SHARP REMEZ-TYPE INEQUALITIES ESTIMATING THE L_q -NORM OF A FUNCTION VIA ITS L_p -NORM

V. A. Kofanov¹ and T. V. Olexandrova²

For any $q \ge p > 0$, $\alpha = (r + 1/q)/(r + 1/p)$, $f_p \in [0, \infty]$, and $\beta \in [0, 2\pi)$, we prove a sharp Remez-type inequality

$$\|x\|_{q} \leq \frac{\|\varphi_{r} + c\|_{q}}{\|\varphi_{r} + c\|_{L_{p}([0,2\pi]\setminus B_{y(\beta)})}^{\alpha}} \|x\|_{L_{p}([0,2\pi]\setminus B)}^{\alpha} \|x^{(r)}\|_{\infty}^{1-\alpha}$$

for 2π -periodic functions $x \in L_{\infty}^{r}$, which have zeros and satisfy the condition

$$|x_{+}||_{p} ||x_{-}||_{p}^{-1} = f_{p}, \tag{1}$$

where φ_r is Euler's perfect spline of order r, the number c is such that the function $x = \varphi_r + c$ satisfies condition (1), B is an arbitrary Lebesgue-measurable set such that

$$\mu B \le \beta \left(\|\varphi_r + c\|_p \left\| x^{(r)} \right\|_{\infty} \|x\|_p^{-1} \right)^{-1/(r+1/p)},$$

the set $B_{y(\beta)}$ is defined by $B_{y(\beta)} := \{t \in [0, 2\pi] : |\varphi_r(t) + c| > y(\beta)\}$, and moreover, $\mu B_{y(\beta)} = \beta$. We also establish sharp Remez-type inequalities of various metrics for trigonometric polynomials and polynomial splines satisfying relation (1).

1. Introduction

Let G be a Lebesgue-measurable subset of the numerical axis and let $L_p(G)$ be a Lebesgue-measurable space of functions $x: G \to \mathbf{R}$ with finite norm (quasinorm)

$$\|x\|_{L_p(G)} := \begin{cases} \left(\int_G |x(t)|^p dt\right)^{1/p} & \text{for} \quad 0$$

By I_d we denote a circle realized in the form of a segment [0, d] whose ends are identified. For the sake of brevity, we write $||x||_p$ instead of $||x||_{L_p(I_{2\pi})}$.

For $r \in \mathbf{N}$, $G = \mathbf{R}$ or $G = I_d$, by $L_{\infty}^r(G)$ we denote the set of all functions $x \in L_{\infty}(G)$ with locally absolutely continuous derivatives up to the (r-1)th order satisfying the condition $x^{(r)} \in L_{\infty}(G)$.

By $\varphi_r(t)$, $r \in \mathbf{N}$, we denote the shift of the r th 2π -periodic integral of the function $\varphi_0(t) = \operatorname{sgn} \sin t$ with mean value over the period equal to zero satisfying the condition $\varphi_r(0) = 0$. For $\lambda > 0$, we set

$$\varphi_{\lambda,r}(t) := \lambda^{-r} \varphi_r(\lambda)$$

UDC 517.5

¹ Honchar Dnipro National University, Dnipro, Ukraine; e-mail: vladimir.kofanov@gmail.com.

² Honchar Dnipro National University, Dnipro, Ukraine.

Translated from Ukrains' kyi Matematychnyi Zhurnal, Vol. 74, No. 5, pp. 635–649, May, 2022. Ukrainian DOI: 10.37863/umzh.v74i5.6836. Original article submitted July 12, 2021.

Sharp Remez-Type Inequalities Estimating the L_q -Norm of a Function Via Its L_p -Norm

The following theorem was proved in [1]:

Theorem A. Suppose that $r \in \mathbf{N}$ and q > p > 0. Then, for any function $x \in L^r_{\infty}(I_{2\pi})$ which has zeros, the following sharp inequality is true in the class $L^r_{\infty}(I_{2\pi})$:

$$\|x\|_{q} \leq \sup_{c \in [0,K_{r}]} \frac{\|\varphi_{r} + c\|_{q}}{\|\varphi_{r} + c\|_{p}^{\alpha}} \|x\|_{p}^{\alpha} \|x^{(r)}\|_{\infty}^{1-\alpha},$$
(1.1)

where $\alpha = \frac{r+1/q}{r+1/p}$ and $K_r := \|\varphi_r\|_{\infty}$ is the Favard constant.

In the proof of inequality (1.1) in [1], it was established that if, for a given function $x \in L_{\infty}^{r}(I_{2\pi})$ which has zeros, the number $c \in [-K_r, K_r]$ is chosen to guarantee that the condition

$$\frac{\|x_+\|_p}{\|x_-\|_p} = \frac{\|(\varphi_r + c)_+\|_p}{\|(\varphi_r + c)_-\|_p}$$

is satisfied, then the inequality

$$\|x_{\pm}\|_{q} \leq \frac{\|(\varphi_{r}+c)_{\pm}\|_{q}}{\|(\varphi_{r}+c)_{\pm}\|_{p}^{\alpha}} \|x_{\pm}\|_{p}^{\alpha} \|x^{(r)}\|_{\infty}^{1-\alpha}$$
(1.2)

is true.

An analog of inequality (1.1) in which the L_q -norm of a periodic function is estimated via its local L_p -norm was established in [2]. Sufficient conditions under which the least upper bound in inequality (1.1) is attained for c = 0 were established in [3].

In the present paper, we generalize inequalities (1.1) and (1.2) to the classes of functions with given comparison function. Moreover, these generalizations contain the "Remez effect." We now present necessary definitions.

A function $f \in L^1_{\infty}(\mathbf{R})$ is called the comparison function for a function $x \in L^1_{\infty}(\mathbf{R})$ if there exists $c \in \mathbf{R}$ such that

$$\min_{t \in \mathbf{R}} f(t) + c \le x(t) \le \max_{t \in \mathbf{R}} f(t) + c, \quad t \in \mathbf{R},$$

and the equality $x(\xi) = f(\eta) + c$, where $\xi, \eta \in \mathbf{R}$, yields the inequality $|x'(\xi)| \leq |f'(\eta)|$ provided that the indicated derivatives exist.

An odd 2ω -periodic function $\varphi \in L^1_{\infty}(I_{2\omega})$ is called an S-function if it has the following properties: φ is even with respect to $\omega/2$ and $|\varphi|$ is convex upward on $[0, \omega]$ and strictly monotone on $[0, \omega/2]$.

For a 2ω -periodic S-function φ , by $S_{\varphi}(\omega)$ we denote the class of functions $x \in L^{1}_{\infty}(I_{d})$ for which φ is a comparison function. Note that the classes $S_{\varphi}(\omega)$ were considered in [4, 5]. As examples of the classes $S_{\varphi}(\omega)$, we can mention the Sobolev classes $L^{r}_{\infty}(I_{d})$ with comparison function $\varphi_{\lambda,r}$, the bounded subsets of the spaces T_{n} (trigonometric polynomials of degree at most n) with comparison function $\sin nt$, and $S_{n,r}$ (2π -periodic splines of order r with defect 1 and nodes at the points $k\pi/n$, $k \in \mathbb{Z}$) with comparison function $\varphi_{n,r}$.

An important role in the approximation theory is played by the Remez-type inequalities

$$||T||_{L_{\infty}(I_{2\pi})} \le C(n,\beta) ||T||_{L_{\infty}(I_{2\pi}\setminus B)}$$
(1.3)

on the class T_n , where B is an arbitrary Lebesgue-measurable set $B \subset I_{2\pi}$, $\mu B \leq \beta$.

The foundations of this direction were laid by Remez [6] who determined the sharp constant $C(n,\beta)$ in an inequality of the form (1.3) for algebraic polynomials. In inequality (1.3) for trigonometric polynomials, two-sided estimates for the sharp constants $C(n,\beta)$ were established in a series of works. Moreover, the asymptotic behaviors of the constants $C(n,\beta)$ as $\beta \to 2\pi$ [7] and as $\beta \to 0$ [8] are known. For the bibliography in this field, see [7–10]. In [8], the inequality

$$\|T\|_{L_{\infty}(I_{2\pi})} \le \left(1 + 2\tan^2\frac{n\beta}{4m}\right)\|T\|_{L_{\infty}(I_{2\pi}\setminus B)}$$
(1.4)

was proved for any polynomial $T \in T_n$ with the minimal period $2\pi/m$ and any Lebesgue-measurable set $B \subset I_{2\pi}$, $\mu B \leq \beta$, where $\beta \in (0, 2\pi m/n)$. The equality in (1.4) is attained for the polynomial

$$T(t) = \cos nx + \frac{1}{2} (1 - \cos \beta/2).$$

Recently, a sharp constant for the Remez-type inequality (1.3) for trigonometric polynomials has been found in [11].

In [12], the result obtained in [8] was generalized to the classes $S_{\varphi}(\omega)$. As a consequence, an analog of inequality (1.4) for polynomial splines and functions from the classes $L_{\infty}^{r}(I_{2\pi})$ was obtained. In [13–17], some sharp Remez-type inequalities of different metrics and Kolmogorov–Remez-type inequalities were proved for the classes $S_{\varphi}(\omega)$ and, in particular, for the differentiable periodic functions, trigonometric polynomials, and splines. In addition, the relationship between the sharp constants for the Kolmogorov-type and Kolmogorov–Remez-type inequalities was investigated in [17]. Furthermore, the relationship between the sharp constants in the Kolmogorov-type inequalities for periodic functions and functions on the real axis was studied in [18].

In the present paper, we obtain sharp Remez-type inequalities of different metrics for the functions $x \in S_{\varphi}(\omega)$ with given ratio of the L_p -norms of their positive and negative parts (Theorem 1). As a consequence, we prove these inequalities for functions from the classes $L_{\infty}^r(I_{2\pi})$, trigonometric polynomials, and polynomial splines with given ratio of the L_p -norms of their positive and negative parts (Theorems 2–4). Note that the corollary of Theorem 2 contains inequality (1.1) with "Remez effect."

2. Remez-Type Inequalities of Different Metrics on the Classes $S_{arphi}(\omega)$

Theorem 1. Suppose that $q, p > 0, q \ge p, \varphi$ is an S-function with period 2ω , and $\beta \in [0, 2\omega)$. If, for a d-periodic function $x \in S_{\varphi}(\omega)$ with zeros, there exists $c \in [-\|\varphi\|_{\infty}, \|\varphi\|_{\infty}]$ satisfying the condition

$$\|x_{\pm}\|_{L_p(I_d)} = \|(\varphi + c)_{\pm}\|_{L_p(I_{2\omega})},$$
(2.1)

then, for any Lebesgue-measurable set $B \subset I_d$, $\mu B \leq \beta$, the following inequality is true:

$$\|x\|_{L_q(I_d)} \le \frac{\|\varphi + c\|_{L_q(I_{2\omega})}}{\|\varphi + c\|_{L_p(I_{2\omega} \setminus B_{y(\beta)})}} \|x\|_{L_p(I_d \setminus B)},$$
(2.2)

where

$$B_y := \{ t \in [0, 2\omega] : |\varphi(t) + c| > y \}$$

and, moreover, $y = y(\beta)$ is chosen such that $\mu B_{y(\beta)} = \beta$.

For any fixed $c \in [-\|\varphi\|_{\infty}, \|\varphi\|_{\infty}]$, inequality (2.2) is sharp in the class of functions $x \in S_{\varphi}(\omega)$ with zeros satisfying condition (2.1). Equality in (2.2) is attained for the function $x(t) = \varphi(t) + c$ and the set $B = B_{y(\beta)}$.

We prove Theorem 1 in the form of a series of lemmas, which are also used in the proofs of the other theorems. We set

$$E_0(x)_\infty := \inf_{a \in \mathbf{R}} \|x - a\|_\infty$$

Lemma 1. Under the conditions of Theorem 1,

$$\|x_{\pm}\|_{\infty} \le \|(\varphi + c)_{\pm}\|_{\infty}$$
(2.3)

and, in addition,

$$d \ge 2\omega. \tag{2.4}$$

Proof. We fix a function $x \in S_{\varphi}(\omega)$ and a number $c \in [-\|\varphi\|_{\infty}, \|\varphi\|_{\infty}]$ satisfying the conditions of Theorem 1. Assume that inequality (2.3) is not true for the function x. Since φ is the comparison function for the function x, we have $E_0(x)_{\infty} \leq E_0(\varphi)_{\infty}$. Hence, the assumption made above means that exactly one inequality (2.3) is not true. Thus, let

$$||x_+||_{\infty} \le ||(\varphi+c)_+||_{\infty}$$
 and $||x_-||_{\infty} > ||(\varphi+c)_-||_{\infty}$.

Then there exists a > 0 such that

$$\|(x+a)_+\|_{\infty} \le \|(\varphi+c)_+\|_{\infty}, \qquad \|(x+a)_-\|_{\infty} = \|(\varphi+c)_-\|_{\infty}.$$
(2.5)

It is clear that $x + a \in S_{\varphi}(\omega)$. By *m* we denote the point of minimum of the function $\varphi + c$ and assume that $t_1(t_2)$ is the left (right) zero of this function nearest to *m*. In view of the second relation in (2.5), there exists a shift $x(\cdot + \tau)$ of the function *x* such that

$$x(m+\tau) + a = \varphi(m) + c.$$

In addition, since $\varphi + c$ is the comparison function for the function x, we get

$$x(t+\tau) + a \le \varphi(t) + c < 0, \quad t \in (t_1, t_2).$$

In view of a > 0, this yields the estimate

$$||x_{-}||_{L_{p}(I_{d})} > ||(x+a)_{-}||_{L_{p}(I_{d})} \ge ||(\varphi+c)_{-}||_{L_{p}(I_{2\omega})},$$

which contradicts condition (2.1). Thus, inequality (2.3) is proved. Relation (2.4) directly follows from (2.1) and (2.3) in view of the inclusion $x \in S_{\varphi}(\omega)$.

Lemma 1 is proved.

For $f \in L_1[a, b]$, by r(f, t), $t \in [0, b - a]$, we denote the permutation of the function |f| (see, e.g., [19] Sec. 1.3) and set r(f, t) = 0 for t > b - a.

V. A. KOFANOV AND T. V. OLEXANDROVA

Lemma 2. Under the conditions of Theorem 1,

$$\int_{0}^{\xi} r^{p}(\bar{x}_{\pm}, t) dt \leq \int_{0}^{\xi} r^{p}(\bar{\varphi}_{\pm}, t) dt, \quad \xi > 0,$$
(2.6)

where \bar{x} is the restriction of x to I_d and $\bar{\varphi}$ is the restriction of $\varphi + c$ to $I_{2\omega}$. In particular,

$$\|x_{\pm}\|_{L_q(I_d)} \le \|(\varphi + c)_{\pm}\|_{L_q(I_{2\omega})}.$$
(2.7)

Proof. To prove (2.6), we note that, in view of (2.3), for any $y_{\pm} \in [0, \|\bar{x}_{\pm}\|_{\infty})$, there exist points

$$t_i^{\pm} \in I_d, \quad i = 1, 2, \dots, m, \quad m \ge 2, \quad y_j^{\pm} \in I_{2\omega}, \quad j = 1, 2,$$

such that

$$y_{\pm} = \bar{x}_{\pm} \left(t_i^{\pm} \right) = \bar{\varphi}_{\pm} \left(y_j^{\pm} \right).$$

Since $\varphi + c$ is the comparison function for x, we find

$$\left|\bar{x}_{\pm}'(t_i^{\pm})\right| \le \left|\bar{\varphi}_{\pm}'(y_j^{\pm})\right|.$$

We now show that if the points $\theta_1^\pm \in [0,d]$ and $\theta_2^\pm \in [0,2\omega]$ satisfy the condition

$$y_{\pm} = r\big(\bar{x}_{\pm}, \theta_1^{\pm}\big) = r\big(\bar{\varphi}_{\pm}, \theta_2^{\pm}\big),$$

then

$$\left|r'\left(\bar{x}_{\pm},\theta_{1}^{\pm}\right)\right| \leq \left|r'\left(\bar{\varphi}_{\pm},\theta_{2}^{\pm}\right)\right|.$$

Indeed, this directly follows from the theorem on the derivative of permutation (see, e.g., [19], Proposition 1.3.2). According to this theorem, we get

$$|r'(\bar{x}_{\pm},\theta_{1}^{\pm})| = \left[\sum_{i=1}^{m} |\bar{x}'_{\pm}(t_{i})|^{-1}\right]^{-1} \leq \left[\sum_{j=1}^{2} |\bar{\varphi}'_{\pm}(y_{j}^{\pm})|^{-1}\right]^{-1} = |r'(\bar{\varphi}_{\pm},\theta_{2}^{\pm})|.$$

By using the relation

$$r(\bar{x}_{\pm}, 0) = \|\bar{x}_{\pm}\|_{\infty} \le \|\bar{\varphi}_{\pm}\|_{\infty} = r(\bar{\varphi}_{\pm}, 0),$$

which follows from (2.3), and the fact that the L_{∞} -norm is preserved by permutations, we conclude that the difference

$$\Delta^{\pm}(t) := r(\bar{x}_{\pm}, t) - r(\bar{\varphi}_{\pm}, t)$$

changes sign on $[0,\infty)$ at most once (from minus to plus). The same is also true for the difference

$$\Delta_p^{\pm}(t) := r^p(\bar{x}_{\pm}, t) - r^p(\bar{\varphi}_{\pm}, t).$$

We set

$$I_{\pm}(\xi) := \int\limits_{0}^{\xi} \Delta_p^{\pm}(t) dt$$

Hence, $I_{\pm}(0) = 0$. Since permutations preserve the L_p -norm, in view of (2.1) and (2.4), we get

$$I(d) = \|\bar{x}_{\pm}\|_{L_p(I_d)} - \|\bar{\varphi}_{\pm}\|_{L_p(I_{2\omega})} = 0.$$

Moreover, $I'_{\pm}(\xi) = \Delta_p^{\pm}(\xi)$ changes sign (from minus to plus) at most once.

Thus, $I(\xi) \le 0$, $\dot{\xi} > 0$, which is equivalent to (2.6). By virtue of the Hardy–Littlewood–Pólya theorem (see, e.g., [19], Theorem 1.3.1), inequality (2.6) yields inequality (2.7).

Lemma 2 is proved.

Lemma 3. Under the conditions of Theorem 1,

$$\|x\|_{L_p(I_d \setminus B)} \ge \|\varphi + c\|_{L_p(I_{2\omega} \setminus B_{u(\beta)})}.$$
(2.8)

Proof. As above, let \bar{x} be the restriction of x to I_d and let $\bar{\varphi}$ be the restriction of $\varphi + c$ to $I_{2\omega}$. For any measurable set $B \subset I_d$, we have $\mu B \leq \beta$, in view of the well-known property

$$\int_{B} |x(t)|^p dt \le \int_{0}^{\beta} r^p(\bar{x}, t) dt.$$
(2.9)

Further, since permutations preserve the L_p -norm, we find

$$\|x\|_{L_{p}(I_{d}\setminus B)}^{p} = \int_{I_{d}} |x(t)|^{p} dt - \int_{B} |x(t)|^{p} dt \ge \int_{0}^{d} r^{p}(\bar{x}, t) dt - \int_{0}^{\beta} r^{p}(\bar{x}, t) dt.$$

By using (2.1) and the inequality

$$\int_{0}^{\xi} r^{p}(\bar{x},t)dt \leq \int_{0}^{\xi} r^{p}(\bar{\varphi},t)dt, \quad \xi > 0,$$

which follows from (2.6) according to Proposition 1.3.6 in [19], we obtain

$$\|x\|_{L_p(I_d\setminus B)}^p \ge \int_0^{2\omega} r^p(\bar{\varphi}, t)dt - \int_0^\beta r^p(\bar{\varphi}, t)dt = \int_\beta^{2\omega} r^p(\bar{\varphi}, t)dt = \int_{I_{2\omega}\setminus B_{y(\beta)}} |\varphi(t)|^p dt.$$

This yields (2.8). Lemma 3 is proved. **Proof of Theorem 1.** We fix a *d*-periodic function $x \in S_{\varphi}(\omega)$, which has zeros and satisfies condition (2.1) with some $c \in [-\|\varphi\|_{\infty}, \|\varphi\|_{\infty}]$. By Lemmas 2 and 3, this function admits estimates (2.7) and (2.8), which directly imply inequality (2.2). It is clear that this inequality is sharp.

Theorem 1 is proved.

3. Remez-Type Inequalities of Different Metrics for the Functions $x \in L^r_\infty(I_{2\pi})$

Recall that the symbol $\varphi_r(t)$, $r \in \mathbf{N}$, denotes a shift of the r th 2π -periodic integral with zero mean value over the period of the function $\varphi_0(t) = \operatorname{sgn} \sin t$ satisfying the condition $\varphi_r(0) = 0$. It is clear that the spline

$$\varphi_{\lambda,r}(t) := \lambda^{-r} \varphi_r(\lambda t), \quad \lambda > 0,$$

is an S-function with period $2\pi/\lambda$.

For $r \in \mathbf{N}$, p > 0, and $f_p \in [0, \infty]$, we consider a class

$$f_p L^r_{\infty}(I_{2\pi}) := \left\{ x \in L^r_{\infty}(I_{2\pi}) : \frac{\|x_+\|_p}{\|x_-\|_p} = f_p \right\}.$$

It is clear that, for given p and f_p , there exists a unique number $c \in [-K_r, K_r]$ for which

$$\varphi_r + c \in f_p \, L^r_\infty(I_{2\pi}). \tag{3.1}$$

Theorem 2. Suppose that $r \in \mathbf{N}$, $p, q > 0, q \ge p$, $f_p \in [0, \infty]$, and $\beta \in [0, 2\pi)$. For any function $x \in f_p L^r_{\infty}(I_{2\pi})$ with zeros and any measurable set $B \subset I_{2\pi}$ such that $\mu B \le \beta/\lambda$, where λ is chosen to guarantee that

$$\|x\|_{p} = \|\varphi_{\lambda,r} + \lambda^{-r} c\|_{L_{p}(I_{2\pi/\lambda})} \left\|x^{(r)}\right\|_{\infty}$$

$$(3.2)$$

and the number c satisfies condition (3.1), the following inequality is true:

$$\|x\|_{q} \leq \frac{\|\varphi_{r} + c\|_{q}}{\|\varphi_{r} + c\|_{L_{p}(I_{2\pi} \setminus B_{y(\beta)})}^{\alpha}} \|x\|_{L_{p}(I_{2\pi} \setminus B)}^{\alpha} \left\|x^{(r)}\right\|_{\infty}^{1-\alpha},$$
(3.3)

where

$$\alpha = \frac{r+1/q}{r+1/p}, \qquad B_y := \{t \in I_{2\pi} : |\varphi_r(t) + c| > y\},\$$

and, in addition, $y = y(\beta)$ is chosen such that $\mu B_{y(\beta)} = \beta$.

Inequality (3.3) is sharp in the class of all pairs (x, B) formed by a function $x \in f_p L^r_{\infty}(I_{2\pi})$, which has zeros, and a measurable set $B \subset I_{2\pi}$ for which $\mu B \leq \beta/\lambda$, where λ satisfies condition (3.2). The equality in (3.3) is attained for the pair $(x, B_{y(\beta)})$, where $x(t) = \varphi_r(t) + c$.

Proof. We fix a function $x \in f_p L^r_{\infty}(I_{2\pi})$ satisfying the conditions of the theorem. Since inequality (3.3) is homogeneous, we can assume that

$$\left\|x^{(r)}\right\|_{\infty} = 1. \tag{3.4}$$

Sharp Remez-Type Inequalities Estimating the L_q -Norm of a Function Via Its L_p -Norm

Thus, in view of (3.1), (3.2) and the definition of the class $f_p L_{\infty}^r(I_{2\pi})$, we get

$$\|x_{\pm}\|_{p} = \left\| \left(\varphi_{\lambda,r} + \lambda^{-r} c \right)_{\pm} \right\|_{L_{p}(I_{2\pi/\lambda})}.$$
(3.5)

For functions $x \in f_p L^r_{\infty}(I_{2\pi})$ satisfying this condition, inequality (1.2) holds

$$\|x_{\pm}\|_{q} \leq \frac{\|(\varphi_{r}+c)_{\pm}\|_{q}}{\|(\varphi_{r}+c)_{\pm}\|_{p}^{\alpha}} \|x_{\pm}\|_{p}^{\alpha} \|x^{(r)}\|_{\infty}^{1-\alpha}$$

By using this inequality, relations (3.4) and (3.5), and the following obvious equality:

$$\left\| \left(\varphi_{\lambda,r} + \lambda^{-r} c \right)_{\pm} \right\|_{L_p(I_{2\pi/\lambda})} = \lambda^{-(r+1/p)} \| (\varphi_r + c)_{\pm} \|_p, \quad p > 0,$$
(3.6)

we arrive at the estimate

$$\|x_{\pm}\|_{q} \leq \left\| \left(\varphi_{\lambda,r} + \lambda^{-r}c\right)_{\pm} \right\|_{L_{q}(I_{2\pi/\lambda})}.$$
(3.7)

In particular, in view of (3.4) and (3.7) (for $q = \infty$), the function x satisfies the conditions of the Kolmogorov comparison theorem [20]. According to this theorem, the spline $\varphi(t) = \varphi_{\lambda,r}(t)$ is the comparison function for the function x, i.e., $x \in S_{\varphi}\left(\frac{\pi}{\lambda}\right)$. Hence, in view of (3.5), the function x satisfies all conditions of Theorem 1. By virtue of this theorem, for $q \ge p$ and an arbitrary measurable set $B \subset I_{2\pi}$, $\mu B \le \beta/\lambda$, the inequality

$$\|x\|_q \le \frac{\|\varphi_{\lambda,r} + \lambda^{-r}c\|_{L_q(I_{2\pi/\lambda})}}{\|\varphi_{\lambda,r} + \lambda^{-r}c\|_{L_p\left(I_{2\pi/\lambda} \setminus \frac{B_y(\beta)}{\lambda}\right)}} \|x\|_{L_p(I_{2\pi} \setminus B)}$$

is true. It follows from the last inequality (for q = p) and conditions (3.2) and (3.4) that

$$\|x\|_{L_p(I_{2\pi}\setminus B)} \ge \|\varphi_{\lambda,r} + \lambda^{-r}c\|_{L_p\left(I_{2\pi/\lambda}\setminus \frac{B_{y(\beta)}}{\lambda}\right)}.$$

Combining the obtained lower estimate with inequality (3.7), in view of the obvious relation

$$\left\|\varphi_{\lambda,r} + \lambda^{-r}c\right\|_{L_p\left(I_{2\pi/\lambda} \setminus \frac{B_{y(\beta)}}{\lambda}\right)} = \lambda^{-(r+1/p)} \|\varphi_r + c\|_{L_p\left(I_{2\pi} \setminus B_{y(\beta)}\right)}$$

and the definition $\alpha = \frac{r+1/q}{r+1/p}$, we obtain

$$\frac{\|x\|_q}{\|x\|_{L_p(I_{2\pi}\setminus B)}} \le \frac{\|\varphi_{\lambda,r} + \lambda^{-r}c\|_{L_q(I_{2\pi/\lambda})}}{\|\varphi_{\lambda,r} + \lambda^{-r}c\|_{L_p\left(I_{2\pi/\lambda}\setminus\frac{B_{y(\beta)}}{\lambda}\right)}} = \frac{\|\varphi_r + c\|_q}{\|\varphi_r + c\|_{L_p(I_{2\pi}\setminus B_{y(\beta)})}}.$$

By virtue of (3.4), this estimate yields (3.3). Thus, it is clear that inequality (3.3) is sharp. Theorem 2 is proved.

733

V. A. KOFANOV AND T. V. OLEXANDROVA

Corollary 1. Suppose that $r \in \mathbf{N}$, p, q > 0, $q \ge p$, $\alpha = \frac{r+1/q}{r+1/p}$, $\beta \in [0, 2\pi)$, and the number $\bar{c} \in [0, K_r]$ realizes the upper bound

$$\sup_{c \in [0,K_r]} \frac{\|\varphi_r + c\|_q}{\|\varphi_r + c\|_{L_p(I_{2\pi} \setminus B^c_{u(\beta)})}^{\alpha}}$$

where

$$B_y^c := \{ t \in I_{2\pi} : |\varphi_r(t) + c| > y \}$$

and, moreover, $y = y(\beta)$ is chosen such that $\mu B_{y(\beta)}^c = \beta$.

Then, for any function $x \in L^r_{\infty}(I_{2\pi})$ with zeros and an arbitrary measurable set $B \subset I_{2\pi}$, $\mu B \leq \beta/\lambda$, where λ is chosen to guarantee that

$$\|x\|_{p} = \left\|\varphi_{\lambda,r} + \lambda^{-r}c\right\|_{L_{p}(I_{2\pi/\lambda})} \left\|x^{(r)}\right\|_{\infty}$$

$$(3.8)$$

and c satisfies the condition

$$||x_+||_p ||x_-||_p^{-1} = ||(\varphi_r + c)_+||_p ||(\varphi_r + c)_-||_p^{-1},$$

the following inequality is true:

$$\|x\|_{q} \leq \frac{\|\varphi_{r} + \bar{c}\|_{q}}{\|\varphi_{r} + \bar{c}\|_{L_{p}(I_{2\pi} \setminus B^{\bar{c}}_{y(\beta)})}^{\alpha}} \|x\|_{L_{p}(I_{2\pi} \setminus B)}^{\alpha} \left\|x^{(r)}\right\|_{\infty}^{1-\alpha}.$$
(3.9)

Inequality (3.9) is sharp in the class of all pairs (x, B) formed by a function $x \in L^r_{\infty}(I_{2\pi})$ with zeros and a measurable set $B \subset I_{2\pi}$ such that $\mu B \leq \beta/\lambda$, where λ satisfies condition (3.8). Equality in (3.9) is attained for the pair $\left(x, B^{\bar{c}}_{y(\beta)}\right)$, where $x(t) = \varphi_r(t) + \bar{c}$.

Remark 1.

- 1. For $\beta = 0$, Theorem 2 and Corollary 1 were proved in [1].
- 2. For functions $x \in L^r_{\infty}(I_{2\pi})$ satisfying the condition $||x_+||_p = ||x_-||_p$, the constant in inequality (3.3) is equal to zero.
- 3. For functions of constant sign $x \in L^r_{\infty}(I_{2\pi})$ with zeros, inequality (3.3) turns into the inequality for the best one-sided approximations by the constant

$$E_0^{\pm}(x)_{L_sG} := \inf_{c \in \mathbf{R}} \big\{ \|x - c\|_{L_s(G)} \colon \forall t \in G \ \pm (x(t) - c)_{\pm} \ge 0 \big\}, \tag{3.10}$$

i.e., the norms $||x||_q$ and $||x||_{L_p(I_{2\pi}\setminus B)}$ in inequality (3.3) for these functions are replaced by $E_0^{\pm}(x)_q$ and $E_0^{\pm}(x)_{L_p(I_{2\pi}\setminus B)}$, respectively. Moreover, the constant c in this inequality is replaced by the Favard constant K_r .

4. Remez-Type Inequalities of Different Metrics for Trigonometric Polynomials

Recall that T_n is a space of trigonometric polynomials of degree at most n. For p > 0, $f_p \in [0, \infty]$, we set

$$f_p T_n := \left\{ T \in T_n : \frac{\|T_+\|_p}{\|T_-\|_p} = f_p \right\}.$$

Theorem 3. Suppose that $n, m \in \mathbb{N}$, p, q > 0, $q \ge p$, and $f_p \in [0, \infty]$. If the trigonometric polynomial $T \in f_p T_n$ with the minimal period $2\pi/m$ has zeros, then, for any measurable set $B \subset I_{2\pi}$, $\mu B \le \frac{m}{n}\beta$, $\beta \in [0, 2\pi)$, the following inequality is true:

$$||T||_{q} \leq \left(\frac{n}{m}\right)^{\frac{1}{p} - \frac{1}{q}} \frac{||\sin(\cdot) + c||_{q}}{||\sin(\cdot) + c||_{L_{p}(I_{2\pi} \setminus B_{y(\beta)})}} ||T||_{L_{p}(I_{2\pi} \setminus B)},$$
(4.1)

where the number $c \in [-1, 1]$ satisfies the condition

$$\sin(\cdot) + c \in f_p T_n,\tag{4.2}$$

and $B_y := \{t \in I_{2\pi} : |\sin t + c| > y\}$; moreover, $y = y(\beta)$ is chosen to guarantee that $\mu B_{y(\beta)} = \beta$. Inequality (4.1) is sharp in the following sense:

$$\sup_{(n,m)\in N_{n,m}} \sup_{(T,B)\in P_n^m} \frac{\|T\|_q}{(n/m)^{1/p-1/q}} \|T\|_{L_p(I_{2\pi}\setminus B)} = \frac{\|\sin(\cdot) + c\|_q}{\|\sin(\cdot) + c\|_{L_p(I_{2\pi}\setminus B_{y(\beta)})}},$$
(4.3)

where $N_{n,m}$ is the set of pairs (n,m) of natural numbers such that $m \leq n$ and P_n^m is the set of pairs (T,B) formed by the polynomial $T \in f_p T_n$ with zeros and the minimal period $2\pi/m$ and a measurable set $B \subset I_{2\pi}$, $\mu B \leq \frac{m}{n} \beta$.

Proof. We fix a polynomial $T \in f_p T_n$ satisfying the conditions of Theorem 3. For the sake of brevity, we set $\varphi(t) := \sin nt$ and $\psi(t) := \varphi(t) + c$, $t \in \mathbf{R}$. In view of the homogeneity of inequality (4.1), we can assume that

$$\|T\|_{L_p(I_{2\pi/m})} = \|\psi\|_{L_p(I_{2\pi/n})}.$$
(4.4)

In view of condition (4.2) and the definition of the class $f_p T_n$, this yields the equality

$$\|T_{\pm}\|_{L_p(I_{2\pi/m})} = \|\psi_{\pm}\|_{L_p(I_{2\pi/n})}.$$
(4.5)

We now show that

$$||T_{\pm}||_{\infty} \le ||\psi_{\pm}||_{\infty}.$$
 (4.6)

Indeed, assume the contrary, i.e., that there exists $\gamma \in (0, 1)$ such that

$$\|\gamma T_{\pm}\|_{\infty} \le \|\psi_{\pm}\|_{\infty}.$$

Moreover, one of these inequalities turns into the equality. Thus, let

$$\|\gamma T_+\|_{\infty} \le \|\psi_+\|_{\infty}, \qquad \|\gamma T_-\|_{\infty} = \|\psi_-\|_{\infty}.$$

Then the polynomial ψ is a comparison function for the polynomial γT (see the proof of Theorem 8.1.1 in [21]). Let m be a point of minimum of the function ψ and let t_1 (t_2) be the nearest (to m) left (right) zero of this function. Passing, if necessary, to the shift of the polynomial γT , we can assume that

$$\|\gamma T_{-}\|_{\infty} = -\gamma T(m).$$

Since ψ is a comparison function for the polynomial γT , we find

$$\gamma T(t) \le \psi(t) < 0, \quad t \in (t_1, t_2).$$

This yields the estimate

$$|T_{-}||_{L_{p}(2\pi/m)} > ||\gamma T_{-}||_{L_{p}(2\pi/m)} \ge ||\psi_{-}||_{L_{p}(2\pi/n)},$$

which contradicts (4.5). Thus, inequality (4.6) is proved.

This inequality and the proof of Theorem 8.1.1 in [21] imply that $\varphi(t) = \sin nt$ is a comparison function for the polynomial T(t), i.e., $T \in S_{\varphi}\left(\frac{\pi}{n}\right)$. Hence, in view of (4.4), the polynomial T satisfies all conditions of Theorem 1 and, therefore, also the conditions of Lemmas 1–3.

Further, we establish the inequality

$$||T||_q \le \left(\frac{m}{n}\right)^{1/q} ||\sin(\cdot) + c||_q.$$
(4.7)

Indeed, by virtue of inequality (2.7), we obtain

$$||T||_{L_q(I_{2\pi/m})} \le ||\varphi + c||_{L_q(I_{2\pi/m})}$$

This immediately yields (4.7) because the polynomial T is $2\pi/m$ -periodic and the function φ is $2\pi/n$ -periodic. We now prove the inequality

$$||T||_{L_p(I_{2\pi\setminus B})} \ge \left(\frac{m}{n}\right)^{1/p} ||\sin(\cdot) + c||_{L_p(I_{2\pi\setminus B_{y(\beta)}})}$$
(4.8)

for any measurable set $B \subset I_{2\pi}, \ \mu B \leq \frac{m}{n} \beta$.

Let \overline{T} be the restriction of the polynomial T to $I_{2\pi/m}$ and let $\overline{\varphi}$ be the restriction of $\varphi + c$ to $I_{2\pi/n}$. By using inequality (2.9), in view of the fact that permutation preserves the L_p -norm, we get

$$\begin{aligned} \|T\|_{L_p(I_{2\pi\setminus B})}^p &= \int_0^{2\pi} |T(t)|^p \, dt - \int_B |T(t)|^p \, dt \\ &\geq \int_0^{2\pi} r^p(T,t) \, dt - \int_0^{\frac{m}{n}\beta} r^p(T,t) \, dt \end{aligned}$$

$$= m \left[\int_{0}^{2\pi/m} r^p(\bar{T},t) dt - \int_{0}^{\beta/n} r^p(\bar{T},t) dt \right].$$

Thus, by virtue of (4.4) and the inequality

$$\int_{0}^{\xi} r^{p}(\bar{T},t) dt \leq \int_{0}^{\xi} r^{p}(\bar{\varphi},t) dt, \quad \xi > 0,$$

which follows from (2.6), according to Proposition 1.3.6 in [19], we arrive at the following lower estimate:

$$\begin{aligned} \|T\|_{L_p(I_{2\pi\setminus B})}^p &\geq m \left[\int_{0}^{2\pi/n} r^p(\bar{\varphi}, t) \, dt - \int_{0}^{\beta/n} r^p(\bar{\varphi}, t) \, dt \right] \\ &= m \int_{\beta/n}^{2\pi/n} r^p(\bar{\varphi}, t) \, dt = \frac{m}{n} \int_{\beta}^{2\pi} r^p(\varphi + c, t) \, dt \\ &= \frac{m}{n} \int_{I_{2\pi\setminus B_y(n)}} |\varphi(t) + c|^p \, dt = \frac{m}{n} \|\sin(\cdot) + c\|_{L_p(I_{2\pi\setminus B_{y(\beta)}})}^p, \end{aligned}$$

where

$$B_y(n) := \{ t \in I_{2\pi} : |\sin nt + c| > y \}$$

and, moreover, $y = y(\beta)$ is chosen such that $\mu B_y(n) = \beta$. The obtained estimate yields inequality (4.8). Combining (4.7) and (4.8), we arrive at inequality (4.1). It is clear that (4.1) is sharp in a sense of (4.3).

Theorem 3 is proved.

Corollary 2. Suppose that $n, m \in \mathbb{N}$, q, p > 0, $q \ge p$, $\beta \in [0, 2\pi)$, and the number $\bar{c} \in [0, 1]$ realizes the upper bound

$$\sup_{c \in [0,1]} \frac{\|\sin(\cdot) + c\|_q}{\|\sin(\cdot) + c\|_{L_p(I_{2\pi} \setminus B^c_{q(\beta)})}}$$

where $B_y^c := \{t \in I_{2\pi} : |\sin t + c| > y\}$ and, moreover, $y = y(\beta)$ is chosen to guarantee that $\mu B_{y(\beta)}^c = \beta$. Then, for any trigonometric polynomial $T \in T_n$ with zeros and the minimal period $2\pi/m$ and any measurable

Then, for any trigonometric polynomial $T \in T_n$ with zeros and the minimal period $2\pi/m$ and any measurable set $B \subset I_{2\pi}$, $\mu B \leq \frac{m}{n} \beta$, the following inequality is true:

$$||T||_{q} \leq \left(\frac{n}{m}\right)^{\frac{1}{p} - \frac{1}{q}} \frac{||\sin(\cdot) + \bar{c}||_{q}}{||\sin(\cdot) + \bar{c}||_{L_{p}(I_{2\pi} \setminus B_{y(\beta)}^{\bar{c}})}} ||T||_{L_{p}(I_{2\pi} \setminus B)}.$$
(4.9)

Inequality (4.8) is sharp in the following sense:

$$\sup_{(n,m)\in N_{n,m}} \sup_{(T,B)\in Q_n^m} \frac{\|T\|_q}{(n/m)^{1/p-1/q}} \|T\|_{L_p(I_{2\pi}\setminus B)} = \frac{\|\sin(\cdot) + \bar{c}\|_q}{\|\sin(\cdot) + \bar{c}\|_{L_p(I_{2\pi}\setminus B_{u(\beta)}^{\bar{c}})}}$$

where $N_{n,m}$ is the set of pairs (n,m) of natural numbers such that $m \leq n$ and Q_n^m is the set of pairs (T,B)formed by a polynomial $T \in T_n$ with zeros and the minimal period $2\pi/m$ and a measurable set $B \subset I_{2\pi}$, $\mu B \leq \frac{m}{n} \beta$.

Remark 2.

- 1. For $\beta = 0$ and m = 1, Theorem 3 and Corollary 2 are proved in [1].
- 2. For the polynomials $T \in T_n$ satisfying the condition $||T_+||_p = ||T_-||_p$, the constant c in inequality (4.1) is equal to zero.
- For sign-preserving polynomials T ∈ T_n which have zeros, inequality (4.1) turns into the inequality for the best one-sided approximations by a constant [see (3.10)], i.e., the norms ||T||_q and ||T||_{L_p(I_{2π}\B)} in inequality (4.1) for these polynomials should be replaced by E[±]₀(T)_q and E[±]₀(T)_{L_p(I_{2π}\B)}, respectively. Moreover, the constant c in this inequality is equal to 1.

5. Remez-Type Inequalities of Different Metrics for Splines

Recall that $S_{n,r}$ is a space of 2π -periodic splines of order r with defect 1 and nodes at the points $k\pi/n$, $k \in \mathbb{Z}$. For p > 0 and $f_p \in [0, \infty]$, we set

$$f_p S_{n,r} := \left\{ s \in S_{n,r} : \frac{\|s_+\|_p}{\|s_-\|_p} = f_p \right\}.$$

Theorem 4. Suppose that $n, m \in \mathbb{N}$, p, q > 0, $q \ge p$, and $f_p \in [0, \infty]$. If a spline $s \in f_p S_{n,r}$ with the minimal period $2\pi/m$ has zeros, then, for any measurable set $B \subset I_{2\pi}$, $\mu B \le \frac{m}{n} \beta$, the following inequality is true:

$$\|s\|_{q} \leq \left(\frac{n}{m}\right)^{\frac{1}{p}-\frac{1}{q}} \frac{\|\varphi_{r}+c\|_{q}}{\|\varphi_{r}+c\|_{L_{p}(I_{2\pi}\setminus B_{y(\beta)})}} \|s\|_{L_{p}(I_{2\pi}\setminus B)},$$
(5.1)

where $c \in [-K_r, K_r]$ satisfies the condition

$$\varphi_{n,r} + n^{-r}c \in f_p \, S_{n,r},\tag{5.2}$$

and $B_y := \{t \in I_{2\pi} : |\varphi_r(t) + c| > y\}$; moreover, $y = y(\beta)$ is chosen to guarantee that $\mu B_{y(\beta)} = \beta$. Inequality (5.1) is sharp in the following sense:

$$\sup_{(n,m)\in N_{n,m}} \sup_{(s,B)\in S_n^m} \frac{\|s\|_q}{(n/m)^{1/p-1/q}} \|s\|_{L_p(I_{2\pi}\setminus B)} = \frac{\|\varphi_r + c\|_q}{\|\varphi_r + c\|_{L_p(I_{2\pi}\setminus B_{y(\beta)})}},$$
(5.3)

where $N_{n,m}$ is a set of pairs (n,m) of natural numbers such that $m \le n$ and S_n^m is the set of pairs (s,B) formed by a spline $s \in f_p S_{n,r}$ with zeros and the minimal period $2\pi/m$ and a measurable set $B \subset I_{2\pi}$, $\mu B \le \frac{m}{n} \beta$.

Proof. We fix a spline $s \in f_p S_{n,r}$ satisfying the conditions of Theorem 4. For the sake of brevity, we set $\varphi(t) := \varphi_{n,r}(t)$ and $\psi(t) := \varphi_{n,r}(t) + n^{-r}c$, $t \in \mathbf{R}$. In view of the homogeneity of inequality (5.1), we can

assume that

$$\|s\|_{L_p(I_{2\pi/m})} = \|\psi\|_{L_p(I_{2\pi/n})}.$$
(5.4)

Thus, in view of (5.2) and the definition of the class $f_p S_{n,r}$, we arrive at the equality

$$|s_{\pm}||_{L_p(I_{2\pi/m})} = ||\psi_{\pm}||_{L_p(I_{2\pi/n})}.$$
(5.5)

We now show that

$$\|s_{\pm}\|_{\infty} \le \|\psi_{\pm}\|_{\infty}.$$
(5.6)

Indeed, assume the contrary, i.e., that there exists $\gamma \in (0,1)$ such that $\|\gamma s_{\pm}\|_{\infty} \leq \|\psi_{\pm}\|_{\infty}$ and, in addition, that one of these inequalities turns into the equality; e.g., that

 $\|\gamma s_+\|_{\infty} \le \|\psi_+\|_{\infty}$ and $\|\gamma s_-\|_{\infty} = \|\psi_-\|_{\infty}$.

Then

$$E_0(\gamma s)_\infty \le E_0(\psi)_\infty = \|\varphi_{n,r}\|_\infty$$

and, by virtue of the Tikhomirov inequality [22]

$$\left\|s^{(r)}\right\|_{\infty} \le \frac{E_0(s)_{\infty}}{\|\varphi_{n,r}\|_{\infty}},$$

where $E_0(x)_{\infty}$ is the best uniform approximation of the function x by constants, we arrive at the inequality

$$\left\|\gamma s^{(r)}\right\|_{\infty} \le 1.$$

Thus, the spline γs satisfies the conditions of the Kolmogorov comparison theorem [20]. By this theorem, the spline φ is the comparison function for the spline γs . Let m be the point of minimum of the function ψ and let $t_1(t_2)$ be the left (right) nearest (to m) zero of this function. Passing, if necessary, to a shift of the spline γs , we can assume that

$$\|\gamma s_{-}\|_{\infty} = -\gamma s(m).$$

Since the spline ψ is the comparison function for the spline γs , we get

$$\gamma s(t) \le \psi(t) < 0, \quad t \in (t_1, t_2).$$

This yields the estimate

$$||s_{-}||_{L_{p}(2\pi/m)} > ||\gamma s_{-}||_{L_{p}(2\pi/m)} \ge ||\psi_{-}||_{L_{p}(2\pi/n)},$$

which contradicts (5.5). Thus, inequality (5.6) is proved.

739

By using inequality (5.6), we find

$$E_0(s)_{\infty} \le E_0(\psi)_{\infty} = \|\varphi_{n,r}\|_{\infty}.$$

Applying the Tikhomirov inequality, we obtain

$$\left\|s^{(r)}\right\|_{\infty} \le \frac{E_0(s)_{\infty}}{\|\varphi_{n,r}\|_{\infty}} \le 1.$$

Therefore, the spline s satisfies the conditions of the Kolmogorov comparison theorem [20]. According to this theorem, the spline φ is the comparison function for the spline s. Hence, $s \in S_{\varphi}\left(\frac{\pi}{n}\right)$ and, in view of (5.5), the spline s satisfies the conditions of Theorem 1 and, thus, also the conditions of Lemmas 1–3.

We prove the inequality

$$\|s\|_{q} \le n^{-r} \left(\frac{m}{n}\right)^{1/q} \|\varphi + c\|_{q}.$$
(5.7)

Indeed, by virtue of inequality (2.7), we get

$$||s||_{L_q(I_{2\pi/m})} \le ||\varphi_{n,r} + n^{-r}c||_{L_q(I_{2\pi/n})}$$

This directly yields (5.7) because the spline s is $2\pi/m$ -periodic and the spline $\varphi_{n,r}$ is $2\pi/n$ -periodic.

We now prove the inequality

$$\|s\|_{L_q(I_{2\pi\setminus B})} \ge n^{-r} \left(\frac{m}{n}\right)^{1/p} \|\varphi_r + c\|_{L_q(I_{2\pi\setminus B_{y(\beta)}})}$$
(5.8)

for any measurable set $B \subset I_{2\pi}$, $\mu B \leq \frac{m}{n}\beta$, $\beta \in [0, 2\pi)$. Let \bar{s} be the restriction of the spline s to $I_{2\pi/m}$ and let $\bar{\psi}$ be the restriction of the spline ψ to $I_{2\pi/n}$. As in the proof of Theorem 3, by using inequality (2.9) and taking into account the fact that permutations preserve the L_p -norm, we obtain

$$\|s\|_{L_{p}(I_{2\pi\setminus B})}^{p} \ge m \left[\int_{0}^{2\pi/m} r^{p}(\bar{s},t) \, dt - \int_{0}^{\beta/n} r^{p}(\bar{s},t) \, dt \right].$$

Further, by using (5.4) and the inequality

$$\int_{0}^{\xi} r^{p}(\bar{s},t)dt \leq \int_{0}^{\xi} r^{p}(\bar{\psi},t)dt, \quad \xi > 0,$$

which follows from (2.6) according to Proposition 1.3.6 in [19], as in the proof of Theorem 3, we obtain the following lower bound:

$$\|s\|_{L_{p}(I_{2\pi\setminus B})}^{p} \ge m \left[\int_{0}^{2\pi/n} r^{p}(\bar{\psi}, t) dt - \int_{0}^{\beta/n} r^{p}(\bar{\psi}, t) dt\right] = m \int_{\beta/n}^{2\pi/n} r^{p}(\bar{\psi}, t) dt$$

$$= \frac{m}{n} \int_{\beta}^{2\pi} r^p(\psi, t) dt = \frac{m}{n} n^{-rp} \int_{I_{2\pi} \setminus B_{y(\beta)}(n)} |\varphi_r(nt) + c|^p dt$$
$$= n^{-rp} \frac{m}{n} \|(\varphi_r + c)\|_{L_p(I_{2\pi} \setminus B_{y(\beta)})}^p,$$

where

$$B_{y(\beta)}(n) := \{t \in I_{2\pi} : |\varphi_r(nt) + c| > y\}$$

and $y = y(\beta)$ is chosen to guarantee that $\mu B_{y(\beta)}(n) = \beta$.

The obtained lower bound is equivalent to (5.8). Inequality (5.1) directly follows from (5.7) and (5.8). It is clear that inequality (5.1) is sharp in the sense of (5.3).

Theorem 4 is proved.

Corollary 3. Suppose that $n, m \in \mathbf{N}, q, p > 0, q \ge p, \beta \in [0, 2\pi)$, and the number $\bar{c} \in [0, K_r]$ realizes the upper bound

$$\sup_{c\in[0,K_r]}\frac{\|\varphi_r+c\|_q}{\|\varphi_r+c\|_{L_p(I_{2\pi}\setminus B^c_{y(\beta)})}},$$

where $B_y^c := \{t \in I_{2\pi} : |\varphi_r(t) + c| > y\}$ and, in addition, $y = y(\beta)$ is such that $\mu B_{y(\beta)}^c = \beta$. Then, for any spline $s \in S_{n,r}$ with zeros and the minimal period $2\pi/m$ and an arbitrary measurable set $B \subset I_{2\pi}, \ \mu B \leq \frac{m}{n}\beta$, the following inequality is true:

$$\|s\|_{q} \leq \left(\frac{n}{m}\right)^{\frac{1}{p} - \frac{1}{q}} \frac{\|\varphi_{r} + \bar{c}\|_{q}}{\|\varphi_{r} + \bar{c}\|_{L_{p}\left(I_{2\pi} \setminus B_{y(\beta)}^{\bar{c}}\right)}} \|s\|_{L_{p}(I_{2\pi} \setminus B)}.$$
(5.9)

Inequality (5.9) is sharp in the following sense:

$$\sup_{(n,m)\in N_{n,m}} \sup_{(s,B)\in\Sigma_n^m} \frac{\|s\|_q}{(n/m)^{1/p-1/q}} \|s\|_{L_p(I_{2\pi}\setminus B)} = \frac{\|\varphi_r + \bar{c}\|_q}{\|\varphi_r + \bar{c}\|_{L_p(I_{2\pi}\setminus B_{y(\beta)})}},$$

where $N_{n,m}$ is the set of pairs (n,m) of natural numbers such that $m \leq n$ and Σ_n^m is a set of pairs (s,B) formed by a spline $s \in S_{n,r}$ with zeros and the minimal period $2\pi/m$ and a measurable set $B \subset I_{2\pi}$, $\mu B \leq \frac{m}{n}\beta$.

Remark 3.

- 1. For $\beta = 0$ and m = 1, Theorem 4 and Corollary 3 were obtained in [1].
- 2. For the splines $s \in S_{n,r}$ satisfying the condition $||s_+||_p = ||s_-||_p$, the constant c in inequality (5.1) is equal to zero.
- 3. For splines of constant sign $s \in S_{n,r}$ with zeros, inequality (5.1) turns into the inequality for the best one-sided approximations by a constant [see (3.10)], i.e., the norms $||s||_q$ and $||s||_{L_p(I_{2\pi}\setminus B)}$ in inequality (5.1) for these splines should be replaced by $E_0^{\pm}(s)_q$ and $E_0^{\pm}(s)_{L_p(I_{2\pi}\setminus B)}$, respectively. Moreover, the constant c in this inequality is equal to the Favard constant K_r .

REFERENCES

- 1. V. F. Babenko, V. A. Kofanov, and S. A. Pichugov, "Comparison of permutations and Kolmogorov–Nagy type inequalities for periodic functions," in: *B. Bojanov (editor), Approximation Theory: A Volume Dedicated to Blagovest Sendov*, Darba, Sofia (2002), pp. 24–53.
- 2. V. A. Kofanov, "On some extremal problems of different metrics for differentiable functions on the axis," *Ukr. Mat. Zh.*, **61**, No. 6, 765–776 (2009); *English translation: Ukr. Math. J.*, **61**, No. 6, 908–922 (2009).
- 3. V. A. Kofanov, "Inequalities of different metrics for differentiable periodic functions," *Ukr. Mat. Zh.*, **67**, No. 2, 202–212 (2015); *English translation: Ukr. Math. J.*, **67**, No. 2, 230–242 (2015).
- 4. B. Bojanov and N. Naidenov, "An extension of the Landau–Kolmogorov inequality. Solution of a problem of Erdos," *J. Anal. Math.*, **78**, 263–280 (1999).
- V. A. Kofanov, "Sharp upper bounds of norms of functions and their derivatives on classes of functions with given comparison function," Ukr. Mat. Zh., 63, No. 7, 969–984 (2011); English translation: Ukr. Math. J., 63, No. 7, 1118–1135 (2011).
- 6. E. Remes, "Sur une propriété extrémale des polynomes de Tchebychef," Zap. Nauk.-Doslid. Inst. Mat. Mekh. Kharkiv. Mat. Tovar., Ser. 4, 13, Issue 1, 93–95 (1936).
- 7. M. I. Ganzburg, "On a Remez-type inequality for trigonometric polynomials," J. Approx. Theory, 164, 1233–1237 (2012).
- 8. E. Nursultanov and S. Tikhonov, "A sharp Remez inequality for trigonometric polynomials," Constr. Approx., 38, 101–132 (2013).
- 9. P. Borwein and T. Erdelyi, Polynomials and Polynomial Inequalities, Springer, New York (1995).
- 10. M. I. Ganzburg, "Polynomial inequalities on measurable sets and their applications," Constr. Approx., 17, 275–306 (2001).
- 11. S. Tikhonov and P. Yuditski, Sharp Remez inequality https://www.researchgate.net/publication/327905401.
- V. A. Kofanov, "Sharp Remez-type inequalities for differentiable periodic functions, polynomials, and splines," Ukr. Mat. Zh., 68, No. 2, 227–240 (2016); English translation: Ukr. Math. J., 68, No. 2, 253–268 (2016).
- V. A. Kofanov, "Sharp Remez-type inequalities of different metrics for differentiable periodic functions, polynomials, and splines," Ukr. Mat. Zh., 69, No. 2, 173–188 (2017); English translation: Ukr. Math. J., 69, No. 2, 205–223 (2017).
- A. E. Gaidabura and V. A. Kofanov, "Sharp Remez-type inequalities of various metrics in the classes of functions with given comparison function," Ukr. Mat. Zh., 69, No. 11, 1472–1485 (2017); English translation: Ukr. Math. J., 69, No. 11, 1710–1726 (2018).
- 15. V. A. Kofanov, "Sharp Kolmogorov-Remez-type inequalities for periodic functions of low smoothness," Ukr. Mat. Zh., 72, No. 4, 483–493 (2020); English translation: Ukr. Math. J., 72, No. 4, 555–567 (2020).
- V. A. Kofanov and I. V. Popovich, 'Sharp Remez-type inequalities of various metrics with asymmetric restrictions imposed on the functions," Ukr. Mat. Zh., 72, No. 7, 918–927 (2020); English translation: Ukr. Math. J., 72, No. 7, 1068–1079 (2020).
- V. O. Kofanov, "On the relationship between sharp Kolmogorov-type inequalities and sharp Kolmogorov-Remez-type inequalities," Ukr. Mat. Zh., 73, No. 4, 506–514 (2021); English translation: Ukr. Math. J., 73, No. 4, 592–600 (2021).
- V. F. Babenko, V. A. Kofanov, and S. A. Pichugov, "Comparison of exact constants in inequalities for derivatives of functions defined on the real axis and a circle," Ukr. Mat. Zh., 55, No. 5, 579–589 (2003); English translation: Ukr. Math. J., 55, No. 5, 699–711 (2003).
- 19. N. P. Korneichuk, V. F. Babenko, and A. A. Ligun, *Extreme Properties of Polynomials and Splines* [in Russian], Naukova Dumka, Kiev (1992).
- 20. A. N. Kolmogorov, "On the inequalities between the upper bounds of successive derivatives of functions on an infinite interval," in: *Selected Works. Mathematics and Mechanics* [in Russian], Nauka, Moscow (1985), pp. 252–263.
- 21. N. P. Korneichuk, V. F. Babenko, V. A. Kofanov, and S. A. Pichugov, *Inequalities for Derivatives and Their Applications* [in Russian], Naukova Dumka, Kiev (2003).
- 22. V. M. Tikhomirov, "Widths of sets in function spaces and the theory of best approximations," Usp. Mat. Nauk, 15, No. 3, 81–120 (1960).