition 1.1, then it is also a classical solution of this problem.
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2. Solvability of Problem (1.1)-(1.3)
In what follows, we assume that the operator
n
()
— | Aij=— 2.1)
13221 Oxj \"" Ox;

is strongly elliptic [15, p. 96], i.e.,

Y A@)&EG = oY &GP VeeQ and &,....& €RY, 2.2)
i=1

1,7=1

where ¢y = const > 0.

Note that in the scalar case, under condition (2.2), the operator in (2.1) is an ordinary uniformly elliptic
operator. In this case, the linear part of the operator Ly in (1.1), i.e., Lo, is semielliptic for any fixed x € € [16,
p. 142].

If, in addition to condition (2.2), the following condition is satisfied:

B(z)n-n>0 VYzel, neRY, (2.3)

then, in the space Cg Ak (D7), parallel with the scalar product

(u, ) / +i iuaieriau L 2.4)
u,v)g = U~ - —— x .
e L p ot L D, Oy
D 1=1 =1
and the norm || - [jp = || - HWLQk( pyy given by the right-hand side of equality (1.4), we can introduce a scalar
0
product
0% 0%k = Ou Ov
Dr hi=1 r
with the norm
0%\ 2 = Ju Ou
2
= — Ajj——|dadt Bu - udl 2.6
ul? / <8t%) t 2 A o | +/ w-udl’ (26)
Dr J= r

where u,v € Cg’4k(DT).

Lemma 2.1. Under conditions (2.2) and (2.3), the inequalities
2,4k [ 7
cillullo < lufly < e2fjullo Vu € Gy (Dr) (2.7)

are true with positive constants c1 and co independent of u.
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Proof. 1f u € C§’4k(DT), then u(z,0) = 0, = € Q and, hence,

¢
u(x,t) :/Wdﬂ (x,t) € Dr.
0

Thus, by using standard arguments, we obtain [13, p. 69]

2
/u2 dazdth/ (g’;) dz dt. (2.8)

Dr Dr
i 2k,,
We now estimate the norms 57 ,t=1,...,2k — 1, in terms of the norm H Sk . Since
- t LQ(DT) t LQ(DT)
u € Cg ’4k(DT) satisfies equality (1.3), it is easy to see that
Pul- 1) _ t o%u(-,7)

u(-,t 7)2hicL T :
: O g i=1,....2k—1. 2.9
ot 2k—z—1'/ gk o0 ! (2.9)

0
In view of the Cauchy inequality, it follows from (2.9) that

t

) t 2
dul-, 1)\ 2(2hio1) 0%*uf- 1)
- < — _—
( 5 ) (@i 1) 2 / (t—r1) dT/ 572k dr
0

0
k(- 1)\
<8t2k’ )dT

t4k—2i—1

T2k —i— D)N)2(4k —2i 1)

T aZk: 2
4k—2i—1
<T /< t% >d7’,
0

o

whence it follows that

T 9 T an 2

4k—21 .
/< 8# ) dr <T /( 875% ) dr, i=1,...,2k—1. (2.10)
0 0

Since A;; = A;j(z) € C(2), i,j = 1,...,n, the elements of these matrices are bounded in © and, hence,
ZA” )Ei - §]<COZ|§Z VreQ and &,...,& eRY (2.11)
i,j=1

with a positive constant ¢, independent of 2 € Q and &1,...,&, € RY.
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In view of (2.2) and (2.11), for any u € C§’4k(DT), we obtain

ou 8u
CO/Z (({m) dxdt < / Z A g 0 o, dxdt

,j=1

2
< é& /Z <8$Z) dzdt. (2.12)

By virtue of (2.3) and the embedding theorem, for the trace v|r of the vector function v € Wi (D7), we get

[13, p. 72]
0</B()-dr<~/ 24 @ZJFZH: N (2.13)
< z)v - vdl < &3 v T ‘ oz, T .

T Dy =1

with a positive constant ¢3 independent of v.
Finally, by using (1.4), (2.4), (2.6), (2.8), (2.12), and (2.13), we easily obtain (2.7).
Lemma 2.1 is proved.

Remark 2.1. According to Lemma 2.1, if we complete the space C’g 2k (D7) with respect to norm (2.5), then,
in view of (2.4), we obtain the same Hilbert space WO1 2k (Dp) with equivalent scalar products (2.4) and (2.5).

Consider a condition

lim inf u- f(u)

|u|—o0 u?

> 0. (2.14)

Lemma 2.2. Suppose that F € Lo(Dr) and conditions (1.5), (1.6), (2.2), (2.3), and (2.14) are satisfied.

Then, for any weak generalized solution u € VVO1 2k (Dr) of problem (1.1)—(1.3), the a priori estimate

lullo = Nully sty < 31l Fll ooy + e @.15)

is true with constants c3 > 0 and c4 > 0 independent of u and F'.

Proof. Since f € C (RN ), inequality (2.14) implies that, for any € > 0O, there exists a number M, > 0
such that

w- f(u) > —M, —eu® YueRY. (2.16)

Setting ¢ = u € WO1 ’2k(DT) in equality (1.9) and taking into account (2.16) and (2.6), for any € > 0, we get

sz—/WﬂWMﬁ+/Fwwﬁ

Dr Dr

1
< M.mesDr + ¢ / u? dx dt + / <4€F2 + 5u2> dx dt
Dr Dr
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1
= @HFH%Q(DT) + M. mesDr + 2¢ull7, p,

1
< @HFH%Q( + M. mesDr + 2¢||ul|3. (2.17)

Dr)

In view of (2.7), it follows from (2.17) that

1
cllulld < ullf < EHFH%Q(DT) + M. mesDr + 2¢ulf5.

1
For € = ZC%, this yields
Jully < 201_4“FH%2(DT) + 2¢72M. mesDr-.

1
The last inequality gives (2.15), where ¢3 = 20;4 and ¢2 = 201*2ME mes Dy for e = —c3.

4
Lemma 2.2 is proved.

Remark 2.2. Prior to study the solvability of problem (1.1)—(1.3) in the nonlinear case, we consider the
corresponding linear problem (1.1)—(1.3), i.e., the case f = 0. In this case, for F' € Lo(Dr), we introduce, in a
similar way, the definition of a weak generalized solution u € T/VO1 ’%(DT) of this problem for which the following

integral equality us true:

2%k, 52k n
(u,go)l:/ 0"ud ('O—I-ZA Ou Op dmdt+/Bu'g0d1"
< J

otk o2k Y O; Oz
DT L=
= /F-godmdt Y € Wy 2H(Dr). (2.18)
Dr

By using (1.4), (2.4), and (2.7), we obtain

/ Fpdrdt] < |Fllyomllelamm
Dr

< Fllamllello < et I Fll Ly lelh- (2.19)
According to Remark 2.1, in view of relations (2.18) and (2.19), it follows from the Riesz theorem that there

exists a unique vector function u € T/VO1 ’%(DT) satisfying equality (2.18) for any ¢ € I/VO1 2k (D7), and its norm
can be estimated as follows:

lully < ¢ N Lopr)- (2.20)
In view of (2.7), it follows from (2.20) that

lullo = Tlullyer p,y < € IF o) (2:21)
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Thus, introducing the notation v = L, lF, we conclude that the linear problem corresponding to (1.1)—(1.3) i.e.,
with f = 0 has the following linear bounded operator:

Ly': Ly(Dr) — WM (D).
According to (2.21), its norm can be estimated as follows;

Ly <2 (2.22)

1
HL2(DT)—>W01’%(DT)

By using Definition 1.1 and Remark 2.2, we rewrite the integral identity (1.9) equivalent to problem (1.1)—(1.3)
in the form of the following functional equation:

u=Ly'[—f(u) + F] (2.23)
. . 1,2k
in the Hilbert space ;""" (Dr).

Remark 2.3. Note that, in view of (1.4) and Remark 1.1, the space VVO1 2k (D7) is continuously embedded in
the space VV21 (D). Thus, by virtue of (1.7) and Remark 1.2, under conditions (1.5) and (1.6), the operator

Ky = KII: Wo*(Dr) = Ly(Dr),

where [ : WO1 2F(Dp) — Wi (Dr) is the embedding operator, is also continuous and compact.

We rewrite Eq. (2.23) in the form
u=Au:= Ly (Kju+ F). (2.24)

By virtue of (2.23) and Remark 2.3, we conclude that the operator A : VVO1 2H(Dr) — VVO1 2% (Dr) in (2.24)
is continuous and compact. At the same time, by using the scheme of the proof of the a priori estimate (2.15) with

_ _ 1
3= 2c; 1 and = 2c; M. mes Dy, €= Zc%,

we can easily show that, for any value of the parameter 7 € [0, 1] and any solution u € VVO1 ’%(DT) of the
equation u = 7 Au, the same a priori estimate (2.15) holds with the same constants c3 > 0 and Cy > 0 indepen-
dent of u, F, and 7. Thus, by the Leray—Schauder fixed-point theorem [16, p. 375], Eq. (2.24) and, hence, also
problem (1.1)—(1.3) have at least one weak generalized solution u in the space VVO1 ,2k (D). Thus, the following
theorem is true:

Theorem 2.1. Suppose that conditions (1.5), (1.6), (2.2), (2.3), and (2.14) are satisfied. Then, for any F €
Lo(Dr), problem (1.1)—(1.3) has at least one weak generalized solution w in the space W&’Zk(DT).

3. Uniqueness of the Solution of Problem (1.1)—(1.3)

Consider the condition of monotonicity of the Nemytskii operator

K(u) = f(u): RN - RY,
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ie.,
(K(u) — K())(u—v) >0 VYu,veRY, (3.1)

Remark 3.1. It is easy to see that condition (3.1) is satisfied if f = (f1,..., fn) € C'(R") and the matrix

ofi\" . : o
is nonnegative-definite, i.e.,
8uj ij=1

" (u)&g] 2 O Vf = (&1,... ,&\7), u = (ul,... ,UN) S RN.
J

>
= U
i,7=1
Theorem 3.1. Suppose that a vector function f satisfies conditions (1.5) and (1.6) and that the corresponding
Nemytskii operator K (u) = f(u): RN — R™ is monotone. Also let conditions (2.2) and (2.3) be satisfied. Then,

for any vector function f € Lao(Dr), problem (1.1)—(1.3) cannot have more than one weak generalized solution
in the space I/VO1 2k (Dr).

Proof. Let f € Lo(Dr) and let u; and ugz be two weak generalized solutions of problem (1.1)—(1.3) in the

space WO1 2k(DT), i.e., according to (1.9), the following equalities are true:

0%k u; 9%k “ Ou; Op
/ o2k o2k Z AZ] oz, aixj du dt
DT 7‘]7

+/Bui‘<pd1“+/f(ui)'g0dxdt
r D

= /F-gpdxdt Vo e W (Dr), i=1,2. (3.2)
Dt

By using (3.2), for the difference v = ug — u;, we obtain

0%k 9%k - v dyp
o Ao T A d:cdt+/Bv wdl’
DZ otk or2k ”Z_ ? 0w; Ox;

- / (Fluz) — flun)) - pdudt Ve € WEH(Dp). (3.3)

Dr

Setting p = v € Wol’Qk(DT) in equality (3.3), in view of (2.6), we get

lells = - / (f(u2) — F(ur)) (2 — u) dz . (3.4)

Dr
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Since, by the condition of the theorem, the Nemytskii operator
K(u) = f(u): RN - R"
satisfies inequality (3.1), in view of (2.7) and (3.4), we obtain

cillvflo < |lvll1 < 0.

This yields v = 0 and, hence, us = u;.
Theorem 3.1 is proved.

Theorems 2.1 and 3.1 yield the following assertion:

Theorem 3.2. Assume that conditions (1.5), (1.6), (2.2), (2.3), (2.14), and (3.1) are satisfied. Then, for any
F € Lo(Dr), problem (1.1)—(1.3) possesses a unique weak generalized solution u in the space VVO1 2k (D).

4. Cases of Absence of the Solutions of Problem (1.1)—(1.3)

We now consider a special case of system (1.1) in which it is split in the leading part, i.e., A;; = a;;Iy, where
I is the identity matrix of order N and a;; = a;;(«) are scalar functions such that the operator

z": 9 (0
6xj ”8:61-

3,7=1

is elliptic. We also assume that, in the boundary condition (1.2), B = bl, where b is a nonnegative number.
We consider the following condition imposed on the vector function f: there exist numbers lq,..., Iy,
SN |Ii] # 0, such that

B
1
VueRY, 1< p=-const< L+1 4.1)
n —

N
> lifilw) < -
i=1

N
>l
i=1

To simplify our presentation, we consider the case where : |z| < 1.

Theorem 4.1. Suppose that a vector function f satisfies conditions (1.5), (1.6), and (4.1),

N
FO=(F,....,F}) € Lo(Dr),  G=> LF)>0, and  |Glypy) # 0.

i=1

Then there exists a number pg = po(G, ) > 0 such that, for . > g, problem (1.1)—(1.3) cannot have weak
generalized solutions in the space VVO1 ’2k(DT) for ' = pFy.

Proof. Assume that the conditions of the theorem are satisfied and that a weak generalized solution u &€
Wol’%(DT) of problem (1.1)—(1.3) exists for any fixed p > 0. We also assume that ¢ = (10, ...,INpp) in
equality (1.9), where ¢ is a scalar function satisfying the conditions

A Do ,
QD()ECSAIC(DT% 900‘11207 ag; ona Z:]-v"'ana SOO‘DT > 0. (42)
i
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The space Cg AR (Dr) C I/VO1 2F(Dr) was introduced in the introduction. In this case, as the function ¢, we can
take the function
2k
eolw,t) = [(1 = 22T — 1),

We set
N
i=1

Thus, by using the facts that system (1.1) is split in the leading part and B = By, by virtue of (1.9), we conclude
that

80 0% g - ov dpg
/ o2k 92k + 'jzl Qij (z) O 87.%'] dx dt + /b’UgOodF
Dr LJ= T

N
= / ( - Z lﬁ}-(u)) wodx dt + [ / Gpo dz dt. 4.3)
i=1 D

Dt

In view of (4.2) and V' € WO1 2k (D7), we can integrate (4.3) by parts and obtain

N
/(—Zlifi(u)>goodxdt+u/Ggoodxdt
=1 Dy

Dr
9% g Zn 0 9o

DT 27]:

= /vLogpo dx dt, 4.4)
Dt

where L is the scalar operator corresponding to the operator in (1.1) with f = 0.
It follows from (4.1) and (4.4) that

/|v’5¢gdxdt§ /vLocpod:cdtp/Ggpodxdt. (4.5)
DT DT DT

Further, we apply the method of test functions [18, pp. 10-12]. In the Young inequality with parameter £ > 0,

b6/7 a7b > 07 6/ = B

ab< Saf + EESE

1
5" g
we set

1 1
a = |u]g00/5 and b= |Lowo| /cpo/ﬂ
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and take into account the fact that 5’/ = 5’ — 1. This yields
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1/8|Lopol _ €, 5 1 |Logol®
|ULO§00‘ = |’U|(100 1 < 7|U’ ©0 + 7 7 (46)
B—1 -1
‘PO/IB B p'e <P€
It follows from (4.5) and (4.6) that
1 Lowol?
1- < [v|P o da dt = ; | 080,0| dedt —p | Geodxdt.
B 6155 —1 906 —1
DT DT 0 DT
For £ < (3, this yields
B/
3 p | Lool B
/ |v|P o dx dt < (BT goﬁl*l dx dt 3¢ Gyo dz dt 4.7
DT DT 0 DT
By using the equalities
) s g
= — d = —
15} 51 and 0 51
and also the fact that
min —ﬁ — =
0<e<p (B —¢e)Beh 1
(this minimum is attained for € = 1), we get the following inequality from (4.7):
Logo|*
/ [v|8po da dt < (p;‘f_‘l dedt — B / G dz dt. (4.8)
DT T 0 DT
It is easy to see that there exists a test function g such that, in addition to (4.2),
Lowol®
Ko = “’% da dt < co. (4.9)
Dy 70

Indeed, we can easily show that the function

po(x,t) = [(1 = |z)H(T — )],

satisfies condition (4.9) for a sufficiently large positive m.

Since, under the condition of the theorem, G € Lo(Dr),

in view of the fact that g |p, > 0, we obtain

0< kK= /Ggpodacdt< ~+00.

Dy

HGHLQ(DT) # 0, G > 0, and mes Dy < 400,

(4.10)
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By g(u) we denote the right-hand side of inequality (4.8), which is a linear function of . Thus, according
to (4.9) and (4.10), we obtain

g(p) <0 for p> o and  g(p) >0 for p < po, 4.11)
where
Ko
9(p) = ko — 'k, Mozm > 0.

According to (4.11), for 1 > o, the right-hand side of inequality (4.8) is negative, whereas the left-hand side
of this inequality is nonnegative. The obtained contradiction proves the theorem.

Note that in the case where condition (4.1) is satisfied, condition (2.14) is violated. Indeed, in this case,
it suffices to take u = A\({1,...,Ix) as A — 4o0.

Remark 4.1. In Theorem 4.1, for the sake of simplicity, it has been assumed that Q: |z| < 1. However,
this theorem remains true in a more general case where () is a sufficiently smooth domain. This assumption is
explained by the structure of the test function ¢ satisfying condition (4.9) according to the formula

oz, t) = [(1 — |z|?)t(T - t)]m 4.12)

for sufficiently large positive m. If the boundary of the domain €2 is given by the equation 92 : w(x) = 0, where

Vawlaa # 0, wlo >0, Ve = ( 0 0 ), and w € CHR™),

aixl,...,g

then the test function given by Eq. (4.12) should be replaced by

po(x, 1) = [w(z)t(T —1)]",
where m is a sufficiently large positive number. In this case, Theorem 4.1 also remains true.
Remark 4.2. In the proof of Theorem 4.1, condition (4.1) can be replaced by a more general condition

B

1

Vu e RY, 1<B:const<”—+1, (4.13)
n_

N
Z li fi(u) < —do
=1

N
E lLiug
i—1

where dyp = const > 0. Indeed, case (4.13) is reduced to case (4.1) if we pass from [; to l~Z by the formula

li = )\ZNM

1 -
where \ = dé_ﬁ . As a result, we obtain inequality (4.1) with [; instead of [;. We now present a class of vector

functions f satisfying condition (4.13):

N
fi(ul,...,uN):Zaij]uj]ﬁ”—i—bi, i=1,..., N, 4.14)
j=1
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where the constant numbers a;;, (5;;, and b; satisfy the inequalities

N
n+1 ..
ai; >0, 1< By < —, z;bi>(), ij=1,...,N. (4.15)
1=
In this case, it is necessary to set [y = ... = [y = —1 in (4.13). Indeed, according to (4.15), we choose
constant numbers o and 5 such that
N
0<ao<minaj, » bi—aN*>0, 1<B<pfy, ij=1,...,N. (4.16)
27] .
=1

It is easy to see that |s|%7 > |s|® —1 Vs € (—o0, 00). By using the well-known inequality [19, p. 302]

N B

N
Z’yi!ﬁ>leﬁ Zyi Vy=(y1,...,yn) €RY, B = const > 1,
=1 =1

by virtue of (4.14) and (4.15), we obtain

N N N
E filui,...;un) > agp E |uj|ﬁij+zbi
i=1 =1

ij=1

N N N N
> ag Z(|Uj|5_1)+zbiZGONZ‘U]‘|B—GON2+ZZH
i =1 i=1 j=1 i=1

N B N N 8
> aoN* P> il + Y b —agN? > agN?TP| Y Cuyl (4.17)
j=1 i=1 j=1

According to (4.17), we conclude that, under conditions (4.14) and (4.15), inequality (4.13) is true with
h=..=Iy=-1 and  dy=agN?*7P,
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