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CLASSIFICATIONS OF TRANSLATION SURFACES IN ISOTROPIC GEOMETRY
WITH CONSTANT CURVATURE

M. E. Aydin UDC 515.12

We classify translation surfaces in isotropic geometry with arbitrary constant isotropic Gaussian and mean
curvatures under the condition that at least one translating curve lies in the plane.

1. Introduction

A translation surface in the Euclidean space R3 expressed as the sum of two curves can be locally parametrized
by [5]

r(x, y) = ↵(x) + β(y), (1.1)

where ↵ and β are referred to as translating curves. Recent results and progress in the field of translation surfaces
in R3 with constant Gaussian and mean curvatures were well structured in [14–16, 25].

If ↵ and β lie in orthogonal planes, then, up to a change of coordinates, the surface can be locally described
in the explicit form

z(x, y) = f(x) + g(y),

where f, g are smooth real-valued functions of one variable. In this case, parallel with the planes, the only minimal
translation surface (i.e., its mean curvature identically vanishes) is the Scherk surface, namely, the graph of [34]

z(x, y) =
1

c
log

����
cos(cy)

cos (cx)

���� , c 2 R−{0}.

Numerous generalizations of this result in (semi-) Euclidean and homogeneous spaces were done so far, see, e.g.,
[8–10, 12, 17, 19, 20, 23, 24, 26, 28, 29, 35, 37, 38].

Recently, Liu and Yu [22] introduced a new class of translation surfaces in R3, namely, so-called affine
translation surfaces, as the graphs of

z(x, y) = f(x) + g(y + ax), a 2 R−{0}. (1.2)

By the change of coordinates x = u, y = v − au in (1.2), we get the following local parametrization:

r(u, v) = (u, v − au, f(u) + g(v)),

where the translating curves lie in the planes x = 0 and ax+ y = 0. Since a 6= 0, these planes are not orthogonal

Firat University, Elazig, Turkey; e-mail: meaydin@firat.edu.tr.

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 72, No. 3, pp. 291–306, March, 2020. Original article submitted February 2, 2017.

0041-5995/20/7203–0329 © 2020 Springer Science+Business Media, LLC 329

DOI 10.1007/s11253-020-01785-y



330 M. E. AYDIN

to each other and the obtained surface is a natural generalization of the classical translation surface. In the same
paper, the authors conjectured that, parallel with the planes, solely the minimal graph surface of the form (1.2),
usually called the affine Scherk surface, is given in explicit form

z(x, y) =
1

c
log

�����
cos

�
c
p
1 + a2x

�

cos (c[y + ax])

����� , c 2 R−{0}.

We also refer the reader to [18, 21, 39, 40] for more recent results on this kind of surfaces.
Following Liu and Yu [22] we introduce and classify a new type of translation surfaces in the isotropic geome-

try with constant isotropic Gaussian curvature (CIGC) and constant isotropic mean curvature (CIMC). In addition,
we obtain the surfaces of CIGC and CIMC for which one of translating curves is planar and the other curve is
a space curve.

2. Preliminaries

For the fundamental notions of curves and surfaces in isotropic geometry, i.e., in one of the Cayley–Klein
geometries, we refer the reader to [3, 4, 6, 7, 11, 30–33]. These notions can be briefed by the arguments from
projective geometry as in the next paragraphs.

Let P3 denote the projective space and let Γ be a plane in P3. Then an affine space can be obtained from P3

by subtracting Γ, which is called the absolute plane. If Γ involves a pair of complex-conjugate straight lines l1
and l2, the so-called absolute lines, then the obtained affine space becomes an isotropic space I3, where the triple
(Γ, l1, l2) is referred to as the absolute figure of I3 .

Let a quadruple
�
˜t : x̃ : ỹ : z̃

�
be the projective coordinates, i.e.,

�
˜t : x̃ : ỹ : z̃

�
6= (0 : 0 : 0 : 0). Then Γ and

l1, l2 are parametrized by ˜t = 0 and ˜t = x̃± iỹ = 0, respectively. The intersection point of l1 and l2 is said to be
absolute, i.e., (0 : 0 : 0 : 1) .

We are interested in an affine model of I3. Thus, by means of the affine coordinates

x =

x̃
˜t
, y =

ỹ
˜t
, z =

z̃
˜t
, ˜t 6= 0,

the group of motions of I3 is a six-parameter group given by

(x, y, z) 7−! (x0, y0, z0) :

8
>>>>><

>>>>>:

x0 = a+ x cos ✓ − y sin ✓,

y0 = b+ x sin ✓ + y cos ✓,

z0 = c+ dx+ ey + z,

(2.1)

where a, b, c, d, e, ✓ 2 R. The metric invariants of I3 under (2.1), such as isotropic distance and angle,
are Euclidean invariants in the Cartesian plane.

A line in I3 is said to be isotropic provided that its point at infinity agrees with the absolute point. In the affine
model of I3, it corresponds to a line parallel to the z-axis. Otherwise, it is called a nonisotropic line.

A plane in I3 containing an isotropic line is called isotropic and, in this case, its line includes the absolute
point at infinity. Otherwise, it is called a nonisotropic plane. Thus, the equation ax+by+cz = d, a, b, c, d 2 R,
determines a nonisotropic (resp., isotropic) plane for c 6= 0 (resp., for c = 0).
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A unit speed curve has the form

↵ : I ✓ R −! I3, s 7−! (f(s), g(s), h(s)), (f 0
)

2
+ (g0)2 = 1,

where primes denote the derivatives with respect to s . Therefore, the curvature  and torsion ⌧ are given by the
formulas

 =

p
(f 00

)

2
+ (g00)2 or  = f 0g00 − f 00g0,

and

⌧ =

det (↵0,↵00,↵000
)

2
,  6= 0. (2.2)

A curve that lies in an isotropic (resp., nonisotropic) plane is called isotropic (resp., nonisotropic) planar. Other-
wise, we call it space curve and, in this case, ⌧ 6= 0.

Let M2 be an admissible surface in I3, i.e., a surface for which the tangent plane is nonisotropic at each point.
Then the tangent plane T

p

�
M2
�
has a Euclidean metric at some point p 2 M2 . For this surface, the components

E,F, and G of the first fundamental form are obtained by the metric on M2 induced from I3.
The unit isotropic direction U = (0, 0, 1) is assumed to be a normal vector field of M2, which is indeed or-

thogonal to all tangent vectors in T
p

�
M2
�
. Hence, the components of the second fundamental form are computed

with respect to U, namely,

l =
det (r

xx

, r
x

, r
y

)p
EG− F 2

, m =

det (r
xy

, r
x

, r
y

)p
EG− F 2

, n =

det (r
yy

, r
x

, r
y

)p
EG− F 2

,

where r = r(x, y) refers to a local parametrization on M2, r
x

=

@r

@x
, and r

xy

=

@2r

@x@y
, etc. Note that the

admissibility of M2 implies that EG− F 2 6= 0 .
The isotropic Gaussian (so-called relative) K and the mean curvatures H are defined by

K =

ln−m2

EG− F 2
and H =

En− 2Fm+Gl

2 (EG− F 2
)

.

A surface for which H (resp., K ) identically vanishes is said to be isotropic minimal (resp., flat). Moreover,
a surface is said to have CIMC (resp., CIGC) if H (resp., K ) is a constant function in the entire surface.

3. Categorization of Translation Surfaces

The translation surfaces in I3 locally given by (1.1) can be categorized in terms of the translating curves and
the absolute figure as follows:

Type I: ↵ and β are planar:

Type I.1: ↵ and β are isotropic planar.

Type I.2: ↵ is isotropic planar and β nonisotropic planar.

Type I.3: ↵ and β are nonisotropic planar.
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Type II: ↵ is isotropic planar and β is a space curve.

Type III: ↵ is nonisotropic planar and β is a space curve.

Type IV: ↵ and β are space curves.

A surface that belongs to one type is not equivalent to a surface of another type up to the absolute figure.
For a surface of Type 1, we assume that the translating curves lie in orthogonal planes. Let f and g be smooth

functions. By a change of coordinates, this surface can be locally represented in one of the following explicit
forms:

Type I.1*: Both translating curves are isotropic planar z(x, y) = f(x) + g(y).

Type I.2*: One translating curve is nonisotropic planar and the other curve isotropic planar

y(x, z) = f(x) + g(z).

Type I.3*: Both translating curves are nonisotropic planar

x(y, z) =
1

2


f

✓
y + z − ⇡

2

◆
+ g

✓
−y + z + ⇡

2

◆�
.

Surfaces of this kind with CIMC and CIGC were obtained in [27, 36].
Further, for a surface of Type 1, we assume that the translating curves lie in arbitrary planes. Let [a

ij

] be
a 2⇥ 2 matrix and let

|a
ij

| = a11a22 − a12a21 6= 0.

More generally, the surfaces of Type I.1 are locally given by

r(u, v) =

✓
a22u

|a
ij

| −
a12v

|a
ij

| ,−
a21u

|a
ij

| +
a11v

|a
ij

| , f(u) + g(v)

◆
. (3.1)

Up to a change of coordinates, surface (3.1) turns into a graph of the form

z = f (a11x+ a12y) + g (a21x+ a22y). (3.2)

The indicated surfaces with CIMC and CIGC, which are called translation graphs of the first kind, were presented
in [2]. In the present paper, we are interested in the surfaces of Types I.2–III.

In the case where one curve is isotropic planar and the other curve has no conditions, the translation surfaces
with CIMC and CIGC can be found in [1].

4. Surfaces of Types I.2 and I.3

Let [a
ij

] denote a 2⇥2 matrix and let ! = |a
ij

| 6= 0. We consider the following translation surface generated
by planar curves:

r(u, v) =
⇣a22u

!
− a12v

!
, f(u) + g(v),−a21u

!
+

a11v

!

⌘
, (4.1)
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where the translating curves and the planes including these curves are given by

↵(u) =
⇣a22u

!
, f(u),−a21u

!

⌘
, Γ

↵

: a21x+ a22z = 0

and

β(v) =
⇣
−a12v

!
, g(v),

a11v

!

⌘
, Γ

β

: a11x+ a12z = 0.

Remark 4.1. Throughout the section, in view of the fact that the roles played by f and g are symmetric,
we only discuss the cases specified for a function f.

For the surface given by (4.1), we have:
The planes Γ

↵

and Γ

β

are orthogonal to each other provided that [a
ij

] is an orthogonal matrix.
If a12 = 0 then, in view of ! 6= 0, Γ

↵

becomes a nonisotropic plane and Γ

β

is an isotropic plane. Hence,
the obtained surface belongs to Type I.2.

If a12 6= 0, then (by symmetry) a22 6= 0, and the planes Γ

↵

, Γ

β

are nonisotropic. Therefore, the obtained
surface belongs to Type I.3.

By the change of coordinates (the so-called affine parameter coordinates):

u = a11x+ a12z, v = a21x+ a22z,

the local surface given by (4.1) turns into a graph of the form

y = f(u) + g(v). (4.2)

A surface of the form (4.2) is called a translation graph of the second kind. Note that it is not equivalent
to a graph of the form (3.2) to within the absolute figure. The positive side of this notion is the possibility of
expression of the surfaces of Types I.2 and I.3 in the same format.

We now want to present translation graphs of the second kind in I3 with CIGC. Thus, in view of the admissi-
bility, we obtain

a12f
0
+ a22g

0 6= 0, f 0
=

df

du
, g0 =

dg

dv
.

After necessary calculations, the Gaussian curvature K turns into

K =

!2f 00g00

(a12f 0
+ a22g0)

4 . (4.3)

It follows from (4.3) that K identically vanishes provided that f 00
= 0, namely, the surface is a generalized

cylinder (see [13, p. 439]) with nonisotropic rulings. Hence, next result can be formulated in order to guarantee
that K is a nonvanishing constant.

Remark 4.2. Throughout the paper, for the sake of convenience of calculations, we denote nonzero constants
by c1, c2, . . . and some constants by d1, d2, . . . , unless otherwise stated.
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Theorem 4.1. The following relations hold for a translation graph of the second kind in I3with nonzero CIGC:

f(u) =
c1
2

u2 + d1u+ d2 and g(v) =
−c1a

2
11

2K0a222

✓
−3K0a

2
22

c1a211
v + d3

◆ 2
3

+ d4. (4.4)

Proof. Since K = K0 6= 0, K0 2 R, in (4.3), we get f 00g00 6= 0. The partial derivative of (4.3) with respect
to u gives

4K0

!2

�
a12f

0
+ a22g

0�3 �a12f 00�
= f 000g00. (4.5)

In analyzing relation (4.5), we distinguish the following two cases:

Case 1: a12 = 0 . Then a11a22 6= 0 because ! 6= 0 . By (4.5), we get f 00
= c1 and, therefore, it follows

from (4.3) that

K0a
2
22

c1a211
=

g00

(g0)4
. (4.6)

Solving the equations f 00
= c1 and (4.6), we arrive at (4.4).

Case 2: a12 6= 0. By virtue of symmetry, we conclude that a22 6= 0. Then (4.5) can be arranged as follows:

(a12f
0
+ a22g

0
)

3

g00
=

!2

4K0a12

✓
f 000

f 00

◆
. (4.7)

The partial derivative of (4.7) with respect to v yields

3a22(g
00
)

2 −
�
a12f

0
+ a22g

0� g000 = 0, (4.8)

where

g000 6= 0 because a22g
00 6= 0.

By taking the partial derivative of (4.8) with respect to u, we immediately arrive at a contradiction.

Theorem 4.1 is proved.

After necessary calculations, for the isotropic mean curvature H of (4.2), we obtain

H = −
⇥
a212 + (!g0)2

⇤
f 00

+

⇥
a222 + (!f 0

)

2
⇤
g00

2 (a12f 0
+ a22g0)

3 . (4.9)

First, we consider the minimality case and prove the following result:

Theorem 4.2. For a minimal translation graph of the second kind in I3 one of the following assertions is true:

(1) it is a nonisotropic plane;
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(2) f(u) =
1

c1a211a
2
22

log

��
cos

�
c1a11a

2
22u+ d1

���
+ d2,

g(v) =
−1

c1a211a
2
22

log

��c1a211a222v + d3
��
+ d4,

(3) f(u) =
1

c1!2
log |cos (!c1a22u+ d1)|+ d2,

g(v) =
−1

c1!2
log |cos (!c1a12v + d3)|+ d4.

Proof. Since H identically vanishes, (4.9) reduces to

⇥
a212 + (!g0)2

⇤
f 00

+

⇥
a222 + (!f 0

)

2
⇤
g00 = 0. (4.10)

Note that f 00
= g00 = 0 is a solution for (4.10) and, in this case, the surface is a nonisotropic plane. Suppose

that f 00g00 6= 0. Hence, (4.10) implies that

− f 00

a222 + (!f 0
)

2
= c1 = − g00

a212 + (!g0)2
. (4.11)

We have two cases:

Case 1: a12 = 0. Then a11a22 6= 0 because ! 6= 0 . We solve (4.11) and obtain assertion (2) of the theorem.

Case 2: a12 6= 0. By virtue of symmetry, we get a22 6= 0. Thus, solving (4.11), we get the last assertion of
the theorem.

Theorem 4.3. For a translation graph of the second kind in I3 with nonzero CIMC, one of the following
assertions is true:

(a) f(u) = c1u+ d1, g(v) = −H0
a12c1
a221

v2 + d2v + d3,

or

(b) f(u) = c1u+ d1, g(v) =
a222 + (!c1)

2

2H0a222

 
4H0a22

a222 + (!c1)
2 v + d2

!1
2

− a12c1
a22

v + d3.

Proof. Assume that H = H0 6= 0, H0 2 R, in (4.9). The partial derivatives of (4.9) with respect to u

and v yield

−6H0!
−2a12a22

�
a12f

0
+ a22g

0�
(f 00g00) = g0g00f 000

+ f 0f 00g000. (4.12)

The situation in which both f 00 and g00 vanish is a solution of (4.12). However, we omit this solution be-
cause H0 6= 0.
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We distinguish the following remaining cases:

Case 1: f = c1u+ d1 and g00 6= 0 . This assumption is a solution for (4.12). Thus, from (4.9), we derive

g00

(a12c1 + a22g0)
3 =

−2H0

a222 + (!c1)2
. (4.13)

We have two cases:

(1.1) a22 = 0. In this case, a12a21 6= 0 due to ! 6= 0. Solving (4.13), we get the first assertion of the theorem.

(1.2) a22 6= 0. By virtue of symmetry, we get a12 6= 0. Solving (4.13), we arrive at the second assertion of
the theorem.

Case 2: f 00g00 6= 0. Dividing (4.12) by f 00g00, we find

−6H0!
−2a12a22

�
a12f

0
+ a22g

0�
= g0

f 000

f 00 + f 0 g
000

g00
. (4.14)

We have the following cases:

(2.1) a12 = 0. Then ! 6= 0 implies that a11a22 6= 0. Hence, relation (4.14) turns into

f 000

f 0f 00 = d1 = − g000

g0g00
.

This gives f 00
= c1e

d1f and g00 = c2e
−d1g. Substituting these formulas in (4.9), we obtain

−2H0a22(g
0
)

3
= c1a

2
11(g

0
)

2ed1f +

⇥
c2 + c2a

2
11(f

0
)

2
⇤
e−d1g. (4.15)

We set f 0
= p and g0 = q in (4.15). Thus, taking the partial derivative of (4.15) with respect to f, we get

0 = d1c1q
2ed1f + 2c2pṗe

−d1g, (4.16)

where

ṗ =

dp

df
=

f 00

f 0 .

If d1 = 0 in (4.16), then we arrive at a contradiction, ṗ = 0. Otherwise,

d1c1e
d1f

2c2pṗ
= c3 = −e−d1g

q2
. (4.17)

Substituting the second equality in (4.17) in (4.15), we conclude that

−2H0a22q (g) = c1a
2
11e

d1f − c2c3

h
1 + a211p (f)

2
i
. (4.18)

The left-hand side in (4.18) is a function of g. At the same time, the right-hand side is a function of f.
This is impossible.
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(2.2) a12 6= 0 in (4.14). The conditions of symmetry imply that a22 6= 0. Dividing (4.14) by f 0g0, we can write

D

✓
a12
g0

+

a22
f 0

◆
=

f 000

f 0f 00 +
g000

g0g00
, (4.19)

where D = −6H0!
−2a12a22.

It follows from (4.19) that

f 000
=

�
−d1f

0
+Da22

�
f 00 and g000 =

�
d1g

0
+Da12

�
g00. (4.20)

On the other hand, if we take the partial derivative of (4.9) with respect to v and consider the second
equality in (4.20), then we find

−6Ha22
�
a12f

0
+ a22g

0�2
= 2!2g0f 00

+

⇥
a222 + (!f 0

)

2
⇤ �

d1g
0
+Da12

�
,

which is a polynomial equation on g0. The leading coefficient coming from the term (g0)2 is −6Ha322
that cannot vanish. This gives a contradiction.

Theorem 4.3 is proved.

5. Surfaces of Type II

Let ↵ and β be the isotropic planar and space curves given, respectively, by

↵(x) = (x, ax, f(x)) and β(y) = (y, g(y), h(y)),

where a 2 R . Since the torsion of β does not vanish, it follows from (2.2) that

g00h000 − g000h00 6= 0, (5.1)

where

g0 =
dg

dy
, h0 =

dh

dy
,

and so on. Thus, the obtained translation surface belongs to Type II and has the form

r(x, y) = (x+ y, ax+ g(y), f(x) + h(y)) . (5.2)

Assumption (5.1) ensures the admissibility of (5.2), i.e., g0 − a 6= 0. Hence, as a result of calculations, for the
Gaussian curvature K, we get

K =

f 00
[h00(g0 − a)− g00(h0 − f 0

)]

(g0 − a)3
, (5.3)

where f 0
=

df

dx
, etc.

Theorem 5.1. A translation surface in I3 of the form (5.2) with CIGC (K0) is a generalized cylinder with
nonisotropic rulings, i.e., K0 = 0.
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Proof. If K0 6= 0, then (5.3) can be rewritten as

K0

f 00 =

h00

(g0 − a)2
− g00

(g0 − a)3
(h0 − f 0

). (5.4)

Taking the partial derivative of (5.4) with respect to x, we get

−K0
f 000

(f 00
)

3
=

g00

(g0 − a)3
.

Further, solving this equation, we find

f(x) =
1

3c21
(−2c1x+ d1)

3
2
+ d2x+ d3 (5.5)

and

g(y) =
1

K0c1
(2K0c1y + d4)

1
2
+ ay + d5. (5.6)

Substituting (5.5) and (5.6) in (5.4), we can write

0 =

h00

h0 − d2
+

K0c1
2K0c1y + d4

. (5.7)

Solving (5.7), we obtain

h(y) =
c2

K0c1
(2K0c1y + d4)

1
2
+ d2y + d6. (5.8)

Comparing (5.6) with (5.8), we arrive at a contradiction due to (5.1). Further, we assume that K0 = 0 .
If f 00 6= 0, then we get

h00(g0 − a) = g00(h0 − f 0
).

Taking partial derivative of this expression with respect to x, we arrive at a contradiction g00 = 0 due to (5.1).
Hence, the only possibility is that f 00

= 0, namely, ↵ is a nonisotropic line.
Theorem 5.1 is proved.

By direct calculations, the mean curvature H is

2H =

⇥
1 + (g0)2

⇤
(g0 − a)f 00

+

�
1 + a2

�
[h00(g0 − a)− g00(h0 − f 0

)]

(g0 − a)3
. (5.9)

Theorem 5.2. A translation surface in I3 of the form (5.2) cannot be isotropic minimal.

Proof. We proceed by contradiction. If H = 0, then (5.9) reduces to

⇥
1 + (g0)2

⇤
(g0 − a)f 00

+

�
1 + a2

�⇥
h00(g0 − a)− g00(h0 − f 0

)

⇤
= 0. (5.10)
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The partial derivative of (5.10) with respect to x yields

⇥
1 + (g0)2

⇤
(g0 − a)f 000

+

�
1 + a2

�
g00f 00

= 0. (5.11)

We distinguish two cases:

Case 1: f 00
= 0, i.e., f(x) = d1x+ d2. By (5.10), we deduce

h00

h0 − d1
=

g00

g0 − a
.

This implies that

h = c1g + (d1 − ac1) y − d3,

which is not possible due to (5.1).

Case 2: f 00 6= 0. Relation (5.11) implies that

f 000

f 00 = −
�
1 + a2

�
g00

[1 + (g0)2] (g0 − a)
. (5.12)

Hence, it follows from (5.12) that

f 00
= c1f

0
+ d1,

⇥
1 + (g0)2

⇤
(g0 − a)c1 = −

�
1 + a2

�
g00. (5.13)

Substituting (5.13) in (5.10), we conclude that

0 =

g00

g0 − a
− h00

h0 +
d1
c1

. (5.14)

Solving (5.14), we get

g = c2h+

✓
a+

c2d1
c1

◆
y + d2,

which is not possible due to (5.1).

Theorem 5.2 is proved.

Theorem 5.3. For a translation surface in I3 of the form (5.2) with nonzero CIMC (H0), one of the following
relations is satisfied:

(1) ↵(x) = (x, ax, d1x+ d2) and

β(y) =

✓
y, g,

H0

1 + a2
(g − ay)2 + d1y + d3(g − ay) + d4

◆
;
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(2) ↵(x) = (x, ax, c1 exp(c2x) + d1x+ d2) and

β(y) =

✓
y, g,

H0

(1 + a2)
(g − ay)2 − d1

c2
y + d3(g − ay) + d4

◆
,

where g = g(y) is a nonlinear function and

g − ay 6= −1

c3

p
−2c3y + d5 + d6. (5.15)

Proof. We separate the proof into two parts:

Case 1: f 00
= 0 and f(x) = d1x+ d2. Substituting these relations in (5.9), we find

2H0

1 + a2
(g0 − a) =

✓
h0 − d1
g0 − a

◆0
. (5.16)

As a result of double integration of relation (5.16), we obtain

h =

H0

1 + a2
(g − ay)2 + d1y + d3(g − ay) + d4. (5.17)

On the other hand, by using (5.1) and (5.17), we deduce (5.15). This completes the proof of assertion (1) of
the theorem.

Case 2: f 00 6= 0. By taking the partial derivative of (5.9) with respect to x, we again obtain (5.11). This
means that the next steps are similar to the corresponding steps in Theorem 5.2. Thus, we get (5.13), namely,

f(x) = c1 exp(c2x) + d1x+ d2 (5.18)

and

⇥
1 + (g0)2

⇤
(g0 − a)c2 = −

�
1 + a2

�
g00. (5.19)

Substituting (5.18) and (5.19) in (5.9), we conclude that

2H0

(1 + a2)
(g0 − a) =

−d1g
00

c2(g0 − a)2
+

✓
h0

g0 − a

◆0
. (5.20)

Integrating relation (5.20) two times, we find

h =

H0

(1 + a2)
(g − ay)2 − d1

c2
y + d3(g − ay) + d4. (5.21)

By (5.1) and (5.21), we again arrive at (5.15).

Theorem 5.3 is proved.
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6. Surfaces of Type III

Let ↵ and β be, respectively, nonisotropic planar and space curves given by

↵(x) = (x, f(x), ax) and β(y) = (y, g(y), h(y)),

where a 2 R . Then the torsion of β is nonvanishing, namely, (2.2) implies that

g00h000 − g000h00 6= 0, (6.1)

where

g0 =
dg

dy
, h0 =

dh

dy
,

and so on. Hence, the surface specified by the sum of ↵ and β belongs to Type III and has the form

r(x, y) = (x+ y, f(x) + g(y), ax+ h(y)) . (6.2)

It follows from (6.1) that the surface is admissible, i.e., g0−f 0 6= 0 and f 0
=

df

dx
. By calculations, for the isotropic

Gaussian curvature K, we get

K = −
f 00

(h0 − a)
⇥
h00(g0 − f 0

)− g00(h0 − a)
⇤

(g0 − f 0
)

4
. (6.3)

Theorem 6.1. A translation surface in I3 of the form (6.2) with CIGC (K0) is a generalized cylinder with
nonisotropic rulings, namely, K0 = 0 .

Proof. Assume that K is a nonzero constant K0 . Then we have f 00 6= 0 and the partial derivative of (6.3)
with respect to x gives

4(g0 − f 0
)

3

f 00 +

(g0 − f 0
)

4f 000

(f 00
)

3
=

(h0 − a)h00

K0
. (6.4)

Thus, we have two cases:

Case 1: f 000
= 0 and f 00

= c1. Hence, it follows from (6.4) that

4K0(g
0 − f 0

)

3
= c1(h

0 − a)h00. (6.5)

The partial derivative of (6.5) with respect to x gives f 00
= 0, which is impossible.

Case 2: f 000 6= 0. Taking the partial derivative of (6.4) with respect to x and dividing by (g0 − f 0
)

2, we find

−12− 8(g0 − f 0
)

f 000

(f 00
)

2
+ (g0 − f 0

)

2

✓
f 000

(f 00
)

3

◆0
= 0. (6.6)
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This is a polynomial equation for g0 and the leading coefficient
✓

f 000

(f 00
)

3

◆0
that comes from (g0)2 must vanish.

Therefore, relation (6.6) reduces to

−12− 8(g0 − f 0
)

f 000

(f 00
)

2
= 0. (6.7)

Taking the partial derivative of (6.7) with respect to y, we get f 000
= 0, which is not our case.

The discussion presented above yields K0 = 0. In this case, since β is a space curve, the only possibility
in (6.3) is f 00

= 0, i.e., ↵ is a nonisotropic line.

Theorem 6.1 is proved.

By direct calculations, for the isotropic mean curvature, we obtain

2H =

⇥
1 + (f 0

)

2
⇤
[h00(g0 − f 0

)− g00(h0 − a)]−
⇥
1 + (g0)2

⇤
(h0 − a)f 00

(g0 − f 0
)

3
. (6.8)

Theorem 6.2. A translation surface in I3 of the form (6.2) cannot be isotropic minimal.

Proof. We proceed by contradiction. If the surface is isotropic minimal, then (6.8) reduces to

⇥
1 + (f 0

)

2
⇤ ⇥

h00(g0 − f 0
)− g00(h0 − a)

⇤
−
⇥
1 + (g0)2

⇤
(h0 − a)f 00

= 0. (6.9)

Thus, we have two cases:

Case 1: f 00
= 0 and f = d1x+ d2. In this case, (6.9) reduces to

h00

h0 − a
=

g00

g0 − d1
.

Solving the last equation, we arrive at a contradiction due to (6.1).

Case 2: f 00 6= 0. Dividing (6.9) by
⇥
1 + (g0)2

⇤⇥
1 + (f 0

)

2
⇤
(h0 − a), we obtain

h00(g0 − f 0
)

(h0 − a) [1 + (g0)2]
+

f 00

1 + (f 0
)

2
− g00

1 + (g0)2
= 0. (6.10)

The partial derivatives of (6.10) with respect to x and y imply that

h00

(h0 − a) [1 + (g0)2]
= c1. (6.11)

Substituting (6.11) in (6.10) gives

f 00

1 + (f 0
)

2
− c1f

0
= d1 and

g00

1 + (g0)2
− c1g

0
= d1. (6.12)
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By using the second equality from (6.12) in (6.11), we find

h00

h0 − a
=

c1g
00

c1g0 + d1
. (6.13)

Solving (6.13), we arrive at a contradiction due to (6.1).

Theorem 6.2 is proved.

Theorem 6.3. For a translation surface in I3 of the form (6.2) with nonzero CIMC (H0), the following
equalities are true:

↵(x) = (x, ax, d1x+ d2)

and

β(y) =

✓
y, g(y),

H0

1 + d21
(g − d1y)

2
+ ay + d3(g − d1y) + d4

◆
,

where g = g(y) is a nonlinear function and

g − d1y 6= −1

c1

p
−2c1y + d5 + d6. (6.14)

Proof. We split the proof into two parts:

Case 1: f 00
= 0. Then f(x) = d1x+ d2 and (6.8) reduces to

2H

1 + d21
(g0 − d1) =

✓
h0 − a

g0 − d1

◆0
. (6.15)

As a result of the double integration of (6.15), we obtain

h =

H0

1 + d21
(g − d1y)

2
+ ay + d3 (g − d1y) + d4. (6.16)

By (6.1) and (6.16), we get (6.14) and, thus, the hypothesis of the theorem is true.

Case 2: f 00 6= 0. By multiplying (6.8) by
(g0 − f 0

)

3

1 + (f 0
)

2
and taking partial derivatives with respect to x and y,

we obtain

12H0


(g0 − f 0

)f 00g00

1 + (f 0
)

2
+

(g0 − f 0
)

2f 0f 00g00

[1 + (f 0
)

2
]

2

�

= h000f 00
+

�
2g0g00(h0 − a) +

⇥
1 + (g0)2

⇤
h00
 ✓ f 00

1 + (f 0
)

2

◆0
. (6.17)
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Dividing (6.17) by 12H0f
00g00 and setting

A(y) = 2g0(h0 − a) +
1 + (g0)2

g00
h00, B(x) =

�
f 00/

⇥
1 + (f 0

)

2
⇤ 0

f 00 ,

we conclude that

g0 − f 0

1 + (f 0
)

2
+

(g0 − f 0
)

2f 0

[1 + (f 0
)

2
]

2 =

1

12H0

✓
h000

g00
+AB

◆
. (6.18)

Taking the partial derivative of (6.18) with respect to y, we find

1

1 + (f 0
)

2
+

2(g0 − f 0
)f 0

[1 + (f 0
)

2
]

2 =

1

12H0


(h000/g00)0

g00
+

A0

g00
B

�
. (6.19)

Taking the partial derivative of (6.19) with respect to y once again and setting

C(y) =


(h000/g00)0

g00

�0
, (6.20)

we deduce

f 0

[1 + (f 0
)

2
]

2 =

1

24H0


C

g00
+

(A0/g00)0

g00
B

�
. (6.21)

The partial derivatives of (6.21) with respect to x and y imply that

0 =


(A0/g00)0

g00

�0
B0. (6.22)

In view of (6.22), we have the following two possibilities:

(1) B = const. Taking the partial derivative of (6.19) with respect to x and multiplying by

⇥
1 + (f 0

)

2
⇤3

f 00

we get the following polynomial equation for f 0 :

(f 0
)

3 − 3g0(f 0
)

2 − 3f 0
+ g0 = 0,

which yields a contradiction.

(2) B 6= const. Then, from (6.22), we derive

A = d1(g
0
)

2
+ d2g

0
+ d3 (6.23)

and it follows from (6.21) that C = d4g
00 . Hence, by (6.20), we obtain

h000

g00
= d4(g

0
)

2
+ d5g

0
+ d6. (6.24)
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Substituting (6.23) and (6.24) in (6.18), we arrive at the following polynomial equation for g0 :

(
f 0

[1 + (f 0
)

2
]

2 − d1B + d4
12H0

)
(g0)2 +

(
1− (f 0

)

2

[1 + (f 0
)

2
]

2 − d2B + d5
12H0

)
g0 +

f 0

[1 + (f 0
)

2
]

2 − d3B + d6
12H0

= 0.

The coefficients of this equation must be equal to zero, namely,

f 0

[1 + (f 0
)

2
]

2 =

d4 + d1B

12H0
,

1− (f 0
)

2

[1 + (f 0
)

2
]

2 =

d5 + d2B

12H0
, (6.25)

−f 0

[1 + (f 0
)

2
]

2 =

d6 + d3B

12H0
.

Since f 00 6= 0 none of d1, d2, and d3 can vanish. By using the first and the second equations in (6.25), we get
the following polynomial equation for f 0 :

d1 − d1(f
0
)

2 − d2f
0
=

d1d5 − d2d4
12H0

⇥
1 + (f 0

)

2
⇤2

,

which yields a contradiction.

Theorem 6.3 is proved.

7. Several Remarks

1. By analyzing the results obtained above, we can state that the following surfaces do not exist:

the surfaces of Types I.3, II and III with nonzero CIGC;
the isotropic minimal surfaces of Types II and III.

2. The isotropic minimal translation surfaces belong to the family of isotropic Scherk surfaces. If the translat-
ing curves lie in orthogonal planes, then the members of this family are locally given by the formulas [36]:

r(x, y) =
�
x, y, c

⇥
x2 − y2

⇤�
,

r(x, z) =

✓
x,

1

c
log

����
cz

cos (cx)

����, z
◆
,

r(y, z) =
1

2

✓
1

c
log

����
cos(cz)

cos(cy)

����, y − z + ⇡, y + z

◆
, c 2 R− 0.

If the translating curves lie in arbitrary planes, then the isotropic Scherk surfaces can be described in the
following explicit forms:

z(x, y) = c


(a11x+ a12y)

2 − a211 + a212
a221 + a222

(a21x+ a22z)
2

�
(see [2]),
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y(x, z) =
1

c
log

��������

cos

✓
cx

a11

◆

c(a21x+ a22z)

��������
,

y(x, z) =
1

c
log

��������

cos

✓
ca22
|a

ij

| [a11x+ a12z]

◆

cos

✓
ca12
|a

ij

| [a21x+ a22z]

◆

��������
, c 2 R− 0.

3. To classify the surfaces of Type IV with arbitrary CIGC and CIMC is a somewhat more complicated task.
However, it can be regarded as a challenging open problem.
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