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BOUNDARY-VALUE PROBLEM FOR A CLASS OF NONLINEAR SYSTEMS
OF PARTIAL DIFFERENTIAL EQUATIONS OF HIGHER ORDERS

S. S. Kharibegashvili1 and B. G. Midodashvili2,3 UDC 517.957

We study a boundary-value problem for a class of nonlinear systems of partial differential equations of
higher orders. For this problem, we establish the existence, uniqueness, and absence of solutions.

1. Statement of the Problem

In the Euclidean space Rn+1 of variables x = (x1, . . . , xn) and t, we consider a nonlinear system of partial
differential equations of the form
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where f = (f1, . . . , fN ), F = (F1, . . . , FN

) are given vector functions, u = (u1, . . . , uN ), N ≥ 2, is the
required vector function, A

ij

are given square matrices of order N such that, in addition, A
ij

= A

ji

, i, j =

1, . . . , n, n ≥ 2, and k is a natural number.
For system (1.1), we consider the following boundary-value problem: In a cylindrical domain D

T

:= ⌦ ⇥
(0, T ), where ⌦ is an open Lipschitz domain in Rn

, it is necessary to find the solution u = u(x, t) of system (1.1)
with the following boundary conditions:
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where Γ := @⌦ ⇥ (0, T ) is the lateral part of the boundary of a cylindrical domain D

T

, ⌦0 : x 2 ⌦, t = 0,

and ⌦

T

: x 2 ⌦, t = T, are, respectively, the lower and upper bases of the cylinder, B : Γ ! RN⇥N is a given
continuous square matrix of order N ;
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(in the scalar case, this derivative coincides with the derivative along the conormal), ⌫ = (⌫1, . . . , ⌫n, ⌫n+1) is the
unit vector of the outer normal to @D

T

, and ⌫

n+1|Γ = 0.
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Note that, in [1], we considered the boundary-value problem for Eq. (1.1) with conditions (1.3) in the scalar
case, i.e., for N = 1, in the cylindrical domain D

T

but with a homogeneous Dirichlet condition u|Γ = 0 instead
of (1.2). The initial and mixed problems for semilinear partial differential equations of higher orders with structures
different from (1.1) were studied in numerous works (see, e.g., [2–12] and the references therein).

By C
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) we denote a space of vector functions u = (u1, . . . , uN ) continuous in ¯
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, i, j = 1, . . . , n, l = 1, . . . , 4k, in ¯
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. We set

C

2,4k
0 (

¯

D

T

) :=

(
u 2 C

2,4k
(

¯

D

T

) :

@

i

u

@t

i

����
⌦0[⌦T

= 0, i = 0, . . . , 2k − 1

)
.

We also introduce a Hilbert space W
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0 (D
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) obtained by completion with respect to the norm
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of the classical space C

2,4k
0 (

¯

D

T

), u

2
=

X
N

i=1
u

2
i

.

Remark 1.1. It follows from (1.4) that u 2 W

1
2 (DT

) and
@

i

u

@t

i

2 L2(DT

), i = 1, . . . , 2k, if u 2 W

1,2k
0 (D

T

).

Here, W 1
2 (DT

) is the well-known Sobolev space formed by elements of L2(DT

) with generalized first-order
derivatives that belong to L2(DT

) [13, p. 56].
Further, we impose the following restrictions on the nonlinear vector function f = (f1, . . . , fN ) from (1.1):

f 2 C

�
RN

�
, |f(u)|  M1 +M2|u|↵, u 2 RN

, (1.5)

where | · | is the norm in the space RN

, M

i

= const ≥ 0, i = 1, 2, and

0  ↵ = const <

n+ 1

n− 1

. (1.6)

Remark 1.2. The embedding operator i : W 1
2 (dt) ! L

q

(D

T

) is a linear and continuous compact operator

for 1 < q <

2(n+ 1)

n− 1

, n > 1 [13, p. 81]. At the same time, the Nemytskii operator K : L
q
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) ! L2(DT

)

acting by the formula

Ku = f(u),

where u = (u1, . . . , uN ) 2 L

q

(D

T

) and the vector function f = (f1, . . . , fN ) satisfies condition (1.5), is contin-

uous and bounded for q ≥ 2↵ [14, pp. 66, 67]. Thus, if ↵ <

n+ 1

n− 1

, then there exists a number q such that

1 < q <

2(n+ 1)

n− 1

and q ≥ 2↵.

Hence, in this case, the operator

K0 = KI : W 1
2 (DT

) ! L2(DT

) (1.7)



BOUNDARY-VALUE PROBLEM FOR A CLASS OF NONLINEAR SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS 983

is continuous and compact. Since u 2 W

1
2 (DT

), we conclude that f(u) 2 L2(DT

) and if um ! u in the space
W

1
2 (DT

), then

f(u

m

) ! f(u) in L2(DT

).

Here and in what follows, the fact that a vector function v = (v1, . . . , vN ) belongs to a certain space X means
that each component v

i

, 1  i  N, of this vector belongs to the space X.

Remark 1.3. Let A
ij
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(x) 2 C

1
(⌦), i, j = 1, . . . , n, and let u 2 C
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)

and integrating the obtained equality by parts over the domain D
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where the symbol ⌘ · ⇠ denotes the scalar product of N -dimensional vectors, i.e.,
X

N

i=1
⌘

i

· ⇠
i

.

Equality (1.8) is used as basic in the definition of a weak generalized solution of problem (1.1)–(1.3).

Definition 1.1. Assume that a vector function f satisfies conditions (1.5) and (1.6) and that F 2 L2(DT

).

A vector function u 2 W

1,2k
0 (D

T

) is called a weak generalized solution of problem (1.1)–(1.3) if the integral
equality (1.8) holds for any vector function ' 2 W
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0 (D
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), i.e.,
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=
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Note that, according to Remark 1.2, the integral
Z

DT

f(u) · ' dx dt in equality (1.9) is well defined because

the fact that u 2 W

1,2k
0 (D

T

) implies that f(u) 2 L2(DT

) and, hence, f(u) · ' 2 L1(DT

).

It is easy to see that if the solution u of problem (1.1)–(1.3) belongs to the class C

2,4k
0 (D

T

) in a sense of
Definition 1.1, then it is also a classical solution of this problem.
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2. Solvability of Problem (1.1)–(1.3)

In what follows, we assume that the operator
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is strongly elliptic [15, p. 96], i.e.,
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where c0 = const > 0.

Note that in the scalar case, under condition (2.2), the operator in (2.1) is an ordinary uniformly elliptic
operator. In this case, the linear part of the operator L

f

in (1.1), i.e., L0, is semielliptic for any fixed x 2 ⌦ [16,
p. 142].

If, in addition to condition (2.2), the following condition is satisfied:
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, (2.3)
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and the norm k · k0 = k · k
W

1,2k
0 (DT )

given by the right-hand side of equality (1.4), we can introduce a scalar
product
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Lemma 2.1. Under conditions (2.2) and (2.3), the inequalities
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are true with positive constants c1 and c2 independent of u .
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Proof. If u 2 C
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.

Thus, by using standard arguments, we obtain [13, p. 69]

Z

DT

u

2
dx dt  T

Z

DT

✓
@u

@t

◆2

dx dt. (2.8)

We now estimate the norms
����
@

i

u

@t

i

����
L2(DT )

, i = 1, . . . , 2k − 1, in terms of the norm
����
@

2k
u

@t

2k

����
L2(DT )

. Since

u 2 C

2,4k
0 (

¯

D

T

) satisfies equality (1.3), it is easy to see that

@

i

u(· , t)
@t

i

=

1

(2k − i− 1)!

tZ

0

(t− ⌧)

2k−i−1@
2k
u(· , ⌧)
@t

2k
d⌧, i = 1, . . . , 2k − 1. (2.9)

In view of the Cauchy inequality, it follows from (2.9) that

✓
@

i

u(· , t)
@t

i

◆2

 1

((2k − i− 1)!)

2

tZ

0

(t− ⌧)

2(2k−i−1)
d⌧

tZ

0

✓
@

2k
u(· , t)
@t

2k

◆2

d⌧

=

t

4k−2i−1

((2k − i− 1)!)

2
(4k − 2i− 1)

tZ

0

✓
@

2k
u(· , t)
@t

2k

◆2

d⌧

 T

4k−2i−1

TZ

0

✓
@

2k
u(· , ⌧)
@t

2k

◆2

d⌧,

whence it follows that

TZ

0

✓
@

i

u(· , t)
@t

i

◆2

d⌧  T

4k−2i

TZ

0

✓
@

2k
u(· , ⌧)
@t

2k

◆2

d⌧, i = 1, . . . , 2k − 1. (2.10)

Since A

ij

= A

ij

(x) 2 C(⌦), i, j = 1, . . . , n, the elements of these matrices are bounded in ⌦ and, hence,
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with a positive constant c̃0 independent of x 2 ⌦ and ⇠1, . . . , ⇠n 2 RN

.
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In view of (2.2) and (2.11), for any u 2 C
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By virtue of (2.3) and the embedding theorem, for the trace v|Γ of the vector function v 2 W

1
2 (DT

), we get
[13, p. 72]
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with a positive constant c̃3 independent of v.
Finally, by using (1.4), (2.4), (2.6), (2.8), (2.12), and (2.13), we easily obtain (2.7).
Lemma 2.1 is proved.

Remark 2.1. According to Lemma 2.1, if we complete the space C

2,2k
0 (

¯

D

T

) with respect to norm (2.5), then,
in view of (2.4), we obtain the same Hilbert space W

1,2k
0 (D

T

) with equivalent scalar products (2.4) and (2.5).

Consider a condition
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|u|!1
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u · f(u)
u

2
≥ 0. (2.14)

Lemma 2.2. Suppose that F 2 L2(DT

) and conditions (1.5), (1.6), (2.2), (2.3), and (2.14) are satisfied.
Then, for any weak generalized solution u 2 W

1,2k
0 (D

T

) of problem (1.1)–(1.3), the a priori estimate

kuk0 = kuk
W
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0 (DT )

 c3kFk
L2(DT ) + c4 (2.15)

is true with constants c3 > 0 and c4 ≥ 0 independent of u and F .

Proof. Since f 2 C

�
RN

�
, inequality (2.14) implies that, for any " > 0, there exists a number M
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. (2.16)
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T

) in equality (1.9) and taking into account (2.16) and (2.6), for any " > 0, we get
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=
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In view of (2.7), it follows from (2.17) that
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2
1, this yields

kuk20  2c
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.

The last inequality gives (2.15), where c

2
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−4
1 and c

2
4 = 2c
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1 M

"
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T

for " =
1

4

c

2
1.

Lemma 2.2 is proved.

Remark 2.2. Prior to study the solvability of problem (1.1)–(1.3) in the nonlinear case, we consider the
corresponding linear problem (1.1)–(1.3), i.e., the case f = 0. In this case, for F 2 L2(DT

), we introduce, in a
similar way, the definition of a weak generalized solution u 2 W

1,2k
0 (D

T

) of this problem for which the following
integral equality us true:

(u,')1 =

Z

DT

2

4@
2k
u
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@t
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+
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ij
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@'
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j

3

5
dx dt+

Z

Γ

Bu · 'dΓ

=

Z
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F · ' dx dt 8' 2 W

1,2k
0 (D
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). (2.18)

By using (1.4), (2.4), and (2.7), we obtain
�������

Z

DT

F · ' dx dt

�������
 kFk

L2(DT )k'kL2(DT )

 kFk
L2(DT )k'k0  c

−1
1 kFk

L2(DT )k'k1. (2.19)

According to Remark 2.1, in view of relations (2.18) and (2.19), it follows from the Riesz theorem that there
exists a unique vector function u 2 W

1,2k
0 (D

T

) satisfying equality (2.18) for any ' 2 W

1,2k
0 (D

T

), and its norm
can be estimated as follows:

kuk1  c

−1
1 kFk

L2(DT ). (2.20)

In view of (2.7), it follows from (2.20) that
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W
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0 (DT )
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−2
1 kFk

L2(DT ). (2.21)
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Thus, introducing the notation u = L

−1
0 F, we conclude that the linear problem corresponding to (1.1)–(1.3) i.e.,

with f = 0 has the following linear bounded operator:

L

−1
0 : L2(DT

) ! W

1,2k
0 (D

T

).

According to (2.21), its norm can be estimated as follows;

kL−1
0 k

L2(DT )!W

1,2k
0 (DT )

 c

−2
1 . (2.22)

By using Definition 1.1 and Remark 2.2, we rewrite the integral identity (1.9) equivalent to problem (1.1)–(1.3)
in the form of the following functional equation:

u = L

−1
0 [−f(u) + F ] (2.23)

in the Hilbert space W

1,2k
0 (D

T

).

Remark 2.3. Note that, in view of (1.4) and Remark 1.1, the space W

1,2k
0 (D

T

) is continuously embedded in
the space W

1
2 (DT

). Thus, by virtue of (1.7) and Remark 1.2, under conditions (1.5) and (1.6), the operator

K1 = KII1 : W
1,2k
0 (D

T

) ! L2(DT

),

where I1 : W
1,2k
0 (D

T

) ! W

1
2 (DT

) is the embedding operator, is also continuous and compact.

We rewrite Eq. (2.23) in the form

u = Au := L

−1
0 (K1u+ F ). (2.24)

By virtue of (2.23) and Remark 2.3, we conclude that the operator A : W 1,2k
0 (D

T

) ! W

1,2k
0 (D

T

) in (2.24)
is continuous and compact. At the same time, by using the scheme of the proof of the a priori estimate (2.15) with

c

2
3 = 2c

−4
1 and c

2
4 = 2c

−2
1 M

"

mes D

T

, " =

1

4

c

2
1,

we can easily show that, for any value of the parameter ⌧ 2 [0, 1] and any solution u 2 W

1,2k
0 (D

T

) of the
equation u = ⌧Au, the same a priori estimate (2.15) holds with the same constants c3 > 0 and C4 ≥ 0 indepen-
dent of u, F, and ⌧ . Thus, by the Leray–Schauder fixed-point theorem [16, p. 375], Eq. (2.24) and, hence, also
problem (1.1)–(1.3) have at least one weak generalized solution u in the space W

1,2k
0 (D

T

). Thus, the following
theorem is true:

Theorem 2.1. Suppose that conditions (1.5), (1.6), (2.2), (2.3), and (2.14) are satisfied. Then, for any F 2
L2(DT

), problem (1.1)–(1.3) has at least one weak generalized solution u in the space W

1,2k
0 (D

T

).

3. Uniqueness of the Solution of Problem (1.1)–(1.3)

Consider the condition of monotonicity of the Nemytskii operator

K(u) = f(u) : RN ! RN

,
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i.e.,

(K(u)−K(v))(u− v) ≥ 0 8u, v 2 RN

. (3.1)

Remark 3.1. It is easy to see that condition (3.1) is satisfied if f = (f1, . . . , fN ) 2 C

1
�
RN

�
and the matrix✓

@f

i

@u

j

◆
n

i,j=1

is nonnegative-definite, i.e.,

NX

i,j=1

@f

i

@u

j

(u)⇠

i

⇠

j

≥ 0 8⇠ = (⇠1, . . . , ⇠N ), u = (u1, . . . , uN ) 2 RN

.

Theorem 3.1. Suppose that a vector function f satisfies conditions (1.5) and (1.6) and that the corresponding
Nemytskii operator K(u) = f(u) : RN ! Rn is monotone. Also let conditions (2.2) and (2.3) be satisfied. Then,
for any vector function f 2 L2(DT

), problem (1.1)–(1.3) cannot have more than one weak generalized solution
in the space W

1,2k
0 (D

T

).

Proof. Let f 2 L2(DT

) and let u1 and u2 be two weak generalized solutions of problem (1.1)–(1.3) in the
space W

1,2k
0 (D

T

), i.e., according to (1.9), the following equalities are true:

Z

DT

2

4@
2k
u

i

@t

2k

@

2k
'

@t

2k
+

nX

i,j=1

A

ij

@u

i

@x

i

@'

@x

j

3

5
dx dt

+

Z

Γ

Bu

i

· 'dΓ+

Z

DT

f(u

i

) · ' dx dt

=

Z

DT

F · ' dx dt 8' 2 W

1,2k
0 (D

T

), i = 1, 2. (3.2)

By using (3.2), for the difference v = u2 − u1, we obtain

Z

DT

2

4@
2k
v

@t

2k

@

2k
'

@t

2k
+

nX

i,j=1

A

ij

@v

@x

i

@'

@x

j

3

5
dx dt+

Z

Γ

Bv · 'dΓ

= −
Z

DT

(f(u2)− f(u1)) · ' dx dt 8' 2 W

1,2k
0 (D

T

). (3.3)

Setting ' = v 2 W

1,2k
0 (D

T

) in equality (3.3), in view of (2.6), we get

kvk1 = −
Z

DT

(f(u2)− f(u1))(u2 − u1) dx dt. (3.4)
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Since, by the condition of the theorem, the Nemytskii operator

K(u) = f(u) : RN ! Rn

satisfies inequality (3.1), in view of (2.7) and (3.4), we obtain

c1kvk0  kvk1  0.

This yields v = 0 and, hence, u2 = u1.

Theorem 3.1 is proved.

Theorems 2.1 and 3.1 yield the following assertion:

Theorem 3.2. Assume that conditions (1.5), (1.6), (2.2), (2.3), (2.14), and (3.1) are satisfied. Then, for any
F 2 L2(DT

), problem (1.1)–(1.3) possesses a unique weak generalized solution u in the space W

1,2k
0 (D

T

).

4. Cases of Absence of the Solutions of Problem (1.1)–(1.3)

We now consider a special case of system (1.1) in which it is split in the leading part, i.e., A
ij

= a

ij

I

N

, where
I

N

is the identity matrix of order N and a

ij

= a

ij

(x) are scalar functions such that the operator

nX

i,j=1

@

@x

j

✓
a

ij

@

@x

i

◆

is elliptic. We also assume that, in the boundary condition (1.2), B = bI

N

, where b is a nonnegative number.
We consider the following condition imposed on the vector function f : there exist numbers l1, . . . , lN ,P

N

i=1 |li| 6= 0, such that

NX

i=1

l

i

f

i

(u)  −

�����

NX

i=1

l

i

u

i

�����

β

8u 2 RN

, 1 < β = const <

n+ 1

n− 1

. (4.1)

To simplify our presentation, we consider the case where ⌦ : |x| < 1.

Theorem 4.1. Suppose that a vector function f satisfies conditions (1.5), (1.6), and (4.1),

F

0
= (F

0
1 , . . . , F

0
N

) 2 L2(DT

), G =

NX

i=1

l

i

F

0
i

≥ 0, and kGk
L2(DT ) 6= 0.

Then there exists a number µ0 = µ0(G,β) > 0 such that, for µ > µ0, problem (1.1)–(1.3) cannot have weak
generalized solutions in the space W

1,2k
0 (D

T

) for F = µF0.

Proof. Assume that the conditions of the theorem are satisfied and that a weak generalized solution u 2
W

1,2k
0 (D

T

) of problem (1.1)–(1.3) exists for any fixed µ > 0. We also assume that ' = (l1'0, . . . , lN'0) in
equality (1.9), where '0 is a scalar function satisfying the conditions

'0 2 C

2,4k
0 (

¯

D

T

), '0

��
Γ
= 0,

@'0

@x

i

���
Γ
= 0, i = 1, . . . , n, '0

��
DT

> 0. (4.2)
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The space C

2,4k
0 (

¯

D

T

) ⇢ W

1,2k
0 (D

T

) was introduced in the introduction. In this case, as the function '0, we can
take the function

'0(x, t) =
⇥
(1− |x|2)t(T − t)

⇤2k
.

We set

v =

NX

i=1

l

i

u

i

.

Thus, by using the facts that system (1.1) is split in the leading part and B = BI

N

, by virtue of (1.9), we conclude
that

Z

DT

2

4@
2k
v

@t

2k

@

2k
'0

@t

2k
+

nX

i,j=1

a

ij

(x)

@v

@x

i

@'0

@x

j

3

5
dx dt+

Z

Γ

bv'0dΓ

=

Z

DT

 
−

NX

i=1

l

i

f

i

(u)

!
'0 dx dt+ µ

Z

DT

G'0 dx dt. (4.3)

In view of (4.2) and V 2 W

1,2k
0 (D

T

), we can integrate (4.3) by parts and obtain

Z

DT

 
−

NX

i=1

l

i

f

i

(u)

!
'0 dx dt+ µ

Z

DT

G'0 dx dt

=

Z

DT

v

"
@

2k
'0

@t

2k
−

nX

i,j=1

@

@x

j

✓
a

ij

(x)

@'0

@x

i

◆#
dx dt

=

Z

DT

vL0'0 dx dt, (4.4)

where L0 is the scalar operator corresponding to the operator in (1.1) with f = 0.

It follows from (4.1) and (4.4) that

Z

DT

|v|β'0 dx dt 
Z

DT

vL0 '0 dx dt− µ

Z

DT

G'0 dx dt. (4.5)

Further, we apply the method of test functions [18, pp. 10–12]. In the Young inequality with parameter " > 0,

ab  "

β

a

β

+

1

β

0
"

β

0−1
b

β

0
, a, b ≥ 0, β

0
=

β

β − 1

,

we set

a = |u|'1/β
0 and b = |L0'0|

/
'

1/β
0
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and take into account the fact that β0
/β = β

0 − 1. This yields

|vL0'0| = |v|'1/β
0

|L0'0|
'

1/β
0

 "

β

|v|β'0 +
1

β

0
"

β

0−1

|L0'0|β
0

'

β

0−1
0

. (4.6)

It follows from (4.5) and (4.6) that

✓
1− "

β

◆ Z

DT

|v|β'0 dx dt =
1

β

0
"

β

0−1

Z

DT

|L0'0|β
0

'

β

0−1
0

dx dt− µ

Z

DT

G'0 dx dt.

For " < β, this yields

Z

DT

|v|β'0 dx dt 
β

(β − ")β

0
"

β

0−1

Z

DT

|L0'0|β
0

'

β

0−1
0

dx dt− βµ

β − "

Z

DT

G'0 dx dt. (4.7)

By using the equalities

β

0
=

β

β − 1

and β =

β

0

β

0 − 1

and also the fact that

min

0<"<β

β

(β − ")β

0
"

β

0−1
= 1

(this minimum is attained for " = 1), we get the following inequality from (4.7):

Z

DT

|v|β'0 dx dt 
Z

DT

|L0'0|β
0

'

β

0−1
0

dx dt− β

0
µ

Z

DT

G'0 dx dt. (4.8)

It is easy to see that there exists a test function '0 such that, in addition to (4.2),

0 =

Z

DT

|L0'0|β
0

'

β

0−1
0

dx dt < 1. (4.9)

Indeed, we can easily show that the function

'0(x, t) =
⇥
(1− |x|2)t(T − t)

⇤
m

,

satisfies condition (4.9) for a sufficiently large positive m .
Since, under the condition of the theorem, G 2 L2(DT

), kGk
L2(DT ) 6= 0, G ≥ 0, and mesD

T

< +1,

in view of the fact that '0 |DT
> 0, we obtain

0 < 1 =

Z

DT

G'0 dx dt < +1. (4.10)
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By g(µ) we denote the right-hand side of inequality (4.8), which is a linear function of µ. Thus, according
to (4.9) and (4.10), we obtain

g(µ) < 0 for µ > µ0 and g(µ) > 0 for µ < µ0, (4.11)

where

g(µ) = 0 − β

0
µ1, µ0 =

0

β

0
1

> 0.

According to (4.11), for µ > µ0, the right-hand side of inequality (4.8) is negative, whereas the left-hand side
of this inequality is nonnegative. The obtained contradiction proves the theorem.

Note that in the case where condition (4.1) is satisfied, condition (2.14) is violated. Indeed, in this case,
it suffices to take u = λ(l1, . . . , lN ) as λ ! +1.

Remark 4.1. In Theorem 4.1, for the sake of simplicity, it has been assumed that ⌦ : |x| < 1. However,
this theorem remains true in a more general case where ⌦ is a sufficiently smooth domain. This assumption is
explained by the structure of the test function '0 satisfying condition (4.9) according to the formula

'0(x, t) =
⇥
(1− |x|2)t(T − t)

⇤
m (4.12)

for sufficiently large positive m. If the boundary of the domain ⌦ is given by the equation @⌦ : !(x) = 0, where

r
x

!|
@⌦ 6= 0, !|⌦ > 0, r

x

=

✓
@

@x1
, . . . ,

@

@x

n

◆
, and ! 2 C

2
(Rn

),

then the test function given by Eq. (4.12) should be replaced by

'0(x, t) =
⇥
!(x)t(T − t)

⇤
m

,

where m is a sufficiently large positive number. In this case, Theorem 4.1 also remains true.

Remark 4.2. In the proof of Theorem 4.1, condition (4.1) can be replaced by a more general condition

NX

i=1

l

i

f

i

(u)  −d0

�����

NX

i=1

l

i

u

i

�����

β

8u 2 RN

, 1 < β = const <

n+ 1

n− 1

, (4.13)

where d0 = const > 0. Indeed, case (4.13) is reduced to case (4.1) if we pass from l

i

to ˜

l

i

by the formula

l

i

= λ

˜

l

i

,

where λ = d

1
1−β

0 . As a result, we obtain inequality (4.1) with ˜

l

i

instead of l
i

. We now present a class of vector
functions f satisfying condition (4.13):

f

i

(u1, . . . , uN ) =

NX

j=1

a

ij

|u
j

|βij
+ b

i

, i = 1, . . . , N, (4.14)



994 S. S. KHARIBEGASHVILI AND B. G. MIDODASHVILI

where the constant numbers a
ij

, β

ij

, and b

i

satisfy the inequalities

a

ij

> 0, 1 < β

ij

<

n+ 1

n− 1

,

NX

i=1

b

i

> 0, i, j = 1, . . . , N. (4.15)

In this case, it is necessary to set l1 = . . . = l

N

= −1 in (4.13). Indeed, according to (4.15), we choose
constant numbers ↵0 and β such that

0 < a0  min

i,j

a

ij

,

NX

i=1

b

i

− a0N
2 ≥ 0, 1 < β < β

ij

, i, j = 1, . . . , N. (4.16)

It is easy to see that |s|βij ≥ |s|β − 1 8s 2 (−1,1). By using the well-known inequality [19, p. 302]

NX

i=1

|y
i

|β > N

1−β

�����

NX

i=1

y

i

�����

β

8y = (y1, . . . , yN ) 2 RN

, β = const > 1,

by virtue of (4.14) and (4.15), we obtain

NX

i=1

f

i

(u1, . . . , uN ) ≥ a0

NX

i,j=1

|u
j

|βij
+

NX

i=1

b

i

≥ a0

NX

i,j=1

(|u
j

|β − 1) +

NX

i=1

b

i

≥ a0N

NX

j=1

|u
j

|β − a0N
2
+

NX

i=1

b

i

≥ a0N
2−β

�����

NX

j=1

u

j

�����

β

+

NX

i=1

b

i

− a0N
2 ≥ a0N

2−β

�����

NX

j=1

u

j

�����

β

. (4.17)

According to (4.17), we conclude that, under conditions (4.14) and (4.15), inequality (4.13) is true with

l1 = . . . = l

N

= −1 and d0 = a0N
2−β

.
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