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LINEAR FUNCTIONAL-DIFFERENTIAL EQUATIONS WITH ABSOLUTELY
UNSTABLE SOLUTIONS

V. Yu. Slyusarchuk UDC 517.929

For linear functional-differential equations of retarded and neutral types with infinitely many deviations
and self-adjoint operator coefficients, we establish necessary and sufficient conditions for the absolute
instability of the trivial solutions.

1. Main Object of Investigations

Let H be a Hilbert space and let k · kH be a norm in H given by the equality kxkE =

p
(x, x), where (x, y)

is the scalar product of x by y (x, y 2 H ). Let L(H,H) be a Banach algebra of linear continuous operators
A : H ! H with identity I and the norm

kAkL(H,H)

= sup

�
kAxkH : kxkH = 1

 
.

Let C([−h, 0], H) be a Banach space of functions x = x(✓) continuous on [−h, 0] with values in H and the norm

kxkC([−h,0],H)

= max

�
kx(✓)kH : ✓ 2 [−h, 0]

 

and let Dh be the set of all linear operators D : C
�
[−h, 0], H

�
! H with unit norm each of which is defined by

the Riemann–Stieltjes integral

Dx =

0Z

−h

x(✓) dF (✓),

where F (✓) is a nondecreasing function of bounded variation defined on [−h, 0] with values in R such that
F (✓ + 0) = F (✓) for all ✓ 2 [−h, 0).

Note that if −h = x
0

< x
3

< x
2

< . . . < xn = 0 is a partition of the segment [−h, 0] and ⇠
1

, ⇠
2

, . . . , ⇠n

are arbitrary points from the corresponding elements of the partition, then the symbol
Z

0

−h
x(✓) dF (✓) denotes

the limit

lim

max(xi−xi−1)!0

nX

i=1

�
F (xi)− F (xi−1

)

�
x(⇠i).

This limit exists and does not depend on the partition of the segment [−h, 0] and the choice of the points ⇠
1

, . . . , ⇠n .
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For any function x(t) continuous on [−h,+1) with values in H, by xt we denote an element xt(✓) =

x(t+ ✓) of the space C
�
[−h, 0], H

�
.

Consider self-adjoint operators

An 2 L(H,H), n ≥ 1, and Bn 2 L(H,H), n ≥ 0,

satisfying the condition
1X

n=1

kAnkL(H,H)

+

1X

n=0

kBnkL(H,H)

< 1 (1)

and the operators Cn,Dn 2 Dh, n ≥ 1.

The main object of investigation in the present paper is the instability of trivial solutions of the linear func-
tional-differential equations

dx(t)

dt
= B

0

x(t) +
1X

n=1

BnDnxt, t ≥ 0, (2)

and

dx(t)

dt
+

1X

n=1

AnCn
dxt
dt

= B
0

x(t) +

1X

n=1

BnDnxt, t ≥ 0, (3)

for any Cn,Dn 2 Dh, n ≥ 1, and h > 0.

It is clear that the following differential-difference equations are special cases of these equations:

dx(t)

dt
= B

0

x(t) +

1X

n=1

Bnx(t−∆n), t ≥ 0, (4)

and

dx(t)

dt
+

1X

n=1

An
dx(t− ⌧n)

dt
= B

0

x(t) +

1X

n=1

Bnx(t−∆n), t ≥ 0, (5)

where ∆n, ⌧n, n ≥ 1, are nonnegative numbers such that

sup

n≥1

∆n + sup

n≥1

⌧n < 1. (6)

The trivial solutions of Eqs. (2) and (3) are called absolutely unstable if these solutions are unstable for
all Dn 2 Dh, n ≥ 1, and Cn,Dn 2 Dh, n ≥ 1, respectively, and h > 0 (for the definition of unstable solutions
of differential equations with deviating argument, see, e.g., [1, 2]).

The aim of the present paper is to establish necessary and sufficient conditions for the absolute instability of
the trivial solutions of Eqs. (2) and (3).

2. Statement of Main Results

By σ(A) we denote the spectrum of the operator A 2 L(H,H). Moreover, by C
+

we denote the set {z 2 C :
<z > 0}. The following assertions are true:
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Theorem 1. For the absolute instability of the trivial solution of Eq. (2), it is necessary and sufficient that

σ

 1X

n=0

Bn

!
\

C
+

6= ?. (7)

Theorem 2. Suppose that
1X

n=1

kAnkL(H,H)

< 1 (8)

and
 1X

n=1

pnAn

! 
B

0

+

1X

n=1

qnBn

!
=

 
B

0

+

1X

n=1

qnBn

! 1X

n=1

pnAn

!
(9)

for all pn 2 [0, 1] and qn 2 [0, 1], n ≥ 1.

For the absolute instability of the trivial solution of Eq. (3), it is necessary and sufficient that relation (7)
be true.

These theorems are proved in Secs. 4 and 5.

3. Auxiliary Statements

We now present some results for self-adjoint continuous operators, which are used in what follows.
Recall that an operator A 2 L(H,H) is called self-adjoint if it coincides with its adjoint operator A⇤, i.e.,

(Ax, y) = (x,Ay) for all x, y 2 H [3–5]. For a self-adjoint operator A 2 L(H,H), its Hermitian form (Ax, x)

(x 2 H) takes only real values. The spectrum of the self-adjoint operator σ(A) is a nonempty bounded closed
set on the real axis. By

⇥
λm(A),λM (A)

⇤
we denote the least segment containing the spectrum σ(A). It is known

(see [4]) that

λm(A) = inf

�
(Ax, x) : kxkH = 1

 
,

λM (A) = sup

�
(Ax, x) : kxkH = 1

 
,

kAkL(H,H)

= max

�
λM (A),−λm(A)

 
.

It is clear that λm(A), λM (A), and kAkL(H,H)

are continuous functions of A.
Note that the sum of self-adjoint operators is a self-adjoint operator and a linear combination of self-adjoint

operators with real coefficients is also a self-adjoint operator. In view of the continuity of the scalar product, the
limit of a sequence of self-adjoint operators with respect to the norm is a self-adjoint operator. The product BA of
self-adjoint operators A and B is a self-adjoint operator if and only if BA = AB.

The following statements are important for the investigation of the instability of solutions of Eqs. (2) and (3):

Theorem 3 ([4], Chap.VII, Sec. 4). A point λ belongs to the spectrum of a self-adjoint operator A2L(H,H)

if and only if there exists a sequence of normed vectors xn, n ≥ 1, for which

lim

n!1
kAxn − λxnkH = 0.



LINEAR FUNCTIONAL-DIFFERENTIAL EQUATIONS WITH ABSOLUTELY UNSTABLE SOLUTIONS 1805

Theorem 4. If a self-adjoint operator A 2 L(H,H) satisfies the relation σ (A)
T

C
+

= ?, then

sup

t≥0

��etA
��
L(H,H)

 1.

Theorem 4 can be easily proved by using the Murray lemma [3, pp. 109, 110].

4. Proof of Theorem 1

Necessity. Assume that the trivial solution of Eq. (2) is absolutely unstable for

Dnxt =

0Z

−h

xt(✓) dFn(✓) = x(t), n ≥ 1,

where

Fn(✓) =

8
<

:
1 for ✓ = 0,

0 for ✓ 2 [−h, 0).

In this case, Eq. (2) takes the form

dx(t)

dt
=

 1X

n=0

Bn

!
x(t), t ≥ 0, (10)

and the function

x = etAc, (11)

where A =

X1

n=0

Bn and c is an arbitrary vector of the space H, is the general solution of Eq. (10) [6]. In view

of (1) and the self-adjointness of the operators Bn, n ≥ 0, the operator
X1

n=0

Bn is also self-adjoint.
Assume that relation (7) is not true, i.e.,

σ

 1X

n=0

Bn

!
\

C
+

= ?. (12)

Then, by Theorem 4, each solution (11) of Eq. (10) is bounded on [0,+1), which contradicts the instability of
the trivial solution of this equation.

Thus, the assumption of validity of relation (12) is not true.

Sufficiency. Assume that relation (7) is true.
We fix an arbitrary number h > 0 and operators Dn 2 Dh, n ≥ 1. Suppose that the operator Dn is given by

the equality

Dnx =

0Z

−h

x(✓) d n(✓),

where the function  n(✓) has the same properties as the functions specifying the elements of the set Dh.
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Consider Eq. (2) and an operator function

P (z) = zI −B
0

−
1X

n=1

0Z

−h

ez✓d n(✓)Bn, z ≥ 0. (13)

In view of (1) and the self-adjointness of the operators Bn, n ≥ 0, the values of the function P (z) for
z 2 [0,+1) are self-adjoint operators and this function is continuous on [0,+1). Hence, the function λm

�
P (z)

�

is continuous on [0,+1).

Since

λm

�
P (0)

�
< 0

in view of (7) and (13) and

lim

z!+1
λm(P (z)) = +1

according to (13), by the Bolzano–Cauchy theorem [7], there exists a point z
0

2 (0,+1) such that

λm

�
P (z

0

)

�
= 0.

This equality means that

0 2 σ
�
P (z

0

)

�
.

We now show that the trivial solution of Eq. (2) is unstable.
By Theorem 3, there exists a sequence of normed vectors am, m ≥ 1, such that

lim

m!1
kP (z

0

)amkH = 0. (14)

We fix arbitrary numbers " 2 (0, 1) and m 2 N and consider a positive number T (") for which

��ez0T (")
��
= 2. (15)

This number exists because z
0

> 0. By x(t, "am) we denote a continuous solution of Eq. (2) satisfying the con-
dition

x(t, "am) = ez0t"am

for all t 2 [−h, 0). Consider a function

δm(t) = x(t, "am)− ez0t"am. (16)

It is clear that

dδm(t)

dt
⌘ B

0

δm(t) +

1X

n=1

Bn

0Z

−h

δm(t+ ✓)d n(✓)− "ez0tP (z
0

)am.
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This yields

δm(t) = "
1− ez0t

z
0

P (z
0

)am +

tZ

0

0

@B
0

δm(s) +
1X

n=1

Bn

0Z

−h

δm(s+ ✓)d n(✓)

1

Ads, t ≥ 0.

Hence,

max

⌧2[0,t]

��δm(⌧)
��
H

 "

z
0

ez0t
��P (z

0

)am
��
H
+

tZ

0

1X

n=0

kBnkL(H,H)

max

⌧2[0,s]

��δm(⌧)
��
H
ds, t ≥ 0,

and, by the Gronwall–Bellman inequality (see, e.g., [8]),

max

⌧2[0,T (")]

��δm(⌧)
��
H


✓

"

z
0

ez0T (")
��P (z

0

)am
��
H

◆
eT (")

P1
n=0 kBnkL(H,H) .

By using this result and relation (14), we obtain

lim

m!1
max

⌧2[0,T (")]
kδm(⌧)kH = 0.

Thus, in view of (15) and (16),
��x(T ("), "am)

��
H

≥ 1

for sufficiently large m 2 N. Since the choice of " is arbitrary, this means that the trivial solution of Eq. (2) is
unstable. In view of the arbitrariness of the choice of the operators Dn 2 Dh, n ≥ 1, and the number h > 0,

the trivial solution of this equation is absolutely unstable.
Theorem 1 is proved.

5. Proof of Theorem 2

Sufficiency. Assume that relations (8) and (9) are true and the trivial solution of Eq. (3) is absolutely unstable.
Then this solution is also unstable for

Cnxt = Dnxt =

0Z

−h

xt(✓) dFn(✓) = x(t), n ≥ 1,

where

Fn(✓) =

8
<

:
1 for ✓ = 0,

0 for ✓ 2 [−h, 0).

In this case, Eq. (3) takes the form

 
I +

1X

n=1

An

!
dx(t)

dt
=

 1X

n=0

Bn

!
x(t), t ≥ 0. (17)
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In view of (8), the operator

I +

1X

n=1

An

possesses the continuous inverse operator
⇣
I +

X1

n=1

An

⌘−1

(see, e.g., [9]) and

 
I +

1X

n=1

An

!−1

= I +

1X

n=1

(−1)

n

 
I +

1X

n=1

An

!n

. (18)

Hence, Eq. (17) is equivalent to the equation

dx(t)

dt
=

 
I +

1X

n=1

An

!−1

 1X

n=0

Bn

!
x(t), t ≥ 0. (19)

In view of (9) and (18), the operator

⇣
I +

X1

n=1

An

⌘−1

⇣X1

n=0

Bn

⌘

in Eq. (19) is self-adjoint. Since the trivial solution of Eq. (19) is unstable, by using the same reasoning as in the
proof of necessity in Theorem 1, we conclude that the relation

σ

0

@
 
I +

1X

n=1

An

!−1 1X

n=0

Bn

1

A
\

C
+

6= ? (20)

is true. This relation implies (7). Indeed, in view of (9) and (18), the self-adjoint operators

 
I +

1X

n=1

An

!−1

and
1X

n=0

Bn

are permutable (commuting) and, hence, by virtue of (8),

σ

 
I +

1X

n=1

An

!−1

⇢ (0,+1). (21)

Since, for the commuting operators
⇣
I +

X1

n=1

An

⌘−1

and
X1

n=0

Bn, we have

σ

0

@
 
I +

1X

n=1

An

!−1 1X

n=0

Bn

1

A ⇢

8
<

:λµ : λ 2 σ

0

@
 
I +

1X

n=1

An

!−1

1

A, µ 2 σ

 1X

n=0

Bn

!9=

;

(see, e.g., [9, pp. 229, 230]), in view of (20) and (21), relation (7) is true.
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Sufficiency. Assume that relations (7)–(9) hold.
It is necessary to show that the trivial solution of Eq. (3) is absolutely unstable.
We fix arbitrary operators Cn,Dn 2 Dh, n ≥ 1, and a number h > 0. Assume that the operators Cn and Dn

are given by the equalities

Cnx =

0Z

−h

x(✓) dΦn(✓) and Dnx =

0Z

−h

x(✓) d n(✓),

where the functions Φn(✓) and  n(✓) have the same properties as the functions specifying the elements of
the set Dh.

Consider Eq. (3) and an operator function

Q(z) = z

0

@I +

1X

n=1

0Z

−h

ez✓ dΦn(✓)An

1

A−B
0

−
1X

n=1

0Z

−h

ez✓ d n(✓)Bn, z ≥ 0. (22)

In view of (1) and the self-adjointness of the operators An, n ≥ 1, and Bn, n ≥ 0, the values of the
function Q(z) for z 2 [0,+1) are self-adjoint operators. Moreover, this function is continuous on [0,+1).

Hence, the function λm(Q(z)) is also continuous on [0,+1).

In view of (7) and (22), it is clear that

λm(Q(0)) < 0,

and, therefore,

lim

z!+1
λm(Q(z)) = +1. (23)

Indeed, by virtue of the relations

λm(Q(z)) = inf

kxkH=1

0

@

0

@z

0

@I +

1X

n=1

0Z

−h

ez✓dΦn(✓)An

1

A−B
0

−
1X

n=1

0Z

−h

ez✓d n(✓)Bn

1

Ax, x

1

A

≥ inf

kxkH=1

0

@z

0

@I +

1X

n=1

0Z

−h

ez✓dΦn(✓) An

1

Ax, x

1

A

− sup

kxkH=1

0

@

0

@B
0

+

1X

n=1

0Z

−h

ez✓ d n(✓) Bn

1

Ax, x

1

A

≥ z − sup

kxkH=1

 
z

 1X

n=1

e−z⌧nAn

!
x, x

!
−

1X

n=0

kBnkL(H,H)

≥ z

 
1−

1X

n=1

kAnkL(H,H)

!
−

1X

n=0

kBnkL(H,H)

, z 2 [0,+1),

and (8), relation (23) is true.
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By the Bolzano–Cauchy theorem, there exists a point z
0

2 (0,+1) such that

λm(Q(z
0

)) = 0.

This equality means that

0 2 σ(Q(z
0

)). (24)

We now show that the trivial solution of Eq. (3) is unstable.
By Theorem 3 and inclusion (24), there exists a sequence of normed vectors am, m ≥ 1, for which

lim

m!1

��Q(z
0

)am
��
H

= 0. (25)

We consider vector functions vm = ez0tam, m ≥ 1. These functions are solutions of the equations

dv(t)

dt
+

1X

n=1

An

0Z

−h

dv(t+ ✓)

dt
dΦn(✓)

−B
0

v(t)−
1X

n=1

Bn

0Z

−h

v(t+ ✓) d n(✓)

= ez0tQ(z
0

)am, m ≥ 1. (26)

Further, we consider functions "m = "m(t), m ≥ 1, continuously differentiable on [−h, 0] and such that

d"m(0)

dt
+

1X

n=1

An

0Z

−h

d"m(✓)

dt
dΦn(✓)−B

0

"m(0)−
1X

n=1

Bn

0Z

−h

"m(✓) d n(✓) = Q(z
0

)am, m ≥ 1,

and

lim

m!1

 
sup

t2[−h,0]
k"m(t)kH + sup

t2[−h,0]

����
d"m(t)

dt

����
H

!
= 0, (27)

where

d"m(0)

dt
and

d"m(−h)

dt

denote the left and right derivatives of the function "m(t) at the points 0 and −h, respectively. Functions with
these properties exist in view of relations (8) and (25) and the linearity of Eq. (3).

By γm(t) we denote the solution of Eq. (26) satisfying the initial condition

v(✓) = "m(✓), ✓ 2 [−h, 0].

Then vm(t)− γm(t) is a solution of Eq. (3).
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By using (25) and (27), we easily show that

lim

m!1

 
sup

t2[0,T ]

kγm(t)kH + sup

t2[0,T ]

����
dγm(t)

dt

����
H

!
= 0 (28)

for any T > 0. Since the solutions vm(t)− γm(t), m ≥ 1, of Eq. (3) satisfy the relations

ez0t +
��γm(t)

��
H

≥
��ez0tam − γm(t)

��
H

≥ ez0t −
��γm(t)

��
H

for all m ≥ 1 and t ≥ 0, we conclude that, by virtue of (28) and z
0

> 0, the trivial solution of Eq. (3) is unstable.
Finally, in view of the arbitrary choice of the operators Cn,Dn 2 Dh, n ≥ 1, and the number h > 0 in Eq. (3),
the trivial solution of this equation is absolutely unstable.

Theorem 2 is proved.

6. Remarks and Bibliographical Comments

Theorems 1 and 2 are new. They are similar to the corresponding statements on the necessary and suffi-
cient conditions for the absolute instability of solutions of linear scalar differential-difference equations obtained
in [1, 10], where one can also find sufficient conditions for the absolute instability of solutions of linear systems of
differential-difference equations with delay.

Sufficient conditions for the instability of solutions of differential equations in Banach spaces with finitely
many arbitrary delays, which continuously depend on time, were established in [1].

Necessary and sufficient conditions for the instability of trivial solutions of Eqs. (4) and (5) for any ∆n and ⌧n
satisfying (6) were obtained in [11].

The problem of absolute instability of the solutions of functional-differential equations is similar to the prob-
lem of absolute stability of the solutions of differential-difference equations and functional-differential equations
solved, e.g., in [1, 12 – 22] and [23], respectively.

The applications of differential-difference equations with absolutely stable and unstable solutions are pre-
sented in [1].
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