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ON THE DYNAMICS OF IMPULSIVE PREDATOR-PREY SYSTEMSWITH
BEDDINGTON–DEANGELIS-TYPE FUNCTIONAL RESPONSE

N. N. Pelen UDC 517.9

We study a two-dimensional predator-prey system with Beddington–DeAngelis-type functional response
with pulses in a periodic environment. In the analyzed special case, we establish necessary and sufficient
conditions for the considered system to have at least one w-periodic solution. This result is mainly
based on the continuation theorem from the coincidence-degree theory. Moreover, in order to find the
globally attractive w-periodic solution of the system, by using the analytic structure of the given system,
we deduce an inequality playing the role of both necessary and sufficient condition.

1. Introduction

Population dynamics is an important branch of the mathematical ecology and biomathematics. Predator-prey
systems is one of research fields dealing with this subject and numerous studies have been devoted to the analysis
of dynamical systems of this type. Studying on these systems is important because it helps us to understand the
future of the investigated species.

In the present paper, we investigate impulsive predator-prey dynamical systems because giving pulses to a sys-
tem has numerous important examples in the real life. Thus, if you use pesticides against insect species, then we
get an immediate decrease in the population. Moreover, if there is an immigration from one territory to another for
the same species, then we also observe an immediate increase in population. All these phenomena can be mathe-
matically expressed by using pulses and, hence, the corresponding type of equations is called impulsive differential
equations. There are many studies dealing with this type of differential and difference equations. Note that the
theory of these equations was investigated in [1, 17–19, 21, 25].

The other significant notion important for our investigation is the presence (or absence) of periodic environ-
ment because many things in the actual life have periodic structures. Therefore, it becomes important to consider
dynamical systems in periodic environments. Global existence and the existence of positive periodic solutions are
significant aspects of the theory of periodic predator-prey systems. Thus, the works [7–11, 14, 15, 20, 24] inves-
tigated these problems for nonautonomous predator-prey systems by using the coincidence-degree theory and the
continuation theorem.

Another notion important for the present work is functional response. Thus, in what follows, we use the so-
called Beddington–DeAngelis-type functional response due to some advantages of this type of response over the
other functional responses, such as Holling-type, ratio-dependent, semiratio-dependent, monotype, etc. Bedding-
ton and DeAngelis used the Beddington–DeAngelis-type functional response according to their observations over
the populations on fishes in the Adriatic Sea. Moreover, the advantages of this type of functional response are
described in their works [2, 6].

In particular, the problem of singularity in the Holling-type and similar functional responses, when either
predator or prey goes to extinction, was solved by using the Beddington–DeAngelis functional response. In view
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of this singularity problem, the authors of [22] could not directly use the results of coincidence-degree theory in
their system. Thus, they have divided their system, applied the continuation theorem to a certain part of the system,
and achieved their goal by using Brouwer’s fixed-point theorem. In addition, they needed to use constant pulses in
the variable that symbolizes predator in order to get globally stable w-periodic solutions. In our system, due to the
advantages of the Beddington–DeAngelis-type functional response, we use different impulses for both prey and
predator variables, which is more meaningful for the real life. We apply the continuation theorem directly to our
system in order to get the w-periodic solution and establish its global stability. Moreover, we find a relationship
between the extinction of preys and predators and determine its consequences. Nevertheless, there exist some
difficulties in the application of the continuation theorem to the entire system, which are solved by using certain
analytic techniques.

2. Preliminaries

The following data were taken from [3]: Let L : DomL ⇢ X ! Y be a linear mapping and let C :
X ! Y be a continuous mapping, where X and Y are normed vector spaces. If

dimKerL = codim ImL < +1

and ImL is closed in Y, then the mapping L is called a Fredholm mapping of index zero. There exist continuous
projections U : X ! X and V : Y ! Y. If L is a Fredholm mapping of index zero such that

ImU = KerL and ImL = KerV = Im(I − V ),

then we conclude that L|
DomL\KerU

: (I−U)X ! ImL is invertible. The inverse of this map is denoted by K
U

.

A mapping C is called L-compact on ⌦ if V C(⌦) is bounded and K
U

(I − V )C : ⌦ ! X is compact, where
⌦ is an open bounded subset of X. Since ImV is isomorphic to KerL, the isomorphism J : ImV ! KerL

exists and the information presented above is important for the continuation theorem presented below.

Definition 1 [5]. The codimension (quotient or factor dimension) of a subspace L of the vector space V is
the dimension of the quotient space V/L; it is denoted by codim

V

L (or simply by codimL) and is equal to the
dimension of the orthogonal complement of L in V ; thus, we have

dimL+ codimL = dimV.

Theorem 1 [12] (continuation theorem). Suppose that L is a Fredholm mapping of index zero and C is L-com-
pact on ⌦. Assume that:

(a) any y that satisfies Ly = λCy does not lie on @⌦ for all λ 2 (0, 1);

(b) V Cy 6= 0 and the Brouwer degree deg{JV C, @⌦ \KerL, 0} 6= 0 for each y 2 @⌦ \KerL.

Then Ly = Cy has at least one solution lying in DomL \ @⌦.

Definition 2 [26]. A w-periodic semiflow F (t) : X ! X (X is the initial-value space), in a sense that F (t)x

is continuous in (t, x) 2 [0,+1)⇥X, F (0) = I, and F (t+ w) = F (t)F (w) for all t > 0, is generated by the
solutions of a w-periodic system.
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Definition 3 [26]. If there exists ⌘ > 0 such that, for any x 2 X
0

,

lim inf

t!1
d(F (t)x, @X

0

) ≥ ⌘,

then the periodic semiflow F (t) is called uniformly persistent with respect to (X
0

, @X
0

).

Definition 4 [13]. Suppose that F : Rn ! Rn. If there exists a bounded set B such that, for any x 2 Rn,

one can find an integer n
0

= n
0

(x,B) such that Fn

(x) 2 B for all n ≥ n
0

, then the map F is called point
dissipative.

Lemma 1 [26]. Assume that S : X ! X is continuous and such that S(X
0

) ⇢ X
0

. Suppose that S is
uniformly persistent with respect to (X

0

, @X
0

), compact, and point dissipative. Then, for S in X
0

relative to
strongly bounded sets in X

0

, there exists a global attractor A
0

and S has a coexistence state x
0

2 A
0

.

Definition 5 [11]. System (3) is called permanent if there exist positive constants r
1

, r
2

, R
1

, and R
2

such
that the solution

�

x̃(t), ỹ(t)
�

of system (3) satisfies

r
1

 lim

t!1
inf x̃(t)  lim

t!1
sup x̃(t)  R

1

,

r
2

 lim

t!1
inf ỹ(t)  lim

t!1
sup ỹ(t)  R

2

.

Lemma 2 [22]. Consider a system

x̃0(t) = a(t)x̃(t)− b(t)x̃2(t), t 6= t
k

,

x̃(t+
k

) = (1 + g
k

)x̃(t
k

).

(1)

Then system (1) admits a unique positive w-periodic solution if and only if

w

Z

0

a(t)dt+ ln

q

Y

i=1

(1 + g
i

) > 0. (2)

Moreover, this solution is globally asymptotically stable.

3. Main Result

We investigate the following equation:

x̃0(t) = a(t)x̃(t)− b(t)x̃2(t)− c(t)x̃(t)E(t, ỹ(t), x̃(t), ỹ(t)), t 6= t
k

,

ỹ0(t) = −d(t)ỹ(t) + f(t)ỹ(t)E(t, x̃(t), x̃(t), ỹ(t)), t 6= t
k

,

x̃(t+
k

) = (1 + g
k

)x̃(t
k

),

ỹ(t+
k

) = (r
k

)ỹ(t
k

),

(3)
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where

E
�

t, u(t), x(t), y(t)
�

=

u(t)

↵(t) + β(t)x(t) +m(t)y(t)
.

If we take x̃(t) = exp(x(t)) and ỹ(t) = exp(y(t)) in Eq. (3), then we get the following system:

x0(t) = a(t)− b(t) exp(x(t))− c(t)E
�

t, exp(y(t)), exp(x(t)), exp(y(t))
�

, t 6= t
k

,

y0(t) = −d(t) + f(t)E
�

t, exp(x(t)), exp(x(t)), exp(y(t))
�

, t 6= t
k

,

∆x(t
k

) = ln(1 + g
k

),

∆y(t
k

) = ln(r
k

),

(4)

where

t
k+q

= t
k

+ w, a(t+ w) = a(t), b(t+ w) = b(t), c(t+ w) = c(t), d(t+ w) = d(t),

f(t+ w) = f(t), ↵(t+ w) = ↵(t), β(t+ w) = β(t), m(t+ w) = m(t),

and k, g
k

, and r
k

are constants such that 1 > g
k

> −1 and r
k

> 0. Here,

x(t
k+q

) = x(t
k

) + w, x̃(t
k+q

) = x̃(t
k

) + w, y(t
k+q

) = y(t
k

) + w, and ỹ(t
k+q

) = ỹ(t
k

) + w.

In equations (3) and (4), each coefficient function is from the class of continuous functions and all coefficient
functions are positive.

Definition 6. In system (4), we say that x(t) (y(t)) [prey (predator)] goes to extinction if and only if exp(x(t))
(exp(y(t))) tends to 0 as t tends to infinity for all solutions x(t) (y(t)). Equivalently, we also say that prey
(predator) goes to extinction if and only if x̃(t) (ỹ(t)) tends to zero as t tends to infinity for all solutions of
system (3).

Lemma 3. Assume that
w

Z

0

d(t)dt− ln

q

Y

i=1

r
i

> 0 (5)

is satisfied. If y(t) does not go to extinction, then x(t) also does not go to extinction.

Proof. The statement of the above lemma is equivalent to the following statement: Assume that (5) is satis-
fied. In this case, if x(t) goes to extinction, then y(t) also goes to extinction. By using the second equation in
system (4) and taking the integral of this equation from 0 to t, we obtain

exp(y(t)) = exp(y(0))
Y

ti<t

(r
i

) exp

0

@

t

Z

0

−d(s) + f(s)E(t, exp(x(s)), exp(x(s)), exp(y(s)))ds

1

A. (6)
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If x(t) goes to extinction, then exp(x(t)) tends to 0 as t tends to infinity. Since all coefficient functions are
positive, f(t)E

�

t, exp(x(t)), exp(x(t)), exp(y(t))
�

also tends to 0 as t tends to infinity. For sufficiently large t,

the integral
t

Z

0

−d(s) + ln

q

Y

i=1

r
i

+ f(s)E
�

t, exp(x(s)), exp(x(s)), exp(y(s))
�

ds

becomes negative and the right-hand side of equation (6) tends to 0 as t tends to infinity, which means that
exp(y(t)) tends to 0 as t tends to infinity. Thus, y(t) goes to extinction. Hence, we are done.

3.1. Permanence and Extinction of the Solutions.

Lemma 4. If inequalities (2) and (5) are satisfied, then for given system (3),

lim inf

t!1
x̃(t) ≥ r

1

for some r̃
1

> 0.

Proof. Assume that prey goes to extinction. Then, by Lemma 3, predator also goes to extinction. Thus, for
sufficiently large T > 0, there exists ✏

0

> 0 such that, for any t > T,

ỹ(t) < ✏
0

.

If

w

Z

0

a(t)dt+ ln

q

Y

k=1

(1 + g
k

) > 0

for sufficiently small ✏
0

, then we get

w

Z

0

a(t)− ✏
0

c(t)

↵(t) + ✏
0

m(t)
− b(t)x̃(t)dt+ ln

q

Y

k=1

(1 + g
k

) > 0. (7)

In addition, for sufficiently small ✏
0

, the following inequality is true:

x̃0(t) > x̃(t)

✓

a(t)− ✏
0

c(t)

↵(t) + ✏
0

m(t)
− b(t)x̃(t)

◆

.

Further, we consider a system

x̄0(t) = x̄(t)

✓

a(t)− ✏
0

c(t)

↵(t) + ✏
0

m(t)
− b(t)x̄(t)

◆

,

x̄(t+
k

) = (1 + g
k

)x̄(t
k

).

(8)

Since inequality (7) is true, we can apply Lemma 2 to system (8). Thus, system (8) has a globally attractive
w-periodic solution x̌⇤(t). By the comparison theorem for impulsive differential equations, we get x̃(t) > x̌⇤(t).
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Therefore, prey does not go to extinction, which is a contradiction. Hence,

lim inf

t!1
x̃(t) ≥ r̃

1

for some r̃
1

> 0 .

Lemma 5. Assume that inequality (2) is satisfied. Predator in system (3) goes to extinction if and only if

w

Z

0

−d(t) +
f(t)x⇤(t)

↵(t) + β(t)x⇤(t)
dt+ ln

 

q

Y

k=1

(r
k

)

!

 0, (9)

where x⇤(t) is a unique, positive, globally attractive, and w-periodic solution of the system (1).

Proof. By taking the contrapositive of the necessary part of the lemma, we conclude that if (9) does not hold,
then predator does not go to extinction. From now on, we proceed by contradiction. Thus, we assume that (9) does
not hold and predator goes to extinction. If we arrive at a contradiction, then we are able to get the desired result
for the first part of the lemma. Here, we suppose that system (3) satisfies the equation

w

Z

0

−d(t) +
f(t)x⇤(t)

↵(t) + β(t)x⇤(t)
dt+ ln

 

q

Y

k=1

(r
k

)

!

> 0. (10)

Then there exists ✏̃ > 0 such that

w

Z

0

−d(t) +
f(t)(x⇤(t)− ✏̃)

↵(t) + β(t)(x⇤(t)− ✏̃) +m(t)✏̃
dt+ ln

 

q

Y

k=1

(r
k

)

!

> 0. (11)

Consider a system

x̃0(t) = x̃(t)(a(t)− 2γc(t)

↵(t) + 2γm(t)
− b(t)x̃(t)),

x̃(t+
k

) = (1 + g
k

)

�

x̃(t
k

)

�

.

(12)

where γ is a positive constant. It is clear that

a(t)− 2γc(t)

↵(t) + 2γm(t)
> 0

for sufficiently small γ. Thus, system (12) has a globally attractive, unique, and w-periodic solution from Lemma 2
for sufficiently small γ. Assume that x

γ

is a globally attractive solution of system (12). Thus, x
γ

(t) ! x⇤(t)

as γ ! 0. Then there exists γ̂ such that x
γ̂

(t) ≥ x⇤(t) − ✏̃/2 and 2γ̂ < ✏̃. Since predator goes to extinction,
we conclude that

lim sup

t!1
ỹ(t) < γ̂.
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Hence, there exists T such that, for any t > T,

˜y(t) < 2γ̂ < ✏̃.

Since ˜y(t) < 2γ̂, we get

x̃0(t) > x̃(t)(a(t)− 2γc(t)

↵(t) + 2γm(t)
− b(t)x̃(t)).

By the comparison theorem for impulsive differential equations, x̃(t) > x⇤(t) − ✏̃. Therefore, we arrive at the
system

ỹ0(t) ≥ ỹ(t)

✓

−d(t) +
f(t)(x⇤(t)− ✏̃)

↵(t) + β(t)(x⇤(t)− ✏̃) +m(t)✏̃

◆

,

ỹ(t+
k

) = (r
k

)(ỹ(t
k

)).

Here,

ỹ(t) ≥ ỹ(0) exp

0

@

t

Z

0

−d(s) +
f(s)(x⇤(s)− ✏̃)

↵(s) + β(s)(x⇤(s)− ✏̃) +m(s)✏̃
ds+ ln

0

@

Y

0<tk<t

(r
k

)

1

A

1

A. (13)

Since inequality (11) is satisfied, the right-hand side of inequality (13) is always positive for sufficiently large t
and does not go to zero as t tends to infinity. Therefore, ỹ(t) always becomes positive and does not go to zero.
In other words, predator does not go to extinction. Hence, we have proved that if predator goes to extinction, then
inequality (9) is true.

To prove the converse result, we again proceed by contradiction. Assume that inequality (9) holds and predator
does not go to extinction. Then

lim inf

t!1
ỹ(t) ≥ r̃

2

.

Since (2) is true, then by Lemma 6,

lim sup

t!1
x̃(t)  R

1

.

Thus, we get

x̃0(t)  x̃(t)

✓

a(t)− c(t)r̃
2

↵(t) + β(t)R
1

+m(t)r̃
2

− b(t)x̃(t)

◆

,

x̃(t+
k

) = (1 + g
k

)

�

x̃(t
k

)

�

.

By the comparison theorem for impulsive differential equations, we have x̃(t)  x⇤(t) . Therefore, the fol-
lowing inequality is true:

ỹ0(t)  ỹ(t)

✓

−d(t) +
f(t)x⇤(t)

↵(t) + β(t)x⇤(t) +m(t)r̃
2

◆

,

ỹ(t+
k

) = (r
k

)(ỹ(t
k

)).

(14)
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Since all coefficient functions in this system are positive, we find

f(t)x⇤(t)

↵(t) + βx⇤(t) +m(t)r̃
2

 f(t)x⇤(t)

↵(t) + β(t)x⇤(t)
− µ

for some µ > 0. Then

ỹ(t)  y(0) exp

0

@

t

Z

0

−d(t) +
f(t)x⇤(t)

↵(t) + β(t)x⇤(t)
− µdt+ ln

0

@

Y

0tkt

(r
k

)

1

A

1

A. (15)

Since inequality (9) holds for sufficiently large t, the argument of the exponential function in inequality (15)
is negative. Thus, as t tends to infinity, ỹ(t) tends to zero, which means that predator goes to extinction, which is
a contradiction.

Lemma 5 is proved.

Lemma 6. If inequalities (2) and (5) are satisfied, then there exist positive constants R
1

and R
2

such that

lim

t!1
supx(t)  R

1

,

lim

t!1
sup y(t)  R

2

.
(16)

Proof. First, we consider system (3). Then the following inequality is true:

x̃0(t)  a(t)x̃(t)− b(t)x̃2(t), t 6= t
k

,

x̃(t+
k

) = (1 + g
k

)x̃(t
k

).

(17)

Suppose that (2) holds and consider the following equations:

ũ0(t) = a(t)ũ(t)− b(t)ũ2(t), t 6= t
k

,

ũ(t+
k

) = (1 + g
k

)ũ(t
k

).

(18)

By Lemma 2, system (18) possesses a unique positive globally attractive (or globally asypmtotically stable)
w-periodic solution ū(t). By using the comparison theorem for impulsive differential equations from [1], we con-
clude that

x̃(t)  u(t).

The attractivity of ū(t) implies that there exists T > 0 such that

u(t)  ū(t) + 1 for t > T.

Therefore, it is clear that x̃(t) is bounded above by a positive constant R
1

.
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Second, we consider system (3). The coefficient functions in system (3) are bounded, positive, and w-periodic
Thus, the following inequality is true:

ỹ0(t)  −d(t)ỹ(t) +
f(t)x̃(t)

m(t)
 fMR

1

mL

− d(t)ỹ(t), t 6= t
k

,

ỹ(t+
k

) = (r
k

)ỹ(t
k

).

(19)

Hence, we get

ỹ(t)  ỹ(0)
Y

0<tk<t

r
k

exp

0

@

t

Z

0

−d(s)ds

1

A

+

t

Z

0

Y

s<tk<t

r
k

exp

0

@

t

Z

s

−d(σ)dσ

1

A

fMR
1

mL

ds.

We can rewrite the last inequality as follows:

ỹ(t)  ỹ(0) exp

0

@

t

Z

0

−d(s)ds+ ln

0

@

Y

0<tk<t

r
k

1

A

1

A

+

fMR
1

mL

t

Z

0

exp

0

@

t

Z

s

−d(σ)dσ + ln

 

Y

s<tk<t

r
k

!

1

Ads. (20)

For sufficiently large t, the argument of the exponential function in the first term and the second term in
inequality (20) are negative. Hence, if we take

fMR
1

mL

= M,

then

ỹ(t)  ỹ(0)e1+Dw−ct

+Me1+Dw

t

Z

0

ec(s−t)ds

 ỹ(0)

✓

e1+Dw−ct

+

Me1+Dw

c
(1− e−ct

)

◆

 ỹ(0)

✓

e1+Dw

+

Me1+Dw

c

◆

.

Here, D = max

�

|d(t)| : t 2 [0, w]
 

and

c = min

8

<

:

0

@

w

Z

0

d(s)ds− ln

 

q

Y

k=1

r
k

!

1

A

,

w, 1/w

9

=

;

.

Thus, we have a positive constant R
2

such that ỹ(t) is bounded above by a positive constant R
2

.



ON THE DYNAMICS OF IMPULSIVE PREDATOR-PREY SYSTEMS WITH BEDDINGTON–DEANGELIS-TYPE 619

Lemma 7. If inequalities (2) and (10) are satisfied for the unique positive globally attractive w-periodic
solution x⇤(t) of system (1), then

lim

t!1
ỹ(t) > r̃

2

for some positive r̃
2

.

Proof. This result is an immediate consequence of Lemma 5.

Lemma 8. Assume that inequalities (2) and (5) are satisfied. Then system (3) is permanent if and only if
inequality (10) is satisfied. Therefore, by Theorem 2, this system has at least one w-periodic solution.

Proof. This is an immediate consequence of Lemmas 3, 6, and 5.

Lemma 9. Assume that (2) is satisfied for system (3). If at least one solution ỹ(t) does not tend to 0 as t tends
to infinity, then all solutions ỹ(t) does not tend to 0 as t tends to infinity.

Proof. This is a proof by contradiction. Assume that there exist two solutions of system (3),
�

x̃(t), ỹ(t)
�

and (x̂(t), ŷ(t)), such that ỹ(t) does not tend to 0 as t tends to infinity and ŷ(t) tends to 0 as t tends to infinity.
Since ŷ(t) tends to 0 as t tends to infinity, we conclude that x̂(t) tends to x⇤ as t tends to infinity. According to
Definition 6, predator does not go to extinction and, as a consequence of Lemma 5, the inequality

w

Z

0

−d(t) +
f(t)x⇤(t)

↵(t) + β(t)x⇤(t)
dt+ ln

 

q

Y

k=1

(r
k

)

!

> 0

is true. Thus, by using Lemma 7, we get ŷ(t) > r̂, for some positive r̂, which is a contradiction. Hence, the proof
is completed.

3.2. w-Periodicity of the Solutions.

Theorem 2. Assume that all coefficient functions in system (4) are bounded, positive, w-periodic, and belong
to C(R,R2

) and that inequalities (2) and (5) are satisfied. Then there exists at least one w-periodic solution if
and only if y(t) does not go to extinction.

Proof. We have

X :=

�

(p, z)| 2 PC(R,R2

) : p(t+ w) = p(t), z(t+ w) = z(t)
 

with the norm

k(p, z)|k = sup

t2[0,w]

�

|p(t)|, |z(t)|
�

and

Y :=

n

⇥

(p, z)|, (d
1

, f
1

)

|, . . . , (d
q

, f
q

)

|⇤ 2 PC(R,R2

)⇥ (R2

)

q, p(t+ w) = p(t), z(t+ w) = z(t)
o

with the norm

�

�

�

⇥

(p, z)|, (d
1

, f
1

)

|, . . . , (d
q

, f
q

)

|⇤
�

�

�

= sup

t2[0,w]

⇣

k(p, z)|k,
�

�

(d
1

, f
1

)

|�
�, . . . ,

�

�

(d
q

, f
q

)

|�
�

⌘

.
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We define the mappings L : DomL ⇢ X ! Y such that

L
�

(p, z)|
�

=

�

(p0, z0)|, (∆p(t
1

),∆z(t
1

))

|, . . . , (∆p(t
q

),∆z(t
q

))

|�

and C : X ! Y such that

C
�

(p, z)|
�

=

 

2

4

a(t)− b(t) exp(p(t))− c(t)E
�

t, z(t), p(t), z(t)
�

−d(t) + f(t)E
�

t, p(t), p(t), z(t)
�

3

5,

2

4

ln(1 + g
1

)

ln(p
1

)

3

5, . . . ,

2

4

ln(1 + g
q

)

ln(p
q

)

3

5

!

.

Then KerL =

�

(p, z)| such that (p, z)| = (c
1

, c
2

)

| , c
1

and c
2

are constants, and

ImL =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

⇥

(p, z)|, (d
1

, f
1

)

|, . . . , (d
q

, f
q

)

|⇤ :

2

6

6

6

6

6

6

4

w

Z

0

p(s)ds+

q

X

i=1

d
i

w

Z

0

z(s)ds+

q

X

i=1

f
i

3

7

7

7

7

7

7

5

= (0, 0)|

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

.

Note that ImL is closed in Y and dimKerL = codim ImL = 2.

This can shown in the following way: It is clear that the sum of any element from ImL and KerL lies in Y.

Without loss of generality, we take p 2 Y and

w+

Z



p(t)dt+

q

X

i=1

d
i

= I 6= 0.

Further, we define a new function

g = p− I

w
.

Then
I

w
is constant because, for all ,

Z

w+



p(t)dt is always the same by the definition of periodic time

scales, the pulses are constant, and there is the same number of pulses in the interval [, w + ] for all . If we
take the integral of g from  to w + , then we get

w+

Z



g(t)dt+

q

X

i=1

d
i

=

w+

Z



p(t)dt+

q

X

i=1

d
i

− I = 0.

Thus, p 2 Y can be written as the sum of g 2 ImL and
I

w
2 KerL because

I

w
is constant. Similar steps are

used for z. Indeed, (p, z)| 2 Y can be represent as the sum of an element from ImL and an element from KerL.

Moreover, it is easy to see that any element in Y can be uniquely expressed as the sum of an element KerL and
an element from ImL. Hence, codim ImL is also equal to 2, and we get the desired result. Therefore, L is
a Fredholm mapping of index zero.
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There exist continuous projectors U : X ! X and V : Y ! Y such that

U
�

(p, z)|
�

=

1

w

2

6

6

6

6

6

6

6

4

w

Z

0

p(s)ds

w

Z

0

z(s)ds

3

7

7

7

7

7

7

7

5

and

V
�

(p, z)|, (d
1

, f
1

)

|, . . . , (d
q

, f
q

)

|�
=

1

w

0

B

B

B

B

B

B

@

2

6

6

6

6

6

6

4

w

Z

0

p(s)ds+

q

X

i=1

d
i

w

Z

0

z(s)ds+

q

X

i=1

f
i

3

7

7

7

7

7

7

5

,



0

0

�

, . . . ,



0

0

�

1

C

C

C

C

C

C

A

.

The generalized inverse K
U

= ImL ! DomL \KerU is given, i.e.,

K
U

�

(p, z)|, (d
1

, f
1

)

|, . . . , (d
q

, f
q

)

|�

=

2

6

6

6

6

6

6

6

4

t

Z

0

p(s)ds+
X

t>ti

d
i

− 1

w

w

Z

0

t

Z

0

p(s)dsdt−
q

X

i=1

d
i

+

1

w

q

X

i=1

d
i

t
i

t

Z

0

z(s)ds+
X

t>ti

f
i

− 1

w

w

Z

0

t

Z

0

z(s)dsdt−
q

X

i=1

f
i

+

1

w

q

X

i=1

f
i

t
i

3

7

7

7

7

7

7

7

5

,

V C
�

(p, z)|
�

=

1

w

0

B

B

B

B

B

B

@

2

6

6

6

6

6

6

4

w

Z

0

a(s)− b(s) exp(p(s))− c(s)E(s, z(s), p(s), z(s))ds+ ln

q

Y

i=1

(1 + g
i

)

w

Z

0

−d(s) + f(s)E(s, p(s), p(s), z(s))ds+ ln

q

Y

i=1

(r
i

)

3

7

7

7

7

7

7

5

, . . . ,

"

0

0

#

1

C

C

C

C

C

C

A

.

Let

a(t)− b(t) exp(p(t))− c(t)E
�

t, z(t), p(t), z(t)
�

= C
1

(t),

−d(t) + f(t)E
�

t, p(t), p(t), z(t)
�

= C
2

(t),

1

w

w

Z

0

a(s)− b(s) exp(p(s))− c(s)E(s, z(s), p(s), z(s))ds = ¯C
1

,
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and

1

w

w

Z

0

−d(s) + f(s)E(s, p(s), p(s), z(s))ds = ¯C
2

,

K
U

(I − V )C
�

(p, z)|
�

= K
U

 "

C
1

(t)− ¯C
1

C
2

(t)− ¯C
2

#

,

"

ln(1 + g
1

)

ln(p
1

)

#

, . . . ,

"

ln(1 + g
q

)

ln(p
q

)

#!

=

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

t

Z

0

C
1

(s)− ¯C
1

ds+ ln

Y

t>ti

(1 + g
i

)− 1

w

w

Z

0

t

Z

0

C
1

(s)

− ¯C
1

dsdt− ln

q

Y

i=1

(1 + g
i

) +

1

w

q

X

i=1

ln(1 + g
i

)t
i

t

Z

0

C
2

(s)− ¯C
2

ds+ ln

Y

t>ti

r
i

− 1

w

w

Z

0

t

Z

0

C
2

(s)

− ¯C
2

dsdt− ln

q

Y

i=1

r
i

+

1

w

q

X

i=1

ln(r
i

)t
i

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

.

Clearly, V C and K
U

(I − V )C are continuous. Since X and Y are Banach spaces, by using the Arzela–Ascoli
theorem, we conclude that ¯K

U

(I − V )C(

¯

⌦) is compact for any open bounded set ⌦ ⇢ X. In addition, V C(

¯

⌦)

is bounded. Thus, C is L-compact on ¯

⌦ with any open bounded set ⌦ ⇢ X.

We are now going to use the continuation theorem. In order to be able to apply this theorem, it is necessary to
investigate the following system:

x0(t) = λ
⇥

a(t)− b(t) exp(x(t))− c(t)E
�

t, exp(y(t)), exp(x(t)), exp(y(t))
�⇤

, t 6= t
k

,

y0(t) = λ
⇥

−d(t) + f(t)E
�

t, exp(x(t)), exp(x(t)), exp(y(t))
�⇤

, t 6= t
k

,

∆x(t
k

) = λ ln(1 + g
k

),

∆y(t
k

) = λ ln(r
k

),

(21)

w

Z

0

a(t)dt+ ln

q

Y

i=1

(1 + g
i

) =

w

Z

0

b(t) exp(x(t)) + c(t)E
�

t, exp(y(t)), exp(x(t)), exp(y(t))
�

dt,

w

Z

0

d(t)dt− ln

q

Y

i=1

(r
i

) =

w

Z

0

f(t)E
�

t, exp(x(t)), exp(x(t)), exp(y(t))
�

dt.

(22)

By using (21) and (22), we find

w

Z

0

|x0(t)|dt  λ

2

4

w

Z

0

|a(t)|dt
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+

w

Z

0

b(t) exp(x(t)) + c(t)E
�

t, exp(y(t)), exp(x(t)), exp(y(t))
�

dt

3

5

 λ

2

4

w

Z

0

|a(t)|dt+
w

Z

0

a(t)dt+ ln

q

Y

i=1

(1 + g
i

)

3

5  M
1

, (23)

where

M
1

:= 2

w

Z

0

a(t)dt+ ln

q

Y

i=1

(1 + g
i

),

and

w

Z

0

|y0(t)|dt  λ

2

4

w

Z

0

|d(t)|dt+
w

Z

0

f(t)E
�

t, exp(x(t)), exp(x(t)), exp(y(t))
�

dt

3

5

 λ

2

4

w

Z

0

|d(t)|dt+
w

Z

0

d(t)dt− ln

q

Y

i=1

r
i

3

5  M
2

, (24)

where

M
2

:= 2

w

Z

0

d(t)dt− ln

q

Y

i=1

r
i

.

Since (x, y)| 2 X and there are q constant pulses, we can say that there exist ⌘
i

, ⇠
i

, i = 1, 2, such that

x(⇠
1

) = min

n

inf

t2[0,t1]
x(t), inf

t2(t1,t2]
x(t), . . . , inf

t2(tq ,w]

x(t)
o

,

x(⌘
1

) = max

n

sup

t2[0,t1]
x(t), sup

t2(t1,t2]
x(t), . . . , sup

t2(tq ,w]

x(t)
o

,

(25)

y(⇠
2

) = min

n

inf

t2[0,t1]
y(t), inf

t2(t1,t2]
y(t), . . . , inf

t2(tq ,w]

y(t)
o

,

y(⌘
2

) = max

n

sup

t2[0,t1]
y(t), sup

t2(t1,t2]
y(t), . . . , sup

t2(tq ,w]

y(t)
o

.

(26)

By the first equation in (22) and (23), we get x(⇠
1

) < l
1

, where

l
1

:= ln

0

B

B

@

Z

w

0

a(t)dt+ ln

Y

q

i=1

(1 + g
i

)

Z

w

0

b(t)dt

1

C

C

A

.
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Since x(⇠
1

) is the infimum of x(t) for t 2 [0, w], then there exists t
1

2 [0, w] such that

x(⇠
1

)  x(t
1

) < l
1

.

By using the first inequality in Lemma 1, we obtain

x(t)  x(t
1

) +

w

Z

0

|x0(t)|dt

 x(t
1

) +

0

@

2

w

Z

0

a(t)dt+ ln

q

Y

i=1

(1 + g
i

)

1

A < H
1

:= l
1

+M
1

. (27)

It follows from the second equation in (22) that x(⌘
1

) ≥ l
2

, where

l
2

: = ln

0

B

B

@

Z

w

0

d(t)dt− ln

Y

q

i=1

r
i

Z

w

0

�

f(t)/↵(t)
�

dt

1

C

C

A

.

Since x(⌘
1

) is the supremum of x(t) for t 2 [0, w], there exists t
2

2 [0, w] such that

x(⌘
1

) ≥ x(t
2

) > l
2

.

By using second inequality in Lemma 1, we find

x(t) ≥ x(t
2

)−
w

Z

0

|x0(t)|dt

≥ x(t
2

)−

0

@

2

w

Z

0

a(t)dt+ ln

q

Y

i=1

(1 + g
i

)

1

A > H
2

:= l
2

−M
1

. (28)

By (27) and (28), we get

max

t2[0,w]

|x(t)|  B
1

:= max{|H
1

|, |H
2

|}.

By using the equality

f(t)E
�

t, exp(x(t)), exp(x(t)), exp(y(t))
�

= f(t)E
�

t, exp(y(t)), exp(x(t)), exp(y(t))
�

exp(x(t)− y(t)),

we conclude that

w

Z

0

d(t)dt− ln

q

Y

i=1

r
i

<

w

Z

0

(f(t)/m(t))[exp(x(t)− y(t))]dt
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⇥

exp(x(⌘
1

)− y(⇠
2

))

⇤

w

Z

0

(f(t)/m(t))dt.

Since (27) is true, we have the following inequality for each t 2 [0, w] :

y(⇠
2

) < H
1

− ln

0

B

B

@

Z

w

0

d(t)dt− ln

Y

q

i=1

r
i

Z

w

0

(f(t)/m(t))dt

1

C

C

A

:= l
3

.

Since y(⇠
2

) is the infimum of y(t) for t 2 [0, w], there exists t
3

2 [0, w] such that

y(⇠
2

)  y(t
3

) < l
3

.

By using first equation in Lemma 1, we obtain

y(t)  y(t
3

) +

w

Z

0

|y0(t)|dt

 y(t
3

) +

0

@

2

w

Z

0

d(t)dt− ln

q

Y

i=1

r
i

1

A < H
3

:= l
3

+M
2

. (29)

Here, all coefficient functions in f(t)E
�

t, exp(y(t)), exp(x(t)), exp(y(t))
�

are positive and y(t) does not go to
extinction. Thus, by Lemma 9, in view of the fact that systems (3) and (4) are equivalent, for all solutions y(t),

we conclude that as t tends to infinity, exp(y(t)) does not tend to 0. Hence, we find

f(t)

m(t)
> f(t)E

�

t, exp(y(t)), exp(x(t)), exp(y(t))
�

> 0.

Therefore, there exists k 2 N such that

f(t)E
�

t, exp(y(t)), exp(x(t)), exp(y(t))
�

>
1

k

f(t)

m(t)
> 0,

w

Z

0

d(t)dt− ln

q

Y

i=1

r
i

=

w

Z

0

f(t)E
�

t, exp(y(t)), exp(x(t)), exp(y(t))
�⇥

exp(x(t)− y(t))
⇤

dt

≥
⇥

exp(x(⇠
1

)− y(⌘
2

))

⇤

w

Z

0

f(t)E
�

t, exp(y(t)), exp(x(t)), exp(y(t))
�

dt

>
⇥

exp(x(⇠
1

)− y(⌘
2

))

⇤

1

k

w

Z

0

f(t)

m(t)
dt.
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This yields

y(⌘
2

)) > x(⇠
1

)− ln

0

B

B

@

Z

w

0

d(t)dt− ln

Y

q

i=1

r
i

1/k
f(t)

m(t)

1

C

C

A

.

By virtue of (28), we get

y(⌘
2

)) > H
2

− ln

0

B

B

@

Z

w

0

d(t)dt− ln

Y

q

i=1

r
i

1/k
f(t)

m(t)

1

C

C

A

:= l
4

.

Since y(⌘
2

) is the supremum of y(t) for t 2 [0, w], there exists t
4

2 [0, w] such that

y(⌘
2

) ≥ y(t
4

) > l
4

.

If we use the second inequality in Lemma 1, then we get

y(t) ≥ y(t
4

)−
w

Z

0

|x0(t)|dt

≥ y(t
4

)−

0

@

2

w

Z

0

d(t)dt− ln

q

Y

i=1

r
i

1

A > H
4

:= l
4

−M
2

. (30)

By (29) and (30), we obtain

max

t2[0,w]

|y(t)|  B
2

:= max

�

|H
3

|, |H
4

|
 

.

Obviously, B
1

and B
2

are both independent of λ. Let M = B
1

+B
2

+ 1. Then

max

t2[0,w]

�

�

(x, y)|
�

� < M.

Also let ⌦=

�

�

�

(x, y)|
�

�2X :
�

�

(x, y)|
�

�<M
 

and let ⌦ satisfy the requirement (a) in Theorem 1. If
�

�

(x, y)|
�

�2
KerL \ @⌦ and

�

�

(x, y)|
�

� is a constant with
�

�

(x, y)|
�

�

= M, then

V C
�

(x, y)|
�

=

0

B

B

B

B

B

B

B

@

2

6

6

6

6

6

6

6

4

w

Z

0

a(s)− b(s) exp(x)− c(s)E(s, y(s), x(s), y(s))ds+ ln

q

Y

i=1

(1 + g
i

)

w

Z

0

−d(s) + f(s)E(s, x(s), x(s), y(s))ds+ ln

q

Y

i=1

(r
i

)

3

7

7

7

7

7

7

7

5

, . . . ,



0

0

�

1

C

C

C

C

C

C

C

A

6= ((0, 0)|, . . . , (0, 0)|) ,
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JV C
�

(x, y)|
�

=

2

6

6

6

6

6

6

4

w

Z

0

a(s)− b(s) exp(x(s))− c(s)E(s, y(s), x(s), y(s))ds+ ln

q

Y

i=1

(1 + g
i

)

w

Z

0

−d(s) + f(s)E(s, x(s), x(s), y(s))ds+ ln

q

Y

i=1

(r
i

)

3

7

7

7

7

7

7

5

,

where J : ImV ! KerL is such that J
�

(x, y)|, (0, 0)|, . . . , (0, 0)|
�

= (x, y)|.

We define a homotopy H
⌫

= ⌫(JV C) + (1− ⌫)G, where

G
�

(x, y)|
�

=

2

6

6

6

6

6

6

6

4

w

Z

0

a(s)− b(s) exp(x)ds+ ln

q

Y

i=1

(1 + g
i

)

w

Z

0

d(s)− f(s)E(s, x, x, y)ds+ ln

q

Y

i=1

(r
i

)

3

7

7

7

7

7

7

7

5

.

Since H
⌫

is a homotopy, then, for each ⌫ 2 [0, 1], the Brouwer degrees

deg(JV C,⌦ \KerL, 0), deg(G,⌦ \KerL, 0), and deg(⌫(JV C) + (1− ⌫)G,⌦ \KerL, 0)

are equal. Thus, it is sufficient to find one of these Brouwer degrees.
Let DJ

G

be the determinant of the Jacobian of G. Since (x, y)| 2 KerL, then the Jacobian of G is

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

−ex
w

Z

0

b(s)ds 0

w

Z

0

−f(s)E(s, ex, ex, ey)ds

+

w

Z

0

(ex)2f(s)β(s)

(↵(s) + β(s)ex +m(s)ey)2
ds

−
w

Z

0

exeyf(s)m(s)

(↵(s) + β(s)ex +m(s)ey)2
ds

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

.

All functions in the Jacobian of G are positive. Thus, signDJ
G

is always positive. Hence,

deg(JV C,⌦ \KerL, 0) = deg(G,⌦ \KerL, 0)

=

X

(x,y)

|2G−1
((0,0)

|
)

signDJ
G

�

(x, y)|
�

6= 0.

Thus, all conditions of Theorem 1 are satisfied. Therefore, system (4) has at least one positive w-periodic solution.
If the analyzed system (4) has at least one periodic solution, then, for at least one solution y(t), the func-

tion exp(y(t)), does not go to zero as t goes to infinity, which means that y(t) does not go to extinction. Thus,
by using Lemma 9 and the fact that systems (3) and (4) are equivalent, for all solutions y(t), the function exp(y(t))

does not go to zero as t tends to infinity. Hence, we are done.
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Since systems (4) and (3) are equivalent, we conclude that if one of them has at least one w-periodic solution,
then the other system also has a solution of this kind.

3.3. Some Simple Facts Obtained from the Results Presented in Subsections 3.1 and 3.2.

Remark 1. Assume that the inequalities (5) and

w

Z

0

a(t)− c(t)

m(t)
dt+ ln

q

Y

i=1

(1 + g
i

) > 0 (31)

are satisfied. Consider a system

ṽ0(t) = (a(t)− c(t)

m(t)
)ṽ(t)− b(t)ṽ2(t), t 6= t

k

,

ṽ(t+
k

) = (1 + g
k

)ṽ(t
k

).

(32)

By using system (32) and Lemma 2, we get

w

Z

0

a(t)− c(t)

m(t)
dt+ ln

q

Y

i=1

(1 + g
i

) =

w

Z

0

b(t) exp(v(t))dt.

Here, ṽ(t) = exp(v(t)). Therefore,

l
1

:=

Z

w

0

a(t)dt+ ln

Y

q

i=1

(1 + g
i

)

Z

w

0

b(t)dt

 ṽ(⇠
1

),

where ṽ(⇠
1

) is the supremum of ṽ.
If we consider system (32) and set ṽ(t) = exp(v(t)) in this system, then we get

w

Z

0

|v0(t)|dt 

2

4

w

Z

0

a(t)dt+

w

Z

0

b(t) exp(u(t))

3

5



2

4

w

Z

0

a(t)dt+

w

Z

0

a(t)dt+ ln

q

Y

i=1

(1 + g
i

)

3

5.

By Lemma 2, the supremum of ṽ(t) and, therefore, the supremum of v(t) exists. Since ṽ(⇠
1

) is the supremum
of ṽ, by the definition of v(t), v(⇠

1

) is the supremum of v(t) for t 2 [0, w]. Thus, there exists t
1

2 [0, w] such that

v(⇠
1

) ≥ v(t
1

) > l
1

.
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By using Lemma 2.4 in [4], we find

x(t) ≥ v(t) ≥ v(t
1

)−
w

Z

0

|v0(t)|dt

≥ ln

0

B

B

@

Z

w

0

a(t)dt+ ln

Y

q

i=1

(1 + g
i

)

Z

w

0

b(t)dt

1

C

C

A

−

0

@

2

w

Z

0

a(t)dt+ ln

q

Y

i=1

(1 + g
i

)

1

A.

The following corollary is obtained from Lemma 5:

Corollary 1. If, in addition to (31) and (5), the following inequality is satisfied:

0

B

B

@

Z

w

0

a(t)− c(t)

m(t)
dt+ ln

Y

q

i=1

(1 + g
i

)

Z

w

0

b(t)dt

1

C

C

A

exp

2

4−

0

@

2

w

Z

0

a(t)dt+ ln

q

Y

i=1

(1 + g
i

)

1

A

3

5

⇥

0

@

w

Z

0

f(t)dt− βu

0

@

w

Z

0

d(t)dt− ln

q

Y

i=1

(r
i

)

1

A

1

A− ↵u

0

@

w

Z

0

d(t)dt− ln

q

Y

i=1

(r
i

)

1

A > 0,

then system (3) has at least one w-periodic solution.

This is the same result as in Theorem 2 from [16] for the continuous case.

3.4. Some Examples.

Example 1.

x0(t) = (2 sin(2⇡t) + 3)− (0.2 sin(2⇡t) + 0.4) exp(x)

− (5 + 2 cos(2⇡t)) exp(y)

(sin(2⇡t) + 1.2) + (1 + 0.5 sin(2⇡t)) exp(x) + exp(y)
,

y0(t) = −(0.5 sin(2⇡t) + 1.5)

(33)

+

(0.8 cos(2⇡t) + 4.45) exp(x)

(sin(2⇡t) + 1.2) + (1 + 0.5 sin(2⇡t)) exp(x) + exp(y)
,

∆x(t+
k

) = ln(1 + g
k

),

∆y(t+
k

) = ln(r
k

).
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Fig. 1

Points of pulses:

t
1

= 2k + 1/4, t
2

= 2k + 3/4 for k = 1, 2, 3, . . . and q = 2.

Moreover,

g
1

= e1 − 1, g
2

= e1 − 1, r
1

= e0.4, and r
2

= e0.4.

First, we consider a system

x0(t) = (2 sin(2⇡t) + 3)− (0.2 sin(2⇡t) + 0.4) exp(x),

∆x(t+
k

) = ln(1 + g
k

),

g
1

= e1 − 1, g
2

= e1 − 1.

Thus, by using the Mathlab program, we can find x⇤ > 6.5 . Further, as a result of simple calculations, we can
easily find that system (33) satisfies inequality (10). Moreover, by Lemma 8 system (33) has at least one 1-periodic
solution; note that Fig. 1 (x(0) = 0.1, y(0) = 0.5) also supports this result.

If, in system (33) from Example 1, we take

g
1

= e0.3 − 1, g
2

= e0.3 − 1, r
1

= e−1.7, and r
2

= e−1.7,

then inequality (9) is satisfied and, by Lemma 5, we obtain the plots presented in Fig. 2 (x(0) = 0.3, y(0) = 0.7).

This result shows us the importance of pulses. If we take pulses as follows:

g
1

= e0.3 − 1, g
2

= e0.3 − 1, r
1

= e−1.7, and r
2

= e−1.7,

then, despite the fact that the system without pulses is identical, we conclude that predator goes to extinction
because system (33) does not satisfy inequality (10).



ON THE DYNAMICS OF IMPULSIVE PREDATOR-PREY SYSTEMS WITH BEDDINGTON–DEANGELIS-TYPE 631

Fig. 2

The following example is for Corollary 1.

Example 2.

x0 = (0.2 sin(2⇡t) + 0.3)− (0.2 sin(2⇡t) + 0.2) exp(x)

− (0.1 + 0.1 cos(2⇡t)) exp(y)

(0.5 sin(2⇡t) + 0.7) + (1 + 0.5 cos(2⇡t)) exp(x) + exp(y)
, t 6= t

k

,

y0(t) = −(0.3 sin(2⇡t) + 1)

+

(4 cos(2⇡t) + 6.5) exp(x)

(0.5 sin(2⇡t) + 0.7) + (1 + 0.5 cos(2⇡t)) exp(x) + exp(y)
, t 6= t

k

,

∆x(t
k

) = ln(1 + g
k

),

∆y(t
k

) = ln(r
k

).

Points of the pulses:

t
1

= 2k + 1/4, t
2

= 2k + 3/4, and q = 2;

moreover,

g
1

= e−0.01 − 1, g
2

= e−0.01 − 1, p
1

= e0.1, and p
2

= e0.1.

Example 2 satisfies the condition of Corollary 1. Therefore, it has at least one w-periodic solution; moreover,
Fig. 3 (x(0) = 0.1, y(0) = 0.3) supports this result.
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Fig. 3

3.5. Global Attractivity of the Solutions.

Theorem 3. If inequalities (2), (5) and (10) are satisfied, then the w-periodic solution of the system (3) is
globally attractive (globally asymptotically stable).

Proof. The proof is very similar to the proof of Theorem 4.4 in [22]. To get the required result, we apply
Lemma 1. Consider the following ordinary differential equation:

z0(t) = F (t, z(t)),

z(t+
k

)− z(t
k

) = I
k

(z(t
k

)),

z(0) = φ.

(34)

Here,

F 2 C([0,1)⇥ R2,R2

), φ 2 R2, F (t+ w, u) = F (t, u), I
k

2 C(R2,R2

)

and there exists an integer q such that I
k+q

= I
k

and t
k+q

= t
k

+ w. Thus, the operator that solves system (34)
can be represented as follows:

ˆT (t)z = ze−λt

+

t

Z

0

e−λ(t−s)

⇥

F (s, ˆT (s)z) + λ ˆT (s)z
⇤

ds+
X

0<tk<t

e−λ(t−tk)I
k

(

ˆT (t
k

)z),

where λ is a positive constant. It is clear that T (0) = I. We can also show that

u(s) =

8

<

:

T (s)z, 0  s  w,

T (s− w)T (w)z, w  s  t+ w,
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is the solution of system (34) with the initial value u(0) = z; here, s 2 [0, t + w]. By the uniqueness theorem,
system (34) possesses a unique solution. Therefore,

T (t+ w)z = u(t+ w) = T (t)T (w)z.

This is true for t 6= t
k

. For t = t
k

, we obtain

T (t+
k

+ w)z = T (t
k

+ w)z + I
k

(T (t
k

+ w)z)

= T (t
k

)T (w)z + I
k

(T (t
k

)T (w)z) = T (t+
k

)T (w)z.

To apply Lemma 1, we assume that S = T (w) and

S2

= SoS = T (w)oT (w) = T (2w).

Here, the analyzed system (34) is a periodic system. Hence, we can apply the Arzela–Ascoli theorem for impulsive
differential equations and the result from [1]. This enables us to conclude that T (t) is a compact operator.

If we take X+

i

= {z
i

: z
i

2 R, z
i

≥ 0} for i = 1, 2 and X+

i0
= {z

i

: z
i

2 R, z
i

> 0} for i = 1, 2, then we
get X = X+

1

⇥X+

2

, X = X+

10
⇥X+

20
, and δX

0

= X/X
0

. If system (3) satisfies inequalities (2), (5), and (10),
then it becomes permanent. Therefore, S satisfies the conditions of Lemma 1. Hence, S admits a global attractor,
which means that the system has a globally asymptotically stable (or globally attractive) w-periodic solution.

Corollary 2. Assume that all coefficient functions in system (3) are bounded positive w-periodic functions
from PC(R,R2

). Then a globally attractive w-periodic solution of system (3) exists if and only if inequalities (2),
(5), and (10) are satisfied.

Proof. The proof immediately follows from Theorems 2 and 3.

Example 1 satisfies all inequalities (2), (5), and (10). Therefore, it has a w-periodic globally asymptotically
stable solution.
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