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ON THE CONSTRUCTIVE DESCRIPTION OF GIBBS MEASURES FOR THE
POTTS MODEL ON A CAYLEY TREE

M. M. Rahmatullaev,1,2 F. K. Rafikov,3 and Sh. Kh. Azamov4 UDC 517.9

We consider the Potts model on a Cayley tree and prove the existence of Gibbs measures constructed
by the method proposed in [H. Akin, U. A. Rozikov, and S. Temir, J. Stat. Phys., 142, 314 (2011)]. In
addition, we prove that there exist (k0)-translation invariant Gibbs measures for the Potts model on a
Cayley tree and compute the free energy of these Gibbs measures.

1. Introduction

The notion of Gibbs measure for the Potts model on a Cayley tree is introduced in a standard way (see [1–4]).
In [5], the ferromagnetic Potts model with three states on a Cayley tree of order two was studied and it was shown
that there exists a critical temperature T

c

such that, for T < T
c

, there exist three translation-invariant Gibbs
measures and uncountably many Gibbs measures that are not translation invariant. The results obtained in [6] were
generalized in [5] for the Potts model with finitely many states on a Cayley tree of any (finite) order.

In [7], it was proved that the translation-invariant Gibbs measure for the antiferromagnetic Potts model on
a Cayley tree with external field is unique. The work [8] was devoted to the investigation of the Potts model on
a Cayley tree with countably many states in the presence of a nonzero external field. It was proved that this model
possesses a unique translation-invariant Gibbs measure.

All translation-invariant Gibbs measures of the Potts model with q (q ≥ 3) states (spins) were found in [9].
In particular, it was shown that, for sufficiently low temperatures, their number is equal to 2

q−1. It was proved that
there exist [q/2] critical temperatures and the exact number of translation-invariant Gibbs measures was indicated
for each intermediate temperature.

In [10], a weakly periodic Gibbs measure was introduced and some these measures were found for the Ising
model. In [11], weakly periodic ground states and weakly periodic Gibbs measures were studied for the Potts
model. In [16, 17], weakly periodic Gibbs measures were investigated for the Potts model with external field.
In [15, 18], the free energy was studied for the known Gibbs measures in the Ising and Potts models.

In [12], some other Gibbs measures (in what follows, they are called Gibbs measures obtained by using the
ART-structure) were constructed for the Ising model on Cayley tree. In [13, 14], a new Gibbs measure on a Cayley
tree of order k was constructed for the Ising model with the help of a translation-invariant Gibbs measure on
a Cayley tree of order k0 (k0 < k) . This measure was called a (k0)-translation-invariant Gibbs measure.

The aim of the present paper is to construct a Gibbs measure obtained by using the ART-structure and
a (k0)-translation-invariant Gibbs measure for the Potts model. The paper is organized as follows: Main definitions
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and known results are presented in Sec. 2. The results for Gibbs measures obtained by using the ART-structure
are presented in Sec. 3. The results obtained for (k0)-translation-invariant Gibbs measures are given in Sec. 4.
The free energies for Gibbs measures obtained by using the ART-structure and one (2)-translation-invariant Gibbs
measure are computed in Sec. 5.

2. Definitions and Known Facts

A Cayley tree T k of order k ≥ 1 is an infinite tree, i.e., a graph without loops with exactly k + 1 edges
leaving each vertex. Let T k

= (V, L, i), where V is the set of vertices of T k, L is the set of its edges, and i is
the incidence function that associates each edge l 2 L with its endpoints x, y 2 V. If i(l) = {x, y}, then x and y

are called the nearest neighbors of the vertex and denoted by l = hx, yi.
The distance d(x, y), x, y 2 V, on a Cayley tree is given by the formula

d(x, y) = min

�

d | 9x = x0, x1, . . . , x
d−1, xd = y 2 V

such that hx0, x1i, . . . , hx
d−1, xdi

 

.

For fixed x0 2 V, we denote

W
n

= {x 2 V | d(x, x0) = n},

V
n

= {x 2 V | d(x, x0)  n},

L
n

= {l = hx, yi 2 L | x, y 2 V
n

}.

Further, for x 2 W
n

, we set

S(x) = {y 2 W
n+1 : d(x, y) = 1}.

It is known that there exists a one-to-one correspondence between the set V of vertices of a Cayley tree
of order k ≥ 1 and a group G

k

obtained as the free product of k + 1 cyclic groups of the second order with
generatrices a1, a2, . . . , a

k+1, respectively, (see [4]).
We consider a model in which spin variables take values from the set Φ = {1, 2, . . . , q}, q ≥ 2, and are

located at the vertices of the tree. Then the configuration σ on V is defined as a function x 2 V ! σ(x) 2 Φ,

and the set of all configurations coincides with ⌦ = Φ

V . Let ⌦
n

= Φ

Vn be the space of configurations defined
on V

n

.

The Hamiltonian of the Potts model is introduced as follows:

H(σ) = −J
X

hx,yi2L

δ
σ(x)σ(y), (1)

where J 2 R, hx, yi are the nearest neighbors and δ
ij

is the Kronecker symbol

δ
ij

=

8

<

:

0 for i 6= j,

1 for i = j.
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We consider a set Φ0
= {σ1, . . . ,σq}, where σ

i

2 Rq−1, and introduce a scalar product σ
i

σ
j

as follows:

σ
i

σ
j

=

8

>

>

<

>

>

:

− 1

q − 1

for i 6= j,

1 for i = j.

This yields

δ
σ(x)σ(y) =

q − 1

q

✓

σ(x)σ(y) +
1

q − 1

◆

.

By using this formula, we can reduce the Hamiltonian of the Potts model to the Hamiltonian of the Ising model
with q values of spin, namely,

H(σ) = −J
X

hx,yi2L

σ(x)σ(y).

We fix a basis {e1, . . . , eq−1} in Rq−1 such that e
i

= σ
i

, i = 1, 2, . . . , q − 1. It is clear that

q

X

i=1

σ
i

= 0.

Note that if h = (h1, . . . , hq−1), then

hσ
i

=

8

>

>

>

>

<

>

>

>

>

:

q

q − 1

h
i

− 1

q − 1

X

q−1

j=1
h
j

for i = 1, . . . , q − 1,

− 1

q − 1

X

q−1

j=1
h
j

for i = q.

We define a finite-dimensional distribution of the probability measure µ in the volume V
n

as follows:

µ
n

(σ
n

) = Z−1
n

exp

(

−βH
n

(σ
n

) +

X

x2Wn

h
x

σ(x)

)

, (2)

where σ
n

2 ⌦

n

, β = 1/T, T > 0 is temperature, h
x

2 Rq−1,

H
n

(σ
n

) = −J
X

hx,yi2Ln

σ(x)σ(y),

and Z−1
n

is the normalization factor,

Z
n

= Z
n

(β, h) =
X

σn2⌦n

exp

 

−βH
n

(σ
n

) +

X

x2Wn

h
x

σ(x)

!

.

The collection of vectors h = {h
x

2 Rq−1, x 2 V } specifies the (generalized) boundary condition.
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Definition 1. The free energy corresponding to the boundary condition h is defined as the following limit
(if it exists):

E(β, h) = − lim

n!1

1

β|V
n

| lnZn

(β, h).

It is said that the probability distributions (2) are consistent if, for all n ≥ 1 and σ
n−1 2 Φ

Vn−1 ,

X

σ

(n)2ΦWn

µ
n

(σ
n−1 _ σ(n)

) = µ
n−1(σn−1), (3)

where σ
n−1 _ σ(n) is the union of configurations.

In this case, there exists a unique measure µ on Φ

V such that

µ({σ|
Vn = σ

n

}) = µ
n

(σ
n

)

for all n and σ
n

2 Φ

Vn . This measure is called the limit Gibbs measure corresponding to Hamiltonian (1) and the
vector-valued function h

x

, x 2 V.

The following statement describes the condition imposed on the function h
x

to guarantee the consistency of
measures µ

n

(σ
n

) :

Theorem 1 [15]. Measures (2) satisfy condition (3) if and only if, for all x 2 V \ {x0}, the equation

h
x

=

X

y2S(x)

F (h
y

, ✓) (4)

is true. Here, the function F : h = (h1, . . . , hq−1) 2 Rq−1 ! F (h, ✓) = (F1, . . . , Fq−1) 2 Rq−1 is given by the
formula

F
i

= ln

0

B

@

(✓ − 1)ehi
+

X

q−1

j=1
ehj

+ 1

✓ +
X

q−1

j=1
ehj

1

C

A

, ✓ = exp(Jβ).

Each solution h
x

of the functional equation (4) is associated with a single Gibbs measure, and vise versa.

3. ART-Structure

In [12], some Gibbs measures were constructed for the Ising model on a Cayley tree. In this section, we con-
struct a similar measure for the Potts model.

Let µ be a Gibbs measure on a Cayley tree of order k0  k, let h
x

(µ) 2 Rq−1 be a collection of vectors
corresponding to the measure µ, and let q ≥ 2.

For µ, we now construct a Gibbs measure ⌫ = ⌫(µ) on a Cayley tree of order k ≥ k0. Let V k be the set of
all vertices of T k and let V k0 be the set of all vertices of T k0 . We construct a collection of vectors ˜h

x

=

˜h
x

(⌫) 2
Rq−1 on TK corresponding to the measure ⌫(µ) as follows:

˜h
x

=

8

<

:

h
x

(µ), x 2 V k0 ,

0, x 2 V k \ V k0 ,
(5)

where 0 = (0, 0, . . . , 0) 2 Rq−1.
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h
x

(µ)

h
x

(µ)

h
x

(µ)

h
x

(µ) h
x

(µ)
0

h
x

(µ)

h
x

(µ) h
x

(µ)
0

0

0 0 0

h
x

(µ)

h
x

(µ) h
x

(µ)
0

0

0 0 0

Fig. 1

For a Cayley tree of order k = 3, this function is shown in Fig. 1.
For x 2 V k, by S

k0(x) we denote arbitrary k0, 1  k0  k, elements of S(x). Note that S(x) = S
k

(x).

We now verify whether (5) satisfies (4) on the Cayley tree T k.

Let x 2 V k0 ⇢ V k. Then the following equalities are true:

˜h
x

=

X

y2Sk(x)

F (

˜h
y

, ✓)

=

X

y2Sk(x)\V k0

F (h
x

(µ), ✓) +
X

y2Sk(x)\(V k\V k0 )

F (0, ✓)

=

X

y2Sk0
(x)

F (h
x

(µ), ✓) = h
x

(µ).

Here, we have used the equality F (0, ✓) = 0, i.e.,

X

y2S(x)\
(

V

k\V k0
)

F
�

0, ✓
�

= 0.

It is easy to see that if x 2 V k \ V k0 , then S(x) ⇢ V k \ V k0 . Thus, we get

˜h
x

=

X

y2S(x)

F (

˜h
y

, ✓) =
X

y2S(x)

F (0, ✓) = 0.
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Hence, the function ˜h
x

defined by (5) satisfies the functional equation (4). By ⌫ = ⌫(µ) we denote the
measure of the corresponding collection of vectors ˜h

x

. This measure is called a Gibbs measure obtained by using
the ART-structure.

Remark 1.

1. On a Cayley tree of order 2, for ✓ > ✓
cr

= 1+2

p
q − 1, there exist translation-invariant Gibbs measures

different from the measure µ0 corresponding to the vector h
x

= 0 8x 2 V 2 (see [9]). We construct
a Gibbs measure obtained by using the ART-structure with the help of these measures. Hence, the con-
dition ✓ > ✓

cr

= 1 + 2

p
q − 1 must be satisfied. The Gibbs measures thus constructed differ from the

known measures (see [9, 19, 20]).

2. In the case where k > 2, other Gibbs measures may exist for the other values of ✓, (see [11, 16, 17]).
By using these measures, one can construct a Gibbs measure obtained by using the ART-structure.

As a result, we have proved the following theorem:

Theorem 2. Suppose that k ≥ 3. If ✓ > ✓
cr

= 1 + 2

p
q − 1, then, for the Potts model on a Cayley tree,

there exists an uncountable set of Gibbs measures obtained by using the ART-structure.

4. (k0)-Translation-Invariant Gibbs Measure

For any k and q, translation-invariant Gibbs measures for the Potts model were studied in [9].
In the case where k = 2 and q = 3, for the collection of translation-invariant vectors, we obtain the following

system of equations from (4):

h1 =
X

y2S(x)

ln

✓eh1
+ eh2

+ 1

✓ + eh1
+ eh2

,

h2 =
X

y2S(x)

ln

✓eh2
+ eh1

+ 1

✓ + eh1
+ eh2

.

(6)

Since k = 2 , we get the following system of equations:

h1 = 2 ln

✓eh1
+ eh2

+ 1

✓ + eh1
+ eh2

,

h2 = 2 ln

✓eh2
+ eh1

+ 1

✓ + eh1
+ eh2

.

This system possesses the solutions

�

h
(i)
1 , 0

�

,
�

0, h
(i)
1

�

,
�

−h
(i)
1 ,−h

(i)
1

�

, (0, 0), i = 1, 2,

where

h
(i)
1 = 2 lnx

i

, x1 =
✓ − 1−

p

(✓ − 1)

2 − 8

2

, x2 =
✓ − 1 +

p

(✓ − 1)

2 − 8

2

. (7)



1098 M. M. RAHMATULLAEV, F. K. RAFIKOV, AND SH. KH. AZAMOV

In [13, 14], for the Ising model, with the help of translation-invariant Gibbs measures on a Cayley tree of order
k0, a new Gibbs measure on a Cayley tree of order k, k0 < k, was constructed and called a (k0)-translation-
invariant Gibbs measure. In this section, for the Potts model, with the help of a translation-invariant Gibbs measure
on a Cayley tree of order 2 (k0 = 2), by analogy with the structure proposed in [13, 14], we prove the existence of
new Gibbs measures on a Cayley tree of the fifth order. These measures are also called (k0)-translation-invariant.

The following theorem is true:

Theorem 3. For the Potts model on a Cayley tree of the fifth order with q = 3 and ✓ =

11

2

, there exist at

least six (2)-translation-invariant Gibbs measures .

Proof. Consider a Cayley tree of the fifth order. Recall that, for x 2 V k, any k0, 1  k0  k, elements
of S(x) are denoted by S

k0(x). First, by using
�

h
(1)
1 , 0

�

and
�

h
(2)
1 , 0

�

, we construct a collection of vectors h
x

on V 5 satisfying the functional equation (4). We specify this collection of vectors as follows:

(l1) If, at a vertex x 2 V 5, we have h
x

=

�

h
(1)
1 , 0

�

, then we associate the vertices of S4(x) with the vector

h
x

=

�

h
(1)
1 , 0

�

and the other vertices of S1(x) with the vector h
x

=

�

h
(2)
1 , 0

�

. If, at a vertex x 2 V 5,

we have h
x

=

�

h
(2)
1 , 0

�

, then we associate the vertices of S3(x) with the vector h
x

=

�

h
(2)
1 , 0

�

and the

remaining vertices of S2(x) with the vector hx =

�

h
(1)
1 , 0

�

. As a result, we arrive at the following system
of equations from (4):

h
(1)
1 = 4 ln

✓eh
(1)
1

+ 2

✓ + 1 + eh
(1)
1

+ ln

✓eh
(2)
1

+ 2

✓ + 1 + eh
(2)
1

,

h
(2)
1 = 2 ln

✓eh
(1)
1

+ 2

✓ + 1 + eh
(1)
1

+ 3 ln

✓eh
(2)
1

+ 2

✓ + 1 + eh
(2)
1

.

(8)

In view of the fact that

h
(i)
1 = 2 ln

✓eh
(i)
1

+ 2

✓ + 1 + eh
(i)
1

, i = 1, 2, (9)

it follows from Eqs. (8) that

2 ln

✓eh
(1)
1

+ 2

✓ + 1 + eh
(1)
1

+ ln

✓eh
(2)
1

+ 2

✓ + 1 + eh
(2)
1

= 0. (10)

Note that

h
(i)
1 = h

(i)
1 (✓), i = 1, 2.

Hence, the left-hand side of (10) depends only on ✓. For the values of ✓ satisfying (10) and ✓ > ✓
cr

= 1 + 2

p
2,

the collection of vectors h
x

on V 5 constructed according to the rules (l1) satisfies the functional equation (4).
By using (10) and (9), we get

h
(1)
1 +

h
(2)
1

2

= 0. (11)



ON THE CONSTRUCTIVE DESCRIPTION OF GIBBS MEASURES FOR THE POTTS MODEL ON A CAYLEY TREE 1099

Hence, in view of (11) and (7), we arrive at the equation

 

✓ − 1−
p

(✓ − 1)

2 − 8

2

!2

=

2

✓ − 1 +

p

(✓ − 1)

2 − 8

.

This equation possesses the solution ✓ =

11

2

, i.e., for ✓ =

11

2

, the collection of vectors constructed ac-

cording to the rules (l1) satisfies the functional equation (4). Following [13, 14], for the Potts model, we say
that the measure corresponding to the collection of vectors and constructed by the rules (l1) is a (2)-translation-
invariant Gibbs measure. Similarly, for the vectors h

x

=

�

0, h
(i)
1

�

, i = 1, 2, we prove the existence of one more

(2)-translation-invariant Gibbs measure for ✓ =

11

2

.

Further, by using
�

h
(1)
1 , 0

�

,
�

h
(2)
1 , 0

�

, and
�

−h
(1)
1 ,−h

(1)
1

�

, we construct a collection of vectors h
x

on V 5

satisfying the functional equation (4). We specify this collection of vectors h
x

as follows:

(l2) If, at the vertex x 2 V 5, we have h
x

=

�

−h
(1)
1 ,−h

(1)
1

�

, then we associate the vertices of S2(x) with the

vector h
x

=

�

−h
(1)
1 ,−h

(1)
1

�

, the vertices of S2(x) with the vector h
x

=

�

h
(1)
1 , 0

�

, and the remaining

vertices of S1(x) with the vector h
x

=

�

h
(2)
1 , 0

�

. If, at the vertex x 2 V 5, we have
�

h
(1)
1 , 0

�

or h
x

=

�

h
(2)
1 , 0

�

, then we associate the vertices of S(x) with the vectors
�

h
(1)
1 , 0

�

and h
x

=

�

h
(2)
1 , 0

�

by the
rules (l1). As a result, we derive the following system of equations from (4):

−h
(1)
1 = 2 ln

(✓ + 1)e−h

(1)
1

+ 1

✓ + 2e−h

(1)
1

+ 2 ln

✓eh
(1)
1

+ 2

✓ + 1 + eh
(1)
1

+ ln

✓eh
(2)
1

+ 2

✓ + 1 + eh
(2)
1

,

−h
(2)
1 = 2 ln

(✓ + 1)e−h

(1)
1

+ 1

✓ + 2e−h

(1)
1

,

h
(1)
1 = 4 ln

✓eh
(1)
1

+ 2

✓ + 1 + eh
(1)
1

+ ln

✓eh
(2)
1

+ 2

✓ + 1 + eh
(2)
1

,

h
(2)
1 = 2 ln

✓eh
(1)
1

+ 2

✓ + 1 + eh
(1)
1

+ 3 ln

✓eh
(2)
1

+ 2

✓ + 1 + eh
(2)
1

.

(12)

In view of (9), we get Eq. (10) from (12). Equation (10) possesses the solution ✓ =

11

2

, i.e., for ✓ =

11

2

, the

collection of vectors constructed according to the rules (l2) satisfies the functional equation (4). Similarly, for the
set of vectors

��

0, h
(1)
1

�

,
�

0, h
(2)
1

�

,
�

−h
(1)
1 ,−h

(1)
1

� 

,
��

0, h
(1)
1

�

,
�

0, h
(2)
1

�

,
�

−h
(2)
1 ,−h

(2)
1

� 

,

��

h
(1)
1 , 0

�

,
�

h
(2)
1 , 0

�

,
�

−h
(2)
1 ,−h

(2)
1

� 

,

we can prove the existence of three more collections of vectors satisfying the functional equation (4).
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This implies that, for ✓ =

11

2

, there exist six (2)-translation-invariant Gibbs measures.
Theorem 3 is proved.

Remark 2. On a Cayley tree of order k, k ≥ 6, for ✓ =

11

2

, by using the (2)-translation-invariant Gibbs
measures described in Theorem 3, one can construct a Gibbs measure obtained by using the ART-structure.

Consider a Cayley tree of order k = a+ b+ 2, a, B 2 n. Let

B(a, b) =
n

✓ 2 R+ : ✓ > 1 + 2

p
2 and ah

(1)
1 + bh

(2)
1 = 0

o

.

Note that the set B(a, b) is nonempty because the case a = 2, b = 1 was considered in Theorem 2, i.e.,

✓ =

11

2

2 B(2, 1).

We now prove the following theorem:

Theorem 4. For the Potts model on a Cayley tree of order k = a + b + 2, a, b 2 n, there exist at least six
(2)-translation-invariant Gibbs measures for q = 3 and ✓ 2 B(a, b) .

Proof. By using
�

h
(1)
1 , 0

�

and
�

h
(2)
1 , 0

�

, we construct a collection of vectors h
x

on V k, k = a + b + 2,

a, b 2 n, satisfying the functional equation (4). We specify this collection of vectors as follows:

(l3) Let k = a + b + 2, a, B 2 n. If, at the vertex x 2 V k, we have h
x

=

�

h
(1)
1 , 0

�

, then we associate

the vertices of S
a+2(x) with the vector h

x

=

�

h
(1)
1 , 0

�

and the remaining vertices of S
b

(x) with the

vector h
x

=

�

h
(2)
1 , 0

�

. If, at the vertex x 2 V k, we have h
x

=

�

h
(2)
1 , 0

�

, then we associate the vertices

of S
b+2(x) with the vector h

x

=

�

h
(2)
1 , 0

�

and the remaining vertices of S
a

(x) with the vector h
x

=

�

h
(1)
1 , 0

�

. As a result, we derive the following system of equations from (4):

h
(1)
1 = (a+ 2) ln

✓eh
(1)
1

+ 2

✓ + 1 + eh
(1)
1

+ b ln
✓eh

(2)
1

+ 2

✓ + 1 + eh
(2)
1

,

h
(2)
1 = a ln

✓eh
(1)
1

+ 2

✓ + 1 + eh
(1)
1

+ (b+ 2) ln

✓eh
(2)
1

+ 2

✓ + 1 + eh
(2)
1

.

(13)

In view of (9), it follows from (13) that

a ln
✓eh

(1)
1

+ 2

✓ + 1 + eh
(1)
1

+ b ln
✓eh

(2)
1

+ 2

✓ + 1 + eh
(2)
1

= 0. (14)

Note that h(1)1 and h
(2)
1 depend on ✓ and are real for ✓ > ✓

cr

= 1 + 2

p
2 [see (19)]. We rewrite Eq. (14)

in the form

ah
(1)
1 + bh

(2)
1 = 0. (15)
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Thus, for

✓ 2 B(a, b) =
n

✓ 2 R+ : ✓ > 1 + 2

p
2 and ah

(1)
1 + bh

(2)
1 = 0

o

,

the collection of vectors constructed by the rules (l2) satisfies the functional equation (4).
As in the previous case, for the Potts model, a measure corresponding to the collection of vectors con-

structed according to the rules (l3) is called a (2)-translation-invariant Gibbs measure. In a similar way, for the
vectors h

x

=

�

0, h
(i)
1

�

, i = 1, 2, we can prove the existence of one more (2)-translation-invariant Gibbs measure
for ✓ 2 B(a, b) .

By using
�

h
(1)
1 , 0

�

,
�

h
(2)
1 , 0

�

, and
�

−h
(1)
1 ,−h

(1)
1

�

, we can now construct a collection of vectors h
x

on V k

satisfying the functional equation (4). We can specify this collection of vectors h
x

as follows:

(l4) If, at the vertex x 2 V k, we have h
x

=

�

−h
(1)
1 ,−h

(1)
1

�

, then we associate the vertices of S2(x) with the

vector h
x

=

�

−h
(1)
1 ,−h

(1)
1

�

, the vertices of S
a

(x) with the vector h
x

=

�

h
(1)
1 , 0

�

, and the remaining

vertices of S
b

(x) with the vector h
x

=

�

h
(2)
1 , 0

�

. If, at the vertex x 2 V k, we have
�

h
(1)
1 , 0

�

or h
x

=

�

h
(2)
1 , 0

�

, then we associate the vertices of S(x) with the vectors
�

h
(1)
1 , 0

�

and h
x

=

�

h
(2)
1 , 0

�

by the
rules (l3). As a result, we obtain the following system of equations from (4):

−h
(1)
1 = 2 ln

(✓ + 1)e−h

(1)
1

+ 1

✓ + 2e−h

(1)
1

+ a ln
✓eh

(1)
1

+ 2

✓ + 1 + eh
(1)
1

+ b ln
✓eh

(2)
1

+ 2

✓ + 1 + eh
(2)
1

,

−h
(2)
1 = 2 ln

(✓ + 1)e−h

(1)
1

+ 1

✓ + 2e−h

(1)
1

,

h
(1)
1 = (a+ 2) ln

✓eh
(1)
1

+ 2

✓ + 1 + eh
(1)
1

+ b ln
✓eh

(2)
1

+ 2

✓ + 1 + eh
(2)
1

,

h
(2)
1 = a ln

✓eh
(1)
1

+ 2

✓ + 1 + eh
(1)
1

+ (b+ 2) ln

✓eh
(2)
1

+ 2

✓ + 1 + eh
(2)
1

.

(16)

By using (9), we derive Eq. (15) from (16). This equation is equivalent to (14). Thus, for ✓ 2 B(a, b),

the collection of vectors h
x

constructed according to the rules (l4) satisfies the functional equation (4). Similarly,
for the set of vectors

��

0, h
(1)
1

�

,
�

0, h
(2)
1

�

,
�

−h
(1)
1 ,−h

(1)
1

� 

,
��

0, h
(1)
1

�

,
�

0, h
(2)
1

�

,
�

−h
(2)
1 ,−h

(2)
1

� 

,

��

h
(1)
1 , 0

�

,
�

h
(2)
1 , 0

�

,
�

−h
(2)
1 ,−h

(2)
1

� 

,

we can prove the existence of three more collections of vectors satisfying the functional equation (4).
As a result, we conclude that six (2)-translation-invariant Gibbs measures exist for ✓ 2 B(a, b) on the Cayley

tree of order k = a+ b+ 2, a, b 2 n .
Theorem 4 is proved.
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5. Free Energies for the Gibbs Measures Obtained by Using the ART-Structure
and for the (k0)-Translation-Invariant Gibbs Measures

In this section, we find the free energies for the Gibbs measures obtained by using the ART-structure and for
the (k0)-translation-invariant Gibbs measures.

The following theorem specifying the generalized form of the free measure was proved in [15]:

Theorem 5. For the collection of vectors satisfying conditions (4), the free energy is given by the formula

E(β, h) = − lim

n!1

1

|V
n

|
X

x2Vn

a(x), (17)

where

a(x) =
1

qβ

q

X

i=1

ln

 

q

X

u=1

exp

�

(Jβσ
i

+ h
x

)σ
u

 

!

. (18)

In the present work, for the translation-invariant collection of vectors of the form

h =

⇣

h⇤, h⇤, . . . , h⇤
| {z }

m

, 0, 0, . . . , 0
⌘

, m ≥ 0, (19)

we compute the free energy and consider the following cases:

Case m = 0. In this case, we find

h = 0 = (0, 0, . . . , 0) 2 Rq−1.

By using (17), we get

E
TI

(β, 0) = −a(x)

= − 1

qβ

q

X

i=1

ln

 

q

X

u=1

exp(Jβσ
i

σ
u

)

!

= − 1

qβ

q

X

i=1

ln

✓

exp(Jβ) + (q − 1) exp

✓

Jβ

1− q

◆◆

= − 1

qβ
q ln

✓

exp(Jβ) + (q − 1) exp

✓

Jβ

1− q

◆◆

= −J − 1

β
ln

✓

1 + (q − 1) exp

✓

Jqβ

1− q

◆◆

.
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Case m 6= 0. In this case, for vectors of the form (19), we compute the free energy as follows:

E
TI

(β,m, h
x

) = − lim

n!1

1

|V
n

|
X

x2Vn

a(x) = −a(x)

= − 1

qβ

q

X

i=1

ln

 

q

X

u=1

exp

�

(Jβσ
i

+ h
x

)σ
u

 

!

= −q −m

qβ
ln

✓

me

⇣
− Jβ

q−1
+ q−m

q−1
h⇤

⌘

+ e

⇣
Jβ− m

q−1
h⇤

⌘

+(q −m− 1)e

⇣
− Jβ

q−1
− m

q−1
h⇤

⌘◆

− m

qβ
ln

✓

(m− 1)e

⇣
− Jβ

q−1
+ q−m

q−1
h⇤

⌘

+ e

⇣
Jβ+ q−m

q−1
h⇤

⌘

+(q −m)e

⇣
− Jβ

q−1
− m

q−1
h⇤

⌘◆

. (20)

5.1. In this section, we compute the free energy of the Gibbs measure obtained by using the ART-structure
and corresponding to the collection of vectors of the form (5). By EART(β, ˜h) we denote the free energy of the
Gibbs measure obtained by using the ART-structure. By virtue of (17) and (18), we get

EART(β, ˜h) = − lim

n!1

1

|V
n

|
X

x2Vn

a(x)

= − 1

qβ
lim

n!1

|V k

n

|− |V k0
n

|
|V

n

|

q

X

i=1

ln

 

q

X

u=1

exp

�

(Jβσ
i

+ h
x

(µ))σ
u

 

!

− 1

qβ
lim

n!1

|V k0
n

|
|V

n

|

q

X

i=1

ln

 

q

X

u=1

exp

�

(Jβσ
i

+ 0)σ
u

 

!

. (21)

Since

lim

n!1

|V k0
n

|
|V k

n

| =

k − 1

k0 − 1

lim

n!1

(k0 + 1)kn0 − 2

(k + 1)kn − 2

= 0,

in view of the inequality

0  a(x)  C
b

,

we get

0 
X

x2V k0
n

a(x)  |V k0
n

|C
b

.



1104 M. M. RAHMATULLAEV, F. K. RAFIKOV, AND SH. KH. AZAMOV

Thus, we can write

lim

n!1

1

|V k

n

|
X

x2V k0
n

a(x) = 0.

This yields

EART(β, ˜h) = E(β, h
x

(µ)). (22)

If, in (5), we consider a translation-invariant collection of vectors of the form (19) as h
x

(µ) , then we get

EART(β, ˜h) = E
TI

(β,m, h
x

), (23)

i.e., the free energy of Gibbs measures obtained by using the ART-structure is equal to the free energy of translation-
invariant Gibbs measures.

5.2. We now find the free energy for (2)-translation-invariant Gibbs measures constructed according to the
rules (l1).

We introduce the notation

h
i

= (h
(i)
1 , 0), i = 1, 2.

By V 5
n,i

, i = 1, 2 (resp., W 5
n,i

, i = 1, 2) we denote the sets of vertices V
n

(resp., W
n

) associated, according to
the rules (l1), with the vectors hi, i = 1, 2.

We can easily show that

|W 5
1,1| = 4, |W 5

2,1| = 20 = 4 · 5, |W 5
3,1| = 100 = 4 · 52, . . . , |W 5

n,1| = 4 · 5n−1.

It is clear that

|V 5
n,1| = 1 + |W 5

1,1|+ |W 5
2,1|+ |W 5

3,1|+ . . .+ |W 5
n,1|

= 1 + 4 · 5 + 4 · 52 + . . .+ 4 · 5n−1
= 5

n.

It is known (see [4]) that, for a Cayley tree of the fifth order, we have

|V
n

| = 3 · 5n − 1

2

.

This yields

|V 5
n,2| = |V

n

|− |V 5
n,1| =

5

n − 1

2

.

We now find the free energy

E(2)(β, h) = − lim

n!1

1

|V
n

|
X

x2Vn

a(x)
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= − 1

qβ
lim

n!1

|V 5
n,1|

|V
n

|

q

X

i=1

ln

 

q

X

u=1

exp

�

(Jβσ
i

+ h1)σu
 

!

− 1

qβ
lim

n!1

|V 5
n,2|

|V
n

|

q

X

i=1

ln

 

q

X

u=1

exp

�

(Jβσ
i

+ h2)σu
 

!

.

Since

lim

n!1

|V 5
n,1|

|V
n

| =

2

3

, lim

n!1

|V 5
n,2|

|V
n

| =

1

3

,

the free energy of (2)-translation-invariant Gibbs measures constructed by the rules (l1) takes the form

E(2)(β, h) =
2

3

E
TI

(β, 1, h1) +
1

3

E
TI

(β, 1, h2). (24)

Remark 3. If h1 = h2, then the corresponding (2)-translation-invariant collection of vectors is translation-
invariant. In this case, the free energy of the (2)-translation-invariant collection of vectors is equal to the free energy
of the translation-invariant collection of vectors, i.e., the equality

E(2)(β, h) = E
TI

(β, 1, h1)

holds.
Similarly, we can find the free energies of (2)-translation-invariant Gibbs measures obtained in Theorems 3

and 4.
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