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SHARP REMEZ-TYPE INEQUALITIES ESTIMATING THE Lq-NORM OF A
FUNCTION VIA ITS Lp-NORM

V. A. Kofanov1 and T. V. Olexandrova2 UDC 517.5

For any q ≥ p > 0, ↵ = (r + 1/q)/(r + 1/p), fp 2 [0,1], and β 2 [0, 2⇡), we prove a sharp
Remez-type inequality

kxkq  k'r + ckq
k'r + ck↵Lp([0,2⇡]\By(β))

kxk↵Lp([0,2⇡]\B)kx(r)k1−↵
1

for 2⇡-periodic functions x 2 L

r
1, which have zeros and satisfy the condition

kx+kp kx−k−1
p = fp, (1)

where 'r is Euler’s perfect spline of order r, the number c is such that the function x = 'r + c satisfies
condition (1), B is an arbitrary Lebesgue-measurable set such that

µB  β

✓
k'r + ckp

���x(r)
���
1
kxk−1

p

◆−1/(r+1/p)

,

the set By(β) is defined by By(β) := {t 2 [0, 2⇡] : |'r(t) + c| > y(β)}, and moreover, µBy(β) = β.

We also establish sharp Remez-type inequalities of various metrics for trigonometric polynomials and
polynomial splines satisfying relation (1).

1. Introduction

Let G be a Lebesgue-measurable subset of the numerical axis and let Lp(G) be a Lebesgue-measurable space
of functions x : G ! R with finite norm (quasinorm)

kxkLp(G) :=

8
>>><

>>>:

✓Z

G
|x(t)|pdt

◆1/p

for 0 < p < 1,

vrai sup

t2G
|x(t)| for p = 1.

By Id we denote a circle realized in the form of a segment [0, d] whose ends are identified. For the sake of brevity,
we write kxkp instead of kxkLp(I2⇡).

For r 2 N, G = R or G = Id, by L

r
1(G) we denote the set of all functions x 2 L1(G) with locally

absolutely continuous derivatives up to the (r − 1) th order satisfying the condition x

(r) 2 L1(G).

By 'r(t), r 2 N, we denote the shift of the r th 2⇡-periodic integral of the function '0(t) = sgn sin t with
mean value over the period equal to zero satisfying the condition 'r(0) = 0. For λ > 0, we set

'λ,r(t) := λ

−r
'r(λ).
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The following theorem was proved in [1]:

Theorem A. Suppose that r 2 N and q > p > 0. Then, for any function x 2 L

r
1(I2⇡) which has zeros,

the following sharp inequality is true in the class Lr
1(I2⇡):

kxkq  sup

c2[0,Kr]

k'r + ckq
k'r + ck↵p

kxk↵p kx(r)k1−↵
1 , (1.1)

where ↵ =

r + 1/q

r + 1/p

and Kr := k'rk1 is the Favard constant.

In the proof of inequality (1.1) in [1], it was established that if, for a given function x 2 L

r
1(I2⇡) which has

zeros, the number c 2 [−Kr,Kr] is chosen to guarantee that the condition

kx+kp
kx−kp

=

k('r + c)+kp
k('r + c)−kp

is satisfied, then the inequality

kx±kq 
k('r + c)±kq
k('r + c)±k↵p

kx±k↵p kx(r)k1−↵
1 (1.2)

is true.
An analog of inequality (1.1) in which the Lq-norm of a periodic function is estimated via its local Lp-norm

was established in [2]. Sufficient conditions under which the least upper bound in inequality (1.1) is attained
for c = 0 were established in [3].

In the present paper, we generalize inequalities (1.1) and (1.2) to the classes of functions with given comparison
function. Moreover, these generalizations contain the “Remez effect.” We now present necessary definitions.

A function f 2 L

1
1(R) is called the comparison function for a function x 2 L

1
1(R) if there exists c 2 R

such that

min

t2R
f(t) + c  x(t)  max

t2R
f(t) + c, t 2 R,

and the equality x(⇠) = f(⌘) + c, where ⇠, ⌘ 2 R, yields the inequality |x0(⇠)|  |f 0
(⌘)| provided that the

indicated derivatives exist.
An odd 2!-periodic function ' 2 L

1
1(I2!) is called an S-function if it has the following properties: ' is

even with respect to !/2 and |'| is convex upward on [0,!] and strictly monotone on [0,!/2].

For a 2!-periodic S-function ', by S'(!) we denote the class of functions x 2 L

1
1(Id) for which ' is

a comparison function. Note that the classes S'(!) were considered in [4, 5]. As examples of the classes S'(!),

we can mention the Sobolev classes Lr
1(Id) with comparison function 'λ,r, the bounded subsets of the spaces Tn

(trigonometric polynomials of degree at most n) with comparison function sinnt, and Sn,r (2⇡-periodic splines
of order r with defect 1 and nodes at the points k⇡/n, k 2 Z) with comparison function 'n,r.

An important role in the approximation theory is played by the Remez-type inequalities

kTkL1(I2⇡)  C(n,β)kTkL1(I2⇡\B) (1.3)

on the class Tn, where B is an arbitrary Lebesgue-measurable set B ⇢ I2⇡, µB  β.
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The foundations of this direction were laid by Remez [6] who determined the sharp constant C(n,β)

in an inequality of the form (1.3) for algebraic polynomials. In inequality (1.3) for trigonometric polynomials,
two-sided estimates for the sharp constants C(n,β) were established in a series of works. Moreover, the asymp-
totic behaviors of the constants C(n,β) as β ! 2⇡ [7] and as β ! 0 [8] are known. For the bibliography in this
field, see [7–10]. In [8], the inequality

kTkL1(I2⇡) 
✓
1 + 2 tan

2 nβ

4m

◆
kTkL1(I2⇡\B) (1.4)

was proved for any polynomial T 2Tn with the minimal period 2⇡/m and any Lebesgue-measurable set B⇢I2⇡,

µB  β, where β 2 (0, 2⇡m/n). The equality in (1.4) is attained for the polynomial

T (t) = cosnx+

1

2

(1− cosβ/2).

Recently, a sharp constant for the Remez-type inequality (1.3) for trigonometric polynomials has been found
in [11].

In [12], the result obtained in [8] was generalized to the classes S'(!) . As a consequence, an analog of
inequality (1.4) for polynomial splines and functions from the classes L

r
1(I2⇡) was obtained. In [13–17], some

sharp Remez-type inequalities of different metrics and Kolmogorov–Remez-type inequalities were proved for the
classes S'(!) and, in particular, for the differentiable periodic functions, trigonometric polynomials, and splines.
In addition, the relationship between the sharp constants for the Kolmogorov-type and Kolmogorov–Remez-type
inequalities was investigated in [17]. Furthermore, the relationship between the sharp constants in the Kolmogorov-
type inequalities for periodic functions and functions on the real axis was studied in [18].

In the present paper, we obtain sharp Remez-type inequalities of different metrics for the functions x 2 S'(!)

with given ratio of the Lp-norms of their positive and negative parts (Theorem 1). As a consequence, we prove
these inequalities for functions from the classes L

r
1(I2⇡), trigonometric polynomials, and polynomial splines

with given ratio of the Lp-norms of their positive and negative parts (Theorems 2–4). Note that the corollary of
Theorem 2 contains inequality (1.1) with “Remez effect.”

2. Remez-Type Inequalities of Different Metrics on the Classes S'(!)

Theorem 1. Suppose that q, p > 0, q ≥ p, ' is an S-function with period 2!, and β 2 [0, 2!). If, for
a d-periodic function x 2 S'(!) with zeros, there exists c 2 [−k'k1, k'k1] satisfying the condition

kx±kLp(Id) = k('+ c)±kLp(I2!), (2.1)

then, for any Lebesgue-measurable set B ⇢ Id, µB  β, the following inequality is true:

kxkLq(Id) 
k'+ ckLq(I2!)

k'+ ckLp(I2!\By(β))
kxkLp(Id\B), (2.2)

where

By := {t 2 [0, 2!] : |'(t) + c| > y}

and, moreover, y = y(β) is chosen such that µBy(β) = β .
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For any fixed c 2 [−k'k1, k'k1], inequality (2.2) is sharp in the class of functions x 2 S'(!) with zeros
satisfying condition (2.1). Equality in (2.2) is attained for the function x(t) = '(t) + c and the set B = By(β).

We prove Theorem 1 in the form of a series of lemmas, which are also used in the proofs of the other theorems.
We set

E0(x)1 := inf

a2R
kx− ak1.

Lemma 1. Under the conditions of Theorem 1,

kx±k1  k('+ c)±k1 (2.3)

and, in addition,

d ≥ 2!. (2.4)

Proof. We fix a function x 2 S'(!) and a number c 2 [−k'k1, k'k1] satisfying the conditions of The-
orem 1. Assume that inequality (2.3) is not true for the function x. Since ' is the comparison function for the
function x, we have E0(x)1  E0(')1. Hence, the assumption made above means that exactly one inequal-
ity (2.3) is not true. Thus, let

kx+k1  k('+ c)+k1 and kx−k1 > k('+ c)−k1.

Then there exists a > 0 such that

k(x+ a)+k1  k('+ c)+k1, k(x+ a)−k1 = k('+ c)−k1. (2.5)

It is clear that x + a 2 S'(!). By m we denote the point of minimum of the function ' + c and assume
that t1(t2) is the left (right) zero of this function nearest to m. In view of the second relation in (2.5), there exists
a shift x(·+ ⌧) of the function x such that

x(m+ ⌧) + a = '(m) + c.

In addition, since '+ c is the comparison function for the function x, we get

x(t+ ⌧) + a  '(t) + c < 0, t 2 (t1, t2).

In view of a > 0, this yields the estimate

kx−kLp(Id) > k(x+ a)−kLp(Id) ≥ k('+ c)−kLp(I2!),

which contradicts condition (2.1). Thus, inequality (2.3) is proved. Relation (2.4) directly follows from (2.1)
and (2.3) in view of the inclusion x 2 S'(!).

Lemma 1 is proved.

For f 2 L1[a, b], by r(f, t), t 2 [0, b − a], we denote the permutation of the function |f | (see, e.g., [19]
Sec. 1.3) and set r(f, t) = 0 for t > b− a.
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Lemma 2. Under the conditions of Theorem 1,

⇠Z

0

r

p
(x̄±, t)dt 

⇠Z

0

r

p
('̄±, t)dt, ⇠ > 0, (2.6)

where x̄ is the restriction of x to Id and '̄ is the restriction of '+ c to I2!. In particular,

kx±kLq(Id)  k('+ c)±kLq(I2!). (2.7)

Proof. To prove (2.6), we note that, in view of (2.3), for any y± 2 [0, kx̄±k1) , there exist points

t

±
i 2 Id, i = 1, 2, . . . ,m, m ≥ 2, y

±
j 2 I2!, j = 1, 2,

such that

y± = x̄±
�
t

±
i

�
= '̄±

⇣
y

±
j

⌘
.

Since '+ c is the comparison function for x, we find

��
x̄

0
±(t

±
i )
�� 

���'̄0
±(y

±
j )

���.

We now show that if the points ✓±1 2 [0, d] and ✓

±
2 2 [0, 2!] satisfy the condition

y± = r

�
x̄±, ✓

±
1

�
= r

�
'̄±, ✓

±
2

�
,

then
��
r

0�
x̄±, ✓

±
1

��� 
��
r

0�
'̄±, ✓

±
2

���
.

Indeed, this directly follows from the theorem on the derivative of permutation (see, e.g., [19], Proposi-
tion 1.3.2). According to this theorem, we get

��
r

0�
x̄±, ✓

±
1

���
=

"
mX

i=1

��
x̄

0
±(ti)

��−1

#−1



2

4
2X

j=1

���'̄0
±

⇣
y

±
j

⌘���
−1

3

5
−1

=

��
r

0�
'̄±, ✓

±
2

���
.

By using the relation

r(x̄±, 0) = kx̄±k1  k'̄±k1 = r('̄±, 0),

which follows from (2.3), and the fact that the L1-norm is preserved by permutations, we conclude that the
difference

∆

±
(t) := r(x̄±, t)− r('̄±, t)

changes sign on [0,1) at most once (from minus to plus). The same is also true for the difference

∆

±
p (t) := r

p
(x̄±, t)− r

p
('̄±, t).
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We set

I±(⇠) :=

⇠Z

0

∆

±
p (t)dt.

Hence, I±(0) = 0. Since permutations preserve the Lp-norm, in view of (2.1) and (2.4), we get

I(d) = kx̄±kLp(Id)
− k'̄±kLp(I2!)

= 0.

Moreover, I 0±(⇠) = ∆

±
p (⇠) changes sign (from minus to plus) at most once.

Thus, I(⇠)  0, ⇠ > 0, which is equivalent to (2.6). By virtue of the Hardy–Littlewood–Pólya theorem (see,
e.g., [19], Theorem 1.3.1), inequality (2.6) yields inequality (2.7).

Lemma 2 is proved.

Lemma 3. Under the conditions of Theorem 1,

kxkLp(Id\B) ≥ k'+ ckLp(I2!\By(β)). (2.8)

Proof. As above, let x̄ be the restriction of x to Id and let '̄ be the restriction of ' + c to I2!. For any
measurable set B ⇢ Id, we have µB  β, in view of the well-known property

Z

B

|x(t)|p dt 
βZ

0

r

p
(x̄, t)dt. (2.9)

Further, since permutations preserve the Lp-norm, we find

kxkpLp(Id\B) =

Z

Id

|x(t)|pdt−
Z

B

|x(t)|pdt ≥
dZ

0

r

p
(x̄, t)dt−

βZ

0

r

p
(x̄, t)dt.

By using (2.1) and the inequality

⇠Z

0

r

p
(x̄, t)dt 

⇠Z

0

r

p
('̄, t)dt, ⇠ > 0,

which follows from (2.6) according to Proposition 1.3.6 in [19], we obtain

kxkpLp(Id\B) ≥
2!Z

0

r

p
('̄, t)dt−

βZ

0

r

p
('̄, t)dt =

2!Z

β

r

p
('̄, t)dt =

Z

I2!\By(β)

|'(t)|p dt.

This yields (2.8).
Lemma 3 is proved.
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Proof of Theorem 1. We fix a d-periodic function x 2 S'(!), which has zeros and satisfies condition (2.1)
with some c 2 [−k'k1, k'k1]. By Lemmas 2 and 3, this function admits estimates (2.7) and (2.8), which directly
imply inequality (2.2). It is clear that this inequality is sharp.

Theorem 1 is proved.

3. Remez-Type Inequalities of Different Metrics for the Functions x 2 L

r
1(I2⇡)

Recall that the symbol 'r(t), r 2 N, denotes a shift of the r th 2⇡-periodic integral with zero mean value
over the period of the function '0(t) = sgn sin t satisfying the condition 'r(0) = 0. It is clear that the spline

'λ,r(t) := λ

−r
'r(λt), λ > 0,

is an S-function with period 2⇡/λ.

For r 2 N, p > 0, and fp 2 [0,1], we consider a class

fp L
r
1(I2⇡) :=

⇢
x 2 L

r
1(I2⇡) :

kx+kp
kx−kp

= fp

�
.

It is clear that, for given p and fp, there exists a unique number c 2 [−Kr,Kr] for which

'r + c 2 fp L
r
1(I2⇡). (3.1)

Theorem 2. Suppose that r 2 N, p, q > 0, q ≥ p, fp 2 [0,1], and β 2 [0, 2⇡). For any function
x 2 fp L

r
1(I2⇡) with zeros and any measurable set B ⇢ I2⇡ such that µB  β/λ, where λ is chosen to

guarantee that

kxkp = k'λ,r + λ

−r
ckLp(I2⇡/λ)

���x(r)
���
1

(3.2)

and the number c satisfies condition (3.1), the following inequality is true:

kxkq 
k'r + ckq

k'r + ck↵Lp(I2⇡\By(β))

kxk↵Lp(I2⇡\B)

���x(r)
���
1−↵

1
, (3.3)

where

↵ =

r + 1/q

r + 1/p

, By := {t 2 I2⇡ : |'r(t) + c| > y},

and, in addition, y = y(β) is chosen such that µBy(β) = β.

Inequality (3.3) is sharp in the class of all pairs (x,B) formed by a function x 2 fp L
r
1(I2⇡), which has

zeros, and a measurable set B ⇢ I2⇡ for which µB  β/λ, where λ satisfies condition (3.2). The equality
in (3.3) is attained for the pair (x,By(β)), where x(t) = 'r(t) + c.

Proof. We fix a function x 2 fp L
r
1(I2⇡) satisfying the conditions of the theorem. Since inequality (3.3) is

homogeneous, we can assume that
���x(r)

���
1

= 1. (3.4)
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Thus, in view of (3.1), (3.2) and the definition of the class fp Lr
1(I2⇡), we get

kx±kp =
���
�
'λ,r + λ

−r
c

�
±

���
Lp(I2⇡/λ)

. (3.5)

For functions x 2 fp L
r
1(I2⇡) satisfying this condition, inequality (1.2) holds

kx±kq 
k('r + c)±kq
k('r + c)±k↵p

kx±k↵p
���x(r)

���
1−↵

1
.

By using this inequality, relations (3.4) and (3.5), and the following obvious equality:

���
�
'λ,r + λ

−r
c

�
±

���
Lp(I2⇡/λ)

= λ

−(r+1/p)k('r + c)±kp, p > 0, (3.6)

we arrive at the estimate

kx±kq 
���
�
'λ,r + λ

−r
c

�
±

���
Lq(I2⇡/λ)

. (3.7)

In particular, in view of (3.4) and (3.7) (for q = 1), the function x satisfies the conditions of the Kolmogorov
comparison theorem [20]. According to this theorem, the spline '(t) = 'λ,r(t) is the comparison function for

the function x, i.e., x 2 S'

⇣
⇡

λ

⌘
. Hence, in view of (3.5), the function x satisfies all conditions of Theorem 1.

By virtue of this theorem, for q ≥ p and an arbitrary measurable set B ⇢ I2⇡, µB  β/λ, the inequality

kxkq 
k'λ,r + λ

−r
ckLq(I2⇡/λ)

k'λ,r + λ

−r
ck

Lp

⇣
I2⇡/λ\

By(β)

λ

⌘ kxkLp(I2⇡\B)

is true. It follows from the last inequality (for q = p) and conditions (3.2) and (3.4) that

kxkLp(I2⇡\B) ≥
��
'λ,r + λ

−r
c

��
Lp

✓
I2⇡/λ\

By(β)
λ

◆
.

Combining the obtained lower estimate with inequality (3.7), in view of the obvious relation

��
'λ,r + λ

−r
c

��
Lp

✓
I2⇡/λ\

By(β)
λ

◆
= λ

−(r+1/p)k'r + ckLp(I2⇡\By(β))

and the definition ↵ =

r + 1/q

r + 1/p

, we obtain

kxkq
kxk↵Lp(I2⇡\B)


k'λ,r + λ

−r
ckLq(I2⇡/λ)

k'λ,r + λ

−r
ck↵

Lp

✓
I2⇡/λ\

By(β)
λ

◆ =

k'r + ckq
k'r + ck↵Lp(I2⇡\By(β))

.

By virtue of (3.4), this estimate yields (3.3). Thus, it is clear that inequality (3.3) is sharp.
Theorem 2 is proved.
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Corollary 1. Suppose that r 2 N, p, q > 0, q ≥ p, ↵ =

r + 1/q

r + 1/p

, β 2 [0, 2⇡), and the number c̄ 2 [0,Kr]

realizes the upper bound

sup

c2[0,Kr]

k'r + ckq
k'r + ck↵Lp(I2⇡\Bc

y(β)
)

,

where

B

c
y := {t 2 I2⇡ : |'r(t) + c| > y}

and, moreover, y = y(β) is chosen such that µBc
y(β) = β.

Then, for any function x 2 L

r
1(I2⇡) with zeros and an arbitrary measurable set B ⇢ I2⇡, µB  β/λ, where

λ is chosen to guarantee that

kxkp =
��
'λ,r + λ

−r
c

��
Lp(I2⇡/λ)

���x(r)
���
1

(3.8)

and c satisfies the condition

kx+kp kx−k−1
p = k('r + c)+kp k('r + c)−k−1

p ,

the following inequality is true:

kxkq 
k'r + c̄kq

k'r + c̄k↵Lp(I2⇡\Bc̄
y(β)

)

kxk↵Lp(I2⇡\B)

���x(r)
���
1−↵

1
. (3.9)

Inequality (3.9) is sharp in the class of all pairs (x,B) formed by a function x 2 L

r
1(I2⇡) with zeros and

a measurable set B ⇢ I2⇡ such that µB  β/λ, where λ satisfies condition (3.8). Equality in (3.9) is attained
for the pair

⇣
x,B

c̄
y(β)

⌘
, where x(t) = 'r(t) + c̄.

Remark 1.

1. For β = 0, Theorem 2 and Corollary 1 were proved in [1].

2. For functions x 2 L

r
1(I2⇡) satisfying the condition kx+kp = kx−kp, the constant in inequality (3.3) is

equal to zero.

3. For functions of constant sign x 2 L

r
1(I2⇡) with zeros, inequality (3.3) turns into the inequality for the

best one-sided approximations by the constant

E

±
0 (x)LsG) := inf

c2R

�
kx− ckLs(G) : 8t 2 G ± (x(t)− c)± ≥ 0

 
, (3.10)

i.e., the norms kxkq and kxkLp(I2⇡\B) in inequality (3.3) for these functions are replaced by E

±
0 (x)q

and E

±
0 (x)Lp(I2⇡\B), respectively. Moreover, the constant c in this inequality is replaced by the Favard

constant Kr.
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4. Remez-Type Inequalities of Different Metrics for Trigonometric Polynomials

Recall that Tn is a space of trigonometric polynomials of degree at most n. For p > 0, fp 2 [0,1], we set

fp Tn :=

⇢
T 2 Tn :

kT+kp
kT−kp

= fp

�
.

Theorem 3. Suppose that n,m 2 N, p, q > 0, q ≥ p, and fp 2 [0,1]. If the trigonometric polynomial
T 2 fp Tn with the minimal period 2⇡/m has zeros, then, for any measurable set B ⇢ I2⇡, µB  m

n

β,

β 2 [0, 2⇡), the following inequality is true:

kTkq 
⇣
n

m

⌘ 1
p
− 1

q k sin(·) + ckq
k sin(·) + ckLp(I2⇡\By(β))

kTkLp(I2⇡\B), (4.1)

where the number c 2 [−1, 1] satisfies the condition

sin(·) + c 2 fp Tn, (4.2)

and By := {t 2 I2⇡ : | sin t+ c| > y}; moreover, y = y(β) is chosen to guarantee that µBy(β) = β.

Inequality (4.1) is sharp in the following sense:

sup

(n,m)2Nn,m

sup

(T,B)2Pm
n

kTkq
(n/m)

1/p−1/qkTkLp(I2⇡\B)

=

k sin(·) + ckq
k sin(·) + ckLp(I2⇡\By(β))

, (4.3)

where Nn,m is the set of pairs (n,m) of natural numbers such that m  n and P

m
n is the set of pairs (T,B)

formed by the polynomial T 2 fp Tn with zeros and the minimal period 2⇡/m and a measurable set B ⇢ I2⇡,

µB  m

n

β.

Proof. We fix a polynomial T 2 fp Tn satisfying the conditions of Theorem 3. For the sake of brevity,
we set '(t) := sinnt and  (t) := '(t) + c, t 2 R. In view of the homogeneity of inequality (4.1), we can
assume that

kTkLp(I2⇡/m) = k kLp(I2⇡/n). (4.4)

In view of condition (4.2) and the definition of the class fp Tn, this yields the equality

kT±kLp(I2⇡/m) = k ±kLp(I2⇡/n). (4.5)

We now show that

kT±k1  k ±k1. (4.6)

Indeed, assume the contrary, i.e., that there exists γ 2 (0, 1) such that

kγT±k1  k ±k1.
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Moreover, one of these inequalities turns into the equality. Thus, let

kγT+k1  k +k1, kγT−k1 = k −k1.

Then the polynomial  is a comparison function for the polynomial γT (see the proof of Theorem 8.1.1 in [21]).
Let m be a point of minimum of the function  and let t1 (t2) be the nearest (to m) left (right) zero of this
function. Passing, if necessary, to the shift of the polynomial γT, we can assume that

kγT−k1 = −γT (m).

Since  is a comparison function for the polynomial γT, we find

γT (t)   (t) < 0, t 2 (t1, t2).

This yields the estimate

kT−kLp(2⇡/m) > kγT−kLp(2⇡/m) ≥ k −kLp(2⇡/n),

which contradicts (4.5). Thus, inequality (4.6) is proved.
This inequality and the proof of Theorem 8.1.1 in [21] imply that '(t) = sinnt is a comparison function

for the polynomial T (t), i.e., T 2 S'

⇣
⇡

n

⌘
. Hence, in view of (4.4), the polynomial T satisfies all conditions of

Theorem 1 and, therefore, also the conditions of Lemmas 1–3.
Further, we establish the inequality

kTkq 
⇣
m

n

⌘1/q
k sin(·) + ckq. (4.7)

Indeed, by virtue of inequality (2.7), we obtain

kTkLq(I2⇡/m)  k'+ ckLq(I2⇡/n).

This immediately yields (4.7) because the polynomial T is 2⇡/m-periodic and the function ' is 2⇡/n-periodic.
We now prove the inequality

kTkLp(I2⇡\B) ≥
⇣
m

n

⌘1/p
k sin(·) + ckLp(I2⇡\By(β)

) (4.8)

for any measurable set B ⇢ I2⇡, µB  m

n

β.

Let ¯

T be the restriction of the polynomial T to I2⇡/m and let '̄ be the restriction of '+ c to I2⇡/n. By using
inequality (2.9), in view of the fact that permutation preserves the Lp-norm, we get

kTkpLp(I2⇡\B) =

2⇡Z

0

|T (t)|p dt−
Z

B

|T (t)|p dt

≥
2⇡Z

0

r

p
(T, t) dt−

m
n

βZ

0

r

p
(T, t) dt
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= m

2

64

2⇡/mZ

0

r

p
(

¯

T , t) dt−
β/nZ

0

r

p
�
¯

T , t

�
dt

3

75.

Thus, by virtue of (4.4) and the inequality

⇠Z

0

r

p
�
¯

T , t

�
dt 

⇠Z

0

r

p
('̄, t) dt, ⇠ > 0,

which follows from (2.6), according to Proposition 1.3.6 in [19], we arrive at the following lower estimate:

kTkpLp(I2⇡\B) ≥ m

2

64

2⇡/nZ

0

r

p
('̄, t) dt−

β/nZ

0

r

p
('̄, t) dt

3

75

= m

2⇡/nZ

β/n

r

p
('̄, t) dt =

m

n

2⇡Z

β

r

p
('+ c, t) dt

=

m

n

Z

I2⇡\By(n)

|'(t) + c|p dt = m

n

k sin(·) + ckp
Lp(I2⇡\By(β))

,

where

By(n) := {t 2 I2⇡ : | sinnt+ c| > y}

and, moreover, y = y(β) is chosen such that µBy(n) = β. The obtained estimate yields inequality (4.8). Com-
bining (4.7) and (4.8), we arrive at inequality (4.1). It is clear that (4.1) is sharp in a sense of (4.3).

Theorem 3 is proved.

Corollary 2. Suppose that n,m 2 N, q, p > 0, q ≥ p, β 2 [0, 2⇡), and the number c̄ 2 [0, 1] realizes the
upper bound

sup

c2[0,1]

k sin(·) + ckq
k sin(·) + ckLp(I2⇡\Bc

y(β)
)
,

where B

c
y := {t 2 I2⇡ : | sin t+ c| > y} and, moreover, y = y(β) is chosen to guarantee that µBc

y(β) = β.

Then, for any trigonometric polynomial T 2 Tn with zeros and the minimal period 2⇡/m and any measurable

set B ⇢ I2⇡, µB  m

n

β, the following inequality is true:

kTkq 
⇣
n

m

⌘ 1
p
− 1

q ksin(·) + c̄kq
ksin(·) + c̄kLp(I2⇡\Bc̄

y(β)
)

kTkLp(I2⇡\B). (4.9)

Inequality (4.8) is sharp in the following sense:

sup

(n,m)2Nn,m

sup

(T,B)2Qm
n

kTkq
(n/m)

1/p−1/qkTkLp(I2⇡\B)

=

ksin(·) + c̄kq
ksin(·) + c̄kLp(I2⇡\Bc̄

y(β)
)

,
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where Nn,m is the set of pairs (n,m) of natural numbers such that m  n and Q

m
n is the set of pairs (T,B)

formed by a polynomial T 2 Tn with zeros and the minimal period 2⇡/m and a measurable set B ⇢ I2⇡,

µB  m

n

β.

Remark 2.

1. For β = 0 and m = 1, Theorem 3 and Corollary 2 are proved in [1].

2. For the polynomials T 2 Tn satisfying the condition kT+kp = kT−kp, the constant c in inequality (4.1)
is equal to zero.

3. For sign-preserving polynomials T 2 Tn which have zeros, inequality (4.1) turns into the inequality for
the best one-sided approximations by a constant [see (3.10)], i.e., the norms kTkq and kTkLp(I2⇡\B) in
inequality (4.1) for these polynomials should be replaced by E

±
0 (T )q and E

±
0 (T )Lp(I2⇡\B), respectively.

Moreover, the constant c in this inequality is equal to 1.

5. Remez-Type Inequalities of Different Metrics for Splines

Recall that Sn,r is a space of 2⇡-periodic splines of order r with defect 1 and nodes at the points k⇡/n,

k 2 Z. For p > 0 and fp 2 [0,1], we set

fp Sn,r :=

⇢
s 2 Sn,r :

ks+kp
ks−kp

= fp

�
.

Theorem 4. Suppose that n,m 2 N, p, q > 0, q ≥ p, and fp 2 [0,1]. If a spline s 2 fp Sn,r with the

minimal period 2⇡/m has zeros, then, for any measurable set B ⇢ I2⇡, µB  m

n

β, the following inequality
is true:

kskq 
⇣
n

m

⌘ 1
p
− 1

q k'r + ckq
k'r + ckLp(I2⇡\By(β))

kskLp(I2⇡\B), (5.1)

where c 2 [−Kr,Kr] satisfies the condition

'n,r + n

−r
c 2 fp Sn,r, (5.2)

and By := {t 2 I2⇡ : |'r(t) + c| > y}; moreover, y = y(β) is chosen to guarantee that µBy(β) = β.

Inequality (5.1) is sharp in the following sense:

sup

(n,m)2Nn,m

sup

(s,B)2Sm
n

kskq
(n/m)

1/p−1/qkskLp(I2⇡\B)

=

k'r + ckq
k'r + ckLp(I2⇡\By(β))

, (5.3)

where Nn,m is a set of pairs (n,m) of natural numbers such that m  n and S

m
n is the set of pairs (s,B) formed

by a spline s 2 fp Sn,r with zeros and the minimal period 2⇡/m and a measurable set B ⇢ I2⇡, µB  m

n

β.

Proof. We fix a spline s 2 fp Sn,r satisfying the conditions of Theorem 4. For the sake of brevity, we set
'(t) := 'n,r(t) and  (t) := 'n,r(t) + n

−r
c, t 2 R. In view of the homogeneity of inequality (5.1), we can
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assume that

kskLp(I2⇡/m) = k kLp(I2⇡/n). (5.4)

Thus, in view of (5.2) and the definition of the class fp Sn,r, we arrive at the equality

ks±kLp(I2⇡/m) = k ±kLp(I2⇡/n). (5.5)

We now show that

ks±k1  k ±k1. (5.6)

Indeed, assume the contrary, i.e., that there exists γ 2 (0, 1) such that kγs±k1  k ±k1 and, in addition,
that one of these inequalities turns into the equality; e.g., that

kγs+k1  k +k1 and kγs−k1 = k −k1.

Then

E0(γs)1  E0( )1 = k'n,rk1

and, by virtue of the Tikhomirov inequality [22]

���s(r)
���
1

 E0(s)1
k'n,rk1

,

where E0(x)1 is the best uniform approximation of the function x by constants, we arrive at the inequality

���γs(r)
���
1

 1.

Thus, the spline γs satisfies the conditions of the Kolmogorov comparison theorem [20]. By this theorem,
the spline ' is the comparison function for the spline γs. Let m be the point of minimum of the function  and
let t1 (t2) be the left (right) nearest (to m) zero of this function. Passing, if necessary, to a shift of the spline γs,

we can assume that

kγs−k1 = −γs(m).

Since the spline  is the comparison function for the spline γs, we get

γs(t)   (t) < 0, t 2 (t1, t2).

This yields the estimate

ks−kLp(2⇡/m) > kγs−kLp(2⇡/m) ≥ k −kLp(2⇡/n),

which contradicts (5.5). Thus, inequality (5.6) is proved.
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By using inequality (5.6), we find

E0(s)1  E0( )1 = k'n,rk1.

Applying the Tikhomirov inequality, we obtain

���s(r)
���
1

 E0(s)1
k'n,rk1

 1.

Therefore, the spline s satisfies the conditions of the Kolmogorov comparison theorem [20]. According to this
theorem, the spline ' is the comparison function for the spline s. Hence, s 2 S'

⇣
⇡

n

⌘
and, in view of (5.5),

the spline s satisfies the conditions of Theorem 1 and, thus, also the conditions of Lemmas 1–3.
We prove the inequality

kskq  n

−r
⇣
m

n

⌘1/q
k' + ckq. (5.7)

Indeed, by virtue of inequality (2.7), we get

kskLq(I2⇡/m) 
��
'n,r + n

−r
c

��
Lq(I2⇡/n)

.

This directly yields (5.7) because the spline s is 2⇡/m-periodic and the spline 'n,r is 2⇡/n-periodic.
We now prove the inequality

kskLq(I2⇡\B) ≥ n

−r
⇣
m

n

⌘1/p
k'r + ckLq(I2⇡\By(β)

) (5.8)

for any measurable set B ⇢ I2⇡, µB  m

n

β, β 2 [0, 2⇡). Let s̄ be the restriction of the spline s to I2⇡/m and

let ¯

 be the restriction of the spline  to I2⇡/n. As in the proof of Theorem 3, by using inequality (2.9) and taking
into account the fact that permutations preserve the Lp-norm, we obtain

kskpLp(I2⇡\B) ≥ m

2

64

2⇡/mZ

0

r

p
(s̄, t) dt−

β/nZ

0

r

p
(s̄, t) dt

3

75.

Further, by using (5.4) and the inequality

⇠Z

0

r

p
(s̄, t)dt 

⇠Z

0

r

p
�
¯

 , t

�
dt, ⇠ > 0,

which follows from (2.6) according to Proposition 1.3.6 in [19], as in the proof of Theorem 3, we obtain the
following lower bound:

kskpLp(I2⇡\B) ≥ m

2

64

2⇡/nZ

0

r

p
�
¯

 , t

�
dt−

β/nZ

0

r

p
�
¯

 , t

�
dt

3

75 = m

2⇡/nZ

β/n

r

p
�
¯

 , t

�
dt
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=

m

n

2⇡Z

β

r

p
( , t) dt =

m

n

n

−rp

Z

I2⇡\By(β)(n)

|'r(nt) + c|p dt

= n

−rpm

n

k('r + c)kpLp(I2⇡\By(β))
,

where

By(β)(n) := {t 2 I2⇡ : |'r(nt) + c| > y}

and y = y(β) is chosen to guarantee that µBy(β)(n) = β.

The obtained lower bound is equivalent to (5.8). Inequality (5.1) directly follows from (5.7) and (5.8). It is
clear that inequality (5.1) is sharp in the sense of (5.3).

Theorem 4 is proved.

Corollary 3. Suppose that n,m 2 N, q, p > 0, q ≥ p, β 2 [0, 2⇡), and the number c̄ 2 [0,Kr] realizes
the upper bound

sup

c2[0,Kr]

k'r + ckq
k'r + ckLp(I2⇡\Bc

y(β)
)
,

where B

c
y := {t 2 I2⇡ : |'r(t) + c| > y} and, in addition, y = y(β) is such that µBc

y(β) = β.

Then, for any spline s 2 Sn,r with zeros and the minimal period 2⇡/m and an arbitrary measurable set
B ⇢ I2⇡, µB  m

n

β, the following inequality is true:

kskq 
⇣
n

m

⌘ 1
p
− 1

q k'r + c̄kq
k'r + c̄k

Lp

⇣
I2⇡\Bc̄

y(β)

⌘ kskLp(I2⇡\B). (5.9)

Inequality (5.9) is sharp in the following sense:

sup

(n,m)2Nn,m

sup

(s,B)2⌃m
n

kskq
(n/m)

1/p−1/qkskLp(I2⇡\B)

=

k'r + c̄kq
k'r + c̄kLp(I2⇡\By(β))

,

where Nn,m is the set of pairs (n,m) of natural numbers such that m  n and ⌃

m
n is a set of pairs (s,B) formed

by a spline s 2 Sn,r with zeros and the minimal period 2⇡/m and a measurable set B ⇢ I2⇡, µB  m

n

β.

Remark 3.

1. For β = 0 and m = 1, Theorem 4 and Corollary 3 were obtained in [1].

2. For the splines s 2 Sn,r satisfying the condition ks+kp = ks−kp, the constant c in inequality (5.1) is
equal to zero.

3. For splines of constant sign s 2 Sn,r with zeros, inequality (5.1) turns into the inequality for the best
one-sided approximations by a constant [see (3.10)], i.e., the norms kskq and kskLp(I2⇡\B) in inequal-
ity (5.1) for these splines should be replaced by E

±
0 (s)q and E

±
0 (s)Lp(I2⇡\B), respectively. Moreover,

the constant c in this inequality is equal to the Favard constant Kr.
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