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WEAKLY PERIODIC GROUND STATES FOR THE λ-MODEL

F. M. Mukhamedov,1 M. M. Rakhmatullaev,2,3 and M. A. Rasulova4 UDC 517.98 + 530.1

For the λ-model on a Cayley tree of order k ≥ 2, we describe the set of periodic and weakly periodic
ground states corresponding to normal divisors of index 2 of the group representation of Cayley tree.

1. Introduction

It is known that the phase diagram of Gibbs measures for a given Hamiltonian is close to the phase diagram
of ground isolated (stable) states of this Hamiltonian. At low temperatures, a periodic Gibbs measure is associated
with a periodic ground state (see [1, 3, 15, 21]). This leads to a natural problem of description of periodic and
weakly periodic ground states. The periodic ground states for the Potts model with competing interactions on
a Cayley tree of order k = 2 were studied in [10, 19]. A weakly periodic Gibbs measure for the Potts model was
investigated in [15]. For the Potts model, weakly periodic ground states for the normal divisor of index 2 were
studied in [13]. For the Ising model with competing interactions,weakly periodic ground states were described
in [7, 8].

The Potts model in the q-state is one of the most well studied models in statistical mechanics due to the high
theoretical interest and practical applications [1, 2]. The Potts model [5] was introduced as a generalization of the
Ising model to the case of more than two components. This model is used to study various problems in statistical
physics (see, e.g., [6]). In [14], some explicit formulas were obtained for the free energies and entropies in the
Potts model on a Cayley tree. Note that the Potts model is now one of the most important models in statistical
mechanics. Thus, it is quite natural to consider more general models than the Potts model. In this connection,
a so-called λ-model (i.e., a model with nearest neighbors in which the interactions depend on the function λ) was
proposed in [17, 18]. This model includes the Potts model as a special case obtained if the λ-function is taken in
the form λ(x, y) = Jδ

x,y

, where δ is the Kronecker symbol. The indicated λ-model includes various possible
interactions that cannot be described by the Potts models, including, in particular, the Widom–Rowlinson model
with interaction described by the following function (see [20]):

λ(x, y) = Jδ
xy

+
ln(µ)

β
|x− y|, x, y 2 {1, 2, 3}, µ > 0, β > 0.

This model differs from the Potts model for µ 6= 1. Moreover, its phase diagram is richer than the phase
diagram of the Potts model. This example shows that the model analyzed in the present work is more general than
the Widom–Rowlinson model and has a complex structure of ground states [16].

In the present paper, we consider the λ-model on a Cayley tree of order k ≥ 2. The aim of the present paper
is to describe periodic and weakly periodic ground states of this model.
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The obtained results make it possible, in particular, to analyze the structure of ground states for the Widom–
Rowlinson model. Moreover, we can study free energy and the phase diagram of the investigated λ-model
(see [14]).

It is worth noting that our results differ from the results obtained in [16] because only 1- and 2-periodic
ground states were described in [16], whereas in the present paper, we find more general periodic and weakly
periodic ground states for the λ-model on an arbitrary Cayley tree.

2. Definitions and Known Facts

Let ⌧k = (V, L), k ≥ 1, be a Cayley tree of order k ≥ 1, where V is the set of vertices and L is the set of
edges ⌧k.

If x, y 2 V are the endpoints of a certain edge l 2 L, then x and y are called nearest neighbors and we
write l = hx, yi.

The distance d(x, y), x, y 2 V, on a Cayley tree is given by the formula

d(x, y) = min
�

d | 9x = x0, x1, . . . , x
d−1, x

d

= y 2 V, where hx0, x1i, . . . , hx
d−1, xdi

 

.

Assume that G
k

is a group representation of a Cayley tree (see, e.g., [7–12, 15]), i.e., G
k

is the free product
of k+1 cyclic groups of the second order with generators a1, a2, . . . , a

k+1 such that a2
i

= e, i = 1, 2, . . . , k+1,

where e 2 G
k

is the identity element.
By S(x) we denote the set of “direct derivatives” of the point x 2 G

k

. Moreover, by S1(x) we denote the set
of all nearest neighbors of the point x 2 G

k

, i.e., S1(x) = {y 2 G
k

: hx, yi} and x# = S1(x) \ S(x).
We consider a model in which the spin takes values from the set Φ = {1, 2, . . . , q}, q ≥ 2. The configura-

tion σ on V is defined as a function x 2 V ! σ(x) 2 Φ. The set of all configurations coincides with ⌦ = ΦV .

We define a G⇤
k

-periodic configuration σ(x) invariant under the subgroup G⇤
k

⇢ G
k

of finite index, i.e.,
σ(yx) = σ(x) for any x 2 G

k

and y 2 G⇤
k

. For a given periodic configuration, the index of subgroup is called
a period of configuration. Let

G
k

/G⇤
k

= {H1, . . . , Hr

}

be the quotient group, where G⇤
k

is a normal divisor with index r ≥ 1. A configuration {σ(x), x 2 V } is called
G⇤

k

-weakly periodic if σ(x) = σ
ij

for all x# 2 H
i

and x 2 H
j

for all x 2 G
k

, i.e., the value of configuration
at x depends not on x but on the number of the class of belonging of x and x#.

The Hamiltonian of the λ-model has the form

H(σ) =
X

hx,yi
x,y2V

λ
�

σ(x),σ(y)
�

, (1)

λ(i, j) =

8

>

>

>

>

<

>

>

>

>

:

a for |i− j| = 2,

b for |i− j| = 1,

c for i = j,

where a, b, c 2 R.

Remark 1. If a = b = 0 and c = J, then the λ-model is reduced to the Potts model.
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3. Ground States

In this section, we study and describe all possible ground states for the λ-model.
For a pair of configurations σ and ' that coincide almost everywhere, i.e., everywhere except finitely many

points, we consider the relative Hamiltonian H(σ,') equal to the difference between the energies of the configu-
rations σ and ', i.e.,

H(σ,') =
X

hx,yi
x,y2V

�

λ(σ(x),σ(y))− λ('(x),'(y))
�

. (2)

Let M be a set of unit balls with vertices in V. The restriction of a configuration σ to the ball b 2 M is called
a bounded configuration σ

b

. We define the energy of configuration σ
b

on b as follows:

U(σ
b

) =
1

2

X

hx,yi
x,y2b

λ
�

σ(x),σ(y)
�

. (3)

The following lemma is true [7, 10]:

Lemma 1. The relative Hamiltonian (2) has the form

H(σ,') =
X

b2M

�

U(σ
b

)− U('
b

)
�

.

In the present paper, we consider the case q = 3, i.e., |Φ| = 3. By c
b

we denote the center of the unit ball b.
Also let

B
t

= {x 2 S1(c
b

) : '
b

(x) = t} for all t 2 Φ.

Let '
b

(c
b

) = d, |B
d

| = i, and |B
f

| = n. Then

|B
g

| = k + 1− i− n,

where d 6= f, d 6= g, f 6= g, and d, f, g 2 Φ. The following lemma can be easily proved:

Lemma 2. For every configuration '
b

, the following assertion is true:

U('
b

) 2
�

U
i,n

: i = 0, 1, . . . , k + 1, n = 0, 1, . . . , k + 1− i
 

,

where

U
i,n

=
ia+ nb+ (k + 1− i− n)c

2
. (4)

Definition 1. A configuration ' is called a ground state for the Hamiltonian H if

U('
b

) = min
�

U
i,n

: i = 0, 1, . . . , k + 1, n = 0, 1, . . . , k + 1− i
 

for any b 2 M.
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Denote

C
i,n

= {'
b

: U('
b

) = U
i,n

}

and

A
⇠,⌘

=
n

(a, b, c) 2 R3 : U
⇠,⌘

= min
�

U
i,n

: i = 0, 1, . . . , k + 1, n = 0, 1, . . . , k + 1− i
 

o

. (5)

In the case k = 2, it is easy to see that

U(σ
b

) 2 {U0,0, U0,1, U0,2, U0,3, U1,0, U1,1, U1,2, U2,0, U2,1, U3,0} for any σ
b

,

where

U0,0 =
3c

2
, U0,1 =

b+ 2c

2
, U0,2 =

2b+ c

2
, U0,3 =

3b

2
,

U1,0 =
a+ 2c

2
, U1,1 =

a+ b+ c

2
, U1,2 =

a+ 2b

2
,

U2,0 =
2a+ c

2
, U2,1 =

2a+ b

2
, U3,0 =

3a

2
.

By using (5), we get

A0,0 =
�

(a, b, c) 2 R3 : c  b  a
 

[
�

(a, b, c) 2 R3 : c  a  b
 

,

A0,1 = A0,2 =
�

(a, b, c) 2 R3 : b = c  a
 

,

A0,3 =
�

(a, b, c) 2 R3 : b  c  a
 

[
�

(a, b, c) 2 R3 : b  a  c
 

,

A1,0 = A2,0 =
�

(a, b, c) 2 R3 : a = c  b
 

,

A1,1 =
�

(a, b, c) 2 R3 : a = b = c
 

, A1,2 = A2,1 =
�

(a, b, c) 2 R3 : a = b  c
 

,

A3,0 =
�

(a, b, c) 2 R3 : a  b  c
 

[
�

(a, b, c) 2 R3 : a  c  b
 

,

and

R3 =
[

i,n

A
i,n

.

For k ≥ 3, in a similar way, we find A
i,n

, i = 0, 1, 2, . . . , k + 1, n = 0, 1, . . . , k + 1− i :

A0,0 =
�

(a, b, c) 2 R3 : c  b  a
 

[
�

(a, b, c) 2 R3 : c  a  b
 

,

A0,1 = A0,2 = A0,3 = . . . = A0,k =
�

(a, b, c) 2 R3 : b = c  a
 

,
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A0,k+1 =
�

(a, b, c) 2 R3 : b  c  a
 

[
�

(a, b, c) 2 R3 : b  a  c
 

,

A1,0 = A2,0 = . . . = A
k,0 =

�

(a, b, c) 2 R3 : a = c  b
 

,

A1,1 = A1,2 = . . . = A1,k−1 = A2,1 = . . . = A2,k−2

= . . . = A
k−1,1 =

�

(a, b, c) 2 R3 : a = b = c
 

,

A1,k = A2,k−1 = A3,k−2 = . . . = A
k,1 =

�

(a, b, c) 2 R3 : a = b  c
 

,

A
k+1,0 =

�

(a, b, c) 2 R3 : a  b  c
 

[
�

(a, b, c) 2 R3 : a  c  b
 

,

and

R3 =
[

i,n

A
i,n

.

4. Periodic Ground States

In this section, we describe periodic ground states of the λ-model.
Let A ⇢ {1, 2, . . . , k + 1},

H
A

=
n

x 2 G
k

:
X

j2A
w
j

(x) is even
o

, and G
(2)
k

= {x 2 G
k

: |x| is even},

where w
j

(x) is the number of a
j

in the word x. Note that H
A

is a normal divisor of index 2 in G
k

(see [15]).
For A = {1, 2, . . . , k + 1}, the normal divisor H

A

coincides with G
(2)
k

.

Consider a quotient group G
k

/H
A

= {H0, H1}, where H0 = H
A

and H1 = G
k

\H
A

.

The H
A

-periodic configurations have the form

σ(x) =

8

<

:

σ1 for x 2 H0,

σ2 for x 2 H1,

where σ
i

2 Φ, i = 1, 2.

Theorem 1. Let k ≥ 3 and |A| = 1. Then the following assertions are true:

(i) if |σ1 − σ2| = 0, then the corresponding configurations σ on the set A0,0 are periodic ground states;

(ii) if |σ1 − σ2| = 1, then the corresponding configurations σ on the set A0,1 are periodic ground states;

(iii) if |σ1 − σ2| = 2, then the corresponding configurations σ on the set A1,0 are periodic ground states.

Proof. We prove the first assertion. Consider

'(x) =

8

<

:

i for x 2 H0,

i for x 2 H1,
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where i 2 Φ. Then '
b

2 C0,0 for any b 2 M. Therefore, U('
b

) = U0,0 for any '
b

2 M, i.e., the corresponding
configurations ' on the set A0,0 are periodic ground states.

We now prove the second assertion. Consider

'(x) =

8

<

:

i for x 2 H0,

j for x 2 H1,

where |i− j| = 1 and i, j 2 Φ.

The following cases are possible:

(i) c
b

2 H0, then '
b

(c
b

) = i, |B
i

| = k, |B
j

| = 1, and hence, '
b

2 C0,1;

(ii) c
b

2 H1, then '
b

(c
b

) = j, |B
i

| = 1, |B
j

| = k, and hence, '
b

2 C0,1.

These cases imply that U('
b

) = U0,1 for any '
b

2 M. Therefore, the periodic configuration '(x) is a peri-
odic ground state on the set A0,1.

We now prove the third assertion. Consider

'(x) =

8

<

:

i for x 2 H0,

j for x 2 H1,

where |i− j| = 2 and i, j 2 Φ.

The following cases are possible:

(i) c
b

2 H0; then '
b

(c
b

) = i, |B
i

| = k, |B
j

| = 1, and therefore, '
b

2 C1,0;

(ii) c
b

2 H1; then '
b

(c
b

) = j, |B
i

| = 1, |B
j

| = k, and therefore, '
b

2 C1,0.

It follows from these cases that U('
b

) = U1,0 for any '
b

2 M. Hence, the periodic configuration '(x) is
a periodic ground state on the set A1,0.

Theorem 1 is proved.

Remark 2. The periodic ground states from part (i) of Theorem 1 are translation invariant.

5. Weakly Periodic Ground States

In this section, we study weakly periodic ground states that are not periodic. Note that weakly periodic ground
states were introduced in [7].

The H
A

-weakly periodic configurations have the form

'(x) =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

a00 for x# 2 H0, x 2 H0,

a01 for x# 2 H0, x 2 H1,

a10 for x# 2 H1, x 2 H0,

a11 for x# 2 H1, x 2 H1,

where a
ij

2 Φ, i, j 2 {0, 1}.
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Further, for the sake of convenience, we represent a H
A

-weakly periodic configuration '(x), x 2 G
k

in the
form ' = (a00, a01, a10, a11).

Let

'1(x) = (n, n, n,m), '2(x) = (n, n,m, n), '3(x) = (n,m, n, n),

'4(x) = (m,n, n, n), '5(x) = (n, n,m,m), and '6(x) = (n,m,m, n), where n,m 2 Φ,

'7(x) = (1, 2, 2, 3), '8(x) = (2, 1, 3, 2), '9(x) = (3, 2, 2, 1), and '10(x) = (2, 3, 1, 2).

Note that weakly periodic ground states depend on the choice of the normal divisor.

Remark 3. All configurations on the set A1,1 are ground states. Hence, Ā = R3\A1,1.

Theorem 2. For k = 2 and |A| = 2, the following assertions are true:

(1.1) if |n − m| = 1, then H
A

-weakly periodic configurations '
i

(x), i = 1, 2, . . . , 10, on the set A0,1 are
H

A

-weakly periodic ground states, which are not periodic or translation-invariant;

(1.2) if |n − m| = 2, then H
A

-weakly periodic configurations '
i

(x), i = 1, 2, . . . , 6, on the set A1,0 are
H

A

-weakly periodic ground states, which are not periodic or translation-invariant;

(2) any H
A

-weakly periodic configurations on the set Ā , except translation-invariant, periodic, and men-
tioned in items 1.1 and 1.2, are not H

A

-weakly periodic ground states.

Proof. We first prove Assertion 1.1. For |n−m| = 1, we consider the weakly periodic configuration '1(x).

Let c
b

2 H0. The following cases are possible:

(a) c
b# 2 H0 and '1b(cb#) = n; then '1b(cb) = n, |B

n

| = 3, |B
m

| = 0, and therefore, '1b 2 C0,0;

(b) c
b# 2 H1 and '1b(cb#) = m; then '1b(cb) = n, |B

n

| = 2, |B
m

| = 1, and therefore, '1b 2 C0,1.

Let c
b

2 H1. The following cases are possible:

(a) c
b# 2 H0 and '1b(cb#) = n; then '1b(cb) = n, |B

n

| = 1, |B
m

| = 2, and therefore, '1b 2 C0,2;

(b) c
b# 2 H1 and '1b(cb#) = n; then '1b(cb) = m, |B

n

| = 2, |B
m

| = 1, and therefore, '1b 2 C0,2;

(c) c
b# 2 H1 and '1b(cb#) = m; then '1b(cb) = m, |B

n

| = 1, |B
m

| = 2, and therefore, '1b 2 C0,1.

Hence, on the set

A0,0 \A0,1 \A0,2 = A0,1,

the configuration '1(x) is the weakly periodic ground state.
The other cases of Assertion 1.1 are proved similarly.

We now prove Assertion 1.2. For |n−m| = 2, we consider the weakly periodic configuration '1(x).

Let c
b

2 H0. The following cases are possible:

(a) c
b# 2 H0 and '1b(cb#) = n; then '1b(cb) = n, |B

n

| = 3, |B
m

| = 0, and therefore, '1b 2 C0,0;

(b) c
b# 2 H1 and '1b(cb#) = m; then '1b(cb) = n, |B

n

| = 2, |B
m

| = 1, and therefore, '1b 2 C1,0.
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Let c
b

2 H1. Then the following cases are possible:

(a) c
b# 2 H0 and '1b(cb#) = n; then '1b(cb) = n, |B

n

| = 1, |B
m

| = 2, and therefore, '1b 2 C2,0;

(b) c
b# 2 H1 and '1b(cb#) = n; then '1b(cb) = m, |B

n

| = 2, |B
m

| = 1, and therefore, '1b 2 C2,0;

(c) c
b# 2 H1 and '1b(cb#) = m; then '1b(cb) = m, |B

n

| = 1, |B
m

| = 2, and therefore, '1b 2 C1,0.

Hence, on the set

A0,0 \A1,0 \A2,0 = A1,0,

the configuration '1(x) is a weakly periodic ground state.
The other cases of Assertion 1.2 are proved similarly.
Further, we proceed to the proof of Assertion 2. We now consider H

A

-weakly periodic configurations that are
not translation-invariant configurations, periodic configurations, or configurations described in items 1.1 and 1.2.
Reasoning similarly, we can easily prove that, on the set Ā, they are not H

A

-weakly periodic ground states.
Theorem 2 is proved.

Remark 4. For k = 2, |A| = k + 1, the normal divisor of H
A

coincides with G
(2)
k

. In a special case, the
accumulated results are reduced to the results obtained in [22].

We now consider the case where k ≥ 3 and |A| = 1.

Theorem 3. For k ≥ 3 and |A| = 1, the following assertions are true:

(1.1) if |n−m| = 1, then the H
A

-weakly periodic configurations '
i

(x), i = 1, 2, . . . , 10, on the set A0,1 are
H

A

-weakly periodic ground states that are not periodic or translation-invariant;

(1.2) if |n−m| = 2, then the H
A

-weakly periodic configurations '
i

(x), i = 1, 2, . . . , 6, on the set A1,0 are
H

A

-weakly periodic ground states that are not periodic or translation-invariant;

(2) any H
A

-weakly periodic configurations on the set Ā that are not translation-invariant configurations,
periodic configurations, or configurations mentioned in items 1.1 and 1.2 are not H

A

-weakly periodic
ground states.

Proof. We first prove Assertion 1.1. For |n−m| = 1, we consider the weakly periodic configuration '1(x).

Let c
b

2 H0. Then the following cases are possible:

(a) c
b# 2 H0 and '1b(cb#) = n; then '1b(cb) = n, |B

n

| = k + 1, |B
m

| = 0, and therefore, '1b 2 C0,0;

(b) c
b# 2 H1 and '1b(cb#) = m; then '1b(cb) = n, |B

n

| = k, |B
m

| = 1, and therefore, '1b 2 C0,1.

Let c
b

2 H1. Then the following cases are possible:

(a) c
b# 2 H0 and '1b(cb#) = n; then '1b(cb) = n, |B

n

| = 1, |B
m

| = k, and therefore, '1b 2 C0,k;

(b) c
b# 2 H1 and '1b(cb#) = n; then '1b(cb) = m, |B

n

| = 2, |B
m

| = k − 1, and therefore, '1b 2 C0,2;

(c) c
b# 2 H1 and '1b(cb#) = m; then '1b(cb) = m, |B

n

| = 1, |B
m

| = k, and therefore, '1b 2 C0,1.

Hence, on the set

A0,0 \A0,1 \A0,k \A0,2 = A0,1,

the configuration '1(x) is a weakly periodic ground state.
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Consider a weakly periodic configuration '2(x).

Let c
b

2 H0. Then the following cases are possible:

(a) c
b# 2 H0 and '2b(cb#) = n; then '2b(cb) = n, |B

n

| = k + 1, |B
m

| = 0, and therefore, '2b 2 C0,0;

(b) c
b# 2 H0 and '2b(cb#) = m; then '2b(cb) = n, |B

n

| = k, |B
m

| = 1, and therefore, '2b 2 C0,1;

(c) c
b# 2 H1 and '2b(cb#) = n; then '2b(cb) = m, |B

n

| = k+1, |B
m

| = 0, and therefore, '2b 2 C0,k+1.

Let c
b

2 H1. Then the following cases are possible:

(a) c
b# 2 H0 and '2b(cb#) = n; then '2b(cb) = n, |B

n

| = k + 1, |B
m

| = 0, and therefore, '2b 2 C0,0;

(b) c
b# 2 H1 and '2b(cb#) = n; then '2b(cb) = n, |B

n

| = k, |B
m

| = 1, and therefore, '2b 2 C0,1.

Hence, on the set

A0,0 \A0,1 \A0,k+1 = A0,1,

the configuration '2(x) is a weakly periodic ground state.

Consider a weakly periodic configuration '3(x).

Let c
b

2 H0. Then the following cases are possible:

(a) c
b# 2 H0 and '3b(cb#) = n; then '3b(cb) = n, |B

n

| = k, |B
m

| = 1, and therefore, '3b 2 C0,1;

(b) c
b# 2 H1 and '3b(cb#) = n; then '3b(cb) = n, |B

n

| = k + 1, |B
m

| = 0, and therefore, '3b 2 C0,0.

Let c
b

2 H1. Then the following cases are possible:

(a) c
b# 2 H0 and '3b(cb#) = n; then '3b(cb) = m, |B

n

| = k+1, |B
m

| = 0, and therefore, '3b 2 C0,k+1;

(b) c
b# 2 H1 and '3b(cb#) = m, then '3b(cb) = n, |B

n

| = k, |B
m

| = 1, and therefore, '3b 2 C0,1;

(c) c
b# 2 H1 and '3b(cb#) = n; then '3b(cb) = n, |B

n

| = k + 1, |B
m

| = 0, and therefore, '3b 2 C0,0.

Hence, on the set

A0,1 \A0,0 \A0,k+1 = A0,1,

the configuration '3(x) is a weakly periodic ground state.

Consider the weakly periodic configuration '4(x).

Let c
b

2 H0. Then the following cases are possible:

(a) c
b# 2 H0 and '4b(cb#) = m; then '4b(cb) = m, |B

n

| = 1, |B
m

| = k, and therefore, '4b 2 C0,1;

(b) c
b# 2 H0 and '4b(cb#) = n; then '4b(cb) = m, |B

n

| = 2, |B
m

| = k − 1, and therefore, '4b 2 C0,2;

(c) c
b# 2 H1 and '4b(cb#) = n; then '4b(cb) = n, |B

n

| = 1, |B
m

| = k, and therefore, '4b 2 C0,k.

Let c
b

2 H1. Then the following cases are possible:

(a) c
b# 2 H0 and '4b(cb#) = m; then '4b(cb) = n, |B

n

| = k, |B
m

| = 1, and therefore, '4b 2 C0,1;

(b) c
b# 2 H1 and '4b(cb#) = n, then '4b(cb) = n, |B

n

| = k + 1, |B
m

| = 0, and therefore, '4b 2 C0,0.
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Hence, on the set

A0,1 \A0,2 \A0,k \A0,0 = A0,1,

the configuration '4(x) is a weakly periodic ground state.
Consider the weakly periodic configuration '5(x).

Let c
b

2 H0. Then the following cases are possible:

(a) c
b# 2 H0 and '5b(cb#) = n; then '5b(cb) = n, |B

n

| = k + 1, |B
m

| = 0, and therefore, '5b 2 C0,0;

(b) c
b# 2 H0 and '5b(cb#) = m; then '5b(cb) = n, |B

n

| = k, |B
m

| = 1, and therefore, '5b 2 C0,1;

(c) c
b# 2 H1 and '5b(cb#) = m; then '5b(cb) = m, |B

n

| = k, |B
m

| = 1, and therefore, '5b 2 C0,k.

Let c
b

2 H1. Then the following cases are possible:

(a) c
b# 2 H0 and '5b(cb#) = n; then '5b(cb) = n, |B

n

| = 1, |B
m

| = k, and therefore, '5b 2 C0,k;

(b) c
b# 2 H1 and '5b(cb#) = n; then '5b(cb) = m, |B

n

| = 1, |B
m

| = k, and therefore, '5b 2 C0,1;

(c) c
b# 2 H1 and '5b(cb#) = m; then '5b(cb) = m, |B

n

| = 0, |B
m

| = k + 1, and therefore, '5b 2 C0,0.

Hence, on the set

A0,0 \A0,1 \A0,k = A0,1,

the configuration '5(x) is a weakly periodic ground state.
Consider the weakly periodic configuration '6(x).

Let c
b

2 H0. Then the following cases are possible:

(a) c
b# 2 H0 and '6b(cb#) = n; then '6b(cb) = n, |B

n

| = k, |B
m

| = 1, and therefore, '6b 2 C0,1;

(b) c
b# 2 H0 and '6b(cb#) = m; then '6b(cb) = n, |B

n

| = k − 1, |B
m

| = 2, and therefore, '6b 2 C0,2;

(c) c
b# 2 H1 and '6b(cb#) = n; then '6b(cb) = m, |B

n

| = k+1, |B
m

| = 0, and therefore, '6b 2 C0,k+1.

Let c
b

2 H1. Then the following cases are possible:

(a) c
b# 2 H0 and '6b(cb#) = n; then '6b(cb) = m, |B

n

| = k+1, |B
m

| = 0, and therefore, '6b 2 C0,k+1;

(b) c
b# 2 H1 and '6b(cb#) = m; then '6b(cb) = n, |B

n

| = k − 1, |B
m

| = 2, and therefore, '6b 2 C0,2;

(c) c
b# 2 H1 and '6b(cb#) = n; then '6b(cb) = n, |B

n

| = k, |B
m

| = 1, and therefore, '6b 2 C0,1.

Hence, on the set

A0,1 \A0,2 \A0,k+1 = A0,1,

the configuration '6(x) is a weakly periodic ground state.
Consider the weakly periodic configuration '7(x).

Let c
b

2 H0. Then the following cases are possible:

(a) c
b# 2 H0 and '7b(cb#) = 1; then '7b(cb) = 1, |B1| = k, |B2| = 1, |B3| = 0, and therefore,

'7b 2 C0,1;

(b) c
b# 2 H0 and '7b(cb#) = 2; then '7b(cb) = 1, |B1| = k − 1, |B2| = 2, |B3| = 0, and therefore,

'7b 2 C0,2;
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(c) c
b# 2 H1 and '7b(cb#) = 3; then '7b(cb) = 2, |B1| = k, |B2| = 0, |B3| = 1, and therefore,

'7b 2 C0,k+1.

Let c
b

2 H1. Then the following cases are possible:

(a) c
b# 2 H0 and '7b(cb#) = 1; then '7b(cb) = 2, |B1| = 1, |B2| = 0, |B3| = k, and therefore,

'7b 2 C0,k+1;

(b) c
b# 2 H1 and '7b(cb#) = 2; then '7b(cb) = 3, |B1| = 0, |B2| = 2, |B3| = k − 1, and therefore,

'7b 2 C0,2;

(c) c
b# 2 H1 and '7b(cb#) = 3; then '7b(cb) = 3, |B1| = 0, |B2| = 1, |B3| = k, and therefore,

'7b 2 C0,1.

Hence, on the set

A0,1 \A0,2 \A0,k+1 = A0,1,

the configuration '7(x) is a weakly periodic ground state.
Consider the weakly periodic configuration '8(x).

Let c
b

2 H0. Then the following cases are possible:

(a) c
b# 2 H0 and '8b(cb#) = 2; then '8b(cb) = 2, |B1| = 1, |B2| = k, |B3| = 0, and therefore,

'8b 2 C0,1;

(b) c
b# 2 H0 and '8b(cb#) = 3; then '8b(cb) = 2, |B1| = 1, |B2| = k − 1, |B3| = 1, and therefore,

'8b 2 C0,2;

(c) c
b# 2 H1 and '8b(cb#) = 2; then '8b(cb) = 3, |B1| = 0, |B2| = k + 1, |B3| = 0, and therefore,

'8b 2 C0,k+1.

Let c
b

2 H1. Then the following cases are possible:

(a) c
b# 2 H0 and '8b(cb#) = 2; then '8b(cb) = 1, |B1| = 0, |B2| = k + 1, |B3| = 0, and therefore,

'8b 2 C0,k+1;

(b) c
b# 2 H1 and '8b(cb#) = 1; then '8b(cb) = 2, |B1| = 1, |B2| = k − 1, |B3| = 1, and therefore,

'8b 2 C0,2;

(c) c
b# 2 H1 and '8b(cb#) = 2; then '8b(cb) = 2, |B1| = 0, |B2| = k, |B3| = 1, and therefore,

'8b 2 C0,1.

Hence, on the set

A0,1 \A0,2 \A0,k+1 = A0,1,

the configuration '8(x) is a weakly periodic ground state.
Consider the weakly periodic configuration '9(x).

Let c
b

2 H0. Then the following cases are possible:

(a) c
b# 2 H0 and '9b(cb#) = 3; then '9b(cb) = 3, |B1| = 0, |B2| = 1, |B3| = k, and therefore,

'9b 2 C0,1;

(b) c
b# 2 H0 and '9b(cb#) = 2; then '9b(cb) = 3, |B1| = 0, |B2| = 2, |B3| = k − 1, and therefore,

'9b 2 C0,2;
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(c) c
b# 2 H1 and '9b(cb#) = 1; then '9b(cb) = 2, |B1| = 1, |B2| = 0, |B3| = k, and therefore,

'9b 2 C0,k+1.

Let c
b

2 H1. Then the following cases are possible:

(a) c
b# 2 H0 and '9b(cb#) = 3; then '9b(cb) = 2, |B1| = k, |B2| = 0, |B3| = 1, and therefore,

'9b 2 C0,k+1;

(b) c
b# 2 H1 and '9b(cb#) = 2; then '9b(cb) = 1, |B1| = k − 1, |B2| = 2, |B3| = 0, and therefore,

'9b 2 C0,2;

(c) c
b# 2 H1 and '9b(cb#) = 1, then '9b(cb) = 1, |B1| = k, |B2| = 1, |B3| = 0, and therefore,

'9b 2 C0,1.

Hence, on the set

A0,1 \A0,2 \A0,k+1 = A0,1,

the configuration '9(x) is a weakly periodic ground state.
Consider the weakly periodic configuration '10(x).

Let c
b

2 H0. Then the following cases are possible:

(a) c
b# 2 H0 and '10b(cb#) = 2; then '10b(cb) = 2, |B1| = 0, |B2| = k, |B3| = 1, and therefore,

'10b 2 C0,1;

(b) c
b# 2 H0 and '10b(cb#) = 1; then '10b(cb) = 2, |B1| = 1, |B2| = k − 1, |B3| = 1, and therefore,

'10b 2 C0,2;

(c) c
b# 2 H1 and '10b(cb#) = 2; then '10b(cb) = 1, |B1| = 0, |B2| = k + 1, |B3| = 0, and therefore,

'10b 2 C0,k+1.

Let c
b

2 H1. Then the following cases are possible:

(a) c
b# 2 H0 and '10b(cb#) = 2; then '10b(cb) = 3, |B1| = 0, |B2| = k + 1, |B3| = 0, and therefore,

'10b 2 C0,k+1;

(b) c
b# 2 H1 and '10b(cb#) = 3; then '10b(cb) = 2, |B1| = 1, |B2| = k − 1, |B3| = 1, and therefore,

'10b 2 C0,2;

(c) c
b# 2 H1 and '10b(cb#) = 2; then '10b(cb) = 2, |B1| = 1, |B2| = k, |B3| = 0, and therefore,

'10b 2 C0,1.

Hence, on the set

A0,1 \A0,2 \A0,k+1 = A0,1,

the configuration '10(x) is a weakly periodic ground state.
We now prove Assertion 1.2. For |n−m| = 2, we consider the weakly periodic configuration '1(x).

Let c
b

2 H0. Then the following cases are possible:

(a) c
b# 2 H0 and '1b(cb#) = n; then '1b(cb) = n, |B

n

| = k + 1, |B
m

| = 0, and therefore, '1b 2 C0,0;

(b) c
b# 2 H1 and '1b(cb#) = m; then '1b(cb) = n, |B

n

| = k, |B
m

| = 1, and therefore, '1b 2 C1,0.
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Let c
b

2 H1. Then the following cases are possible:

(a) c
b# 2 H0 and '1b(cb#) = n; then '1b(cb) = n, |B

n

| = 1, |B
m

| = k, and therefore, '1b 2 C
k,0;

(b) c
b# 2 H1 and '1b(cb#) = n; then '1b(cb) = m, |B

n

| = 2, |B
m

| = k − 1, and therefore, '1b 2 C2,0;

(c) c
b# 2 H1 and '1b(cb#) = m; then '1b(cb) = m, |B

n

| = 1, |B
m

| = k, and therefore, '1b 2 C1,0.

Hence, on the set

A0,0 \A1,0 \A
k,0 \A2,0 = A1,0,

the configuration '1(x) is a weakly periodic ground state.
The other cases of Assertion 1.2 are proved similarly.
We now proceed to the proof of Assertion 2. We consider H

A

-weakly periodic configurations other than
translation-invariant configurations, periodic configurations, or configurations described in items 1.1 and 1.2. Rea-
soning similarly, we can easily prove that they are not H

A

-weakly periodic ground states on the set Ā .
Theorem 3 is proved.

Theorem 4. For k ≥ 3 and |A| = k, the following assertions are true:

(1.1) if |n−m| = 1, then the H
A

-weakly periodic configurations '
i

(x), i = 1, 2, . . . , 10, on the set A0,1 are
H

A

-weakly periodic ground states that are not periodic or translation-invariant;

(1.2) if |n−m| = 2, then the H
A

-weakly periodic configurations '
i

(x), i = 1, 2, . . . , 6, on the set A1,0 are
H

A

-weakly periodic ground states that are not periodic or translation-invariant;

(2) any H
A

-weakly periodic configurations other than translation-invariant configurations, periodic config-
urations , and configurations indicated in items 1.1 and 1.2 are not H

A

-weakly periodic ground states on
the set Ā .

Proof. The proof of the theorem is similar to the proof of Theorem 3.

The authors express their deep gratitude to Prof. U. A. Rozikov for useful discussions stimulating the improve-
ment of the present paper.
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