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DIRECT AND INVERSE APPROXIMATION THEOREMS IN THE BESICOVITCH–
MUSIELAK–ORLICZ SPACES OF ALMOST PERIODIC FUNCTIONS

S. O. Chaichenko,1 A. L. Shidlich,2,3 and T. V. Shulyk4 UDC 517.5

In terms of the best approximations of functions and generalized moduli of smoothness, direct and inverse
approximation theorems are proved for the Besicovitch almost periodic functions whose Fourier exponent
sequences have a single limit point at infinity and their Orlicz norms are finite. Special attention is given
to the study of cases where the constants in these theorems are unimprovable.

1. Introduction

The investigations of relationships between the difference and differential properties of the approximated func-
tion and the value of the error of its approximation by certain methods were originated in the well-known works by
Jackson (1911) and Bernstein (1912) in which the first direct and inverse approximation theorems were obtained.
Later, similar studies were carried out by numerous authors for various functional classes and for various approx-
imating aggregates. Their results constitute the classics of modern approximation theory. Moreover, the exact re-
sults (in particular, in a sense of unimprovable constants) deserve special attention. A fairly complete description of
the results on obtaining direct and inverse approximation theorems can be found in the monographs [14, 28, 30, 31].

In the spaces of almost periodic functions, direct approximation theorems were established in [8, 12, 23, 24,
26]. Thus, in particular, Prytula [23] obtained the direct approximation theorem for Besicovitch almost periodic
functions of order 2 (B2-a.p. functions) in terms of the best approximations of functions and their moduli of
continuity. In [24] and [8], theorems of this kind were obtained with moduli of smoothness of B2-a.p. functions
of any positive integer order and with generalized moduli of smoothness, respectively. In [26], the direct and
inverse approximation theorems were obtained in the Besicovitch–Stepanets spaces BSp. The main aim of the
present paper is to obtain the corresponding theorems in the Besicovitch–Musielak–Orlicz spaces BSM. These
spaces are obtained as natural generalizations of all above-mentioned spaces, and the accumulated results can be
regarded as extensions of the corresponding results to the spaces BSM.

2. Preliminaries

2.1. Definition of the spaces BSM. Let Bs, 1  s < 1, be the space of all functions Lebesgue summable
with the s th power in each finite interval of the real axis, where the distance is defined by the equality

D
B

s (f, g) =

 

lim sup

T!1

1

2T

T

Z

−T

|f(x)− g(x)|sdx
!1/s

.
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Further, let T be the set of all trigonometric sums of the form

⌧
N

(x) =
N

X

k=1

a
k

eiλkx, N 2 N,

where λ
k

and a
k

are arbitrary real and complex numbers (λ
k

2 R, a
k

2 C).
An arbitrary function f is called a Besicovitch almost periodic function of order s (or a Bs-a.p. function) and

denoted by f 2 Bs-a.p. {see[20] (Ch. 5, §10) and [10] (Ch. 2, §7)} if there exists a sequence of trigonometric
sums ⌧1, ⌧2, . . . from the set T such that

lim

N!1
D

B

s (f, ⌧
N

) = 0.

If s1 ≥ s2 ≥ 1, then (see, e.g., [12, 13]) Bs1-a.p. ⇢ Bs2-a.p. ⇢ B-a.p., where B-a.p. := B1-a.p. For any
B-a.p. function f, there exists the average value

A{f} := lim

T!1

1

T

T

Z

0

f(x)dx.

The value of the function A
�

f(·)e−iλ· , λ 2 R, can be nonzero on at most a countable set. As a result of
numbering the values of this set in an arbitrary order, we obtain a set S(f) = {λ

k

}
k2N of Fourier exponents, which

is called the spectrum of the function f. The numbers

A
λk

= A
λk
(f) = A

�

f(·)e−iλk·
 

are called the Fourier coefficients of the function f. Each function f 2 B-a.p. with spectrum S(f) is associated
with a Fourier series of the form

X

k

A
λk
eiλkx. If, in addition, f 2 B2-a.p., then the Parseval equality holds (see,

e.g., [10], Ch. 2, § 9)

A{|f |2} =

X

k2N
|A

λk
|2.

Further, we consider only the B-a.p. functions from the spaces BSp for which the sequences of Fourier
exponents have a single limit point at infinity. For these functions f, the Fourier series can be written in the
symmetric form as follows:

S[f ](x) =
X

k2Z
A

k

eiλkx, where A
k

= A
k

(f) = A
n

f(·)e−iλk·
o

, (2.1)

λ0 := 0, λ−k

= −λ
k

, |A
k

|+ |A−k

| > 0, and λ
k+1 > λ

k

> 0 for k > 0.

Let M = {M
k

(t)}
k2Z, t ≥ 0, be a sequence of Orlicz functions. In other words, for every k 2 Z,

the function M
k

(t) is a nondecreasing convex function for which M
k

(0) = 0 and M
k

(t) ! 1 as t ! 1.

Let M⇤
=

�

M⇤
k

(v)
 

k2Z be a sequence of functions defined by the relations

M⇤
k

(v) := sup{uv −M
k

(u) : u ≥ 0}, k 2 Z.
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Consider the set Γ = Γ(M⇤
) of sequences of positive numbers γ = {γ

k

}
k2Z such that

X

k2Z
M⇤

k

(γ
k

)  1.

The modular space (or the Musielak–Orlicz space) BSM is the space of all functions f (f 2 B-a.p.) such that
the following quantity (which is also called the Orlicz norm of f ) is finite:

kfk
M

:= k{A
k

}
k2Zk

lM(Z) := sup

(

X

k2Z
γ
k

|A
k

(f)| : γ 2 Γ(M⇤
)

)

. (2.2)

By definition, the B-a.p. functions are regarded as identical in BSM if they have the same Fourier series.
The spaces BSM defined in this way are Banach spaces. Functional spaces of this kind were studied by

mathematicians since the 1940s (see, e.g., the monographs [21, 22, 25]). In particular, the subspaces SM of all
2⇡-periodic functions from BSM were considered in [3, 5]. If all functions M

k

are identical (namely, M
k

(t) ⌘
M(t), k 2 Z), then the spaces SM coincide with the ordinary Orlicz-type spaces S

M

[15]. If M
k

(t) = µ
k

tpk ,

p
k

≥ 1, µ
k

≥ 0, then the spaces SM coincide with the weighted spaces Sp, µ with variable exponents [2].
If all functions

M
k

(u) = up
⇣

p−1/pq−1/p0
⌘

p

, p > 1,
1

p
+

1

p0
= 1,

then BSM are the Besicovitch–Stepanets spaces BSp [26] of functions f 2 B-a.p. with the norm

kfk
M

= kfk
BSp = k{A

λk
(f)}

k2Nk
lp(N)

=

 

X

k2N
|A

λk
(f)|p

!1/p

. (2.3)

The subspaces of all 2⇡-periodic Lebesgue summable functions from BSp coincide with the well-known
spaces Sp (see, e.g., [28], Ch. XI). For p = 2, the sets BSp

= BS2 coincide with the sets of B2-a.p. functions,
and the spaces Sp coincide with the ordinary Lebesgue spaces of 2⇡-periodic square-summable functions, i.e.,
S2

= L2.

By G
λn we denote the set of all B-a.p. functions whose Fourier exponents belong to the interval (−λ

n

,λ
n

)

and define the value of the best approximation of f 2 BSM by the equality

E
λn(f)M = E

λn(f)
BSM

= inf

g2Gλn

kf − gkM. (2.4)

2.2. Generalized Moduli of Smoothness. Let Φ be the set of all continuous bounded nonnegative pair func-
tions '(t) such that '(0) = 0 and the Lebesgue measure of the set {t 2 R : '(t) = 0} is equal to zero. For any
fixed ' 2 Φ, we consider the generalized modulus of smoothness of a function f 2 BSM

!
'

(f, δ)
M

:= sup

|h|δ

sup

(

X

k2Z
γ
k

'(λ
k

h)|A
k

(f)| : γ 2 Γ

)

, δ ≥ 0. (2.5)

Consider the relationship between modulus (2.5) and some well-known moduli of smoothness. Let ⇥ =

{✓
j

}m
j=0 be a nonzero collection of complex numbers such that

m

X

j=0

✓
j

= 0.
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We associate the collection ⇥ with a difference operator

∆

⇥
h

(f) = ∆

⇥
h

(f, t) =
X

m

j=0
✓
j

f(t− jh)

and the modulus of smoothness

!⇥(f, δ)M := sup

|h|δ

�

�

∆

⇥
h

(f)
�

�

M
.

Note that the collection ⇥(m) =

n

✓
j

= (−1)

j

�

m

j

�

, j = 0, 1, . . . ,m
o

, m 2 N, corresponds to the classical
modulus of smoothness of order m, i.e.,

!⇥(m)(f, δ)M = !
m

(f, δ)
M
.

For any k 2 Z, the Fourier coefficients of the function ∆

⇥
h

(f) satisfy the equality

�

�A
k

(∆

⇥
h

(f))
�

�

= |A
k

(f)|
�

�

�

�

�

�

m

X

j=0

✓
j

e−iλkjh

�

�

�

�

�

�

.

Therefore, in view of (2.2), we see that

!
'⇥(f, δ)M = !⇥(f, δ)M

for

'⇥(t) =

�

�

�

�

�

�

m

X

j=0

✓
j

e−ijt

�

�

�

�

�

�

.

In particular, for

'
m

(t) = 2

m| sin(t/2)|m = 2

m
2
(1− cos t)

m
2 , m 2 N,

we get

!
'm(f, δ)M = !

m

(f, δ)
M
.

Further, let

F
h

(f, t) = f
h

(x) :=
1

2h

t+h

Z

t−h

f(u)du

be the Steklov function of a function f 2 BSM. We define the differences as follows:

e

∆

1
h

(f) := e

∆

1
h

(f, t) = F
h

(f, t)− f(t) = (F
h

− I)(f, t),

e

∆

m

h

(f) := e

∆

m

h

(f, t) = e

∆

1
h

(∆

m−1
h

(f), t) = (F
h

− I)m(f, t) =
m

X

k=0

km−k

✓

m

k

◆

F
h,k

(f, t),
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where m = 2, 3, . . . , F
h,0(f) := f, F

h,k

(f) := F
h

(F
h,k

(f)), and I is the identity operator in BSM. Consider
the following smoothness characteristics:

e!
m

(f, δ) := sup

0hδ

�

�e

∆

m

h

(f)
�

�

M
, δ > 0.

It can be shown [6] that

!
'̃m(f, δ)M = e!

m

(f, δ)
M

for '̃
m

(t) = (1− sinc t)m, m 2 N,

where sinc t = {sin t/t for t 6= 0 and 1 for t = 0}.
In the general case, moduli similar to (2.5) were studied in [3–5, 8, 11, 19, 26, 32, 34].

3. Main Results

3.1. Jackson-Type Inequalities. In this section, we establish direct theorems for the functions f 2 BSM

in terms of the best approximations and generalized moduli of smoothness. Thus, in particular, for the functions
f 2 BSM with Fourier series of the form (2.1), we prove Jackson-type inequalities of the following kind:

E
λn(f)M  K(⌧)!

'

✓

f,
⌧

λ
n

◆

M

, ⌧ > 0, n 2 N.

Let V (⌧), ⌧ > 0, be a set of bounded nondecreasing functions v that differ from a constant on [0, ⌧ ].

Theorem 3.1. Assume that the function f 2 BSM has the Fourier series of the form (2.1). Then, for any
⌧ > 0, n 2 N, and ' 2 Φ, the following inequality holds:

E
λn(f)M  K

n,'

(⌧)!
'

✓

f,
⌧

λ
n

◆

M

, (3.1)

where

K
n,'

(⌧) := inf

v2V (⌧)

v(⌧)− v(0)

I
n,'

(⌧, v)
(3.2)

and

I
n,'

(⌧, v) := inf

k2N, k≥n

⌧

Z

0

'

✓

λ
k

t

λ
n

◆

dv(t). (3.3)

Furthermore, there exists a function v⇤ 2 V (⌧) that realizes the greatest lower bound in (3.2).

In the spaces L2 of 2⇡-periodic square-summable functions, results of this kind were obtained by Babenko [7]
and Abilov and Abilova [6] for the moduli of continuity !

m

(f ; δ) and !̃
m

(f ; δ), respectively. In the spaces Sp

of functions of one and several variables, the corresponding results for the classical moduli of smoothness were
obtained in [27] and [1], respectively. In the Musielak–Orlicz spaces SM, a similar result was obtained for the
generalized moduli of smoothness in [3].
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In the Besicovitch–Stepanets spaces BSp, a similar theorem was proved in [26]. It has been already indicated
that, in the case where all functions

M
k

(u) = up
⇣

p−1/pq−1/p0
⌘

p

, p > 1,
1

p
+

1

p0
= 1,

we have

BSM = BSp and kfk
M

= kfk
BSp .

In the case p = 1, similar equalities

BSM = BS1 and kfk
M

= kfk
BS1

can obviously be obtained if all M
k

(u) = u, k 2 Z, and Γ is the set of all sequences of positive numbers
γ = {γ

k

}
k2Z such that

kγk
l1(Z) = sup

k2Z
γ
k

 1.

Comparing estimate (3.1) with the corresponding result of Theorem 1 from [26], we see that, in the case where
BSM = BS1, inequality (3.1) is unimprovable in the set of all functions f 2 BS1 such that kf −A0(f)kM 6= 0.

Furthermore, Theorem 1 [26] implies the existence of a function v⇤ 2 V (⌧) that realizes the greatest lower bound
in (3.2).

Proof. In the proof of Theorem 3.1, we mainly use the ideas outlined in [7, 16, 17, 26, 27] and take into
account specific features of the spaces BSM. From relations (2.2) and (2.4), it follows that, for any f 2 BSM

with Fourier series of the form (2.1), we have

E
λn(f)M = kf − S

n

(f)kM = sup

(

X

|k|≥n

γ
k

|A
k

(f)| : γ 2 Γ

)

, (3.4)

where

S
n

(f) :=
X

|k|<n

A
k

(f)eiλkx.

By the definition of supremum, for any " > 0, there exists a sequence γ̃ 2 Γ, γ̃ = γ̃("), such that the
following relation holds:

X

|k|≥n

γ̃
k

|A
k

(f)|+ " ≥ sup

8

<

:

X

|k|≥n

γ
k

|A
k

(f)| : γ 2 Γ

9

=

;

.

For any ' 2 Φ and h 2 R, we consider a sequence of numbers {'(λ
k

h)A
k

(f)}
k2Z. If there exists a function

∆

'

h

(f) 2 B-a.p. such that, for all k 2 Z,

A
k

(∆

'

h

(f)) = '(λ
k

h)A
k

(f), (3.5)

then (here and in what follows) by k∆'

h

(f)kM we denote the Orlicz norm (2.2) of the function ∆

'

h

(f). If this
B-a.p. function ∆

'

h

(f) does not exist, then, for the sake of simplicity, we also use the notation k∆'

h

(f)kM for
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the lM-norm of the sequence {'(λ
k

h)A
k

(f)}
k2Z. In view of (2.2) and (3.5), we obtain

k∆'

h

fk
M

≥ sup

8

<

:

X

|k|≥n

γ
k

'(λ
k

h)|A
k

(f)| : γ 2 Γ

9

=

;

≥
X

|k|≥n

γ̃
k

'(λ
k

h)|A
k

(f)|

=

I
n,'

(⌧, v)

v(⌧)− v(0)

X

|k|≥n

γ̃
k

|A
k

(f)|+
X

|k|≥n

γ̃
k

|A
k

(f)|
✓

'(λ
k

h)− I
n,'

(⌧, v)

v(⌧)− v(0)

◆

.

For any u 2 [0, ⌧ ], we get

k∆'

u
λn

fk
M

≥ I
n,'

(⌧, v)

v(⌧)− v(0)

X

|k|≥n

γ̃
k

|A
k

(f)|

+

X

|k|≥n

γ̃
k

|A
k

(f)|
✓

'

✓

λ
k

u

λ
n

◆

− I
n,'

(⌧, v)

v(⌧)− v(0)

◆

. (3.6)

Both sides of inequality (3.6) are nonnegative and, in view of boundedness of the function ', the series on the
right-hand side can be majorized on the entire real axis by an absolutely convergent series K(')

X

|k|≥n

γ̃
k

|A
k

(f)|,
where

K(') := max

u2R
'(u).

Thus, integrating this inequality with respect to dv(u) from 0 to ⌧, we get

⌧

Z

0

�

�

�

∆

'

u
λn

f
�

�

�

M

dv(u) ≥ I
n,'

(⌧, v)
X

|k|≥n

γ̃
k

|A
k

(f)|

+

X

|k|≥n

γ̃
k

|A
k

(f)|
0

@

⌧

Z

0

'

✓

λ
k

u

λ
n

◆

dv(u)− I
n,'

(⌧, v)

1

A.

By virtue of the definition of I
n,'

(⌧, v), we see that the second term on the right-hand side of the last relation
is nonnegative. Therefore, for any function v 2 V (⌧), we have

⌧

Z

0

�

�

�

∆

'

u
λn

f
�

�

�

M

dv(u) ≥ I
n,'

(⌧, v)
X

|k|≥n

γ̃
k

|A
k

(f)|

≥ I
n,'

(⌧, v)

0

@

sup

8

<

:

X

|k|≥n

γ
k

|A
k

(f)| : γ 2 Γ

9

=

;

− "

1

A,

whence, in view of the arbitrariness of choice of the number ", we conclude that

⌧

Z

0

�

�

�

∆

'

u
λn

f
�

�

�

M

dv(u) ≥ I
n,'

(⌧, v)E
λn(f)M .
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Thus,

E
λn(f)M  1

I
n,'

(⌧, v)

⌧

Z

0

�

�

�

∆

'

u
λn

f
�

�

�

M

dv(u)  1

I
n,'

(⌧, v)

⌧

Z

0

!
'

✓

f,
u

λ
n

◆

M

dv(u). (3.7)

Hence, in view of the fact that the function !
'

is nondecreasing, we immediately arrive at relation (3.1).
Theorem 3.1 is proved.

We now consider some realizations of Theorem 3.1. Setting

'
↵

(t) = 2

↵
2
(1− cos t)

↵
2 , ↵ > 0, !

'↵(f, δ)M =: !
↵

(f, δ)
M
, ⌧ = ⇡,

and

v(u) = 1− cosu, u 2 [0,⇡],

we get the following assertion:

Corollary 3.1. For arbitrary numbers n 2 N and ↵ > 0, and any function f 2 BSM with Fourier series of
the form (2.1), the following inequalities hold:

E
λn(f)M  1

2

↵
2 I

n

(

↵

2 )

⇡

Z

0

!
↵

✓

f,
u

λ
n

◆

M

sinu du, (3.8)

where

I
n

⇣↵

2

⌘

= inf

k2N,k≥n

⇡

Z

0

✓

1− cos

λ
k

u

λ
n

◆

↵
2

sinu du. (3.9)

If, in addition,
↵

2

2 N, then

I
n

⇣↵

2

⌘

=

2

↵
2
+1

↵

2

+ 1

, (3.10)

and inequality (3.8) cannot be improved for any n 2 N.

Proof. Estimate (3.8) follows from (3.7). In [27] (relation (52)), it was shown that, for any ✓ ≥ 1 and s 2 N,
the following inequality holds:

⇡

Z

0

(1− cos ✓t)s sin tdt ≥ 2

s+1

s+ 1

,

which turns into the equality for ✓ = 1. Therefore, setting

s =
↵

2

and ✓ =

λ
⌫

λ
n

, ⌫ = n, n+ 1, . . . ,
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in view of the monotonicity of the sequence of Fourier exponents {λ
k

}
k2Z, we conclude that, for

↵

2

2 N, equal-
ity (3.10) is indeed true.

We now prove that, in this case, the constant

↵

2

+ 1

2

↵+1
in inequality (3.8) is unimprovable for

↵

2

2 N. It suffices
to verify that the function

f⇤
(x) = γ + βe−λnx

+ δeλnx, (3.11)

where γ, β, and δ are arbitrary complex numbers, satisfies the equality

E
λn(f

⇤
)

M
=

↵

2

+ 1

2

↵+1

⇡

Z

0

!
↵

✓

f⇤,
t

λ
n

◆

M

sin t dt, ↵ > 0. (3.12)

We have E
λn(f

⇤
)

M
= |β|+ |δ| and the function

�

�

∆

'↵

u/λn
f⇤�
�

M
= 2

↵
2
(|β|+ |δ|)(1− cosu)

↵
2

does not decrease with respect to u on [0,⇡]. Therefore,

!
↵

✓

f⇤,
u

λ
n

◆

M

=

�

�

∆

'↵

u/λn
f⇤�
�

M

and

2

↵+1

↵

2

+ 1

E
λn(f

⇤
)

M
−

⇡

Z

0

!
↵

✓

f⇤,
t

λ
n

◆

M

sin t dt

= (|β|+ |δ|)
0

@

2

↵+1

↵

2

+ 1

− 2

↵
2

⇡

Z

0

(1− cos t)
↵
2
sin t dt

1

A

= 0.

Corollary 3.1 is proved.

In [27], it was shown that I
n

(s) ≥ 2 for s ≥ 1 and I
n

(s) ≥ 1 + 2

s−1 for s 2 (0, 1). Combining these
two estimates and (3.8), we arrive at the following statement, which establishes a Jackson-type inequality with
a constant uniformly bounded in the parameter n 2 N :

Corollary 3.2. Assume that a function f 2 BSM has the Fourier series of the form (2.1) and

kf −A0(f)kM 6= 0.

Then, for any n 2 N and ↵ > 0,

E
λn(f)M < c

↵

!
↵

✓

f,
⇡

λ
n

◆

M

, (3.13)
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where c
↵

= 2

−↵/2 for ↵ ≥ 2 and c
↵

= 4 · 2−↵/2/3 for 0 < ↵ < 2. Furthermore, in the case where ↵ = m 2 N,
the following more accurate estimate holds:

E
λn(f)M <

4− 2

p
2

2

m/2
!
m

✓

f,
⇡

λ
n

◆

M

. (3.14)

Proof. Relation (3.14) follows from the estimate

I
n

⇣↵

2

⌘

≥ 1 +

1p
2

,

which is a consequence of the estimates presented above for the value of I
n

(s) in the case ↵ = m 2 N [27].
If the weight function v2(t) = t, then we obtain the following assertion:

Corollary 3.3. Assume that the function f 2 BSM has the Fourier series of the form (2.1) and ↵ ≥ 1. Then,

for any 0 < ⌧  3⇡

4

and n 2 N,

E
λn(f)M  1

2

↵

Z

⌧

0
sin

↵

t

2

dt

⌧

Z

0

!
↵

✓

f,
t

λ
n

◆

M

dt. (3.15)

Relation (3.15) turns into the equality for a function f⇤ of the form (3.11).

Inequalities (3.8) and (3.15) can be considered as an extension of the corresponding results obtained by
Serdyuk and Shidlich [26] to the Besicovitch–Musielak spaces BSM, and they coincide with the indicated re-
sults in the case BSM = BS1. In the spaces Sp of functions of one and several variables, analogs of Theorem 3.1
and Corollaries 3.1 and 3.3 were proved in [27] and [1], respectively. The inequalities of this type were also
investigated in [8, 17, 27, 32, 34].

Proof. It follows from inequality (3.7) that

E
λn(f)M  1

2

↵
2 I⇤

n

⇣↵

2

⌘

⌧

Z

0

!
↵

✓

f,
t

λ
n

◆

dt,

where

I⇤
n

⇣↵

2

⌘

:= inf

k2N, k≥n

⌧

Z

0

✓

1− cos

λ
k

t

λ
n

◆

↵
2

dt, ↵ > 0, n 2 N.

In [35], it was shown that for a function

F
↵

(x) :=
1

x

x

Z

0

| sin t|↵ dt,

any h 2
✓

0,
3⇡

4

◆

, and ↵ ≥ 1, the following relation is true:

inf

x≥h/2
F
↵

(x) = F
↵

(h/2). (3.16)
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Since, for h =

λ
k

λ
n

≥ 1 (k ≥ n), we have

⌧

Z

0

✓

1− cos

λ
k

t

λ
n

◆

↵
2

dt = 2

↵
2

⌧

Z

0

�

�

�

sin

λ
k

t

2λ
n

�

�

�

↵

dt = 2

↵
2 ⌧F

↵

✓

λ
k

⌧

2λ
n

◆

,

it follows from (3.16)
⇣

with ⌧ 2
✓

0,
3⇡

4

�

and ↵ ≥ 1

⌘

that

I⇤
n

⇣↵

2

⌘

= inf

k2N : k≥n

⌧

Z

0

✓

1− cos

λ
k

t

λ
n

◆

↵
2

dt = inf

k2N : k≥n

2

↵
2

⌧

Z

0

�

�

�

sin

λ
k

t

2λ
n

�

�

�

↵

dt = 2

↵
2

⌧

Z

0

sin

↵

t

2

dt.

For functions f⇤ of the form (3.11), the equality

E
λn(f

⇤
)

M
=

1

2

↵

Z

⌧

0
sin

↵

t

2

dt

⌧

Z

0

!
↵

✓

f⇤,
t

λ
n

◆

M

dt

is verified as the proof of equality (3.12).
Corollary 3.2 is proved.

In the case '(t) = '̃
m

(t) = (1 − sinc t)m, m 2 N, where, by definition, sinc t =
�

sin t/t for t 6= 0 and
1 for t = 0

 

, for ⌧ = ⇡ and v(u) = 1− cosu, u 2 [0;⇡], it follows from relation (3.7) that

E
λn(f)M  1

˜I
n

(m)

⇡

Z

0

!̃
m

✓

f,
u

λ
n

◆

M

sinu du,

where

˜I
n

(m) = inf

k2N,k≥n

⇡

Z

0

✓

1− sinc

λ
k

u

λ
n

◆

m

sinu du.

In view of the estimate [33]

1− sinc

✓

λ
k

u

λ
n

◆

≥ 1− sinu

u
≥
⇣u

⇡

⌘2
, k ≥ n, u 2 [0;⇡],

we obtain

˜I
n

(m) ≥
⇡

Z

0

(1− sinc u)m sinu du

≥ 1

⇡2m

⇡

Z

0

u2m sinu du =

2m!

⇡2m

0

@

m

X

j=0

(−1)

j

⇡2m−2j

(2m− 2j)!
+

⇡2m

2m!

(−1)

m

1

A

:=

2m!

⇡2m
K(m).
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Hence, Theorem 3.1 yields the following corollary:

Corollary 3.4. For arbitrary numbers n 2 N and m > 0 and any function f 2 BSM with Fourier series of
the form (2.1), the following inequalities are true:

E
λn(f)M  ⇡2m

2m! ·K(m)

⇡

Z

0

!̃
m

✓

f,
u

λ
n

◆

M

sinu du,

where

K(m) =

m

X

j=0

(−1)

j

⇡2m−2j

(2m− 2j)!
+

⇡2m

2m!

(−1)

m.

For m = 1, we have 2K(1) = ⇡2 − 4 and

E
λn(f)M  ⇡2

⇡2 − 4

⇡

Z

0

!̃1

✓

f,
u

λ
n

◆

M

sinu du

 ⇡2λ
n

⇡2 − 4

⇡
λn
Z

0

!̃1(f, u)
M

sinλ
n

u du.

If the weight function v2(t) = um+1, then we get the following assertion:

Corollary 3.5. Assume that the function f 2 BSM has the Fourier series of the form (2.1) and m ≥ 1. Then,
for any 0 < ⌧  ⇡ and n 2 N,

E
λn(f)M  ⇡m−1

✓

2λ
n

⇡2 − 4

◆

m

λ
n

⌧/λn
Z

0

!̃
m

(f, t)
M
tm dt. (3.17)

Indeed, applying Holder’s inequality, we find

⇡

Z

0

✓

1− sinc

λ
k

u

λ
n

◆

m

dum+1 ≥ (m+ 1)

⇡

Z

0

✓

1− sinu

u

◆

m

um du = (m+ 1)

⇡

Z

0

(u− sinu)m du

≥ m+ 1

⇡m−1

0

@

⇡

Z

0

(u− sinu) du

1

A

m

=

m+ 1

⇡m−1

✓

⇡2 − 4

2

◆

m

.

In the spaces L2 of 2⇡-periodic square-summable functions, for the moduli of smoothness !̃
m

(f ; δ), the re-
sults of this kind were obtained by Abilov and Abilova [6], and Vakarchuk [32]. Note that, in the case where
f 2 BSM = L2, inequality (3.17) follows from the result in [6] (see Theorem 1). For m = 1 and f 2 L2,

the statements of Corollary 3.5 and Theorem 1 in [6] are identical and, moreover, the constant on the right-hand
side of (3.17) cannot be reduced for any fixed n.
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4. Inverse Approximation Theorem

Theorem 4.1. Assume that f 2 BSM has Fourier series of the form (2.1), the function ' 2 Φ is nonde-
creasing on the interval [0, ⌧ ], ⌧ > 0, and '(⌧) = max{'(t) : t 2 R}. Then, for any n 2 N, the following
inequality holds:

!
'

✓

f,
⌧

λ
n

◆

M


n

X

⌫=1

✓

'

✓

⌧λ
⌫

λ
n

◆

− '

✓

⌧λ
⌫−1

λ
n

◆◆

E
λ⌫ (f)M . (4.1)

Proof. We use the same scheme of the proof as in [27] and [3] but modify it to take into account the specific
features of the spaces BSM and the definition of the modulus !

'

.

Let f 2 BSM. For any " > 0 there exists a number N0 = N0(") 2 N, N0 > n, such that, for any N > N0,

we have

E
λN

(f)
M

= kf − S
N−1(f)kM < "/'(⌧).

We set f0 := S
N0(f). Thus, in view of (3.5), we conclude that

k∆'

h

(f)k
M

 k∆'

h

(f0)kM + k∆'

h

(f − f0)kM

 k∆'

h

(f0)kM + '(⌧)E
λN0+1

(f)
M

< k∆'

h

(f0)kM + ". (4.2)

Further, let S
n−1 := S

n−1(f0) be the Fourier sum of f0. Then, by virtue of (3.5), for |h|  ⌧/λ
n

, we get

k∆'

h

(f0)kM =

�

�

∆

'

h

(f0 − S
n−1) +∆

'

h

S
n−1

�

�

M


�

�

�

�

�

'(⌧)(f0 − S
n−1) +

X

|k|n−1

'(λ
k

h)|A
k

(f)|
�

�

�

�

�

M


�

�

�

�

�

'(⌧)

N0
X

⌫=n

H
⌫

+

n−1
X

⌫=1

'

✓

⌧λ
⌫

λ
n

◆

H
⌫

�

�

�

�

�

M

, (4.3)

where

H
⌫

(x) := |A
⌫

(f)|+ |A−⌫

(f)|, ⌫ = 1, 2, . . . .

We now use the following assertion from [27]:

Lemma 4.1 [27]. Let {c
⌫

}1
⌫=1 and {a

⌫

}1
⌫=1 be arbitrary numerical sequences. Then the following equality

holds for all natural N1, N2 and N, N1  N2 < N :

N2
X

⌫=N1

a
⌫

c
⌫

= a
N1

N

X

⌫=N1

c
⌫

+

N2
X

⌫=N1+1

(a
⌫

− a
⌫−1)

N

X

i=⌫

c
i

− a
N2

N

X

⌫=N2+1

c
⌫

. (4.4)
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Setting a
⌫

= '

✓

⌧λ
⌫

λ
n

◆

, c
⌫

= H
⌫

(x), N1 = 1, N2 = n− 1, and N = N0 in (4.4), we get

n−1
X

⌫=1

'

✓

⌧λ
⌫

λ
n

◆

H
⌫

(x) = '

✓

⌧λ1

λ
n

◆

N0
X

⌫=1

H
⌫

(x) +
n−1
X

⌫=2

✓

'

✓

⌧λ
⌫

λ
n

◆

− '

✓

⌧λ
⌫−1

λ
n

◆◆

N0
X

i=⌫

H
i

(x)

− '

✓

⌧λ
⌫−1

λ
n

◆

N0
X

⌫=n

H
⌫

(x).

Therefore,

�

�

�

�

�

'(⌧)

N0
X

⌫=n

H
⌫

+

n−1
X

⌫=1

'

✓

⌧λ
⌫

λ
n

◆

H
⌫

�

�

�

�

�

M


�

�

�

�

�

'(⌧)

N0
X

⌫=n

H
⌫

+

n−1
X

⌫=1

✓

'

✓

⌧λ
⌫

λ
n

◆

− '

✓

⌧λ
⌫−1

λ
n

◆◆

N0
X

i=⌫

H
i

−'

✓

⌧λ
⌫−1

λ
n

◆

N0
X

⌫=n

H
⌫

�

�

�

�

�

M


�

�

�

�

�

n

X

⌫=1

✓

'

✓

⌧λ
⌫

λ
n

◆

− '

✓

⌧λ
⌫−1

λ
n

◆◆

N0
X

i=⌫

H
i

�

�

�

�

�

M


n

X

⌫=1

✓

'

✓

⌧λ
⌫

λ
n

◆

− '

✓

⌧λ
⌫−1

λ
n

◆◆

E
λ⌫ (f0)M . (4.5)

Combining relations (4.2), (4.3), and (4.5) and taking into account the definition of the function f0, we con-
clude that, for |h|  ⌧/λ

n

, the following inequality holds:

k∆'

h

(f)k
M


n

X

⌫=1

✓

'

✓

⌧λ
⌫

λ
n

◆

− '

✓

⌧λ
⌫−1

λ
n

◆◆

E
λ⌫ (f)M + ".

In view of arbitrariness of ", this gives (4.1).
Theorem 4.1 is proved.

Consider an important special case where

'(t) = '
↵

(t) = 2

↵
2
(1− cos t)

↵
2
= 2

↵| sin(t/2)|↵, ↵ > 0.

In this case, the function ' satisfies the conditions of Theorem 4.1 with ⌧ = ⇡. Thus, for ↵ ≥ 1, by using the
inequality

x↵ − y↵  ↵x↵−1
(x− y), x > 0, y > 0

(see, e.g., [18], Ch. 1), and the ordinary trigonometric formulas, for ⌫ = 1, 2, . . . , n, we obtain

'

✓

⌧λ
⌫

λ
n

◆

− '

✓

⌧λ
⌫−1

λ
n

◆

= 2

↵

✓

�

�

�

�

sin

⇡λ
⌫

λ
n

�

�

�

�

↵

−
�

�

�

�

sin

⇡λ
⌫−1

λ
n

�

�

�

�

↵

◆
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 2

↵↵

�

�

�

�

sin

⇡λ
⌫

λ
n

�

�

�

�

↵−1�
�

�

�

sin

⇡λ
⌫

λ
n

− sin

⇡λ
⌫−1

λ
n

�

�

�

�

 ↵

✓

2⇡

λ
n

◆

↵

λ↵−1
⌫

(λ
⌫

− λ
⌫−1).

If 0 < ↵ < 1, then a similar estimate can be obtained using the inequality x↵ − y↵  ↵y↵−1
(x− y), which

is true for any x > 0, y > 0 [18] (Ch. 1). Hence, for any f 2 BSM, we get the following estimate:

!
↵

✓

f,
⇡

λ
n

◆

M

 ↵

✓

2⇡

λ
n

◆

↵

n

X

⌫=1

λ↵−1
⌫

(λ
⌫

− λ
⌫−1)E

λ⌫ (f)M , ↵ > 0. (4.6)

It should be noted that the constant in this estimate can be improved as follows:

Theorem 4.2. Assume that f 2 BSM has Fourier series of the form (2.1). Then, for any n 2 N and ↵ > 0,

!
↵

✓

f,
⌧

λ
n

◆

M


✓

⇡

λ
n

◆

↵

n

X

⌫=1

(λ↵

⌫

− λ↵

⌫−1)Eλ⌫ (f)M . (4.7)

Proof. We prove this theorem by analogy with the proof of Theorem 4.1. For any ">0, by N0=N0(")2N,
N0 > n, we denote a number such that, for any N > N0,

E
λN

(f)
M

= kf − S
N−1(f)kM < ".

We set f0 := S
N0(f), Sn−1 := S

n−1(f0), and

k∆↵

h

(f)k
M

:= k∆'↵

h

(f)k
M

and apply relations (4.2) and (4.3). This gives

k∆↵

h

(f)k
M

< k∆↵

h

(f0)kM + " (4.8)

and

k∆↵

h

(f0)kM 
�

�

�

�

2

↵

N0
X

⌫=n

H
⌫

+ 2

↵

n−1
X

⌫=1

�

�

�

sin

⇡λ
⌫

2λ
n

�

�

�

↵

H
⌫

�

�

�

�

M


✓

⇡

λ
n

◆

↵

�

�

�

�

λ↵

n

N0
X

⌫=n

H
⌫

+

n−1
X

⌫=1

λ↵

⌫

H
⌫

�

�

�

�

M

, (4.9)

where |h|  ⇡/λ
n

and H
⌫

(x) = |A
⌫

(f)|+ |A−⌫

(f)|, ⌫ = 1, 2, . . . .

By virtue of (4.4), for a
⌫

= λ↵

⌫

, c
⌫

= H
⌫

(x), N1 = 1, N2 = n− 1, and N = N0, we can write

n−1
X

⌫=1

λ↵

⌫

H
⌫

(x) = λ↵

1

N0
X

⌫=1

H
⌫

(x) +

n−1
X

⌫=2

�

λ↵

⌫

− λ↵

⌫−1

�

N0
X

i=⌫

H
i

(x)− λ↵

⌫−1

N0
X

⌫=n

H
⌫

(x).
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Therefore,

�

�

�

�

�

λ↵

n

N0
X

⌫=n

H
⌫

+

n−1
X

⌫=1

λ↵

⌫

H
⌫

�

�

�

�

�

M

=

�

�

�

�

�

n

X

⌫=1

�

λ↵

⌫

− λ↵

⌫−1

�

N0
X

i=⌫

H
i

�

�

�

�

�

M


n

X

⌫=1

�

λ↵

⌫

− λ↵

⌫−1

�

E
λ⌫ (f0)M . (4.10)

Combining relations (4.8), (4.9), and (4.10) and taking into account the definition of the function f0, we con-
clude that, for |h|  ⌧/λ

n

, the following inequality holds:

k∆↵

h

(f)k
M


✓

⇡

λ
n

◆

↵

n

X

⌫=1

�

λ↵

⌫

− λ↵

⌫−1

�

E
λ⌫ (f)M + ".

In view of the arbitrariness of ", this gives (4.7).
Theorem 4.2 is proved.

In (4.1), the constant ⇡↵ is exact in a sense that, for any " > 0, there exists a function f⇤ 2 BSM such that,
for all n greater than a certain number n0, we have

!
↵

✓

f⇤,
⇡

λ
n

◆

M

>
⇡↵ − "

λ↵

n

n

X

⌫=1

�

λ↵

⌫

− λ↵

⌫−1

�

E
λ⌫ (f

⇤
)M. (4.11)

Consider a function f⇤
(x) = eiλk0

x, where k0 is an arbitrary positive integer. Then E
λ⌫ (f

⇤
)M = 1 for

⌫ = 1, 2, . . . , k0, E
λ⌫ (f

⇤
)M = 0 for ⌫ > k0, and

!
↵

✓

f⇤,
⇡

λ
n

◆

M

≥ k∆↵

⇡
λn

f⇤kM ≥ 2

↵

�

�

�

sin

λ
k0⇡

2λ
n

�

�

�

↵

.

Since sin t/t tends to 1 as t ! 0, the inequality

2

↵| sinλ
k0⇡/(2λn

)|↵ > (⇡↵ − ")λ↵

k0
/λ

n

↵

holds for all n greater than a certain number n0. This yields (4.11).

Corollary 4.1. Suppose that f 2 BSM has Fourier series of the form (2.1). Then, for any n 2 N and ↵ > 0,

!
↵

✓

f,
⇡

λ
n

◆

M

 ↵

✓

⇡

λ
n

◆

↵

n

X

⌫=1

λ↵−1
⌫

(λ
⌫

− λ
⌫−1)E

λ⌫ (f)M . (4.12)

If, in addition, the Fourier exponents λ
⌫

, ⌫ 2 N, satisfy the condition

λ
⌫+1 − λ

⌫

 C, ⌫ = 1, 2, . . . , (4.13)



DIRECT AND INVERSE APPROXIMATION THEOREMS IN THE BESICOVITCH–MUSIELAK–ORLICZ SPACES 817

with an absolute constant C > 0, then

!
↵

✓

f,
⇡

λ
n

◆

M

 C↵

✓

⇡

λ
n

◆

↵

n

X

⌫=1

λ↵−1
⌫

E
λ⌫ (f)M . (4.14)

5. Constructive Characteristics of the Classes of Functions Defined by the Generalized
Moduli of Smoothness

Let ! be a function (majorant) given on [0, 1]. For fixed ↵ > 0, we set

BSMH!

↵

=

�

f 2 BSM : !
↵

(f, δ)
M

= O(!(δ)), δ ! 0+

 

. (5.1)

Further, we consider majorants !(δ), δ 2 [0, 1] satisfying the following conditions:

(1) !(δ) is continuous on [0, 1];

(2) !(δ) ";
(3) !(δ) 6= 0 for δ 2 (0, 1];

(4) !(δ) ! 0 for δ ! 0;

as well as the condition

n

X

v=1

λs−1
v

!

✓

1

λ
v

◆

= O


λs

n

!

✓

1

λ
n

◆�

, (5.2)

where s > 0 and λ
⌫

, ⌫ 2N, is an increasing sequence of positive numbers. In the case where λ
⌫

= ⌫, condi-
tion (5.2) is the well-known Bari condition (B

s

) (see, e.g., [9]).

Theorem 5.1. Assume that the function f 2 BSM has Fourier series of the form (2.1), ↵ > 0, and the
majorant ! satisfies the conditions (i)–(iv).

1. If f 2 BSMH!

↵

, then the following relation is true:

E
λn(f)M = O



!

✓

1

λ
n

◆�

. (5.3)

2. If the numbers λ
⌫

, ⌫ 2 N satisfy condition (4.13) and the function ! satisfies condition (5.2) with s = ↵,

then relation (5.3) yields the inclusion f 2 BSMH!

↵

.

Proof. Let f 2 BSMH!

↵

. Then relation (5.3) follows from (5.1) and (3.13).
On the other hand, if f 2 BSM, the numbers λ

⌫

, ⌫ 2 N satisfy condition (4.13), the function ! satisfies
condition (5.2) with s = ↵, and relation (5.3) is true, then, by virtue of (4.14), we get

!
↵

✓

f,
1

λ
n

◆

M

 C1

λ↵

n

n

X

⌫=1

λ↵−1
⌫

E
λ⌫ (f) 

C1

λ↵

n

n

X

⌫=1

λ↵−1
⌫

!

✓

1

λ
⌫

◆

= O


!

✓

1

λ
n

◆�

,

where C1 = ↵(2⇡)↵ · C. Hence, the function f belongs to the set BSMH!

↵

.

Theorem 5.1 is proved.
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The function tr, 0 < r  ↵, satisfies condition (5.2) with s = ↵. Hence, denoting the class BSMH!

↵

for !(t) = tr by BSMHr

↵

, we arrive at the following statement:

Corollary 5.1. Assume that f 2 BSM has Fourier series of the form (2.1), ↵ > 0, 0 < r  ↵, and
condition (4.13) is satisfied. The function f belongs to the set BSMHr

↵

, iff the following relation is true:

E
λn(f)M = O(λ−r

n

).

In the spaces Sp, Theorems 4.1 and 5.1 were proved for the classical moduli of smoothness !
m

in [27] and [1].
In the spaces Sp, inequalities of the form (4.14) were also obtained in [29]. In the spaces L

p

of 2⇡-periodic
functions Lebesgue summable with the p th power, inequalities similar to (4.14) were obtained by M. Timan (see,
e.g., [30], Ch. 6, [31], Ch. 2). In the Musielak–Orlicz type spaces, inequalities of the same kind as (4.1) were
proved in [3].

The investigations carried out in Section 3 were financially supported by the Project “Innovative Methods
in the Theory of Differential Equations, Computational Mathematics and Mathematical Modeling” (Project No.
0122U000670).
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