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LIE–BÄCKLUND SYMMETRY, REDUCTION, AND SOLUTIONS OF
NONLINEAR EVOLUTIONARY EQUATIONS

W. Rzeszut,1 I. M. Tsyfra,2,3 and V. A. Vladimirov4 UDC 517.9

We study the problem of symmetry reduction of nonlinear partial differential equations used to describe
diffusion processes in an inhomogeneous medium. We find ansatzes reducing partial differential equa-
tions to systems of ordinary differential equations. These ansatzes are constructed by using the operators
of Lie–Bäcklund symmetry of the third-order ordinary differential equations. The proposed method en-
ables us to find solutions that cannot be obtained by using the classical Lie method. These solutions are
constructed for nonlinear diffusion equations invariant under one-, two-, and three-parameter Lie groups
of point transformations.

1. Introduction

It is known that the method of classical [1] and nonclassical (conditional) symmetry [2–5] is an efficient tool for
finding the exact solutions of nonlinear partial differential equations. This method is based on the construction of
special ansatzes obtained in the form of general invariant or conditionally invariant solutions reducing the original
partial differential equations to equations with smaller numbers of independent variables and, in particular, to ordi-
nary differential equations. The method of conditional Lie–Bäcklund symmetry of the evolutionary equations with
two independent variables was proposed in [6, 7]. Within the framework of this approach, the evolutionary partial
differential equations are reduced to systems of ordinary differential equations. For the applications of this method
to nonlinear diffusion equations, see, e.g., [8]. The relationship between the generalized conditional symmetry of
evolutionary equations and consistency of the system of equations was studied in [11]. The procedure of reduc-
tion of nonlinear evolutionary equations to systems of ordinary equations was proposed in [9]. This procedure is
based on the Lie–Bäcklund symmetry of ordinary linear homogeneous equations and offers the theoretical-group
substantiation of the method of “nonlinear separation of variables.”

In the present paper, we use the method proposed in [10], which can be interpreted as a generalization of the
Svirshchevskii method. It is based on the Lie–Bäcklund symmetry of ordinary differential equations, which are not
necessarily linear and homogeneous. In the general case, they are nonlinear. Moreover, this method can be applied
not only to the evolutionary equations but also, generally speaking, to any partial differential equations and admits
generalizations to the multidimensional cases [13, 14].

We demonstrate the efficiency of application of this method by using, as an example, the equation that de-
scribes the processes of nonlinear diffusion in inhomogeneous media.
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2. Application of the Method with the Use of Ordinary Differential Equations of the Third Order

Consider an ordinary differential equation of the third order

u
xxx

− U(x, u, u
x

, u
xx

) = 0, (1)

where u(t, x) is a function of an independent variable x and a variable t. In the analyzed case, t can be interpreted
as a parameter. We seek the function U in the form

U =

X

j0,j1,j22Z
a
j0,j1,j2(x)u

j0 uj1
x

uj2
xx

,

where a
j0,j1,j2(x) are smooth functions that should be found. Assume that Eq. (1) admits the Lie–Bäcklund

symmetry operator X = F (x, u, u
x

, u
xx

)@
u

, where F is the right-hand side of the evolutionary equation

u
t

= F (x, u, u
x

, u
xx

). (2)

In the present paper, we illustrate the efficiency of the proposed method by analyzing an example of the
following diffusion-type equation:

u
t

=

✓
H(x)

u

◆

xx

+ ⌘(x, u, u
x

). (3)

Consider a function H of the form

H(x) =
1

C2x2 + C1x+ C0
,

where C1, C2, C0 2 R are real constants. For C1 = C2 = 0, C0 = −1, and ⌘ = 0, Eq. (3) turns into
the well-known nonlinear differential equation with variable heat-conduction coefficient that describes nonlinear
diffusion processes and is used in the problems of plasma physics and solid-state physics, as well as in many other
applied problems. This equation possesses the infinite Lie–Bäcklund symmetry and, with the help of a certain
transformation, is reduced to the linear heat-conduction equation.

The criterion of invariance for Eq. (1) has the form

X(3)
�
u
xxx

− U(x, u, u
x

, u
xx

)

���
u

xxx

=U

= 0, (4)

where X(3) is the third-order extension of the Lie–Bäcklund symmetry operator X. The procedure of finding of
the function U is quite cumbersome. In the present paper, we omit this procedure and present only the final result
in the following formulation:

Proposition 1. Equation (1) admits the Lie–Bäcklund symmetry operator

X =

✓
H(x)

u

◆

xx

@
u

,

where

H(x) =
1

C2x2 + C1x+ C0
,
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if it has the following form:

u
xxx

= 9

u
xx

u
x

u
− 12

u3
x

u2
+

6(2C2x+ C1)

C2x2 + C1x+ C0
u
xx

− 18(2C2x+ C1)

C2x2 + C1x+ C0

u2
x

u
− 6(10C2

2x
2
+ 10C1x− 2C0C2 + 3C2

1 )

(C2x2 + C1x+ C0)
2

u
x

− 6(2C2x+ C1)(5C
2
2x

2
+ 5C1x− 3C0C2 + 2C2

1 )

(C2x2 + C1x+ C0)
3

u,

and C1, C2, C0 2 R are real constants.

2.1. Determination of Solutions of the Equation u
t

=

✓
H(x)

u

◆

xx

+⌘(x, u, u
x

) . We use the property

of reduction of the equation

u
t

=

✓
H(x)

u

◆

xx

, (5)

where

H(x) =
1

C2x2 + C1x+ C0
,

to a system of three ordinary differential equations of the first order with the help of an ansatz in the form of
a general solution of the ordinary differential equation of the third order in Proposition 1. It is clear that, for
the operator of contact symmetry of this ordinary differential equation X = ⌘(x, u, u

x

)@
u

rewritten in the Lie–
Bäcklund form, Eq. (3) is also reduced to a system of three ordinary differential equations with the help of the
same ansatz, i.e., the property of reduction of the modified equation is preserved.

Consider several special cases of Proposition 1.
Let C2 = C0 = 0 and C1 6= 0. Then we can take H(x) =



x
,  = const. Thus, the ordinary differential

equation generated by the ansatz has the form

u
xxx

= 9

u
xx

u
x

u
− 12

u3
x

u2
+

6

x
u
xx

− 18

x

u2
x

u
− 18

x2
u
x

− 12

x3
u. (6)

Its solution is given by the formula

u(x) = ± 1

x
p
'2x2 + '1x+ '0

, (7)

where '1, '2, and '3 are arbitrary functions of the variable t. At the same time, the Lie algebra of the Lie group
of contact transformations, which is a symmetry group of Eq. (6), can be determined by the basis elements:

X1 = u@
u

, X2 = xu
x

@
u

, X3 = x2u3@
u

, X4 = x3u3@
u

, X5 = x4u3@
u

, (8)

X6 =

⇣u
x
+ u

x

⌘
@
u

, X7 = (2xu+ x2u
x

)@
u

, (9)

X8 =
x2u2

x

+ 4xuu
x

+ 4u2

x2u3
@
u

, X9 =
x2u2

x

+ 3xuu
x

+ 2u2

x3u3
@
u

, X10 =
x2u2

x

+ 2xuu
x

+ u2

x4u3
@
u

. (10)
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Thus, the reduction method can be applied to an arbitrary equation from the class

u
t

=

⇣ 

xu

⌘

xx

+

10X

i=1

a
i

X
i

u, a
i

= const, i = 1, . . . , 10.

We modify the original equation by adding the terms containing derivatives whose order is smaller than two.
In the present paper, we consider solely the characteristics of the operators of point symmetry. Thus, consider an
equation

u
t

=

⇣ 

xu

⌘

xx

+ a1u+ a2xux + a4(xu)
3, , a

i

2 R. (11)

For  6= 0 and any a1, a2, a4 2 R, this equation admits a two-dimensional Lie algebra with the basis elements

X1 = @
t

,

X2 = 2x@
x

− 3u@
u

.

Moreover, this algebra is maximal in the analyzed case, i.e., this is a Lie algebra of the complete symmetry group
of Eq. (11). In what follows, if we consider a group of point symmetry transformations of the diffusion equation,
then we always mean the complete group (i.e., the maximal Lie algebra) without repeating this remark.

If 2a1 6= 3a2 and a4 = 0, then the equation admits the following additional operator:

X3 = e(2a1−3a2)t
�
−a2x@x + @

t

+ a1u@u
�
.

If the conditions 2a1 = 3a2 and a4 = 0 are satisfied, then the equation admits an additional operator of the form

X 0
3 = −a2x@x + t@

t

+

✓
a1t+

1

2

◆
u@

u

.

Ansatz (7) reduces Eq. (11) to a system of three ordinary differential equations

'0
2 + 2(a1 − 2a2)'2 = 0,

'0
0 + 2(a1 − a2)'0 = 0,

'0
1 −

1

2

'2
1 + 2'0'2 + 2

✓
a1 −

3

2

a2

◆
'1 + 2a4 = 0.

For 2a1 6= 3a2 and a4 = 0, we get the following solutions of the system of reduced equations:

u(x, t) = ± 1

x

vuuuuutc2e2(2a2−a1)tx2 + 2A(t)

c3 cos

✓
A(t)

2a1 − 3a2

◆
− c4 sin

✓
A(t)

2a1 − 3a2

◆

c3 sin

✓
A(t)

2a1 − 3a2

◆
+ c4 cos

✓
A(t)

2a1 − 3a2

◆x+ c0e2(a2−a1)t

, (12)
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where c0c2 < 0, A(t) =
p
−c0c2e

(3a2−2a1)t, and c23 + c24 > 0, or

u(x, t) = ± 1

x

vuuuuutc2e2(2a2−a1)tx2 + 2B(t)

c3 cosh

✓
B(t)

2a1 − 3a2

◆
+ c4 sinh

✓
B(t)

2a1 − 3a2

◆

c3 sinh

✓
B(t)

2a1 − 3a2

◆
+ c4 cosh

✓
B(t)

2a1 − 3a2

◆x+ c0e2(a2−a1)t

, (13)

where c0c2 > 0, B(t) =
p
c0c2e

(3a2−2a1)t, and c23 + c24 > 0.

For a1 =

3

2

a2 =

3

2

a and arbitrary a4 2 R, we obtain the following solutions of the system of reduced
equations:

u(x, t) = ± 1

x

s

c2eatx2 −
2

p
−C



c3 cos
�p

−Ct
�
+ c4 sin

�p
−Ct

�

c3 sin
�p

−Ct
�
− c4 cos

�p
−Ct

�x+ c0e−at

, (14)

where C = 2c0c2 + a4 < 0 and c23 + c24 > 0, or

u(x, t) = ± 1

x

s

c2eatx2 −
2

p
C



c3 cosh
�p

Ct
�
+ c4 sinh

�p
Ct
�

c3 sinh
�p

Ct
�
+ c4 cosh

�p
Ct
�x+ c0e−at

, (15)

where C = 2c0c2 + a4 > 0 and c23 + c24 > 0.

Setting c3=0 and c4 6=0 in (13), we obtain a particular solution that contains the function tanh

✓
B(t)

2a1 − 3a2

◆
.

Replacing tanh

✓
B(t)

2a1 − 3a2

◆
in the obtained formula with coth

✓
B(t)

2a1 − 3a2

◆
, we again obtain the solution

of Eq. (11). This can be shown by setting c3 6= 0 and c4 = 0 in relation (13). Note that solutions (15) have
a similar property.

By the condition of invariance of solution (12) under a certain one-parameter subgroup

3X

i=1

↵
i

X
i

(u− u(x, t))
��
u=u(x,t)

= 0,

we conclude that ↵1 = ↵2 = ↵3 = 0. Thus, the solution (12) of Eq. (11) is not invariant and, hence, it cannot be
obtained with the help of the classical Lie method. In a similar way, we show that solutions (13), (14), and (15) are
not invariant.

Further, we consider a special case where C1 = C0 = 0 and C2 6= 0. Thus, we can take H(x) =



x2
,

 = const . In this case, the ordinary differential equation generated by the ansatz takes the form:

u
xxx

= 9

u
xx

u
x

u
− 12

u3
x

u2
+

12

x
u
xx

− 36

x

u2
x

u
− 60

x2
u
x

− 60

x3
u. (16)

Thus, we get the solution

u(x) = ± 1

x2
p
'2x2 + '1x+ '0

(17)

of the analyzed equation, where '1, '2, and '3 are arbitrary functions of the variable t.
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The Lie algebra of the Lie group of contact transformations of the symmetry group of Eq. (16) can be specified
by the basis elements as follows:

X1 = u@
u

, X2 = xu
x

@
u

, X3 = x4u3@
u

, X4 = x5u3@
u

, X5 = x6u3@
u

, (18)

X6 =

✓
2

u

x
+ u

x

◆
@
u

, X7 = (3xu+ x2u
x

)@
u

, (19)

X8 =
x2u2

x

+ 6xuu
x

+ 9u2

x4u3
@
u

, X9 =
x2u2

x

+ 5xuu
x

+ 6u2

x5u3
@
u

, X10 =
x2u2

x

+ 4xuu
x

+ 4u2

x6u3
@
u

. (20)

Thus, by using ansatz (17), we can apply the reduction method to an arbitrary equation from the class of
equations

u
t

=

⇣ 

x2u

⌘

xx

+

10X

i=1

a
i

X
i

u, a
i

= const, i = 1, . . . , 10.

Consider the following equation from this class:

u
t

=

⇣ 

x2u

⌘

xx

+ a4x
5u3 + a5x

6u3 + a7(3xu+ x2u
x

), , a
i

2 R,  6= 0. (21)

For any a4, a5, a7 2 R, this equation admits a one-parameter Lie group with the infinitesimal generator

Y1 = @
t

.

At the same time, if a4 6= 0 and a7 = 0, then the equation admits the following additional operator:

Y 0
2 =

✓
−2x2

a5
a4

− 2x

◆
@
x

+ t@
t

+

3

2

✓
4x

a5
a4

+ 3

◆
u@

u

.

At the same time, for a4 = 0, the equation admits the following two additional operators:

Y2 = −x@
x

+ t@
t

+

5

2

u@
u

, Y3 = x2@
x

− 3xu@
u

.

Moreover, if a4 = a5 = 0, then we additionally get the fourth operator

Y4 = −a7tx
2@

x

+ t@
t

+

✓
3a7tx+

1

2

◆
u@

u

.

Ansatz (17) reduces Eq. (21) to the system of ordinary differential equations

'0
2 + 2'0'2 −

1

2

'2
1 + 2a5 + a7'1 = 0,

'0
1 + 2a4 + 2a7'0 = 0,

'0
0 = 0.
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The solutions of the system of reduced equations have the form

'2 =
(c0a7 + a4)

2

c0
t2 − (c0a7 + a4)

✓
c1
c0

+

a4
c20

◆
t

+

c21
4c0

+

c1a4 − 2c0a5
2c20

+

a4(c0a7 + a4)

22c30
+ c2e

−2c0t,

'1 = −2(c0a7 + a4)t+ c1,

'0 = c0, c0 6= 0,

or

'2 =
2

3

a24t
3
+ a4(a7 − c1)t

2
+

✓
1

2

c21− c1a7 − 2a5

◆
t+ c2,

'1 = −2a4t+ c1,

'0 = 0.

Substituting '0(t), '1(t), and '2(t) in (17), we arrive at the solutions invariant under the corresponding one-
parameter subgroup with generator in the form of a nontrivial linear combination of the operators {Y1,Y 0

2 ,Y2,Y3,Y4}
if and only if a4 = a5 = 0 or a4 = '0 = 0; otherwise, they are not invariant solutions.

Further, we consider the equation

u
t

=

⇣ 

x2u

⌘

xx

+ a1u+ a4x
5u3 + a5x

6u3, , a
i

2 R, a1 6= 0,  6= 0. (22)

Equation (22) admits the operator Z1 = @
t

if a4 and a5 are arbitrary real numbers. If a4 = 0, then the equation
admits an additional operator

Z2 = x2@
x

− 3xu@
u

.

In addition, if a4 = a5 = 0, then we observe the appearance of two more operators

Z3 = x@
x

− 2u@
u

, Z4 = e2a1t(@
t

+ a1u@u).

Ansatz (17) reduces Eq. (22) to the following system of differential equations:

'0
2 + 2'0'2 −

1

2

'2
1 + 2a1'2 + 2a5 = 0,

'0
1 + 2a1'1 + 2a4 = 0,

'0
0 + 2a1'0 = 0.
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The solutions of this system are given by the formulas

'2 = e−2a1t

✓
e

c0
a1

e

−2a1t
✓
c2 −



4a21

✓
2c1a4 − c0

✓
4a5 −

a24

a21

◆◆
Γ

✓
0,

c0

a1
e−2a1t

◆◆

+

c21
4c0

◆
− a5

a1
+

a24
4a31

,

'1 = −a4
a1

+ c1e
−2a1t,

'0 = c0e
−2a1t, c0 6= 0,

or

'2 =

✓
c2 −

c1a4

a1
t

◆
e−2a1t − c21

4a1
e−4a1t − a5

a1
+

a24
4a31

,

'1 = −a4
a1

+ c1e
−2a1t,

'0 = 0,

where Γ

�
0, z) is the upper incomplete gamma-function. The solution u(x, t) [obtained with the help of (17) and

the solutions '0, '1, and '2 of the reduced system of equations] is not invariant for a4 6= 0 or a5 6= 0.

Finally, we consider the equation

u
t

=

⇣ 

x2u

⌘

xx

+ a3x
4u3 + a4x

5u3 + a5x
6u3, , a

i

2 R, a3 6= 0,  6= 0. (23)

For any a4 and a5, this equation admits the following symmetry operator:

W1 = @
t

.

If a4 = a5 = 0, then the operator admits the additional operator

W2 = x@
x

− 2u@
u

.

Then ansatz (17) reduces Eq. (23) to the system of ordinary differential equations

'0
2 + 2'0'2 −

1

2

'2
1 + 2a5 = 0,

'0
1 + 2a4 = 0,

'0
0 + 2a3 = 0,
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which has the following solution:

'2 = e2(a3t
2−c0t)

0

BBBB@

−
p
⇡

 


✓
c1 −

c0a4
a3

◆2

+

✓
a24
a3

− 4a5

◆!

4

p
2a3

e
c

2
0

2a3 erf
✓
(−2a3t+ c0)p

2a3

◆
+ c2

1

CCCCA

+

a4
4a3

✓
−2a4t+ 2c1 −

c0a4
a3

◆
,

'1 = −2a4t+ c1,

'0 = −2a3t+ c0,

where erf
�
z) is the error function. To find the solution u(x, t) of Eq. (23), we substitute '0, '1, and '2 in (17).

For a4 6= 0 or a5 6= 0, the obtained solution is not invariant under the one-parameter group with the infinitesimal
generator W1 = @

t

and also under the one-parameter group with the generator ↵1W1 + ↵2W2, where ↵1 and ↵2

are arbitrary constants in the case where a4 = a5 = 0.

It is clear that we can also use the Lie–Bäcklund operators of ordinary differential equations of the first order.
Thus, we consider a differential equation

 
x

= u 2
+ v. (24)

It turns out that Eq. (24) admits the following Lie–Bäcklund symmetry operator:

Q =

✓
− 

t

+ exp

✓
 
x

− v

 2

◆
·
✓
 
x

− v

 2

◆

x

 2
+ β

◆
@
 

provided that u and v satisfy the following system of determining equations:

u
t

= (euu
x

)

x

, v
t

=

✓
euu

x

v

u

◆

x

. (25)

In this case, it follows from the results presented above that the reduction method can be applied to the non-
linear differential equation

 
t

= exp

✓
 
x

− v

 2

◆
·
✓
 
x

− v

 2

◆

x

 2
+

euu
x

v

u
,

where u(t, x) and v(t, x) are the solutions of system (25).

3. Conclusions

In the present paper, we find the solutions of nonlinear evolutionary equations that describe the processes
of diffusion in nonlinear inhomogeneous media by the method proposed in [10], which is a generalization of
the Svirshchevskii method [9]. It is shown that this method enables us to obtain solutions that are not invariant
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in the classical Lie sense. To this end, we use the Lie–Bäcklund symmetry operators of ordinary differential
equations of the third order. The ansatzes in the form of general solutions of ordinary differential equations reduce
the nonlinear diffusion equation to a system of three ordinary differential equations. It turns out that the solutions
obtained within the framework of this approach cannot be found by the classical Lie method only in the case
where the invariance algebra of the diffusion equation is one-dimensional, two-dimensional, or three-dimensional.
At the same time, if the algebra is four-dimensional, then the obtained solutions can be also found by the classical
Lie method, as shown in Sec. 2.1. These results agree with the results obtained in [12], where the solutions are
obtained by the method of conditional point symmetry.

It is clear that this method can be also used for the construction of some other classes of diffusion equations
and their solutions with the help of the Lie–Bäcklund symmetry operators of other ordinary differential equations.
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