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THE SECOND COHOMOLOGY SPACES K(2) WITH COEFFICIENTS
IN THE SUPERSPACE OFWEIGHTED DENSITIES

O. Basdouri,1,2 A. Braghtha,3 and S. Hammami4 UDC 515.1

Over the (1, 2)-dimensional supercircle, we investigate the second cohomology space associated with the
Lie superalgebra K(2) of vector fields on the supercircle S1|2 with coefficients in the space of weighted
densities. We explicitly give the 2-cocycle spanning for these cohomology spaces.

1. Introduction

Let g be a Lie algebra and let M a g-module. We associate a cochain complex known as the Chevalley–
Eilenberg differential. The n th space of this complex is denoted by Cn(g,M).

This space is trivial for n < 0. At the same time, if n > 0, then this is the space of n-linear anti-
symmetric mappings of g into M . They are called n-cochains of g with coefficients in M. The space of
0-cochains C0(g,M) reduces to M. The differential δn is defined by the following formula: for c 2 Cn(g, ),

the (n+ 1)-cochain δn(c) evaluated on g1, g2, . . . , gn+1 2 g gives

δnc(g1, . . . , gn+1) =
X

1s<tn+1

(−1)s+t−1c ([gs, gt], g1, . . . , ĝs, . . . , ĝt, . . . , gq+1)

+
X

1sn+1

(−1)sgsc (g1, . . . , ĝs, . . . , gn+1),

where the notation ĝi indicates that the i th term is omitted.
We now check that δn+1 ◦ δn = 0. Thus, we have a complex

0 ! C0(g,M) ! . . . ! Cn−1(g,M)
dn−1

! Cn(g,M) ! . . . .

By Hn(g,M) = ker dn/Im dn−1 we denote the quotient space. This space is called the space of n-cohomology
from g with coefficients in M.

We also denote:

Zn(g,M) = ker δn is the space of n-cocycles,

Bn(g,M) = =δn−1 is the space of n-coboundaries.
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For M = R (or C) considered as a trivial module, in this case, we denote the cohomology by Hn(g).

We now recall the classical interpretations of cohomology spaces of low degrees:
The space

H0(g,M) ' Inv
g

(M) := {m 2 M ; X.m = 0 8X 2 g, }.

The space H1(g,M) classifies derivations of g with values in M modulo inner ones. This result is especially
useful for M = g with the adjoint representation. In this case, a derivation is a map % : g −! g such that

%([X,Y ])− [%(X), Y ]− [X, %(Y )] = 0,

while an inner derivation is specified by the adjoint action of some element Z 2 g.

The space H2(g,M) classifies extensions of the Lie algebra g by M, i.e., short exact sequences of Lie
algebras

0 ! M ! ĝ ! g ! 0,

in which M is considered as an Abelian Lie algebra. We mainly consider two particular cases of this situation,
which are extensively studied in what follows:

If M is a trivial g-module (typically, M = R or C), then H2(g,M) classifies central extensions modulo
trivial ones. Recall that a central extension of g by R produces a new Lie bracket on ĝ = g⊕M by setting

[(X,λ), (Y, µ)] = ([X,Y ], c(X,Y )).

This is trivial if the cocycle c = dl is a coboundary of a 1-cochain l. In this case, the map (X,λ) !
(X,λ− l(X)) yields a Lie isomorphism between ĝ and g⊕M considered as a direct sum of Lie algebras.

If M = g with the adjoint representation, then H2(g, g) classifies infinitesimal deformations modulo trivial
ones. By the definition, a (formal) series

(X,Y ) ! Φλ(X,Y ) := [X,Y ] + λf1(X,Y ) + λ2f2(X,Y ) + . . .

is a deformation of the Lie bracket [, ] if Φλ is a Lie bracket for every λ, i.e., is an antisymmetric bilinear form
in X, Y and satisfies the Jacobi identity. If we simply set

[X,Y ]λ = [X,Y ] + λc(X,Y ),

where c is a 2-cochain with values in g and λ is a scalar, then this bracket satisfies the Jacobi identity modulo the
terms of order O

�

λ2
�

if and only if c is a 2-cocycle. Thus, we get what is called an infinitesimal deformation
of the bracket of g, which is trivial if c is a coboundary. This means (as in the case of central extensions) that
an adequate linear isomorphism from g to g transforms the initial bracket [, ] into the deformed bracket [, ]λ.
The infinitesimal deformation associated with a cocycle c does not always give rise to an actual deformation that
coincides with the infinitesimal deformation of order 1, i.e., such that f1 = c, as one can check by looking induc-
tively on the functions f2, f3, . . . satisfying Jacobi’s identities of orders 2, 3, . . . . The cohomological obstructions
to prolongations of deformations are contained in H3(g, g).

A natural generalization of the Virasoro algebra is given by extensions of the Lie algebra vect(S1) of vector
fields on the circle by the modules Fλ of λ-densities on the circle. The problem of classifying extensions of this
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kind is equivalent to the problem of calculation of the cohomology H2
�

Vect
�

S1
�

;Fλ

�

. In [4, 5], V. Ovsienko,
C. Roger and P. Marcel computed the space H2

�

Vect
�

S1
�

;Fλ

�

, where Vect
�

S1
�

is the algebra of smooth
vector fields on the circle S1 and Fλ is the space of λ densities. Following Ovsienko and Roger, B. Agrebaoui,
I. Basdouri, and M. Boujelben [1] computed H2

di↵

�

K(1);F1
λ

�

, where K(1) is the Lie superalgebra of contact
vector fields on the supercircle S1|1 with coefficients in the space of weighted densities.

In this paper, we explicitly compute H2
di↵

�

K(2);F2
λ

�

, where K(2) is the lie superalgebra of contact vector
fields in S1|2 with coefficients in the spaces of weighted densities F2

λ.

The present paper is organized as follows. In Section 2, we present some preliminary definitions and explain
the notation. In Section 3, we compute the 2-cohomology space H2

di↵

�

K(2);F2
λ

�

and classify the extensions of
a Lie superalgebra K(2) by F

2
λ.

2. Preliminaries

In this section, we recall some tools pertaining to the problem of cohomology, such as weighted densities,
superfunctions, and contact projective vector fields on S1|n.

2.1. Standard Contact Structure on S1|n. Let S1|n be a supercircle with coordinates (x, ✓1, . . . . . . , ✓n),

where x is an even indeterminate and ✓1, . . . , ✓n are odd indeterminates: ✓i✓j = −✓j✓i. This superspace is
equipped with a standard contact structure given by the distribution D = h⌘1, . . . , ⌘ni generated by the vector
fields ⌘i = @✓i − ✓i@x. This means that the distribution D is the kernel of the following 1-form:

↵n = dx+

n
X

i=1

✓id✓i.

2.2. Superfunctions on S1|n. We define the geometry of the superspace S1|n, where n 2 N, by describing
its associative supercommutative superalgebra of superfunctions on S1|n, which is denoted by C1(S1|n). This is
the space of functions F of the form

F =
X

1i1<...<ikn

fi1,...,ik(x)✓i1 . . . ✓ik , where fi1,...,ik 2 C1 �

S1
�

. (2.1)

Clearly, the even (resp., odd) elements of C1�

S1|n� are functions given by (2.1) for which the summation
is carried out only over even (resp., odd) integer k. By p(F ) we denote the parity of a homogeneous function F.

On C1�

S1|n�, we consider the following contact bracket:

{F,G} = FG0 − F 0G− 1

2
(−1)p(F )

n
X

i=1

⌘i(F )⌘i(G),

where the superscript 0 stands for
@

@x
.

2.3. Vector Fields on S1|n. A vector field on S1|n is a superderivation of the associative supercommutative
superalgebra C1�

S1|n�. In coordinates, it can be expressed as follows:

X = f@x +

n
X

i=1

gi@✓i ,

where f and gi are the elements of C1�

S1|n�.
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The superspace of all vector fields on C1�

S1|n� is a Lie superalgebra. It is denoted by Vect
�

C1�

S1|n��.

2.4. Lie Superalgebra of Contact Vector Fields on S1|n. Consider the superspace K(n) of contact vector
fields on S1|n. Thus, K(n) is the superspace of vector fields on S1|n with respect to the 1-form ↵n. By definition,
the Lie superalgebra of contact vector fields is

K(n) =
n

X 2 Vect
�

S1|n�
�

�

�

there exists FX 2 C1�

S1|n� such that LXF
(↵n) = F↵n

o

.

We define vector fields ⌘i and ⌘i as follows: ⌘i = @✓i + ✓i@x and ⌘i = @✓i − ✓i@x. Then any contact vector
field on S1|n can be represented in the following explicit form:

XF = F@x −
1

2
(−1)p(F )

n
X

i=1

⌘i(F )⌘i, where F 2 C1�

S1|n�.

The K(n) acts upon S1|n as follows:

LXF
(XG) = F@xXG + (−1)p(F )+1 1

2

n
X

i=1

⌘i(F )⌘i(G).

The vector field XF has the same parity as F. The bracket in K(n) can be represented as follows:

[XF , XG] = X{F,G}.

The Lie superalgebra osp(2|n) is called the Lie superalgebra of contact projective vector fields. Thus, osp(2|n) is
an (n+ 2|2n)-dimensional Lie superalgebra spanned by the following contact projective vector fields:

�

Xx, Xx2 , X1, 2X✓i✓j , X✓i , Xx✓i , i, j = 1, . . . , n
 

.

2.5. Modules of Weighted Densities. We now consider the 1-parameter action of K(n) on C1�

S1|n� spec-
ified by the rule

L

λ
XF

= XF + λF 0.

We denote this K(n)-module by F

n
λ; this is the space of all weighted densities of weight λ on S1|n :

F

n
λ =

n

F↵λ
n

�

� F 2 C1(S1|n)
o

.

The superspace F

n
λ has the K(n)-module structure defined by the Lie derivative:

L

λ
XG

�

F↵λ
n

�

=
�

XG + λG0�(F )↵n
λ,

where

G0 :=
@G

@x
.
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Clearly, K(n) is isomorphic to F

n
−1 as a K(n)-module and

F

n
λ ' F

n−1
λ ⊕⇧

✓

F

n−1
λ+ 1

2

◆

,

where ⇧ is the change of parity function.

3. Space H2
�

K(2);F2
λ

�

In the present paper, we study the differential cohomology spaces H2
di↵

�

K(2);F2
λ

�

. Indeed, we consider only
cochains (XF , XG) ! ⌦(F,G)↵2

λ, where ⌦ is a differential operator.

3.1. Main Theorem. The main result of this paper is the following theorem:

Theorem 3.1.

H2
di↵

�

K(2);F2
λ

�

'

8

>

<

>

:

K for λ = 0,
1

2
, 1,

3

2
, 2, 3,

0, otherwise.

The nontrivial spaces H2
�

K(2);F2
λ

�

are spanned by the following 2-cocycles:

⌦0(XF , XG) = (⌘̄1(F )⌘̄2(G)− ⌘̄2(F )⌘̄1(G)) ✓1✓2,

⌦ 1
2
(XF , XG) =

1

2
(⌘̄1⌘̄2(F )⌘̄1(G)− ⌘̄1(F )⌘̄1⌘̄1(G)) ✓1✓2,

⌦1(XF , XG) = (F ⌘̄1⌘̄2(G)− ⌘̄1⌘̄2(F )G+ ⌘̄1(F )⌘̄2(G) + ⌘̄2(F )⌘̄1(G)) ✓1✓2,

⌦ 3
2
(XF , XG) = (⌘̄1⌘̄2(F )⌘̄1(G) + ⌘̄1⌘̄2(F )⌘̄2(G)− ⌘̄1(F )⌘̄1⌘̄2(G)− ⌘̄2(F )⌘̄1⌘̄2(G)) ✓1✓2,

⌦2(XF , XG) = ⌘̄1⌘̄2(F
0)⌘̄1⌘̄2(G

0),

⌦3(XF , XG) =
⇣

(−1)|F | �⌘̄1(F
00)⌘̄1(G

00) + ⌘̄2(F
00)⌘̄2(G

00)
�

+ 2
�

⌘̄1⌘̄2(F
0)⌘̄1⌘̄2(G

00)− ⌘̄1⌘̄2(F
00)⌘̄1⌘̄2(G

0)
�

⌘

.

Corollary 3.1.

H2
di↵(K(2), K(2)) ' 0. (3.1)

3.2. Relationship Between H2
di↵

�

K(2),F2
λ

�

and H2
di↵

�

K(1),F1
λ

�

. Prior to proving Theorem 3.1,
we present some results illustrating the relationship between the cohomology space in supercircle S1|1 and S1|2.
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Proposition 3.1 [1].

H2
di↵

�

K(1);F1
λ

�

'

8

>

>

>

>

<

>

>

>

>

:

K for λ = 0, 3, 5,

K2 for λ =
1

2
,
3

2
,

0, otherwise.

The nontrivial spaces H2
�

K(1);F1
λ

�

are spanned by the 2-cocycles:

!0(XF , XG) = FG0 − F 0G−
✓

1

4
+

3

4
(−1)p(F )p(G)

◆

⌘̄1(F )⌘1(G),

! 1
2
(XF , XG) = (−1)p(F )+p(G)

�

F 0⌘1(G
0)− ⌘1(F

0)G0�↵
1
2
1 ,

e! 1
2
(XF , XG) =

✓

1

2
+

1

4

⇣

1 + (−1)p(F )p(G)
⌘

◆

(−1)p(F )+p(G)
�

F⌘1(G
0)− ⌘1(F

0)G
�

↵
1
2
1 ,

! 3
2
(XF , XG) =

⇣

⌘̄1(F
00)G− (−1)p(F )F 0⌘̄1(G

00)
⌘

− 1

2
✓1
�

⌘1(F )⌘1(G
00) + ⌘1(F

00)⌘1(G)
�

↵
3
2
1 ,

e! 3
2
(XF , XG) =

�

F 0⌘̄1(G
00)− ⌘̄1(F

00)G0�↵
3
2
1 ,

!3(XF , XG) =
�

⌘1(F
00)⌘̄1(G

00)G0�↵3
1,

!5(XF , XG) =
⇣⇣

F (3)G(4)F (4)G(3)
⌘

+
3

2

⇣

⌘1(F
(4))⌘1

�

G(2)
�

− ⌘1
�

F (2)
�

⌘1
�

G(4)
�

⌘

− 4⌘1
�

F (3)
�

⌘1
�

G(3)
�

⌘

↵5
1.

The following lemma gives the general form of each ⌦ :

Lemma 3.1. The 2-cocycle ⌦ belongs to Z2
�

K(2),F2
λ

�

. Up to a coboundary, the map ⌦ is given by

⌦(XF , XG) =
X

i,j,k,l

ai,j,k,l⌘
i
1⌘

j
2(F )⌘k1⌘

l
2(G)↵λ

2 ,

where ai,j,k,l depends only on ✓1, ✓2, and the parity of F and G.

Proof. Every differential operator ⌦ can be expressed in the form

⌦(XF , XG) =
X

ai,j,k,l⌘
i
1⌘

j
2(F )⌘k1⌘

l
2(G)↵λ

2 ,

where the coefficients ai,j,k,l are arbitrary function. By using the 2-cocycle equation, we can show that

@

@x
ai,j,k,l = 0.
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The dependence on the parity of F and G follows from the fact that ⌦ is skew-symmetric:

ai,j,k,l(F,G) = (−1)"ij(F,G)ai,j,k,l(F,G),

where

"ij(F,G) = ij(p(F ) + 1)(p(G) + 1) + p(F )p(G) + 1.

Lemma 3.1 is proved.

Further, in order to prove Theorem 3.1, it is also necessary to compute the cohomology space vanishing on
K(1). We are interested in cohomology space vanishing on K(1), i.e., we assume

⌦(X,Y ) = 0, if X,Y 2 K(1).

Therefore, the relevant cohomology space is

H2
di↵

�

K(2),K(1),F2
λ

�

.

Theorem 3.2. The space

H2
di↵

�

K(2),K(1),F2
λ

�

'

8

<

:

K for λ = 2,

0, otherwise.
(3.2)

Proof. Let ⌦ be a 2-cocycle of K(2) vanishing on K(1). The expressions for ⌦ are given in Lemma 3.1.
By using “MATHEMATICA,” we check that the 2-cocycle condition has the solution

⌦(XF , XG) =

8

<

:

0 for λ 6= 2,

⌫⌘̄1⌘̄2(F
0)⌘̄1⌘̄2(G

0)↵2
2 for λ = 2,

where ⌫ is constant. Assume that the map ⌦ is a trivial 2-cocycle vanishing on K(1). Thus, there exists an even
operator b : K(2) ! F

2
2 given by

b(XF ) =

 

X

k

k(x, ✓1, ✓2)⌘1⌘2
�

F (k)
�

+
X

l

µl(x, ✓1, ✓2)F
(l)

!

↵λ
2 ,

where the coefficients k(x, ✓1, ✓2) and µl(x, ✓1, ✓2) are arbitrary, such that ⌦ is equal to δ(b), i.e.,

⌦(XF , XG) := (−1)p(XF )p(b)
L

2
XF

(b(XG))

− (−1)p(XG)(p(XF ))
L

2
XG

(b(XF ))− b([XF , XG]). (3.3)

Condition (3.3) implies that its coefficients are constant.
By using “MATHEMATICA,” we check that condition (3.3) has no solutions. We can see that expression (3.2)

never appears on the right-hand side of (3.3). This contradicts our assumption.
Theorem 3.2 is proved.
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Proof of Theorem 3.1. Consider 2-cocycles ⌦ 2 Z2
di↵

�

K(2);F2
λ

�

. If ⌦|K(1)⌦K(1) is trivial, then the 2-cocycle
⌦ is completely described by Theorem 3.2. Thus, assume that ⌦|K(1)⌦K(1) is nontrivial. Clearly, by analyzing
Proposition 3.1, we conclude that the nontrivial space H2

di↵

�

K(2);F2
λ

�

can appear only for

λ 2
⇢

−1

2
, 0,

1

2
, 1,

3

2
,
5

2
,
9

2
, 3, 5

�

.

The K(1)-isomorphism:

H2
di↵

�

K(1);F2
λ

�

' H2
di↵

�

K(1);F1
λ

�

⊕H2
di↵

⇣

K(1);
Y

⇣

F

1
λ+ 1

2

⌘⌘

.

Together with Proposition 3.1 that describes, up to a coboundary and to within a scalar factor, the restriction
of any 2-cocycle ⌦ to K(1). First, we separately consider the even and odd cases. Thus, even cohomology spaces
can appear only for λ 2 {0, 1, 3, 5}. At the same time, odd cohomology spaces can appear only for

λ 2
⇢

−1

2
,
1

2
,
3

2
,
5

2
,
9

2

�

.

In each case, the restriction of ⌦ to K(1) is a linear combination of the corresponding 2-cocycles given in
Proposition 3.1. First, the operators ⌦ labeled by semiintegers are odd and given by the formula

⌦(XF , XG) =
X

i,j,k,l

ai,j,k,l⌘
i
1⌘

j
2(F )⌘k1⌘

l
2(G)↵λ

2 ,

where i + j + k + l 2 {1, 3} and the coefficients aijkl are arbitrary functions independent on the variable x.

At the same time, they depend on ✓ and the parity of F and G. By using “MATHEMATICA,” we investigate the
dimension of the space of operators satisfying the 2-cocycle condition:

δ(⌦)(XF , XG, XH) := (−1)p(F )XF .⌦(XG, XH)− (−1)p(G)(1+p(F ))XG.⌦(XF , XH)

+ (−1)p(H)(1+p(G)+p(F ))XH .⌦(XF , XG)− ⌦([XF , XG], XH)

+ (−1)p(G)p(H)⌦([XF , XH ], XG)− (−1)p(F )(p(G)+p(H))⌦([XG, XH ], XF ) = 0, (3.4)

where XF .⌦(XF , XH) = L

λ
XF

(⌦(XG, XH)) and F,G,H 2 C1 �

S1|2�.

The number of variables generating any 2-cocycle is much smaller than the number of equations obtained
from the 2-cocycle condition for particular values of aijkl. We have:

For λ =
1

2
:

In this case, by direct computations, we can see that the 2-cocycle condition is always satisfied for the following
particular values:

a1000 = 0, a0100 = 0, a0010 = 0, a0001 = 0,

a1110 =
1

2
✓1✓2, a1101 = 0, a0111 = 0, a1011 = −1

2
✓1✓2.
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We study all trivial 2-cocycles, i.e., operators of the form δb, where b is a linear operator given by

b(XF ) =
�

⌘1⌘2(F ) + µF
�

↵λ
2 .

As a result of direct computations, we obtain

δb(XF , XG) =
1

2

⇣


�

3f1(x)g1(x) + 3f2(x)g2(x) + g0(x)f
0
0(x)− f0(x)g

0
0(x)

�

− ✓1
�

3f12(x)g2(x)− 3f2(x)g12(x)− 3g1(x)f
0
0(x) + 3g0(x)f

0
1(x) + f1(x)g

0
0(x)

− f0(x)g
0
1(x)

�

− ✓2
�

3f12(x)g1(x)− 3f1(x)g12(x)− 6g2(x)f
0
0(x)− g0(x)f

0
2(x)

+ 6f2(x)g
0
0(x)− f0(x)g

0
2(x)

�

+ ✓1✓2
�

g12(x)f
0
0(x) + 2g2(x)f

0
1(x)− 2g1(x)f

0
2(x)

+ g0(x)f
0
12(x)− f12(x)g

0
0(x) + 2f2(x)g

0
1(x)− 2f1(x)g

0
2(x)− f0(x)g

0
12(x)

�

+ µ
�

3g12f
0
0(x) + 2g2(x)f

0
1(x)− 2g1(x)f

0
2(x)− 3f12(x)g

0
0 + 4f2(x)g

0
1(x)

− 4f1(x)g
0
2(x)

�

+ µ✓1
�

− g12(x)f
0
1(x) + 2g1(x)f

0
12(x) + f 0

2(x)g
0
0(x)− f12(x)g

0
1(x)

− f 0
0(x)g

0
2(x)− 4f1(x)g

0
12(x)− 4g2(x)f

00
0 (x) + 4f2(x)g

00
0(x)

�

+ µ✓2
�

− g12(x)f
0
2(x)

+ 4g2(x)f
0
12(x)− f 0

1(x)g
0
0(x) + f 0

0(x)g
0
1(x) + 3f12(x)g

0
2(x)− 4f1(x)g

0
12(x)

+ 2g1(x)f
00
0 (x)− 2f2(x)g

00
12(x)

�

+ µ✓1✓2
�

− g12(x)f
0
12(x)− 2f 0

1(x)g
0
1(x)

− 2f 0
2(x)g

0
2(x) + f12(x)g

0
12(x) + g00(x)f

00
0 (x) + 2g1(x)f

00
1 (x)− g2(x)f

00
2 (x)

− f 0
0(x)g

00
0(x)− 2f1(x)g

00
1(x)− 2f2(x)g

00
2(x)

�

⌘

.

It is now easy to check that the equation ⌦− δb = 0 has no solutions. Thus, the 2-cocycle is nontrivial and

dimH2
di↵(K(2);F2

λ) = dimZ2
di↵

�

K(2);F2
λ

�

.

Hence, the cohomology space is one-dimensional.

For λ =
3

2
:

In this case, by direct computations, we can show that the 2-cocycle condition is always satisfied for the
following particular values:

a1000 = 0, a0100 = 0, a0010 = 0, a0001 = 0,

a1110 = ✓1✓2, a1101 = ✓1✓2, a0111 = −✓1✓2, a1011 = −✓1✓2.
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We now study the triviality of this 2-cocycle. It is easy to see that any coboundary δb(XF , XG) can be
expressed in the following form:

δb(XF , XG) = 

✓

3

2
f1(x)g1(x) +

3

2
f2(x)g2(x) +

3

2
g0(x)f

0
0(x)−

3

2
f0(x)g

0
0(x)

◆

+ ✓1

✓

−1

2
f12(x)g2(x) +

3

2
f2(x)g12(x) + 4g1(x)f0I(x)−

3

2
g0(x)f1I(x)

+4f1(x)g0I(x) +
3

2
f0(x)g1I(x)

◆

+ ✓2

✓

−1

2
f12(x)g1(x) +

3

2
f1(x)g12(x)

+4g2(x)f
0
0(x) +

3

2
g0(x)f

0
2(x)− 4f2(x)g

0
0(x) +

3

2
f0(x)g

0
2(x)

◆

+ ✓1✓2

✓

3

2
g12(x)f

0
0(x) +

3

2
g0(x)f

0
12(x) +

3

2
f12(x)g

0
0(x) + f2(x)g

0
1(x)

−f1(x)g
0
2(x)−

3

2
f0(x)g

0
12(x)

◆

+ µ

✓

5

2
g12(x)f

0
0(x) + g2(x)f

0
1(x)− g1(x)f

0
2(x)

−5

2
f12(x)g

0
0(x) + 2f2(x)g

0
1(x)− 2f1(x)g

0
2(x)

◆

+ µ✓2

✓

−3

2
g12(x)f

0
2(x)

+2g2(x)f
0
12(x)−

3

2
f 0
1(x)g

0
0(x) +

3

2
f 0
0(x)g

0
1(x) +

5

2
f12(x)g

0
2(x)− f2(x)g

0
12(x)

+g1(x)f
00
0 (x)− f1(x)g

00
0(x)

◆

+ µ✓1

✓

−3

2
g12(x)f

0
1(x) + g1(x)f

0
12(x)

+
3

2
f 0
2(x)g

0
0(x) +

3

2
f12(x)g

0
1(x)−

3

2
f 0
0(x)g

0
2(x)− 2f1(x)g

0
12(x)− 2g2(x)f

00
0 (x)

+2f2(x)g
00
0(x)

◆

+ µ✓1✓2

✓

1

2
g12(x)f

0
12(x)− 3f 0

1(x)g
0
1(x)− 3f 0

2(x)g
0
2(x)

−1

2
f12(x)g

0
12(x)−

1

2
g00(x)f

00
0 (x)− g1(x)f

00
1 (x)− g2(x)f

00
2 (x) +

1

2
f 0
0(x)g

00
0(x)

−f1(x)g
00
1(x)− f2(x)g

00
2(x)

◆

.

Hence, in the same way as earlier, we conclude that the equation ⌦ − δb = 0 has no solutions. Thus,
the 2-cocycle is nontrivial and

dimH2
di↵

�

K(2);F2
λ

�

= dimZ2
di↵

�

K(2);F2
λ

�

.

We deduce that the cohomology space is one-dimensional.
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For λ 2
⇢

−1

2
,
5

2
,
9

2

�

, equation (3.4) does not have solutions. Thus,

H2
di↵

�

K(2),F2
λ

�

' 0.

By applying the 2-cocycle equation to ⌦ and using “MATHEMATICA,” we deduce the expressions for ⌦.
To be more precise, we get

⌦ =

8

>

>

<

>

>

:

1

2
(⌘̄1⌘̄2(F )⌘̄1(G)− ⌘̄1(F )⌘̄1⌘̄1(G)) ✓1✓2 if λ =

1

2
,

(⌘̄1⌘̄2(F )⌘̄1(G) + ⌘̄1⌘̄2(F )⌘̄2(G)− ⌘̄1(F )⌘̄1⌘̄2(G)− ⌘̄2(F )⌘̄1⌘̄2(G)) ✓1✓2 if λ =
3

2
.

In this case, the proof is the same as in the case of odd 2-cocycles. The operators ⌦ labeled by integers are even
and given by

⌦(XF , XG) =
X

i,j,k,l

ai,j,k,l⌘
i
1⌘

j
2(F )⌘k1⌘

l
2(G)↵λ

2 ,

where i + j + k + l 2 {0, 2, 4} and the coefficients aijkl are arbitrary functions independent on the variable x.

However, they depend on ✓ and the parity of F and G.

Using “MATHEMATICA”, we conclude that this map satisfies the 2-cocycle equation

δ(⌦)(XF , XG, XH) := XF .⌦(XG, XH)− (−1)p(G)p(F )XG.⌦(XF , XH)

+ (−1)p(H)(p(G)+p(F ))XH .⌦(XF , XG)

− ⌦([XF , XG], XH) + (−1)p(G)p(H)⌦([XF , XH ], XG)

− (−1)p(F )(p(G)+p(H))⌦([XG, XH ], XF ) = 0, (3.5)

where F,G,H 2 C1�

S1|2�.

For λ = 0 :
In this case, by direct computations, we can see that the 2-cocycle condition is always satisfied for the following

particular values:

a0000 = 0, a1100 = 0, a0011 = 0, a1001 = ✓1✓2,

a0110 = −✓1✓2, a1010 = 0, a0101 = 0, a0111 = 0, a1111 = 0.

On the other hand, we can see that the coboundary δb(XF , XG) can be expressed as follows:

δb(XF , XG) = 

✓

−1

2
f1(x)g1(x)−

1

2
f2(x)g2(x)

◆

+ ✓1

✓

1

2
f12(x)g2(x) +

1

2
f2(x)g12(x)−

1

2
g1(x)f

0
0(x) +

1

2
f1(x)g

0
0(x)

◆
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+ ✓2

✓

1

2
f12(x)g1(x) +

1

2
f1(x)g12(x)−

1

2
g2(x)f

0
0(x) +

1

2
f2(x)g

0
0(x)

◆

+ ✓1✓2

✓

−1

2
g2(x)f

0
1(x) +

1

2
g1(x)f

0
2(x) +

1

2
f2(x)g

0
1(x)−

1

2
f1(x)g

0
2(x)

◆

+ µ
�

g12(x)f
0
0(x)− f12(x)g

0
0(x) + f2(x)g

0
1(x)− f1(x)g

0
2(x)

�

+ µ✓2
�

−g2(x)f
0
12(x) + f12(x)g

0
2(x) + 2f2(x)g

0
12(x) + 2g1(x)f

00
0 (x)

−2f1(x)g
00
0(x)

�

+ µ✓1
�

−g1(x)f
0
12(x)− f12(x)g

0
1(x) + f1(x)g

0
12(x)

− f 0
1(x)g12(x)− g2(x)f

00
0 (x) + f2(x)g

00
0(x)

�

+ µ✓1✓2
�

−g12(x)f
0
12(x)

+f 0
1(x)g

0
1(x) + 2f 0

2(x)g
0
2(x) + f12(x)g

0
12(x) + g00(x)f

00
0 (x) + 2g1(x)f

00
1 (x)

+2g2(x)f
00
2 (x)− f 0

0(x)g
00
0(x) + 2f1(x)g

00
1(x) + 2f2(x)g

00
2(x)

�

.

Thus, the cohomology space is one-dimensional because the equation ⌦ − δb = 0 has no solutions. Hence,
the 2-cocycle is nontrivial and

dimH2
di↵

�

K(2);F2
0

�

= dimZ2
di↵

�

K(2);F2
0

�

= 1.

For λ = 1 :
In this case, by direct computations, we can see that the 2-cocycle condition is always satisfied for the following

particular values:

a0000 = 0, a1100 = −✓1✓2, a0011 = ✓1✓2, a1001 = ✓1✓2,

a0110 = ✓1✓2, a1010 = 0, a0101 = 0, a1111 = 0.

Further, by direct computations, we get

δb(XF , XG) = 

✓

−1

2
f1(x)g1(x)−

1

2
f2(x)g2(x) + g0(x)f

0
0(x)− f0(x)g

0
0(x)

◆

+ ✓1

✓

1

2
f12(x)g2(x) +

1

2
f2(x)g12(x) +

1

2
g1(x)f

0
0(x) + g0(x)f

0
1(x)

−1

2
f1(x)g

0
0(x)− f0(x)g

0
1(x)

◆

+ ✓2

✓

1

2
f12(x)g1(x) +

1

2
f1(x)g12(x)

+
1

2
g2(x)f

0
0(x) + g0(x)f

0
2(x)−

1

2
f2(x)g

0
0(x)− f0(x)g

0
2(x)

◆
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+ ✓1✓2

✓

g12(x)f
0
0(x) +

1

2
g2(x)f

0
1(x)−

1

2
g1(x)f

0
2(x) + g0(x)f

0
12(x)

−f12(x)g
0
0(x) +

3

2
f2(x) g

0
1(x)−

3

2
f1(x)g

0
2(x)− f0(x)g12

0(x)

◆

+ µ
�

2g12(x)f
0
0(x)− 2f12(x)g

0
0(x) + f2(x)g

0
1(x)− f1(x)g

0
2(x)

�

+ µ✓2
�

g12(x)f
0
2(x)− g2(x)f

0
12(x)− f 0

1(x)g
0
0(x) + f 0

0(x)g
0
1(x)

+2f2(x)g
0
12(x) + 2g1(x)f

00
0 (x)− 2f1(x)g

00
0(x)

�

+ µ✓1
�

g12(x)f
0
1(x)

− g1(x)f
0
12(x) + f 0

2(x)g
0
0(x)− 2f12(x)g

0
1(x)− f 0

0(x)g
0
2(x) + f1(x)g

0
12(x)

− g2(x)f
00
0 (x) + f2(x)g

00
0(x)

�

+ µ✓1✓2
�

2f 0
1(x)g

0
2(x) + 2f 0

2(x)g
0
1(x)

+2g1(x)f
00
1 (x) + 2g2(x)f

00
2 (x) + 2f1(x)g

00
1(x) + 2f2(x)g

00
2(x)

�

.

Hence, we conclude that the cohomology space is one-dimensional because the equation ⌦− δb = 0 does not
have solutions. Therefore, the 2-cocycle is nontrivial and

dimH2
di↵

�

K(2);F2
1

�

= dimZ2
di↵

�

K(2);F2
1

�

.

For λ = 3, equation (3.5) has a single solution ⌦. It is now easy to check that the equation ⌦ − δb = 0 has
no solutions. Hence, the 2-cocycle is nontrivial and

dimH2
di↵

�

K(2);F2
3

�

= dimZ2
di↵

�

K(2);F2
3

�

= 1.

For λ = 5, equation (3.5) has no solutions. Thus,

H2
di↵

�

K(2),F2
5

�

' 0.

By using “MATHEMATICA,” in the case where the condition of 2-cocycle has solutions, we deduce the
expressions of ⌦. To be more precise, we get

⌦ =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(⌘̄1(F )⌘̄2(G)− ⌘̄2(F )⌘̄1(G)) ✓1✓2 for λ = 0,

(F ⌘̄1⌘̄2(G)− ⌘̄1⌘̄2(F )G+ ⌘̄1(F )⌘̄2(G) + ⌘̄2(F )⌘̄1(G)) ✓1✓2 for λ = 1,

�

(−1)|F |(M(F,G)) + 2(N(F,G))
�

for λ = 3,

where

M(F,G) = ⌘̄1(F
00)⌘̄1(G

00) + ⌘̄2(F
00)⌘̄2(G

00),
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N(F,G) = ⌘̄1⌘̄2(F
0)⌘̄1⌘̄2(G

00)− ⌘̄1⌘̄2(F
00)⌘̄1⌘̄2(G

0).

Theorem 3.1 is proved.
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