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SOME INTEGRALS INVOLVING @-FUNCTIONS AND LAGUERRE POLYNOMIALS

P. Agarwal,1 M. Chand,2 and J. Choi3,4 UDC 517.5

Our aim is to establish some new integral formulas involving @ -functions associated with Laguerre-
type polynomials. We also show that the main results presented in the paper are general by demon-
strating 18 integral formulas that involve simpler known functions, e.g., the generalized hypergeometric
function pFq in a fairly systematic way.

1. Introduction and Preliminaries

Let C, R, R+, Z and N be the sets of complex numbers, real numbers, positive real numbers, integers, and
positive integers, respectively, and let

Z−
0 := Z \ N, N0 := N [ {0}.

The Aleph (@)-function, which is a very general higher transcendental function introduced by Südland, et al.
[15, 16], is defined in terms of the Mellin–Barnes type integral in the following way (see, e.g., [8, 9]):
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. (1.2)

Here, Γ is the known Gamma function (see, e.g., [13], Section 1.1); the integration path L = L
iγ1, γ 2 R, ex-

tends from γ − i1 to γ + i1 with indentations, if necessary; the poles of the Gamma function Γ(1− a
j

−A
j

s),
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j, n 2 N, 1  j  n, do not coincide with the poles of Γ(b
j

+ B
j

s), j,m 2 N, 1  j  m; the parame-
ters p

k

, q
k

2 N satisfy the conditions 0  n  p
k

, 1  m  q
k

, δ
k

2 R+, 1  k  r; the parameters A
j

, B
j

,

A
jk
, B

jk
2 R+ and a

j

, b
j

, a
jk
, b

jk
2 C, and the empty product in (1.2) (and elsewhere) is (as usual) understood

as equal to 1. The existence conditions for the defining integral (1.1) are as follows:
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Remark 1. The expression for the Aleph-function in (1.1) does not completely follow the notational conven-
tion of the Fox’s H-function. Indeed, in the @-functions, the kernel ⌦m,n

pk,qk,δk;r
(s) and the couples of parameters
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form the Gamma-function terms exclusively in the numerator, whereas
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form the linear combination exclusively in the denominator. At the same time, for Hm,n

p,q

[z], both the upper and
lower couples of parameters

�
a
j

, A
j

�
1,p

and
�
b
j

, B
j

�
1,q

play their roles in the formation of terms both in the
numerator and in the denominator according to m and n.

Remark 2. Setting δ
j

= 1, j 2 N, 1  j  r, in (1.1), we get the I -function (see [7]) whose special case
for r = 1 reduces to a familiar function (see [3, 4]).

Prabhaker and Suman [5] defined the following Laguerre-type polynomials L(↵,β)
n

(x) :

L(↵,β)
n

(x) =
Γ(↵n+ β + 1)

n!

nX

k=0

(−n)
k

xk

k!Γ(↵k + β + 1)
, (1.3)

n 2 N, <(↵) > 0, <(β) > −1,
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where (λ)
n

is the Pochhammer symbol defined (for λ 2 C) by

(λ)
n

:=

8
<

:
1, n = 0,

λ(λ+ 1) . . . (λ+ n− 1), n 2 N,

=
Γ(λ+ n)

Γ(λ)
, λ 2 C \ Z−

0 .

A special case of (1.3) where ↵ = 1 reduces to the familiar generalized Laguerre polynomials L
(β)
n

(x) (see,
e.g., [6], Chapter 12):

L(1,β)
n
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Γ(n+ β + 1)

n!

nX
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(−n)
k

xk

k!Γ(k + β + 1)
= L(β)

n

(x).

The Konhauser polynomials of the second kind (see [12]) are defined by

Zβ
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, (1.4)

<(β) > −1, k 2 Z, n 2 N.

It is easy to see that
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n
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n

(x) = Zβ

n

(x; 1). (1.5)

The polynomials Z(↵,β)
n

(x; k) are defined as follows (see [10]):
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n

(x; k) =

nX

j=0

Γ(kn+ β + 1)(−1)jxkj

j!Γ(kj + β + 1)Γ(↵n− ↵j + 1)
, (1.6)

<(↵) > 0, <(β) > −1, n 2 N, k 2 Z.

It follows from (1.4) and (1.6) that

Z(1,β)
n

(x; k) = Zβ

n

(x; k).

For ↵ 2 N, relation (1.6) can be rewritten in the following form:

Z(↵,β)
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Γ(kn+ β + 1)

Γ(↵n+ 1)

nX

m=0

(−↵n)
↵m

xkm

m!Γ(km+ β + 1)(−1)(↵−1)m
.
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The polynomials L(↵,β)
n

(γ;x) are defined by (see [10])

L(↵,β)
n

(γ;x) =
nX

r=0

Γ(↵n+ β + 1)(−1)rxr

r!Γ(↵r + β + 1)Γ(γn− γr + 1)
,

min
�
<(↵), <(γ)

 
> 0, <(β) > −1, n 2 N.

We also recall some properties of the Pochhammer symbol (see, e.g., [11])
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n
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n

, (1.7)
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m

, (1.9)

✓
x

n

◆
=

(−1)n

n!
(−x)

n

, (1.10)

where x, y 2 C and m, n 2 N0.

In the present paper, our aim is to establish some new integral formulas involving @-function associated with
the Laguerre-type polynomials. We also show that the main results presented here are general by choosing to
demonstrate 18 integral formulas involving simpler known and familiar functions, e.g., the generalized hypergeo-
metric function

p

F
q

, in a rather systematic way.

2. Integral Formulas

We now present integral formulas mainly involving the @-functions.

Theorem 1. Let z, λ, δ 2 C with min{<(δ), <(λ)} > 0 and |z| < 1. Also let C 2 R+ and <(λ) > −C γ,

where γ 2 R is a chosen number from the integration path L
iγ1 in (1.1). Then the following integral formula

is true:

1Z

0

uλ−1(1− u)δ−1@m,n

⇢k,σk,δk;r

⇥
zu−C

⇤
du

= Γ(δ)@m,n+1
⇢k+1,σk+1,δk;r

2

4z

������

(λ+ δ, C), (a
j

, A
j

)1,n, [δj(ajk , Ajk
)]
n+1,⇢k;r

(b
j

, B
j

)1,m, (λ, C), [δ
j

(b
jk
, B

jk
)]
m+1,σk;r

3

5 (2.1)

provided the other involved parameters are constrained to guarantee that each member can exist.
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Proof. Let L1 be the left-hand side of (2.1). Then, by using (1.1) and changing the order in the double
integrals, which can be done under the given conditions, we obtain

L1 =
1

2⇡i

Z
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⇢k,σk,δk;r
(s)z−s

8
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9
=

; ds. (2.2)

We recall the familiar Beta function B(x, y) is defined by (and expressed in terms of) the Gamma function
as follows (see, e.g., [13, p. 8]):

B(x, y) =

8
>>>><

>>>>:

Z 1

0
tx−1(1− t)y−1 dt, min{<(x), <(y)} > 0,

Γ(x)Γ(y)

Γ(x+ y)
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0 .

Further, we evaluate the inner integral in (2.2) and obtain

L1 = Γ(δ)
1
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ds. (2.3)

Finally, interpreting the right-hand side of (2.3) in terms of definition (1.1), we arrive at the right-hand side of (2.1).

Theorem 2. Let z, λ, δ 2 C with min{<(δ), <(λ)} > 0 and |z| < 1. Also let x, t 2 R with x ≥ t.

Further, let C 2 R+ and <(λ) > −C γ, where γ 2 R is a chosen number from the integration path L
iγ1

in (1.1). Then the following integral formula is true:
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provided that the other involved parameters satisfy the constraints such that each member may exist.

Proof. Let L2 be the left-hand side of (2.4). We change the variable u into v =
u− t

x− t
. Similarly, as in the

proof of Theorem 1, we obtain
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It is now easy to see that, in view of definition (1.1), the last equality can be interpreted as the right-hand side
of (2.4).

Theorem 3. Let z, ⌫, µ 2 C with min{<(⌫), <(µ)} > 0 and x 2 R+. Also let C 2 R+ and <(λ) > −C γ

where γ 2 R is a chosen number from the integration path L
iγ1 in (1.1). Then the following integral formula

is true:
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provided that the other involved parameters satisfy the constraints such that each member may exist.

Proof. By using the reasoning similar to that used either in the proof of Theorem 1 or in the proof of Theo-
rem 2, we can establish equality (2.5). Hence, we omit the details of the proof.

As the sequel of the theorems proved above, we need the following formula (see [1]) presented in Lemma 1:

Lemma 1. Let min
�
<(a), <(c), <(⇣), <(⇠)

 
> 0, min

�
<(b), <(d)

 
> −1, and h, m, n 2 N. Then the

following formula is true:
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. (2.6)

Theorem 4. Let z, δ, λ 2 C with min
�
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> −1.

Further, let C 2 R+ and <(λ) > −C γ, where γ 2 R is a chosen number from the integration path L
iγ1

in (1.1). Then the following formula is true:
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provided that the other involved parameters satisfy the constraints such that each member may exist. Here,
∆n,m, ⇠, ⇣

a

0
,b

0
,c

0
,d

0 is given by the formula

∆n,m, ⇠, ⇣

a

0
,b

0
,c

0
,d

0 :=

hX

k=0

✓
h

k

◆
Γ(a0n+ b0 + 1)Γ(c0m+ d0 + 1)(−1)h

Γ(⇣(m− h+ k) + 1)Γ(⇠(n− k) + 1)

⇥ 1

Γ(h+ 1)Γ(a0k + b0 + 1)Γ (c0 (h− k0) + d0 + 1)
. (2.8)

Proof. Let L3 be the left-hand side of (2.7). Then, by using (2.6), we get

L3 =

m+nX

h=0

hX

k=0

Γ(a0n+ b0 + 1)Γ(c0m+ d0 + 1)(σ)h

Γ(h− k + 1)Γ(⇣(m− h+ k) + 1)Γ(k + 1)

⇥ (−1)h

Γ(⇠(n− k) + 1)Γ(a0k + b0 + 1)Γ(c0(h− k) + d0 + 1)

⇥
1Z

0

uλ−1(1− u)δ+h−1@↵,β

⇢k,σk,δk;r

⇥
zu−C

⇤
du. (2.9)

Applying (2.1) to the integral in (2.9), we obtain

L3 =

m+nX

h=0

hX

k=0

Γ(a0n+ b0 + 1)Γ(c0m+ d0 + 1)(σ)h

Γ(h− k + 1)Γ(⇣(m− h+ k) + 1)Γ(k + 1)

⇥ (−1)h

Γ(⇠(n− k) + 1)Γ(a0k + b0 + 1)Γ(c0(h− k) + d0 + 1)
Γ(δ + h)

⇥ @↵,β+1
⇢k+1,σk+1,δk;r

2

4z

������

(λ+ δ + h,C), (a
j

, A
j

)1,β , [δj(ajk , Ajk
)]
β+1,⇢k;r

(b
j

, B
j

)1,↵, (λ, C), [δ
j

(b
jk
, B

jk
)]
↵+1,σk;r

3

5. (2.10)

Finally, it is easy to see that the expression in (2.10) corresponds to the right-hand side of (2.7).

In what follows, five integral formulas are presented in Theorems 5–9 without proofs because each of these
proofs is similar to the proof of Theorem 4.

Theorem 5. Let z, δ, λ 2 C with min
�
<(δ),<(λ)

 
> 0 and |z| < 1. Also let

min
�
<(σ),<(⇠),<(⇣)

 
> 0 and min

�
<(a0), <(b0), <(c0), <(d0)

 
> −1.

Further, let x, t 2 R with x ≥ t, C 2 R+ and <(λ) > −C γ, where γ 2 R is a chosen number from the
integration path L

iγ1 in (1.1). Then the following formula is true:



1328 P. AGARWAL, M. CHAND, AND J. CHOI

xZ

t

(x− u)δ−1(u− t)λ−1L(a0,b0)
m

(⇣;σ(u− t))

⇥ L(c0,d0)
n

(⇠;σ(u− t))@↵,β

⇢k,σk,δk;r

⇥
z(u− t)−C

⇤
du

= Γ(δ)(x− t)δ+λ−1
m+nX

h=0

∆n,m, ⇠, ⇣

a

0
,b

0
,c

0
,d

0 σ
h

⇥ @↵,β+1
⇢k+1,σk+1,δk;r

2

4z

������

(λ+ δ + h,C), (a
j

, A
j

)1,β , [δj(ajk , Ajk
)]
β+1,⇢k;r

(b
j

, B
j

)1,↵, (λ+ h,C), [δ
j

(b
jk
, B

jk
)]
↵+1,σk;r

3

5

provided that the other involved parameters satisfy the constraints such that each member may exist. Here,
∆n,m, ⇠, ⇣

a

0
,b

0
,c

0
,d

0 is defined as in (2.8).

Theorem 6. Let z, µ, ⌫ 2 C with min
�
<(µ), <(⌫)

 
> 0 and |z| < 1. Also let

min
�
<(σ), <(⇠), <(⇣)

 
> 0 and min

�
<(a0), <(b0), <(c0), <(d0)

 
> −1.

Further, let x 2 R+, C 2 R+, and <(λ) > −C γ, where γ 2 R is a chosen number from the integration
path L

iγ1 in (1.1). Then the following formula is true:

xZ

0

t⌫−1(x− t)µ−1L(a0,b0)
m

(⇣;σ(x− t))

⇥ L(c0,d0)
n

(⇠;σ(x− t))@↵,β

⇢k,σk,δk;r

⇥
z(x− t)−C

⇤
dt

= xµ+⌫−1
m+nX

h=0

∆n,m, ⇠, ⇣

a

0
,b

0
,c

0
,d

0 σ
h xh

⇥ @↵,β+1
⇢k+1,σk+1,δk;r

2

4z

������

(µ+ ⌫, C), (a
j

, A
j

)1,β , [δj(ajk , Ajk
)]
β+1,⇢k;r

(b
j

, B
j

)1,↵, (µ,C), [δ
j

(b
jk
, B

jk
)]
↵+1,σk;r

3

5

provided that the other involved parameters satisfy the constraints such that each member may exist. Here,
∆n,m, ⇠, ⇣

a

0
,b

0
,c

0
,d

0 is given as in (2.8).

Theorem 7. Let z, δ, λ 2 C with min
�
<(δ),<(λ)

 
> 0 and |z| < 1. Also let

min
�
<(σ),<(⇠),<(⇣)

 
> 0 and min

�
<(a0), <(b0), <(c0), <(d0)

 
> −1.

Further, let C 2 R+ and <(λ) > −C γ, where γ 2 R is a chosen number from the integration path L
iγ1

in (1.1). Then the following formula is true:
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1Z

0

uλ−1(1− u)δ−1L(a0,b0)
m

(⇣;σ(1− u))

⇥ L(c0,d0)
n

(⇠;σ(1− u))@↵,β

⇢k,σk,δk;r

⇥
zu−C

⇤
du

=

m+nX

h=0

rn,m, ⇠, ⇣

a

0
,b

0
,c

0
,d

0Γ(δ + h)σh

⇥ @↵,β+1
⇢k+1,σk+1,δk;r

2

4z

������

(λ+ δ + h,C), (a
j

, A
j

)1,β , [δj(ajk , Ajk
)]
β+1,⇢k;r

(b
j

, B
j

)1,↵, (λ, C), [δ
j

(b
jk
, B

jk
)]
↵+1,σk;r

3

5 (2.11)

provided that the other involved parameters satisfy the constraints such that each member may exist. Here,
rn,m, ⇠, ⇣

a

0
,b

0
,c

0
,d

0 is given by the formula

rn,m, ⇠, ⇣

a

0
,b

0
,c

0
,d

0 :=
Γ(a0n+ b0 + 1)Γ (c0m+ d0 + 1)

Γ (⇣m+ 1)Γ (⇠n+ 1)

⇥
hX

k=0

"✓
h

k

◆
(−1)h−⇣(h−k)−⇠k(−⇣m)

⇣(h−k)(−⇠n)
⇠k

Γ(a0k + b0 + 1)Γ(c0(h− k) + d0 + 1)

#
. (2.12)

Theorem 8. Let z, δ, λ 2 C with min
�
<(δ),<(λ)

 
> 0 and |z| < 1. Also let

min
�
<(σ),<(⇠),<(⇣)

 
> 0 and min

�
<(a0), <(b0), <(c0), <(d0)

 
> −1.

Further, let x, t 2 R with x ≥ t, C 2 R+, and <(λ) > −C γ, where γ 2 R is a chosen number from the
integration path L

iγ1 in (1.1). Then the following formula is true:

xZ

t

(x− u)δ−1(u− t)λ−1L(a0,b0)
m

(⇣;σ(u− t))

⇥ L(c0,d0)
n

(⇠;σ(u− t))@↵,β

⇢k,σk,δk;r

⇥
z(u− t)−C

⇤
du

= Γ(δ)(x− t)δ+λ−1
m+nX

h=0

rn,m, ⇠, ⇣

a

0
,b

0
,c

0
,d

0 σ
h

⇥ @↵,β+1
⇢k+1,σk+1,δk;r

2

4z

������

(λ+ δ + h,C), (a
j

, A
j

)1,β , [δj(ajk , Ajk
)]
β+1,⇢k;r

(b
j

, B
j

)1,↵, (λ+ h,C), [δ
j

(b
jk
, B

jk
)]
↵+1,σk;r

3

5 (2.13)

provided that the other involved parameters satisfy the constraints such that each member may exist. Here,
rn,m, ⇠, ⇣

a

0
,b

0
,c

0
,d

0 is given as in (2.12).
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Theorem 9. Let z, µ, ⌫ 2 C with min
�
<(µ),<(⌫)

 
> 0 and |z| < 1. Also let

min
�
<(σ),<(⇠),<(⇣)

 
> 0 and min

�
<(a0), <(b0), <(c0), <(d0)

 
> −1.

Further, let x 2 R+, C 2 R+, and <(λ) > −C γ, where γ 2 R is a chosen number from the integration
path L

iγ1 in (1.1). Then the following relation is true:

xZ

0

(t)⌫−1(x− t)µ−1L(a0,b0)
m

(⇣;σ(x− t))

⇥ L(c0,d0)
n

(⇠;σ(x− t))@↵,β

⇢k,σk,δk;r

⇥
z(x− t)−C

⇤
dt

= xµ+⌫−1
m+nX

h=0

rn,m, ⇠, ⇣

a

0
,b

0
,c

0
,d

0 σ
h xh

⇥ @↵,β+1
⇢k+1,σk+1,δk;r

2

4z

������

(µ+ ⌫, C), (a
j

, A
j

)1,β , [δj(ajk , Ajk
)]
β+1,⇢k;r

(b
j

, B
j

)1,↵, (µ,C), [δ
j

(b
jk
, B

jk
)]
↵+1,σk;r

3

5 (2.14)

provided that the other involved parameters satisfy the constraints such that each member may exist. Here,
rn,m, ⇠, ⇣

a

0
,b

0
,c

0
,d

0 is given as in (2.12).

3. Special Cases

Note that the results obtained in Section 2 are sufficiently general and can be specialized to yield various
simpler integral formulas. We now present some of these formulas.

Corollary 1. Let z, δ, λ, σ 2 C with min
�
<(δ), <(λ), <(σ)

 
> 0 and |z| < 1. Also let

min
�
<(a0), <(b0), <(c0), <(d0)

 
> −1.

Further, let C 2 R+ and <(λ) > −C γ, where γ 2 R is a chosen number from the integration path L
iγ1

in (1.1). Then the following formula is true:

1Z

0

uλ−1(1− u)δ−1L(a0,b0)
m

(σ(1− u))

⇥ L(c0,d0)
n

(σ(1− u))@↵,β

⇢k,σk,δk;r

⇥
zu−C

⇤
du

=
Γ(a0n+ b0 + 1)Γ(c0m+ d0 + 1)

m!n!

m+nX

h=0

σh Γ(δ + h)

⇥
hX

k=0

✓
h

k

◆
(−m)

h−k

(−n)
k

Γ(a0k + b0 + 1)Γ(c0(h− k) + d0 + 1)

�
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⇥ @↵,β+1
⇢k+1,σk+1,δk;r

2

4z

������

(λ+ δ + h,C), (a
j

, A
j

)1,β , [δj(ajk , Ajk
)]
β+1,⇢k;r

(b
j

, B
j

)1,↵, (λ, C), [δ
j

(b
jk
, B

jk
)]
↵+1,σk;r

3

5

provided that the other involved parameters satisfy the constraints such that each member may exist.

Proof. Setting ⇣ = ⇠ = 1 in (2.11), after minor simplifications, we arrive at the desired result.

Corollary 2. Let z, δ, λ 2 C with min
�
<(δ), <(λ), <(σ)

 
> 0 and |z| < 1. Also let x, t 2 R with x ≥ t.

Further, let

min
�
<(a0), <(b0), <(c0), <(d0)

 
> −1,

C 2 R+, and <(λ) > −C γ, where γ 2 R is a chosen number from the integration path L
iγ1 in (1.1). Then the

following relation is true:

xZ

t

(x− u)δ−1(u− t)λ−1Z(1,b0)
m

(σ(u− t); 1)

⇥ Z(1,d0)
n

(σ(u− t); 1)@↵,β

⇢k,σk,δk;r

⇥
z(u− t)−C

⇤
du

= Γ(δ)(x− t)δ+λ−1Γ(n+ b0 + 1)Γ(m+ d0 + 1)

m!n!

⇥
m+nX

h=0

σh

hX

k=0

✓
h

k

◆ 
(−m)(h−k)(−n)

k

Γ(k + b0 + 1)Γ((h− k) + d0 + 1)

�

⇥ @↵,β+1
⇢k+1,σk+1,δk;r

2

4z

������

(λ+ δ + h,C), (a
j

, A
j

)1,β , [δj(ajk , Ajk
)]
β+1,⇢k;r

(b
j

, B
j

)1,↵, (λ+ h,C), [δ
j

(b
jk
, B

jk
)]
↵+1,σk;r

3

5

provided that the other involved parameters satisfy the constraints such that each member may exist.

Proof. Setting a0 = c0 = ⇠ = ⇣ = 1 in (2.13) and using (1.5) to consider L1,b
n

(1;x) = Z
(1,b)
n

(x; 1), after
minor simplifications, we get the desired result.

Corollary 3. Let z, µ, ⌫ 2 C with min
�
<(µ), <(⌫), <(σ)

 
> 0 and |z| < 1. Also let x 2 R+ and

min
�
<(b0), <(d0)

 
> −1.

Further, let C 2 R+ and <(λ) > −C γ, where γ 2 R is a chosen number from the integration path L
iγ1

in (1.1). Then the following relation is true:

xZ

0

t⌫−1(x− t)µ−1 [1− σ(x− t)]n @↵,β

⇢k,σk,δk;r

⇥
z(x− t)−C

⇤
dt
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= xµ+⌫−1
nX

h=0

(−n)
h

σh xh

⇥ @↵,β+1
⇢k+1,σk+1,δk;r

2

4z

������

(µ+ ⌫, p), (a
j

, A
j

)1,β , [δj(ajk , Ajk
)]
β+1,⇢k;r

(b
j

, B
j

)1,↵, (µ, p), [δj(bjk , Bjk
)]
↵+1,σk;r

3

5

provided that the other involved parameters satisfy the constraints such that each member may exist.

Proof. Setting a0 = c0 = 0 and ⇠ = ⇣ = 1 in (2.14) and using some suitable identities from Section 1,
including (1.7)–(1.10), after minor simplifications, we arrive at the desired result.

For δ1 = . . . = δ
r

= 1 in (1.1), we get the definition of the I -function (see [7]):

I[z] = Im,n

pk,qk;r
[z]

= @m,n

pk,qk,1;r

2

64z

�������

(a
j

, A
j

)1,n, [1(ajk , Ajk
)]
n+1,pk;r

(b
j

, B
j

)1,m, [1(b
jk
, B

jk
)]
m+1,qk;r

3

75

=
1

2⇡i

Z

L

⌦m,n

pk,qk,1;r
(s)z−s ds, (3.1)

where z 2 C \ {0}, i =
p
−1, ⌦m,n

pk,qk,1;r
(s) is defined in (1.2), and the integration path L can be used as in (1.1).

Otherwise, for this (3.1), we can choose a new integration path. The existence conditions for integral (3.1) can be
easily deduced from the conditions for the @-function (1.1) with δ1 = . . . = δ

r

= 1.

Then the integral relations in Corollaries 1–3 can be reduced to yield the following integral formulas involving
the I -function and presented in Corollaries 4–6, respectively:

Corollary 4. Let z, δ, λ, σ 2 C with min
�
<(δ), <(λ), <(σ)

 
> 0 and |z| < 1. Also let

min
�
<(a0), <(b0), <(c0), <(d0)

 
> −1.

Further, let C 2 R+ and <(λ) > −C γ, where γ 2 R is a chosen number from the integration path L
iγ1

in (1.1). Then the following relation is true:

1Z

0

uλ−1(1− u)δ−1L(a0,b0)
m

(σ(1− u))

⇥ L(c0,d0)
n

(σ(1− u))I↵,β
⇢k,σk;r

⇥
zu−C

⇤
du

=
Γ(a0n+ b0 + 1)Γ(c0m+ d0 + 1)

m!n!

m+nX

h=0

σh Γ(δ + h)
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⇥
hX

k=0

✓
h

k

◆
(−m)

h−k

(−n)
k

Γ(a0k + b0 + 1)Γ(c0(h− k) + d0 + 1)

�

⇥ I↵,β+1
⇢k+1,σk+1;r

2

4z

������

(λ+ δ + h,C), (a
j

, A
j

)1,β , (ajk , Ajk
)
β+1,⇢k;r

(b
j

, B
j

)1,↵, (λ, C), (b
jk
, B

jk
)
↵+1,σk;r

3

5

provided that the other involved parameters satisfy the constraints such that each member may exist.

Corollary 5. Let z, δ, λ 2 C with min
�
<(δ), <(λ), <(σ)

 
> 0 and |z| < 1. Also let x, t 2 R with x ≥ t.

Further, let

min
�
<(a0), <(b0), <(c0), <(d0)

 
> −1,

C 2 R+, and <(λ) > −C γ, where γ 2 R is a chosen number from the integration path L
iγ1 in (1.1). Then the

following formula is true:

xZ

t

(x− u)δ−1(u− t)λ−1Z(1,b0)
m

(σ(u− t); 1)

⇥ Z(1,d0)
n

(σ(u− t); 1)I↵,β
⇢k,σk;r

⇥
z(u− t)−C

⇤
du

= Γ(δ)(x− t)δ+λ−1Γ(n+ b0 + 1)Γ(m+ d0 + 1)

m!n!

⇥
m+nX

h=0

σh

hX

k=0

✓
h

k

◆ 
(−m)(h−k)(−n)

k

Γ(k + b0 + 1)Γ((h− k) + d0 + 1)

�

⇥ I↵,β+1
⇢k+1,σk+1;r

2

4z

������

(λ+ δ + h,C), (a
j

, A
j

)1,β , (ajk , Ajk
)
β+1,⇢k;r

(b
j

, B
j

)1,↵, (λ+ h,C), (b
jk
, B

jk
)
↵+1,σk;r

3

5

provided that the other involved parameters satisfy the constraints such that each member may exist.

Corollary 6. Let z, µ, ⌫ 2 C with min
�
<(µ), <(⌫), <(σ)

 
> 0 and |z| < 1. Also let x 2 R+ and

min
�
<(b0), <(d0)

 
> −1.

Further, let C 2 R+ and <(λ) > −C γ, where γ 2 R is a chosen number from the integration path L
iγ1

in (1.1). Then the following relation is true:

xZ

0

t⌫−1(x− t)µ−1 [1− σ(x− t)]n I↵,β
⇢k,σk;r

⇥
z(x− t)−C

⇤
dt
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= xµ+⌫−1
nX

h=0

(−n)
h

σh xh

⇥ I↵,β+1
⇢k+1,σk+1;r

2

4z

������

(µ+ ⌫, C), (a
j

, A
j

)1,β , (ajk , Ajk
)
β+1,⇢k;r

(b
j

, B
j

)1,↵, (µ,C), (b
jk
, B

jk
)
↵+1,σk;r

3

5

provided that the other involved parameters satisfy the constraints such that each member may exist.

Further, a special case r = 1 of the I -function (3.1) reduces to become the H-function (see [3, 4]). Then
the formulas in Corollaries 4–6 are reduced to yield the integral formulas involving the H-function presented
in Corollaries 7–9, respectively.

Corollary 7. Let z, δ, λ, σ 2 C with min
�
<(δ), <(λ), <(σ)

 
> 0 and |z| < 1. Also let

min
�
<(a0), <(b0), <(c0), <(d0)

 
> −1.

Further, let C 2 R+ and <(λ) > −C γ, where γ 2 R is a chosen number from the integration path L
iγ1

in (1.1). Then the following relation is true:

1Z

0

uλ−1(1− u)δ−1L(a0,b0)
m

(σ(1− u))

⇥ L(c0,d0)
n

(σ(1− u))H↵,β

⇢1,σ1

⇥
zu−C

⇤
du

=
Γ(a0n+ b0 + 1)Γ(c0m+ d0 + 1)

m!n!

m+nX

h=0

σh Γ(δ + h)

⇥
hX

k=0

✓
h

k

◆
(−m)

h−k

(−n)
k

Γ(a0k + b0 + 1)Γ(c0(h− k) + d0 + 1)

�

⇥H↵,β+1
⇢1+1,σ1+1

2

4z

������

(λ+ δ + h,C), (a
j

, A
j

)1,⇢1

(b
j

, B
j

)1,σ1 , (λ, C)

3

5 (3.2)

provided that the other involved parameters satisfy the constraints such that each member may exist.

Corollary 8. Let z, δ, λ 2 C with min
�
<(δ), <(λ), <(σ)

 
> 0 and |z| < 1. Also let x, t 2 R with x ≥ t.

Further, let

min
�
<(a0), <(b0), <(c0), <(d0)

 
> −1,

C 2 R+, and <(λ) > −C γ, where γ 2 R is a chosen number from the integration path L
iγ1 in (1.1). Then the

following relation is true:
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xZ

t

(x− u)δ−1(u− t)λ−1Z(1,b0)
m

(σ(u− t); 1)

⇥ Z(1,d0)
n

(σ(u− t); 1)H↵,β

⇢1,σ1

⇥
z(u− t)−C

⇤
du

= Γ(δ)(x− t)δ+λ−1Γ(n+ b0 + 1)Γ(m+ d0 + 1)

m!n!

⇥
m+nX

h=0

σh

hX

k=0

✓
h

k

◆ 
(−m)(h−k)(−n)

k

Γ(k + b0 + 1)Γ((h− k) + d0 + 1)

�

⇥H↵,β+1
⇢1+1,σ1+1

"
z

�����
(λ+ δ + h,C), (a

j

, A
j

)1,⇢1

(b
j

, B
j

)1,σ1 , (λ+ h,C)

#
(3.3)

provided that the other involved parameters satisfy the constraints such that each member may exist.

Corollary 9. Let z, µ, ⌫ 2 C with min
�
<(µ), <(⌫), <(σ)

 
> 0 and |z| < 1. Also let x 2 R+ and

min
�
<(b0), <(d0)

 
> −1.

Further, let C 2 R+ and <(λ) > −C γ, where γ 2 R is a chosen number from the integration path L
iγ1

in (1.1). Then the following relation is true:

xZ

0

t⌫−1(x− t)µ−1 [1− σ(x− t)]nH↵,β

⇢1,σ1

⇥
z(x− t)−C

⇤
dt

= xµ+⌫−1
nX

h=0

(−n)
h

σh xhH↵,β+1
⇢1+1,σ1+1

"
z

�����
(µ+ ⌫, C), (a

j

, A
j

)1,⇢1

(b
j

, B
j

)1,σ1 , (µ,C)

#
(3.4)

provided that the other involved parameters satisfy the constraints such that each member may exist.

Note that a special case of the H-function with A
j

= 1, j = 1, . . . , p, and B
j

= 1, j = 1, . . . , q, reduces to
the following Meijer’s G-function (see, e.g., [2], Section 8.2):

H↵,β

⇢1,σ1

"
x

�����
(a

j

, 1)1,⇢1

(b
j

, 1)1,σ1

#
= G↵,β

⇢1,σ1

"
x

�����
(a

⇢1)

(b
σ1)

#
.

Then the formulas in Corollaries 7–9 are reduced to the corresponding integral formulas involving Meijer’s
G-function (3.5)–(3.7).

Corollary 10. Let z, δ, λ, σ 2 C with min
�
<(δ), <(λ), <(σ)

 
> 0 and |z| < 1. Also let

min
�
<(a0), <(b0), <(c0), <(d0)

 
> −1.
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Then the following relation is true:

1Z

0

uλ−1(1− u)δ−1L(a0,b0)
m

(σ(1− u))

⇥ L(c0,d0)
n

(σ(1− u))G↵,β

⇢1,σ1
[zu−1] du

=
Γ(a0n+ b0 + 1)Γ(c0m+ d0 + 1)

m!n!

m+nX

h=0

σh Γ(δ + h)

⇥
hX

k=0

✓
h

k

◆
(−m)

h−k

(−n)
k

Γ(a0k + b0 + 1)Γ(c0(h− k) + d0 + 1)

�

⇥ Γ(λ+ δ + h)

Γ(λ)
G↵,β+1

⇢1+1,σ1+1

"
z

�����
(λ+ δ + h), (a

⇢1)

(b
σ1), (λ)

#
(3.5)

provided that the other involved parameters satisfy the constraints such that each member may exist.

Corollary 11. Let z, δ, λ, σ 2 C with min
�
<(δ), <(λ), <(σ)

 
> 0 and |z| < 1. Also let x, t 2 R

with x ≥ t. Further, let

min
�
<(a0), <(b0), <(c0), <(d0)

 
> −1.

Then the following relation is true:

xZ

t

(x− u)δ−1(u− t)λ−1Z(1,b0)
m

(σ(u− t); 1)

⇥ Z(1,d0)
n

(σ(u− t); 1)G↵,β

⇢1,σ1
[z(u− t)−1] du

= Γ(δ)(x− t)δ+λ−1Γ(n+ b0 + 1)Γ(m+ d0 + 1)

m!n!

⇥
m+nX

h=0

σh

hX

k=0

✓
h

k

◆ 
(−m)(h−k)(−n)

k

Γ(k + b0 + 1)Γ((h− k) + d0 + 1)

�

⇥ Γ(λ+ δ + h)

Γ(λ+ h)
G↵,β+1

⇢1+1,σ1+1

"
z

�����
(λ+ δ + h), (a

⇢1)

(b
σ1), (λ+ h)

#
(3.6)

provided that the other involved parameters satisfy the constraints such that each member may exist.
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Corollary 12. Let z, µ, ⌫, σ 2 C with min
�
<(µ), <(⌫), <(σ)

 
> 0 and |z| < 1. Also let x 2 R+ and

min
�
<(b0), <(d0)

 
> −1.

Then the following relation is true:

xZ

0

t⌫−1(x− t)µ−1 [1− σ(x− t)]nG↵,β

⇢1,σ1
[z(x− t)−1] dt

= xµ+⌫−1
nX

h=0

(−n)
h

σh xhG↵,β+1
⇢1+1,σ1+1

"
z

�����
(µ+ ⌫), (a

⇢1)

(b
σ1), (µ)

#
, (3.7)

provided that the other involved parameters satisfy the constraints such that each member may exist.

In this case, if we replace σ1, aj , bj by σ1 + 1, 1− a
j

, 1− b
j

with b1 = 0, respectively, and set ↵ = 1 in
the H-function, then we get Wright’s generalized hypergeometric function

p

 
q

(see, e.g., [14, p. 50]):

H1,⇢1
⇢1,σ1+1

2

4−x

������

(1− a
j

, A
j

)1,p

(0, 1), (1− b
j

, B
j

)1,q

3

5 =
⇢1 σ1

2

4
(a

j

, A
j

)1,p ;

(b
j

, B
j

)1,q ;
x

3

5. (3.8)

Further, by applying relation (3.8) to relations (3.2), (3.3), and (3.4), we arrive at the following respective integral
relations containing the Wright’s generalized hypergeometric function

p

 
q

(3.9)–(3.11).

Corollary 13. Let z, δ, λ, σ 2 C with min
�
<(δ), <(λ), <(σ)

 
> 0 and |z| < 1. Also let

min
�
<(a0), <(b0), <(c0), <(d0)

 
> −1.

Then the following relation is true:

1Z

0

uλ−1(1− u)δ−1L(a0,b0)
m

(σ(1− u))

⇥ L(c0,d0)
n

(σ(1− u))
⇢1 σ1 [zu

−p] du

=
Γ(a0n+ b0 + 1)Γ(c0m+ d0 + 1)

m!n!

m+nX

h=0

σh Γ(δ + h)

⇥
hX

k=0

✓
h

k

◆
(−m)

h−k

(−n)
k

Γ(a0k + b0 + 1)Γ(c0(h− k) + d0 + 1)

�

⇥
⇢1+1 σ1+1

"
(λ+ δ + h, p), (a

j

, A
j

)1,⇢1

(b
j

, B
j

)1,σ1 , (λ, p)
; z

#
(3.9)

provided that the other involved parameters satisfy the constraints such that each member may exist.
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Corollary 14. Let z, δ, λ, σ 2 C with min
�
<(δ), <(λ), <(σ)

 
> 0 and |z| < 1. Also let x, t 2 R

with x ≥ t. Further, let

min
�
<(a0), <(b0), <(c0), <(d0)

 
> −1.

Then the following relation is true:

xZ

t

(x− u)δ−1(u− t)λ−1Z(1,b0)
m

(σ(u− t); 1)

⇥ Z(1,d0)
n

(σ(u− t); 1)
⇢1 σ1 [z(u− t)−p] du

= Γ(δ)(x− t)δ+λ−1Γ(n+ b0 + 1)Γ(m+ d0 + 1)

m!n!

⇥
m+nX

h=0

σh

hX

k=0

✓
h

k

◆
(−m)(h−k)(−n)

k

Γ(k + b0 + 1)Γ((h− k) + d0 + 1)

�

⇥
⇢1+1 σ1+1

"
(λ+ δ + h, p), (a

j

, A
j

)1,⇢1

(b
j

, B
j

)1,σ1 , (λ+ h, p)
; z

#
(3.10)

provided that the other involved parameters satisfy the constraints such that each member may exist.

Corollary 15. Let z, µ, ⌫, σ 2 C with min
�
<(µ), <(⌫), <(σ)

 
> 0 and |z| < 1. Also let x 2 R+ and

min
�
<(b0), <(d0)

 
> −1.

Then the following formula is true:

xZ

0

t⌫−1(x− t)µ−1 [1− σ(x− t)]n
⇢1 σ1 [z(x− t)−p] dt

= xµ+⌫−1
nX

h=0

(−n)
h

σh xh
⇢1+1 σ1+1

"
(µ+ ⌫, p), (a

j

, A
j

)1,⇢1

(b
j

, B
j

)1,σ1 , (µ, p)
; z

#
(3.11)

provided that the other involved parameters satisfy the constraints such that each member may exist.

Furthermore, if we choose p = 1; ↵ = 1, β = 2, ⇢1 = σ1 = 2; A
j

= B
j

= 1; b1 = 0 and replace a1,

a2, b2 with 1− a1, 1− a2, 1− b2, respectively, then we reduce the H-function to the Gaussian hypergeometric
function 2F1 as follows:

H1,2
2,2

"
x

�����
(1− a1, 1), (1− a2, 1)

(0, 1), (1− b2, 1)

#
=
Γ(a1)Γ(a2)

Γ(b2)
2F1[a1, a2; b2;−x]. (3.12)

Finally, applying relation (3.12) to relations (3.2), (3.3) and (3.4), we get relations (3.13)–(3.15) presented in what
follows whose integrands and the resulting formulas contain 2F1 and the generalized hypergeometric function 3F2,

respectively.
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Corollary 16. Let z, δ, λ, σ 2 C with min
�
<(δ), <(λ), <(σ)

 
> 0 and |z| < 1. Also let

min
�
<(a0), <(b0), <(c0), <(d0)

 
> −1.

Then the following relation is true:

1Z

0

uλ−1(1− u)δ−1L(a0,b0)
m

(σ(1− u))

⇥ L(c0,d0)
n

(σ(1− u)) 2F1[a1, a2; b2; zu
−1] du

=
Γ(a0n+ b0 + 1)Γ(c0m+ d0 + 1)

m!n!

m+nX

h=0

σh Γ(δ + h)

⇥ (δ + h)
λ

hX

k=0

✓
h

k

◆
(−m)

h−k

(−n)
k

Γ(a0k + b0 + 1)Γ(c0(h− k) + d0 + 1)

�

⇥ 3F2[λ+ δ + h, a1, a2; b2,λ; z] (3.13)

provided that the other involved parameters satisfy the constraints such that each member may exist.

Corollary 17. Let z, δ, λ, σ 2 C with min
�
<(δ),<(λ),<(σ)

 
> 0 and |z| < 1. Also let x, t 2 R

with x ≥ t. Further, let

min
�
<(a0), <(b0), <(c0), <(d0)

 
> −1.

Then the following relation is true:

xZ

t

(x− u)δ−1(u− t)λ−1Z(1,b0)
m

(σ(u− t); 1)

⇥ Z(1,d0)
n

(σ(u− t); 1) 2F1[a1, a2; b2; z(u− t)−1] du

= Γ(δ)(x− t)δ+λ−1Γ(n+ b0 + 1)Γ(m+ d0 + 1)

m!n!

⇥
m+nX

h=0

σh (λ+ h)
δ

hX

k=0

✓
h

k

◆
(−m)(h−k)(−n)

k

Γ(k + b0 + 1)Γ((h− k) + d0 + 1)

�

⇥ 3F2[λ+ δ + h, a1, a2; b2,λ+ h; z] (3.14)

provided that the other involved parameters satisfy the constraints such that each member may exist.
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Corollary 18. Let z, µ, ⌫, σ 2 C with min
�
<(µ),<(⌫),<(σ)

 
> 0 and |z| < 1. Also let x 2 R+ and

min{<(b0),<(d0)} > −1.

Then the following relation is true:

xZ

0

t⌫−1(x− t)µ−1 [1− σ(x− t)]n 2F1[a1, a2; b2; z(x− t)−1] dt

= xµ+⌫−1(µ)
⌫

nX

h=0

(−n)
h

σh xh3F2[µ+ ⌫, a1, a2; b2, µ; z] (3.15)

provided that the other involved parameters satisfy the constraints such that each member may exist.
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