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MONOGENIC FUNCTIONS WITH VALUES IN COMMUTATIVE COMPLEX
ALGEBRAS OF THE SECOND RANKWITH UNIT AND A GENERALIZED
BIHARMONIC EQUATIONWITH SIMPLE NONZERO CHARACTERISTICS

S. V. Gryshchuk UDC 517.5, 539.3

Among all two-dimensional algebras of the second rank with unit e over the field of complex numbers C,
we find a semisimple algebra B0 := {c1e + c2! : ck 2 C, k = 1, 2}, !

2 = e, containing bases
{e1, e2} such that the B0-valued “analytic” functions Φ(xe1 + ye2), where x and y are real variables,
satisfy a homogeneous partial differential equation of the fourth order, which has only simple nonzero
characteristics. The set of pairs ({e1, e2},Φ) is described in the explicit form.

1. Statement of the Problems

Consider an equation

Lu(x, y) :=
✓
b1

@4

@y4
+ b2

@4

@x@y3
+ b3

@4

@x2@y2
+ b4

@4

@x3@y
+ b5

@4

@x4

◆
u(x, y) = 0, (1)

where the complex coefficients b
k

2 C, k = 1, 5, b5 6= 0, are such that the characteristic equation

l (s) := b1s
4 + b2s

3 + b3s
2 + b4s+ b5 = 0, s 2 C, (2)

has four pairwise different roots (each root is simple):

{s1, s2, s3, s4} := ker l, (3)

where s
k

2 C \ {0}, s
k

6= s
m

for k 6= m, k,m 2 {1, . . . , 4}. The relations s
k

6= 0, k = 1, 4, are equivalent to
the given condition b5 6= 0. It is clear that the relation b1 6= 0 follows from the indicated condition. Thus,

b1b5 6= 0. (4)

A solution of Eq. (1) in the domain D of the Cartesian plane xOy is defined as a single-valued function u

with continuous partial derivatives up to the fourth order, inclusively, satisfying Eq. (1) in D.

Since special cases of Eq. (1) are elliptic equations (“close” to the biharmonic equation in a sense of Sec. 4)
for the stress function in plane anisotropic media (see, e.g., [2–4]), we say that Eq. (1) a generalized biharmonic
equation (this term is used, e.g., in [1, p. 67] for the equation for stress function in the anisotropic medium).
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By B⇤ we denote an associative algebra of the second rank with unit e commutative over the field of complex
numbers C. Let {e1, e2} be a basis of B⇤ satisfying the relation

L(e1, e2) := b1(e2)
4 + b2e1(e2)

3 + b3(e1)
2(e2)

2 + b4(e1)
3e2 + b5(e1)

4 = 0. (5)

We now state the problem of determination of all pairs B⇤, {e1, e2} (see Sec. 2).
For the biharmonic equation, this problem and its solution are presented in [5]. In a special case of Eq. (1)

(b1 = b5 = 1, b2 = b4 = 0, and b3 > 2), this problem was posed and solved in [6].
We introduce the notation: µ

e1,e2 := {xe1+ye2 : x, y 2 R} (the linear span of the vectors e1 and e2 over the
field of real numbers R), D

⇣

:= {⇣ = xe1+ye2 : (x, y) 2 D} ⇢ µ
e1,e2 , and ⇣ = xe1+ye2 2 D

⇣

for (x, y) 2 D.

In addition to conditions (5), we assume that the basis {e1, e2} also satisfies the condition:

(MB ) each nonzero element h 2 µ
e1,e2 is invertible (i.e., there exists an inverse element h−1 2 B⇤ such

that hh−1 = e).

For each required basis {e1, e2} simultaneously satisfying the conditions (5) and MB, we consider functions
monogenic in D

⇣

, i.e., functions Φ : D
⇣

! B⇤ of the form

Φ(⇣) = U1(x, y) e1 + U2(x, y) ie1 + U3(x, y) e2 + U4(x, y) ie2 8⇣ 2 D
⇣

, (6)

with the classical derivative Φ0(⇣) at any point ⇣ in D
⇣

:

Φ0(⇣) := lim
h!0,h2µe1,e2

�
Φ(⇣ + h)− Φ(⇣)

�
h−1.

We also denote each component U
k

: D ! R in (6) by U
k

[Φ], i.e.,

U
k

[Φ(⇣)] := U
k

(x, y), k 2 {1, . . . , 4}.

If a monogenic function Φ has continuous derivatives Φ(k)(⇣) up to the k th order, inclusively, k ≥ 4, in the
domain D

⇣

, then, according to the relations

LΦ(⇣) = L(e1, e2)Φ
(4)(⇣) ⌘ 0

for any ⇣ 2 D
⇣

{ these relations are deduced by analogy with the corresponding relations in [6] (Sec. 6) for
a special case of the operator L in Eq. (1)} and equality (6), we conclude that the components U

k

, k = 1, 4,

satisfy Eq. (1) in the domain D.

We state the problem of description of all monogenic functions and a subset of monogenic functions Φ whose
components U

k

[Φ] = U
k

, k = 1, 4, are solutions of Eq. (1) (see Sec. 3).
Let D be a bounded and simply connected domain. Consider the problem of existence of monogenic func-

tions Φ such that U1[Φ] = u, where u is an arbitrary function from the space of solutions of Eq. (1). In the case
where Eq. (1) is the equation for the stress function in a plane anisotropic medium, we also consider the problem
of its reduction to equations L(eu) = 0 of the form (1) with the help of which the required monogenic func-
tions Φ satisfying the relation U1[Φ] = eu, can be found in the explicit form. This class of problems is investigated
in Sec. 4.

Note that hypercomplex “analytic” functions Φ(xe1+ye2) with values in finite-dimensional algebras over the
field of real (of dimension four) or complex (of dimension two) numbers whose components satisfy equations of
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the form (1) were considered, e.g., in [7–14]. Despite the availability of numerous works, the complete description
of the indicated triples B⇤, {e1, e2}, Φ (or similar objects for the other definitions of “monogeneity”) is unknown
[the basis {e1, e2} simultaneously satisfies the conditions (5) and MB ]. This is explained, in particular, by the
fact that the class of Eqs. (1) is fairly broad.

In the present paper, we solve all posed problems in the complete and explicit form.

2. Commutative and Associative Algebras of the Second Rank and Their Bases Associated with Eq. (1)

It is known (see [15]) that there exist (to within an isomorphism) two associative algebras of the second rank
with unit e commutative over the field of complex numbers C :

B := {c1e+ c2⇢ : c
k

2 C, k = 1, 2}, ⇢2 = 0, (7)

B0 := {c1e+ c2! : c
k

2 C, k = 1, 2}, !2 = e. (8)

It is clear that the algebra B0 is semisimple (for the definition, see, e.g., [16, p. 33]) and contains a basis of
orthogonal idempotents {I1, I2}, where

I1 =
1

2
(e+ !), I2 =

1

2
(e− !), I1I2 = 0, (I

k

)2 = I
k

, k = 1, 2. (9)

It is obvious that

I1 + I2 = e, I1 − I2 = !. (10)

The element w = c1I1 + c2I2 from B0 is invertible if and only if c
k

6= 0, k = 1, 2. If this condition is
satisfied, then the following equality is true for the inverse element:

w−1 =
1

c1
I1 +

1

c2
I2 (11)

(see [17, p. 38]).
The theorem presented below gives the description of all couples B⇤, {e1, e2}, where the bases {e1, e2}

satisfy condition (5). In particular, it is established that B⇤ = B0.

Theorem 1. The algebra B does not contain any basis {e1, e2} satisfying condition (5). All pairs of basis
elements of the algebra B0 satisfying condition (5) have the form

e1 = ↵ I1 + β I2, e2 = es1↵ I1 + es2β I2, (12)

where es
k

2 ker l, k = 1, 2, are such that es1 6= es2, and the complex numbers ↵ 6= 0 and β 6= 0 are chosen
arbitrarily.

Proof. We seek pairs of basis elements {e1, e2} of the form

e
k

= ↵
k

e+ β
k

⇢ 2 B, k = 1, 2, (13)
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where the unknown complex coefficients ↵
k

, β
k

, k = 1, 2, satisfy the relation

∆
e1e2 := ↵1β2 − ↵2β1 6= 0. (14)

It is easy to see that

(e
m

)k = (↵
m

)k−1 (↵
m

e+ kβ
m

⇢) , k = 1, 4, m = 1, 2. (15)

Substituting (13) in (5) and taking into account (15), we get

L(e1, e2) = b1↵
3
2 (↵2e+ 4β2⇢) + b2 (↵1e+ β1⇢)↵

2
2 (↵2e+ 3β2⇢)

+ b3↵1↵2 (↵1e+ 2β1⇢) (↵2e+ 2β2⇢) + b4↵
2
1 (↵1e+ 3β1⇢) (↵2e+ β2⇢)

+ b5↵
3
1 (↵1e+ 4β1⇢) = A

e

e+A
⇢

⇢, (16)

where

A
e

:= b1↵
4
2 + b2↵

3
2↵1 + b3↵

2
2↵

2
1 + b4↵2↵

3
1 + b5↵

4
1,

A
⇢

:= (b2β1 + 4b1β2)↵
3
2 + (3b2β2 + 2b3β1)↵1↵

2
2

+ (2b3β2 + 3b4β1)↵
2
1↵2 + ↵3

1 (b4β2 + 4b5β1).

Hence, the required ↵
k

,β
k

2 C, k = 1, 2, must satisfy the following system:

A
e

= 0, A
⇢

= 0, ∆
e1e2 6= 0. (17)

Consider the first equation in system (17). According to (4), we get ↵1 6= 0 [otherwise, ↵1 = ↵2 = 0, which
contradicts the third relation in (17)], and the equality

↵2

↵1
= s⇤ 8s⇤ 2 ker l, (18)

holds.
Dividing both sides of the second equation in (17) by ↵3

1 and using (18), we get

−l0(s⇤)β1 + l 0(s⇤)β2 = 0, (19)

where

l0(s⇤) := −
�
b2s

3
⇤ + 2b3s

2
⇤ + 3b4s⇤ + 4b5

�

and l 0(s⇤) is the value of the derivative of the polynomial l(s) from (2) for s = s⇤. Since s⇤ is a simple root of
Eq. (2), l 0(s⇤) 6= 0 and Eq. (19) is equivalent to the following equation:

β2 =
l0(s⇤)
l 0(s⇤)

β1. (20)
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Among the obtained couples {e1, e2}, it is necessary to select the set of linearly independent couples. To this
end, we check the validity of the third relation in system (17). Substituting (18) and (20) in (14), we get

∆
e1e2 =

✓
l0(s⇤)
l 0(s⇤)

− s⇤

◆
↵1β1 6= 0. (21)

If β1 = 0, then condition (21) is not true. Thus, β1 6= 0 and, hence, β2 6= 0 according to (20). However,
as shown above, ↵1 6= 0 and β1 6= 0. Hence, ∆

e1e2 can be equal to zero only under the condition that

l0(s⇤)
l 0(s⇤)

− s⇤ = 0.

We check whether it is possible. As a result of direct substitution, we get

l0(s⇤)
l 0(s⇤)

− s⇤ = − 4

l 0(s⇤)
l (s⇤) ⌘ 0.

This enables us to conclude that the required bases do not exist in the algebra B .
Thus, we find necessary bases in the algebra B0.

It is easy to see that the elements e
k

= ↵
k

I1 + β
k

I2, k = 1, 2, satisfy the equalities

en
k

= ↵n

k

I1 + βn

k

I2, n = 1, 4, k = 1, 2. (22)

Denote (e
k

)0 := 1, k = 1, 2, λ0 := 1 for real λ. Then

L(e1, e2) =

5X

k=1

b
k

⇣
↵5−k

2 I1 + β5−k

2 I2

⌘⇣
↵k−1
1 I1 + βk−1

1 I2

⌘

=
5X

k=1

b
k

⇣
↵5−k

2 ↵k−1
1 I1 + β5−k

2 βk−1
1 I2

⌘
.

Thus, the required system for the coefficients of the basis elements e
k

= ↵
k

I1+β
k

I2, k = 1, 2, has the form

A
e

⌘
5X

k=1

b
k

↵5−k

2 ↵k−1
1 = 0,

5X

k=1

b
k

β5−k

2 βk−1
1 = 0,

∆
e1e2 ⌘ ↵1β2 − ↵2β1 6= 0.

(23)

As in (17), we can show that ↵1 6= 0. In a similar way, we consider the second equation in (23) and the
relation ∆

e1e2 6= 0. As a result, we obtain β1 6= 0. Moreover, by using inequality (4), we conclude that system (23)
is equivalent to the system

l
✓
↵2

↵1

◆
= 0, l

✓
β2
β1

◆
= 0, ∆

e1e2 6= 0. (24)



MONOGENIC FUNCTIONS WITH VALUES IN COMMUTATIVE COMPLEX ALGEBRAS OF THE SECOND RANK 561

The solutions of system (24) have the form

↵2

↵1
= es1,

β2
β1

= es2 8es
k

2 ker l, k = 1, 2, es1 6= es2. (25)

Hence, all bases of the algebra B0 satisfying condition (5) can be represented in the form (12).
Theorem 1 is proved.

Remark 1. A special case of Theorem 1 (b1 = b5 = 1, b2 = b4 = 0, and b3 > 2) was obtained in [6].

In view of (9), as a result of solving (12) for I
k

, k = 1, 2, we get

↵ (es2 − es1) I1 = es2e1 − e2, β (es2 − es1) I2 = −es1e1 + e2. (26)

Taking into account (9) and (26), we obtain the following multiplication table for the pairs of elements e
k

, k = 1, 2,

of the bases {e1, e2} in (12):

e21 =
1

es2 − es1
((es2↵− es1β) e1 + (β − ↵)e2) , (27)

e22 =
1

es2 − es1
�
es1es2 (es1↵− es2β) e1 +

�
(es2)2β − (es1)2↵

�
e2
�
, (28)

e1e2 =
1

es2 − es1
�
es1es2(↵− β)e1 + (es2β − es1↵) e2

�
. (29)

3. Monogenic Functions Associated with Eq. (1)

By using (11) and the conditions es
k

6= 0, k = 1, 2, we can easily show that bases (12) satisfy not only
condition (5) but also the condition MB if and only if the pairs es

k

2 ker l, k = 1, 2, specifying the corresponding
basis satisfy not only the conditions of Theorem 1 but also the condition

Im es
k

6= 0, k = 1, 2. (30)

Hence, we assume that the set of roots of Eq. (2) contains at least two different roots es
k

2 ker l, k = 1, 2,

satisfying condition (30). Moreover, in the corresponding bases described in Theorem 1, the pair es
k

2 ker l,

k = 1, 2, satisfies this condition.
As in the case where a biharmonic operator is considered instead of the operator L (see [8, 18]), we establish

the following theorem:

Theorem 2. A function Φ : D
⇣

! B0 is monogenic in the domain D
⇣

if and only if its components U
k

:
D ! R, k = 1, 4, in decomposition (6) are differentiable in the domain D and the following analog of the
Cauchy–Riemann conditions is true:

@Φ(⇣)

@y
e1 −

@Φ(⇣)

@x
e2 = 0 8⇣ = xe1 + ye2 2 D

⇣

. (31)
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For each quadruple ↵, β, es1, es2 in (12), we introduce the notation

A1 := β − ↵, A2 :=
↵

es2
− β

es1
, B1 := es2β − es1↵, B2 :=

es1
es2

↵− es2
es1
β,

C1 :=
↵

es1
− β

es2
, C2 :=

β − ↵

es1es2
, D1 := −A1, D2 = D2 := −A2,

F {es1, es2,↵,β} [Un

, U
m

] (x, y)

:=
es2 − es1
es1es2

✓
@U

n

(x, y)

@y
e21 +

✓
@U

m

(x, y)

@y
− @U

n

(x, y)

@x

◆
e1e2 −

@U
m

(x, y)

@x
e22

◆
(32)

8(x, y) 2 D, where n,m 2 {1, 2, 3, 4}.

Substituting (27)–(29) in (32), we obtain

F {es1, es2,↵,β} [Un

, U
m

] (x, y)

=

2X

k=1

✓
A

k

@U
n

(x, y)

@x
+B

k

@U
m

(x, y)

@x
+ C

k

@U
n

(x, y)

@y
+D

k

@U
m

(x, y)

@y

◆
e
k

(33)

8(x, y) 2 D, n,m 2 {1, 2, 3, 4}.

Let f
k

, k = 1, 2, denote one of the functions Re, −Re, Im, and −Im. For any k 2 {1, 2}, we consider
real-valued functions defined at each point (x, y) 2 D by the formulas

Q
k

{Φ, f1, f2} (x, y) :=
4X

j=1

✓
a
k,j

{f1, f2}
@U

j

(x, y)

@x
+ b

k,j

{f1, f2}
@U

j

(x, y)

@y

◆
,

where

U
j

:= U
j

[Φ], j = 1, 4,

a
k,1{f1, f2} := f1(A

k

), a
k,2{f1, f2} = f2(A

k

), a
k,3{f1, f2} := f1(B

k

),

a
k,4{f1, f2} := f2(B

k

), b
k,1{f1, f2} := f1(C

k

), b
k,2{f1, f2} := f2(C

k

),

b
k,3{f1, f2} := f1(D

k

), and b
k,4{f1, f2} := f2(D

k

).

Remark 2. In the componentwise form, equality (31) turns into a system of four equations for the compo-
nents U

k

, k = 1, 4, of function (6). For the bases {e1, e2} given by relation (12), this system has the form

Q
k

{Φ,Re,−Im}(x, y) = 0, Q
k

{Φ, Im,Re}(x, y) = 0 8(x, y) 2 D, k = 1, 2. (34)
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Indeed, for every ⇣ 2 D
⇣

, the equality

G {Φ, es1, es2,↵,β} (x, y) :=
es2 − es1
es1es2

✓
@Φ(⇣)

@y
e1 −

@Φ(⇣)

@x
e2

◆

= F {es1, es2,↵,β} [U1, U3](x, y) + iF {es1, es2,↵,β} [U2, U4](x, y) (35)

is true. Thus, substituting (33) with n = 1, m = 3 and n = 2, m = 4 in (35), we get

G {Φ, es1, es2,↵,β} (x, y)

=

2X

k=1

�
Q

k

{Φ,Re,−Im} (x, y) e
k

+Q
k

{Φ, Im,Re} (x, y) ie
k

�
8(x, y) 2 D,

which proves the required assertion.

Remark 3. The numerical coefficients of
@U

j

@x
and

@U
j

@y
, j = 1, 4, in system (34) are connected by the

following relations:

a1,1{Re,−Im} = −b1,3{Re,−Im} = a1,2{Im,Re} = −b1,4{Im,Re},

a1,2{Re,−Im} = −b1,4{Re,−Im} = −a1,1{Im,Re} = b1,3{Im,Re},

a1,3{Re,−Im} = a1,4{Im,Re}, a1,4{Re,−Im} = −a1,3{Im,Re},

b1,1{Re,−Im} = b1,2 {Im,Re} , b1,2{Re,−Im} = −b1,1{Im,Re},

a2,1{Re,−Im} = −b2,3{Re,−Im} = a2,2 {Im,Re} = −b2,4{Im,Re},

a2,2{Re,−Im} = −b2,4{Re,−Im} = −a2,1 {Im,Re} = b2,3{Im,Re},

a2,3{Re,−Im} = a2,4 {Im,Re} , a2,4{Re,−Im} = −a2,3{Im,Re},

b2,1{Re,−Im} = b2,2{Im,Re}, b2,2{Re,−Im} = −b2,1{Im,Re}.

By M4{D
⇣

} we denote a subclass of monogenic functions Φ : D
⇣

! B0 with continuous derivatives Φ(k)

up to the k order, inclusively, where k ≥ 4, in D
⇣

.

By using Theorem 2, we obtain a criterion of belonging of a function Φ to M4{D
⇣

}, which is an analog of
the corresponding statement for holomorphic functions F (z) of complex variable z via the conjugate harmonicity
of the components ReF (z) and ImF (z).

Lemma 1. A function Φ belongs to M4{D
⇣

} if and only if each function U
k

= U
k

[Φ], k = 1, 4, is a solution
of Eq. (1) in the domain D and the quadruple of functions (U1, U2, U3, U4) satisfies relation (31).
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Proof. Sufficiency. Since each function U
k

= U
k

[Φ], k = 1, 4, is a solution of Eq. (1), we conclude that
U
k

(x, y), k = 1, 4, has continuous derivatives up to the fourth order, inclusively, in the domain D. It follows from
Theorem 2 that Φ is a monogenic function in D

⇣

and that the following equality is true:

@Φ(⇣)

@x
= Φ0(⇣)e1 8⇣ 2 D

⇣

, (36)

where

U
k


@Φ(⇣)

@x

�
=

@U
k

(x, y)

@x
, U

k

= U
k

[Φ], k = 1, 4.

Acting by the operator (e1)−1 @

@x
on both sides of equality (31) and using (36), we conclude that the function

Φ := Φ0 = (e1)
−1 @Φ

@x
satisfies condition (31) and is monogenic in the domain D

⇣

. Applying this operation

consecutively to Φ0 and Φ00, we conclude that the function Φ possesses derivatives Φ(k), 1  k  4, up to the
fourth order, inclusively, and moreover, the following equalities are true:

Φ(k)(⇣) =
�
(e1)

−1
�
k

@kΦ(⇣)

@xk
8⇣ 2 D

⇣

, (37)

where

U
j


@kΦ(⇣)

@xk

�
=

@kU
j

(x, y)

@xk
, k = 1, 4, j = 1, 4.

According to (37), the function Φ has continuous derivatives in the domain D
⇣

up to the fourth order, inclu-
sively.

The proof of necessity is trivial. To this end, we use Theorem 2 and the fact that each function U
k

, k 2
{1, 2, 3, 4}, satisfies Eq. (1) in view of the equalities

LΦ(⇣) = L(e1, e2)Φ
(4)(⇣) ⌘ 0, U

k

[LΦ(⇣)] = L (U
k

(x, y)) 8⇣ 2 D
⇣

, k = 1, 4,

which are proved by analogy with equalities (37).
Lemma 1 is proved.

We now introduce complex variables and the domains of their definition:

z
k

:= x+ es
k

y, D
zk

:= {z
k

2 C : xe1 + ye2 2 D
⇣

}, k = 1, 2. (38)

The monogenic function Φ : D
⇣

! B0 can be expressed in terms of two holomorphic functions of the complex
variables z1 and z2, respectively.

Theorem 3. A function Φ : D
⇣

! B0 is monogenic in the domain D
⇣

if and only if the following equality
is true:

Φ(⇣) = F1(z1)I1 + F2(z2)I2 8⇣ 2 D
⇣

, (39)

where F
k

is a holomorphic function of the complex variable z
k

in the domain D
zk

for k = 1, 2.
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Proof. Necessity. Let Φ : D
⇣

! B0 be monogenic. It is necessary to prove that there exist holomorphic
functions F

k

: D
zk

! C, k = 1, 2, such that equality (39) is true. Substituting equalities (12) in relation (6),
we get

Φ(⇣) = ↵f1(z1)I1 + βf2(z2)I2 8⇣ 2 D
⇣

, (40)

where

f
k

(z
k

) := U1(x, y) + iU2(x, y) + es
k

(U3(x, y) + iU4(x, y))

8z
k

= x+ es
k

y 2 D
zk
, k = 1, 2.

(41)

We prove that functions (41) are holomorphic functions of their complex variables in the domains D
zk
, k =

1, 2. Writing an analog of the Cauchy–Riemann conditions (31) for function (40), we arrive at the equality

↵2Ces1f1(z1) I1 + β2Ces2f2(z2) I2 = 0 8(x, y) 2 D, (42)

where

Cesk :=
@

@y
− es

k

@

@x
, k = 1, 2. (43)

We now rewrite equality (42) in the componentwise form

Ceskfk(zk) = 0 8z
k

2 D
zk
, k = 1, 2. (44)

Selecting the real and imaginary parts of the variables z
k

, k = 1, 2, in (38), we can write the equalities

z
k

= ⇠
k

+ i⌘
k

, ⇠
k

:= x+Re es
k

y, ⌘
k

:= Im es
k

y, k = 1, 2. (45)

We determine the partial derivatives of the first order for functions (41) in the domain D as follows:

@f
k

@y
= Re es

k

@f
k

@⇠
k

+ Im es
k

@f
k

@⌘
k

,
@f

k

@x
=

@f
k

@⇠
k

, k = 1, 2. (46)

Substituting equalities (46) in (44), we obtain

0 ⌘ Ceskfk(zk) = Im es
k

✓
@

@⌘
k

− i
@

@⇠
k

◆
f
k

(z
k

) 8z
k

2 D
zk
, k = 1, 2. (47)

Since Im es
k

6= 0, k = 1, 2, we conclude that (47) gives the Cauchy–Riemann conditions for the complex-
valued functions f

k

(z
k

), k = 1, 2 :

✓
@

@⌘
k

− i
@

@⇠
k

◆
f
k

(z
k

) 8z
k

2 D
zk
, k = 1, 2. (48)
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By using equalities (41), we get

Re f
k

(z
k

) = U1(x, y) + Re es
k

U3(x, y)− Im es
k

U4(x, y), (49)

Im f
k

(z
k

) = U2(x, y) + Im es
k

U3(x, y) + Re es
k

U4(x, y). (50)

By Theorem 2, the components U
k

, k = 1, 4, are differentiable in the domain D. Therefore, by using
relations (49) and (50), we conclude that the functions Re f

k

(z
k

) and Im f
k

(z
k

), k = 1, 2, are differentiable in
the domain

D
⇠k,⌘k

:=
�
(⇠

k

, ⌘
k

) : z
k

= ⇠
k

+ i⌘
k

2 D
zk

 
, k = 1, 2.

Redenoting ↵f1(z1) by F1(z1) and βf2(z1) by F2(z2), we rewrite relation (40) in the form (39).
Necessity is proved.

Sufficiency. It is necessary to show that the function given by equality (39) (F
k

is holomorphic in D
zk
,

k = 1, 2) is monogenic in D
⇣

.

By using notation (43), equalities (9) and (12), and the holomorphy of the complex-valued functions

F
k

(z
k

) : D
zk

! C, k = 1, 2,

we arrive at the chain of equalities

@Φ(⇣)

@y
e1 −

@Φ(⇣)

@x
e2 = (↵I1Ces1 − βI2Ces2) (F1(z1)I1 + F2(z2)I2)

= ↵I1Ces1 (F1(z1)) I1 − βI2Ces2 (F2(z2)) I2 ⌘ 0 8⇣ 2 D
⇣

.

Thus, function (39) satisfies an analog of the Cauchy–Riemann conditions (31).
Substituting (26) in (39), we obtain the equality

Φ(⇣) =
1

es2 − es1

✓✓
es2
↵
F1(z1)−

es1
β
F2(z2)

◆
e1 +

✓
1

β
F2(z2)−

1

↵
F1(z1)

◆
e2

◆
8⇣ 2 D

⇣

. (51)

It is clear that the functions F
k

(z
k

), k = 1, 2, have continuous partial derivatives of the first order with respect
to the variables x and y, respectively, in the domain D. Hence, the components U

k

= U
k

[Φ] of function (51)
have the same property. Sufficiency is proved.

Theorem 3 is proved.

Remark 4. The cases of Theorem 3 for the monogenic functions Φ(xe1 + ye2), e1 = e, also follow from
[23, 24], which can be proved as for the special case of the operator L in [6], Sec. 3.

Remark 5. The cases of Theorem 3 for the monogenic functions associated with the corresponding equations
of the form (1) were obtained in [6, 19, 20].

We say that D
⇣

is bounded and has a Jordan rectifiable boundary @D
⇣

if the domain of the complex plane
D

z

= {x + iy : (x, y) 2 D} is bounded and its boundary @D
z

is the union of finitely many closed Jordan
rectifiable curves; the direction of traversing these curves is chosen so that the domain D

z

remains to the left.
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Corollary 1. Suppose that a bounded domain D
⇣

has a Jordan rectifiable boundary @D
⇣

and that a function
Φ : D

⇣

! B0 is monogenic in the domain D
⇣

, continuous in its closure D
⇣

[ @D
⇣

, and given by relation (39).
Then the following equalities are true:

Φ(⇣) =

2X

k=1

I
k

1

2⇡i

Z

@Dzk

F
k

(t
k

)

t
k

− z
k

dt
k

8⇣ 2 D
⇣

,

Z

@D⇣

Φ(⇣) d⇣ = 0, Φ(⇣) =
1

2⇡i

Z

@D⇣

Φ(#) (#− ⇣)−1 d# 8⇣ 2 D
⇣

,

where ⇣ = xe1 + ye2 2 D
⇣

, z
k

2 D
zk
, k = 1, 2.

Corollary 2. Every monogenic function Φ : D
⇣

! B0 has continuous derivatives Φ(n) of any order n,

n = 1, 2, . . . , in the domain D
⇣

. The components U
k

= U
k

[Φ], k = 1, 4, are infinitely continuously differentiable
functions in the domain D.

It follows from Corollary 2 and Lemma 1 that Φ belongs to M4{D
⇣

} and each component U
k

= U
k

[Φ],

k = 1, 4, is a particular solution of Eq. (1).
In the proof of Theorem 3, it is established that the monogenic function can be represented in the form (51).

Without loss of generality, we can replace in this function

es2
(es2 − es1)↵

F1(z1) by F1(z1) and − es1
(es2 − es1)β

F2(z2) by F2(z2).

As a result, we obtain a representation of the monogenic function Φ in the basis {e1, e2} from (12):

Φ(⇣) = (F1(z1) + F2(z2)) e1 −
✓
F1(z1)

es2
+

F2(z2)

es1

◆
e2 8⇣ 2 D

⇣

. (52)

Corollary 3. Let Φ be an arbitrary monogenic function Φ : D
⇣

! B0. Particular solutions of Eq. (1) are
functions of the form

u(x, y) =
4X

k=1

a
k

U
k

[Φ(⇣)] 8(x, y) 2 D,

where a
k

are arbitrary real constants and U
k

[Φ(⇣)] is determined from (52), k = 1, 4.

4. The Case of at Least Two NonSelf-Adjoint Complex Characteristics

Assume that the set of roots of Eq. (2) contains at least two different roots es
k

2 ker l, k = 1, 2, satisfying the
special case (30), namely,

es2 6= es1, Im es
k

6= 0, k = 1, 2, (53)

where x+ iy := x− iy, x, y 2 R.
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It is clear that the validity of conditions (53) for b
k

2 R, k = 1, 5, in (1) is equivalent to the assertion that the
set ker l consists of four pairwise different complex numbers

ker l ⌘ {s1, s2, s1, s2}, (54)

where s
k

, k = 1, 2, satisfy conditions (53) with es
k

:= s
k

, k = 1, 2.

In this section, es
k

, k = 1, 2, is regarded as an arbitrary pair of different elements with es
k

2 ker l, k = 1, 2,

satisfying the conditions of Theorem 1 and relation (53).
If b

k

2 R, k = 1, 5, then it follows from equality (54) that there exist four pairs of given elements es1, es2 :
(s1, s2), (s1, s2), and the pairs obtained by permutations.

Let b
k

2 R, k = 1, 5, in (1). Then the formula for the general solution of Eq. (1) in case (53) for a bounded
simply connected domain D is obtained in exactly the same way (the reasoning is analogous to that used in [2,
pp. 109, 110]) as the corresponding formula for the general solution of Eq. (1) (see, e.g., [2, p. 136]), i.e., the equa-
tion for the stress function in a plane anisotropic medium:

u(x, y) = Re (F1(z1) + F2(z2)) 8(x, y) 2 D. (55)

Here, F
k

: D
zk

! C, k = 1, 2, are arbitrary holomorphic functions of the corresponding variables. Then equal-
ity (55) can be rewritten in the form

u(x, y) = U1[Φu

(⇣)] 8⇣ 2 D
⇣

,

where Φ
u

:= Φ is given by relation (52) with the same F
k

(z
k

), k = 1, 2, as in (55).
The monogenic function (52) satisfies the conditions of Lemma 1.
By Φ0 we denote a monogenic function Φ0 := Φ in (6) with U1 ⌘ 0. Thus, the quadruple of its components

(U1, U2, U3, U4), U
k

= U
k

[Φ0], k = 1, 4,

satisfies system (34) with U1 ⌘ 0.

Theorem 4. Suppose that u is a solution of Eq. (1), where b
k

2 R, k = 1, 5, in the bounded simply
connected domain D and the basis {e1, e2} of the algebra B0 is given by relation (12). All monogenic functions
Φ : D

⇣

! B0 such that U1[Φ] ⌘ u have the form

Φ(⇣) = Φ
u

(⇣) + Φ0(⇣) 8⇣ 2 D
⇣

.

Consider the case where Eq. (1) is an equation for the stress function (see, e.g., [2, p. 140], where a26 =

a16 = 0, U ⌘ 0, and F := u, for an orthotropic medium in the absence of bulk forces) in a special case of plane
anisotropic medium (plane orthotropic medium) (see, e.g., [2, pp. 33, 34]), namely,

L(x, y) ⌘ a11
@4u(x, y)

@y4
+ (2a12 + a66)

@4u(x, y)

@x2@y2
+ a22

@4u(x, y)

@x4
= 0. (56)

Here, the coefficients satisfy the relations (see, e.g., [3, p. 56])

a11 > 0, a22 > 0, a66 > 0, −
p
a11a22 < a12 <

p
a11a22. (57)
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In addition, the numbers playing the role of coefficients in Eq. (56) are the coefficients of equations of gener-
alized Hooke’s law for the orthotropic medium (see, e.g., [2, p. 34]). These equations have the form

"
x

= a11σx + a12σy, "
y

= a12σx + a22σy,
γ
xy

2
= a66⌧xy,

where "
x

,
γ
xy

2
, and "

y

and σ
x

, ⌧
xy

, and σ
y

are the components of the strain [2, p. 16] and stress [2, p. 15] tensors,
respectively.

It is known (see, e.g., [2, p. 113], where a16 = a26 = 0) that the characteristic equation (2) for Eq. (56)
cannot have real roots. In view of the fact that the coefficients of Eq. (56) are real, we conclude that the condition
of simplicity of roots of the characteristic equation (2) for Eq. (56) is equivalent to the existence of at least one pair
of different s

k

2 ker l, k = 1, 2, such that s2 6= s1. Hence, (54) holds.
We now determine the class of orthotropies corresponding to the case in which the equation for the stress

function [which, in turn, corresponds to condition (54)] has the form (56). It follows from [22, p. 50] (or [3,
p. 53]) that this class of orthotropic plane media coincides with the class of general orthotropic plane media for
which Eq. (56) cannot be reduced to a biharmonic equation by a nondegenerate change of variables [invertible
transformation of the form X = X(x, y), Y = Y (x, y), (x, y) 2 D ⇥D ].

We perform the change of variables

4
p
a22x by X =: x and 4

p
a11y by Y =: y.

Then Eq. (56) takes the form

L
p

(x, y) := L(x, y) ⌘ @4u(x, y)

@y4
+ 2p

@4u(x, y)

@x2@y2
+

@4u(x, y)

@x4
= 0, (58)

where

p :=
2a12 + a66
2
p
a11a22

. (59)

We now determine the range of values of the right-hand side of (59). By using (57), we obtain

−1 + " < p < 1 + ", " :=
a66

2
p
a11a22

> 0.

It is clear that the change of variables used to reduce Eq. (56) to Eq. (58) is nondegenerate. Equation (58)
with p = 1 is a biharmonic equation. It is known (see, e.g., [22, p. 50]) that the necessary and sufficient condition
for the existence of a nondegenerate change of independent variables that reduces an equation of the form (56)
[moreover, an equation of the form (2)] to a biharmonic equation is the fact that the characteristic equation
for Eq. (56) has two pairwise equal complex roots, i.e., roots of the form S

k

, ImS
k

6= 0, k = 1, 2, of multi-
plicity two, which is impossible because the roots of the characteristic equation are simple. Hence, p 6= 1 and the
following two cases are possible for p :

(i) p 2 (−1 + "; 1) ⇢ (−1; 1),

(ii) p 2 (1; 1 + ") ⇢ (1;1).

Cases 1 and 2 were considered in [19, 20] and [6, 21], respectively. In particular, for the operator L := L
p

,

Theorem 4 takes a closed form in a sense that the function Φ0 can be found in the explicit form.
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In the case where Eq. (1) is the equation for stress function in a plane anisotropic medium without volume
forces, this equation is elliptic and takes the following form (see, e.g., [2, p. 140]):

L(x, y) ⌘ a11
@4u(x, y)

@y4
− 2a16

@4u(x, y)

@x@y3

+ (2a12 + a66)
@4u(x, y)

@x2@y2
− 2a26

@4u(x, y)

@x3@y
+ a22

@4u(x, y)

@x4
= 0, (60)

where the real coefficients satisfy conditions similar to (57) (see, e.g., [3, 4]).
As follows from the results established in [22, p. 50] and the condition of simplicity of the roots of the charac-

teristic equation for Eq. (60), it is impossible to find a nondegenerate change of independent variables that reduces
Eq. (60) to the biharmonic equation

(∆2)
2 u(x, y) = 0, ∆2 :=

@2

@x2
+

@2

@y2
.

At the same time, Mikhlin gave an example of a nondegenerate change of independent variables of this kind
(a composition of linear changes of variables and rotations of the coordinates axes) that reduces Eq. (60) to the form

✓
@2

@x2
+ k2

@2

@y2

◆
∆2u(x, y) = 0, (61)

where k > 0, k 6= 1 (see, e.g., [25] or [26], Chap. 5, Sec. 7).
Note that Eq. (61) is an equation of the form (56), which can be reduced to Eq. (58).

The present work was partially supported by the Ukrainian Ministry of Education and Science (Grant
No. 0116U001528).
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