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SOME NEW RESULTS ON THE STRONG CONVERGENCE OF FEJER MEANS
WITH RESPECT TO VILENKIN SYSTEMS

L.-E. Persson,' G. Tephnadze,” G. Tutberidze,>* and P. Wall® UDC 517.5

We prove some new strong convergence theorems for partial sums and Fejér means with respect to the
Vilenkin system.

1. Introduction

For the definitions and notation used in this introduction, we refer the reader to Section 2.

It is well known (for details, see, e.g., [1, 8, 10]) that the Vilenkin system does not form a basis in the
space L1(G,,). Moreover, there is a function in the martingale Hardy space H;(G,,) such that the partial sums
of f are not bounded in the L;(G,,)-norm. However, for all p > 0 and f € H,, there exists an absolute
constant ¢, such that

12 fllp < epl| f I, - (1

In [5] (see also [11]), the following strong convergence result was obtained for all f € H(G,,):

n

i L SIS =1

n—oo logn P k

This yields

logn P

In [19], it was proved that, for any f € Hj, there exists an absolute constant ¢ such that

1 n
Scflly < ~1,2,3,....
i‘égnlogn;H kal_HfHH1> n
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Moreover, for any nondecreasing function ¢ : N, — [1, 00), satisfying the condition

logn

lim sup
n—oo SOTL

= +OO,

there exists a function f € Ny such that

n

sup —— > ||k Sl = oc.

neN T gy

For the Vilenkin system, Simon [12] proved that there is an absolute constant ¢, depending only on p and
such that

oo
1571
S <o,

k=1

forall fe H,(G,), where 0<p< 1. In[16], it was proved that, for any nondecreasing function ® : N, — [1, c0)
satisfying the condition lim,, o, ®(n) = 400, there exists a martingale f € H,(G,,) such that

NSk f eak-1, 2 (F)
Z k:QEPLp =00 for O0<p<l1l
k=1

Strong convergence theorems for two-dimensional partial sums were investigated by Weisz [23], Goginava [6],
Gogoladze [7], and Tephnadze [18] (see also [9]).

Weisz [24] studied the norm convergence of Fejér means of the Walsh—Fourier series and proved the following
theorem:

Theorem W1 (Weisz). Let p > 1/2 and f € H,. Then

low fllp < epll fll -

Moreover, Weisz [24] also proved that, for all p > 0 and f € H,, there exists an absolute constant c,
such that

loas fllp < cpll fll,- 2)

Theorem W1 implies that

1 Zn: ||ka‘|£ < ”pr 1/2 <p<
n2p—1 =2 =@ » D < 0.
k=1

1
If Theorem W1 holds for 0 < p < > then we get

o lowfllp
> am Selflf, 0<p<i/2 3)
k=1
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1/2

1 ° ”ka”1/2 1/2
E <
logn k' —c||f||H1/2? (4)
k=1
and
LS o fI1V2 < el 142 5)
n — k 1/2 = H1/2'

However, in [14] (see also [2, 3]) it was proved that the assumption p > 1/2 in Theorem W1 is essential. In
particular, there exists a martingale f € H /; such that

sup [lonfll1/2 = +oc.
neN

In [4] (see also [17]) it was proved that (3) and (4) hold despite the fact that Theorem W1 is not true for
0<p<1/2.
Moreover, in [4] it was proved that if 0 < p < 1/2 and ®: Ny — [1,00) is an arbitrary nondecreasing
function satisfying the condition
k2—2p

lim sup
k—o0 k

= 00,

then there exists a martingale f € H), such that

[e.e]

Z Ho'mes/eak—Lp —

m=1 (I)m

On the other hand, inequality (5) is not true for the Walsh system (see [17]). In particular, it was proved that
there exists a martingale f € Hy/y such that

1O 1/2
sup — omf = 00. (6)
sup 3 lon 1

In the present paper, we prove a more general result for the bounded Vilenkin system. In a special case, we also
obtain (6).

The present paper is organized as follows: In order not to interrupt our subsequent discussions, some defini-
tions and notation are presented in Section 2. For the proofs of our main results we need several auxiliary lemmas,
some of them are new and of independent interest. These results are presented in Section 3. The main result and
its proof can be found in Section 4.

2. Definitions and Notation

Let N denote the set of the positive integers, N := N, U {0}. Also let m := (mgmi,...) denote the
sequence of positive integers not smaller than 2.
By

Zm, =10,1,...,my — 1}

we denote the additive group of integers modulo my,.
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A group G, is defined as the complete direct product of the group Z,,; with the product of the discrete
topologies of Zy,, .
The direct product p of the measures

Mk({]}) = 1/mk7 ] € kav
is the Haar measure on G,,, with p(Gp,) = 1.
If sup,,cymn < 00, then we say that G, is a bounded Vilenkin group. If the generating sequence m is
not bounded, then G, is said to be an unbounded Vilenkin group. In the present paper, we discuss only bounded

Vilenkin groups.
The elements of G,,, are represented by sequences

= (T, %1, .., Thy...), Tk € Lpm,-
It is easy to introduce a base for the neighborhood of G,,,, namely,

Io(z) == G,

and

I, (x):= {y €Gm|yo=20,.. Yn-1 ::cn_l}, z € Gy, neN

Denote I, := I,,(0) for n € N and T, := G, \ I,
Let

en:=(0,...,0,2, =1,0,...) € Gy, meN.
If we define the so-called generalized number system based on m in the following way:
My =1, Mk+1 =mpMy, kéeN,

then every n € N can be uniquely expressed as follows:

[e.9]
n = Z TLij,
k=0
where nj € Zp,;, j € N, and only finitely many n; differ from zero. Let
Il := max{j € N,n; # 0}.

For a natural number
o0
n = E ng Mj,
Jj=1

we define

dj = signn; = sign (©n;), 67 = || ©ny; — 1|45,



SOME NEW RESULTS ON THE STRONG CONVERGENCE OF FEJER MEANS WITH RESPECT TO VILENKIN SYSTEMS

where © is the inverse operation for
a @ by, = (ag + bx) mod my.

We define functions v and v* as follows:

v(n) =Y |81 — &+, v*(n) =) 6
Jj=0

j=0
The nth Lebesgue constant is defined in the following way:
Ln = [|Dn1-

The norm (or quasinorm) in the space L, (G,) is defined as
1/p

£l = / 1f@)Pdu(z) | . 0<p< ool
Gm

The weak- L, (G,,) space consists of all measurable functions f such that
Hf”weak—Lp(Gm) = iu% )\pﬂ{f > /\} < +00.
>

On G,,, we now introduce an orthonormal system, which is called the Vilenkin system.

639

First, we define a complex-valued function r(x): G, — C, as a generalized Rademacher function, as fol-

lows:

rp(z) := exp (2muzy/my), 1°=—1, x€Gn, keN.
Further, we define the Vilenkin system v := (¢, : n € N) on G, by
(o]
Yn(z) = [[ri* (@), neN
k=0

In a special case, for m = 2, this system is called the Walsh—Paley system.
The Vilenkin system is orthonormal and complete in Ly (G,,) (for details, see, e.g., [1, 10, 20]).

If f € L1(Gy,), then we can define the Fourier coefficients, partial sums of the Fourier series, Fejér means,

and Dirichlet and Fejér kernels with respect to the Vilenkin system in the ordinary way:

Flk) = / fOudn, kEN,
Gm

Snf = (k)wkv n e N+7 SOf = 07

n—1

1
onf =~ kzoskf, neNy,



640 L.-E. PERSSON, G. TEPHNADZE, G. TUTBERIDZE, AND P. WALL

n—1
D, = Zwk, n€N+,
k=0
1 n—1
K, = EZDk, n € N;.
k=0
Recall that (for details, see, e.g., [1, 8])
M,, xe€l,,
Dy, (x) = (7
0, x ¢ I,
and
sp—1 sn—1
Ds,nt, = Daty Y kg, = Dag, Y1k, 1< s <my — 1. (8)
k=0 k=0

The o-algebra generated by the intervals {I,,(z): = € G,,} is denoted by F ,,, n € N. By f = (fn,n € N)
we denote a martingale with respect to F,, n € N (for details, see, e.g., [21]). The maximal function of a martin-
gale f is defined by

f* =sup |f n|
neN
In the case where f € L1(G)y,), the maximal functions are also given by

F*() = sup —— / fw)p(u) .

neN |In(x)|
In()

For 0 < p < oo, the Hardy martingale spaces Hy,(G,) consist of all martingales such that

1f ez, == W17l < oo

If f € L1(G,,), then it is easy to see that the sequence (Syy, f: n € N) is a martingale. If f = (f,,,n € N)
is martingale, then the Vilenkin—Fourier coefficients should be defined in a somewhat different way:

k—o00

7(i) = 1im / Fol@) (&) dp(z).
Gm

The Vilenkin—Fourier coefficients of f € L;i(G,,) are the same as for the martingale (Sys, f: n € N)
obtained from f.
A bounded measurable function a is a p-atom if there exists an interval I such that

/“du=07 lallo < p(X)~*/7,  supp (a) C I.
I
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3. Auxiliary Lemmas

Lemma 1 (21, 22]. A martingale f = (f,,n € N) isin H,, 0 < p <1, if and only if there exist a sequence
(ar, k € N) of p-atoms and a sequence (i, k € N) of real numbers such that, for every n € N,

o0
> wkSa,ar = fn ace, ©)
k=0
where
D
D il < 0.
k=0
Moreover,

[e%¢} 1/p
1/ ||z, ~ inf (Z Iuklp) ,
k=0

where the infimum is taken over all decomposition of [ of the form (9).

By using the atomic decomposition of f € H), martingales, we can construct a counterexample, which plays
a central role in proving the sharpness of our main results. In the present paper, it is used several times.

Lemma 2 [13]. Letn € Nand 1 < s, <m, — 1. Then

sn—1 /l-1 Sp—1
SnMp Ko, v, = Y (Z r;;> M, Dy, + (Z r;> M, K,

=0 t=0 =0

and
2

|sn My K, ar, ()] > % for x€Ii1(en—1+ep).
Moreover, if © € It/I111, © — xey ¢ I, and n > t, then
K, () =0. (10)
Lemma 3 [4]. Let
n = ZT: Sp; Mp,;,
i=1

where np, > nNpy > ... >Ny, > 0and 1 < s, < my, forall 1 <i <r, and let

k
k
nF) =n— Zsman
i=1

where 0 < k < r. Then

r k—1 r—1 [k—1

S Sns k
nk, = Z H ran Sy, Mnk Ksnk My, + E H ran n( )DSnk My, -
k=1 \j=1 k=1 \j=1
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Lemmad4. Let

s my
n:ZanMk,

=1 k=I;
where
0<lhi<m<lh—-2<lb<mg<...<ly—2<ls<mys.
Then

n|Ky(z)| > CMZ, for x €I (e,—1+ey),
where \ = sup,,cy My and c is an absolute constant.

Proof. Assume that x € Ij, 1(e;,—1 + €;,). Combining (10), (7), and (8), we obtain

D, =0
and
DsnkMsnk = KsnkMsnk =0, Sny > l;.
Since sp, > Sp, > ... > sy, > 0, we find
k S Nk41
k
nk) = p — aniMni = Z Sp; My, < Z:(mZ - 1)M; = My oy My — 1 < My,
i=1 i=k+1 =0
According to Lemma 3, we find
i—1 m, i—1 my
| Kl > s, M, Ko | = Y |skMiKoan| = Y Y IMpDa | =1 — I — T,
r=1k=l, r=1k=l,

Let z € I}, 11(e;,—1 +¢;,) and 1 < s, < my, — 1. By using Lemma 2, we get

M? _ 2M?
Iy = [s1, My, K5, v, | = 5 > 5
It is easy to see that
k k
D nIM? <Y (mo—1)°M
s=0 s=0
k k k
<Y mIMI-2) moMI+ Y M
s=0 s=0 s=0
k

k k
=Y " MZ, —2) MM+ M2
s=0 s=0 s=0
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k k
= MI?H +2ZM52 _2ZMS+1MS _Mg < Mlgﬂ -1
s=0 s=0

and

k k
> neM, <Y (my — )M, = mp My — moMy < My — 2.
s=0 s=0

Note that m;_; < l; — 2. Thus, if we use the estimates presented above, then we obtain

1172 lifz

neMs+ 1
I < Z ’ns]\isl{nsMS (x)| < Z nsMs %
s=0 s=0
(my,—o — 1) M, 2
< Yy (M 1)
s=0
o — 1M, _ o —1)M;. _
_(mll 2 ' )M, 2 0, (my,—2 ' )M, 2,
My My, oMy,
d d M _ql
> 9 2 + 1;—1b
For I3, we obtain
1;—2 1;—2 1;—2
I3 <Y [MiDuyar, ()] < npgME < Mo Y My < My, 1 My, — 2M), .
k=0 k=0 k=0
Combining (11) and (12), we get
n\Kn(x)\ Z Il - IQ — I3
S M 23 oy - MM Mic
- 271' 2 li—2 2 2 li—l 1

M ME o OME 7

>h T Th D e
= or 16 s T3 li—1h
PME_SME LT gt > M5 g
=79 T 16 tg o Mumthiz g M-t

Suppose that [; > 4. Then

M My, MM 5Mp o My

K, (2)] > —b .
K@)l 2 56 = T 2 36 T s 23616 2 144

Lemma 4 is proved.

643

(1D

(12)
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4. Main Result
The main result of this paper is the following theorem:

Theorem 1.

1. Let f € Hyy. Then there exists an absolute constant ¢ such that

n
1/2 1/2
Sllowflil, <clflifl, n=1,23,....
1

sup
nen nlogn P
2. Let ¢: Ny — [1,00) be a nondecreasing function satisfying the condition

. logn
lim sup
n—oo SDTL

Then there exists a function f € Hy o such that

2
ZH o f ., = o0

n€+

Corollary 1. There exists a martingale f € Hy/, such that

sup —2 loflly)5 = o0

neNy
Proof of Theorem 1. 1. In [15], it was proved that there exists an absolute constant ¢, such that

1/2
lowfll,, < clogkllfl, k=12....

Hence,
PR i )
1/2 T Ty 1/2
nlognZH e s < ~iog Zl gk <[l ,

2. Under condition (13), there exists an increasing sequence of positive integers {ay : k € N} such that

. log M,
limsup —— =
k—oo  ¥P2Ma,

+0o0

and

1/2
> PaMa,
> e o<
o log /

(13)

(14)
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Let f = (fn,n € N) be martingale defined by

Foi= > Ak,

{k;20,<n}

where
ar = Moy, 7o Dur, = Moy, (Danr,, — D, )
and
_ _P2Maoy
~log M,

k

Note that

ar, o < A,
S2Aak =
07 ap > A7

supp (ax) = Loy, / apdp =0, |aglleo < M7, = p(suppag) >

Ioy,

Thus, if we apply Lemma 1 and (14), then we conclude that f € H .

Moreover,
Moy, ey, j€{May,,...,2M,, —1}, k€N,
)= ~
0, j¢ U{M,,,...,2M,, —1}.
k=1
We have
1 Mak_l 1 n—1
onf = Z Sif+— ’Z S;f =T+1II.
J=0 J=Ma,,

Let M,, < j <2M,,. Note that
Dj+Mak = DMak —|—1,ZJMO% Dj for 5 < Mak-

Hence, if we apply (15), then we obtain

j—1 J—1
Sif =Sua f+ Y, Fo = Su, f+ Mo Y
v:Maqc v:Mak

= SMa, [ + Moy e(Dj — Dy, ) = St [+ AetoMa, DM, -

645

(15)

(16)

(17)
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According to (17), for 11, we conclude that

n— M MM, 2
II = T‘%SM%f + = St N g, Dy, =11+ 1D,
.7 MQ(xk
Further, we can estimate I/, as follows:
M nfMakfl
_ AEMay )
FAE A D Sl
§=0
)‘kMak

=——(n- Mak)’Kn—Mak |

n
2 Ak(n = Moy )| Kn—p,, |-
Let
S m;

n = M;,
i=1 k=l;

where

0<h<m<l—-2<lhb<my<...<l;—2<ly<ms.
Applying Lemma 4, we get
|I12] > e\ ‘(n - Mak)Kn_M% (a:)‘ > c)\kMIQZ_ for z eI 11(e;,—1 +ey,).

Hence,

/ 11, |1/2du>Z [

Iz ;e —1ter,)

> CZ / )\I/QMl dp > ey /2 (s—1)> c)\llc/gv(n — M,,).

=1, (e —1ter)

In view of (1), (2), and (16), we find

M, 1/2
12 = H on,, f
n

1/2 1/2
< <
o S ot < el

and

1/2
n /

- Ma,
ML) = | 2= S, f

1/2 1/2
< < .
o SISt < el

(18)

(19)

(20)
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Combining (18)—(20), we obtain

No.

[}

10.

11.

12.
13.

1/2

1/2 1/2 1/2
lowfly)3 > ITElly5s = 1L = 1115

1/2 1/2
1/2 = 1/2 1/2 = C)‘k/ v(n = May,) = C”th{m-

By using the estimates presented above, we conclude that

n

1 1/2 1 1/2
SeuNp o Z Hakf’h;Q > Mo 1ponr. Z HUlfH1§2
nely T gy A % { Mo, <I<2Ma, }
ap S ag
c 1/2 1/2
2 Mo oo > ()‘k/ v(l—My,) — C||f||ffl/2>
R TR 1A
M, 1/2
A2 Mo ellf i,
ST PLUS varseallD DR
ok P2May 1= ok P2Ma {Ma, <1<2Ma, }
12 Mo —1 1/2
cA 1 M
_Mik ZU(Z)—CZCW—)OO as k — oo.
agP2May 1 YoMy,

Theorem 1 is proved.

The research of the third author was supported by the Shota Rustaveli National Science Foundation (Grant
PHDF-18-476).
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