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SOME INTEGRALS INVOLVING RX-FUNCTIONS AND LAGUERRE POLYNOMIALS
P. Agarwal,! M. Chand,” and J. Choi** UDC 517.5

Our aim is to establish some new integral formulas involving R-functions associated with Laguerre-
type polynomials. We also show that the main results presented in the paper are general by demon-
strating 18 integral formulas that involve simpler known functions, e.g., the generalized hypergeometric
function , Fy, in a fairly systematic way.

1. Introduction and Preliminaries

Let C, R, R", Z and N be the sets of complex numbers, real numbers, positive real numbers, integers, and
positive integers, respectively, and let

Zy :==7Z\N, Np := NU{0}.

The Aleph (XN)-function, which is a very general higher transcendental function introduced by Siidland, et al.
[15, 16], is defined in terms of the Mellin—Barnes type integral in the following way (see, e.g., [8, 9]):

(aj, Aj)in, [5j(ajk7Ajk>]n+ka;T
N[z] = Npk77l1k,5k§"‘ z
(bj, Bj)l,ma [5 (bjkv )]m-i-l,qk,r

1 _
= 57 [ At () s (1.1
L

where z € C\ {0}, i =+/—1, and

H] T +B»s)Hj Tl —a; = Ajs)

nglkﬁk;r(s) = - Pk A s) (1.2
Zk 1 Ok HJ m+1 — bj, — Bj,.s) Hj:nJrl U(ag, + Ajys)

Here, I' is the known Gamma function (see, e.g., [13], Section 1.1); the integration path L = Ly, v € R, ex-
tends from  — ico to 7y 4 i0o with indentations, if necessary; the poles of the Gamma function I'(1 — a; — A;s),
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j,n € N, 1 < j < n, do not coincide with the poles of I'(b; + B;s), j,m € N, 1 < j < m; the parame-
ters py, i € N satisfy the conditions 0 < n < pg, 1 <m < g, 0y € RT, 1 <k < r; the parameters A;, Bj,
Aj,., Bj, € R* and aj,b;,a; ,bj € C, and the empty product in (1.2) (and elsewhere) is (as usual) understood
as equal to 1. The existence conditions for the defining integral (1.1) are as follows:

@ € RT and larg(z)| < ng, teN, 1<t<r,

2
and
T

wr >0, larg(z)| < 5 Pt and R(s) +1 <0,

where
n m De qe
o= A+ Bi—o| Y, A+ D B
j=1 j=1 j=n+1 j=m+1

and

n m Pe qe 1
Sy ::ZAJ+ZBj_5K Z Aj, + Z Bj, +§(p£_%)a
j=1 j=1

j=n+1 j=m+1
feN, 1<i<r.

Remark 1. The expression for the Aleph-function in (1.1) does not completely follow the notational conven-

tion of the Fox’s H-function. Indeed, in the N-functions, the kernel Q7"

o0 (8) and the couples of parameters

(a5, 4;),, and (b, Bj),,,

form the Gamma-function terms exclusively in the numerator, whereas

[5j (ajk’Ajk)n-i-l,pk } and [5j (bjk’ Bjk)n+17fIk}

form the linear combination exclusively in the denominator. At the same time, for H,¢"[z], both the upper and
lower couples of parameters (aj, AJ’)Lp and (b;, BJ')1,q play their roles in the formation of terms both in the
numerator and in the denominator according to m and n.

Remark 2. Setting §; =1, j € N, 1 < j <, in (1.1), we get the I-function (see [7]) whose special case
for » = 1 reduces to a familiar function (see [3, 4]).

Prabhaker and Suman [5] defined the following Laguerre-type polynomials L,(f”g ) (x):

k

r 1) & —
LB (z) = (Oén+'5+ )Zk'FE n)k (1.3)
k=0

n! ak+B+1)’

neN, Ra)>0, RB) >-1,
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where (A),, is the Pochhammer symbol defined (for A € C) by

1, n =0,
(Mn =
AA+1D)...A+n—1), n e N,

_ I'(A+n) _
=Ty AeC\Z.

A special case of (1.3) where a = 1 reduces to the familiar generalized Laguerre polynomials L,({B ) (x) (see,
e.g., [6], Chapter 12):

Zklr k+6+1) = L7 (@).

The Konhauser polynomials of the second kind (see [12]) are defined by

5 Thn+B+1) K, (7 zki
Zn(aik) = 2 1)]< T(kj+B+1) 19

It is easy to see that

and
L) (z) = Z8(z;1). (1.5)
The polynomials A (z; k) are defined as follows (see [10]):

08 e~ T(kn+ B+ 1)(—1)iak
Zy (k) = ]Z; JIT(kj+ B+ DT (an —aj + 1)’

(1.6)

R(a) >0, RPB)>-1, neN, keZ.
It follows from (1.4) and (1.6) that
2P (w3 k) = 2] (a3 k).

For a € N, relation (1.6) can be rewritten in the following form:

(,B) (. _ F(kn + ﬁ + 1) . (_an)amka
Zn (k) = I'(lan+1) Z m!T(km + 8+ 1)(—1)le=Dm’
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The polynomials L,(f”g ) (7; x) are defined by (see [10])

n

T(an + B+ 1)(—1)"a"

(avﬁ) . —
L7 (v; @) ; r'T(ar + B+ D'(yn —yr + 1)’

min {R(a), R(y)} > 0, R(B) > -1, neN.
We also recall some properties of the Pochhammer symbol (see, e.g., [11])

(=) =(=1)"(z —n+1),, 1.7

<7> (2); (W) (1.8)

(w)n—I—m = (x)n(x + n)ma (1.9)
<z> = (_nl!)n(—x)n, (1.10)

where z,y € C and m, n € Ny.

In the present paper, our aim is to establish some new integral formulas involving N-function associated with
the Laguerre-type polynomials. We also show that the main results presented here are general by choosing to
demonstrate 18 integral formulas involving simpler known and familiar functions, e.g., the generalized hypergeo-
metric function ,F}, in a rather systematic way.

2. Integral Formulas
We now present integral formulas mainly involving the X-functions.

Theorem 1. Let z, A\, § € C with min{R(5), R(\)} > 0 and |z| < 1. Alsolet C € R and R(\) > —C 7,
where vy € R is a chosen number from the integration path Ly in (1.1). Then the following integral formula
is true:

PlsTkOk;T

1
/ w1 — w) IR [zu_c] du
0

i1 ()\ + 57 0)7 (aj7 Aj)l,nv [5J(a.7k’ Ajk)]n'i‘lypk?"'
- F(é)Npk7+170k+175k§7‘ o 2.1
(bja Bj)l,ma (/\7 C), [5j(bjk’ Bjk)]m+170k§T

provided the other involved parameters are constrained to guarantee that each member can exist.
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Proof. Let L, be the left-hand side of (2.1). Then, by using (1.1) and changing the order in the double
integrals, which can be done under the given conditions, we obtain

1
1
L= / Qg’zmk;r(s)zﬂ /u)‘JrCSl(l —u)’ Y du p ds. (2.2)

21
L 0

We recall the familiar Beta function B(x, y) is defined by (and expressed in terms of) the Gamma function
as follows (see, e.g., [13, p. 8]):

/1 11 —t)y"tdt,  min{R(z), R(y)} >0,
0

B(z, y) =
I(z)I(y) _
e C\Z,.
F(l‘ + y) ’ z,Y € \ 0
Further, we evaluate the inner integral in (2.2) and obtain
1 mn _s D(A+0Cs)
Li1=T0)— | Q" S ——~ —— 2 _ds. 2.3
=1 >2m'/ oo T TR 51 05) % 23)

L

Finally, interpreting the right-hand side of (2.3) in terms of definition (1.1), we arrive at the right-hand side of (2.1).

Theorem 2. Let z, A\, § € C with min{R(5), R(\)} > 0 and |z| < 1. Also let z,t € R with v > t.
Further, let C € Rt and R(\) > —C'v, where v € R is a chosen number from the integration path Liye
in (1.1). Then the following integral formula is true:

x

/(:U - u)‘s 1(u — t))\_lN;Z’Z'kyékQT' [z(u - t)_c] du
t

— (A+6,0), (aj, A) 1., [65(aj,, Aj ) nt1,ppir
=T(0)(x —t)°" Ng;f;l ortlonr |2 (2.4)
(ijB )1 ms (/\ C) [5 (bjk7Bjk)]m+170'k§7’

provided that the other involved parameters satisfy the constraints such that each member may exist.

Proof. Let Ly be the left-hand side of (2.4). We change the variable u into v = v-

t
. Similarly, as in the
T—1

proof of Theorem 1, we obtain

1
_ (l‘ - t)(H_)\_l m,n —5 _ \Cs .\ 0—1, A+Cs—1
Lo=—T—"— [ Q (s)z %(x —1t) (1—-v)°" v dv » ds

277‘2 pk70k76k;r
L 0

1 B A+ Cs)
B £)F+HA-1 S(p — )05 T 2%
= TO =" o [ (97— 0 e
L
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It is now easy to see that, in view of definition (1.1), the last equality can be interpreted as the right-hand side
of (2.4).

Theorem 3. Let z, v, u € C with min{R(v), R(u)} > 0 and x € RT. Alsolet C € RT and R(\) > —C'~y
where vy € R is a chosen number from the integration path Ly in (1.1). Then the following integral formula
is true:

x

v—1 —1lgm,n —C
/t (x =ty R 5 L [2( = 1)7C] at

0

o B (1 +v,0), (aj, Aj)1ns [05(ag,, Aj)nt 1,005

12 — m,n

i N O\ H P (2.5)
(ij Bj)l,m; (M? C)v [5 (bjkv B )]m+170k27‘

provided that the other involved parameters satisfy the constraints such that each member may exist.

Proof. By using the reasoning similar to that used either in the proof of Theorem 1 or in the proof of Theo-
rem 2, we can establish equality (2.5). Hence, we omit the details of the proof.

As the sequel of the theorems proved above, we need the following formula (see [1]) presented in Lemma 1:

Lemma 1. Let min {R(a), R(c), R(¢), R(&)} > 0, min {R(b), R(d)} > —1, and h, m,n € N. Then the
following formula is true:

m4n

h
@b) (. T (esd) [ ro N Tlan+b+ DT (em+d+1)
L G o)Ly (G ) = hz:% kzzo F'(h—k+1)I(C(m—h+k)+1)I'(k+1)

(=)
“T(E(n—k) + ) (ak+ b+ )I(c(h—k) +d+ 1) (2.6)

Theorem 4. Let z, 0, A € C with min {R(6), R(\)} > 0 and |z| < 1. Also let
min {R(c), R(£),R()} >0 and min {R(a’), R(V), R(<), R(d)} > —1.

Further, let C € RT and R(\) > —C~, where v € R is a chosen number from the integration path Liyoo
in (1.1). Then the following formula is true:

1
5 a . c o,B =
/ A =W L (G o (- w) LED (€ o(1—u))RSE (2O du
0

m+n

= Z AL ST(8 + ) o”

(A +d+h,0), (aj, Aj )1 B [5 (ajk7 Ajk)]5+1:pk§T
~ 2.7
(bijj)l,ou ()‘7 C)[5 (ka’B )]Oé+170'k§7’

a,B+1
X Npk-l—l or+1,0K;T
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provided that the other involved parameters satisfy the constraints such that each member may exist. Here,

An/Tg/ § 2, is given by the formula

ATTLEC zh:<> (@n+b +DI(Em+d +1)(=1)"

a' b, d — Cm—h+k)+1)r(£(n_k)_|_1)
1
. (2.8)
T(h+ Dl (@k +¥ + D0 (¢ (h—K) +d +1)
Proof. Let L3 be the left-hand side of (2.7). Then, by using (2.6), we get
§U§ Pl +V < DEm '+ 1) (o)
L=5 %
h=0 k= or(h k+1DL(C(m —h+k)+1)T(k+1)
X (="
D(E(n — k) + DO(@k+ 0+ DI (h— k) + & + 1)
1
X /u)\ 1 5+h 1Ng;/’30k’5k . [zuio] du. 2.9
0

Applying (2.1) to the integral in (2.9), we obtain

m-+n

e S° Zh: T(a'n+ bV + D)D(dm+d + 1)(o)"
k=0

Za 2 T(h—k+ D(C(m—h+ k) + DD(k + 1)

(="
- Fn—k)+1)I'@k+V+DI(I(h—k)+d + 1)F(5 + h)

af+1 ()‘+5+h7 C)v(ajﬂA )15 [5 (a’]wAjk)]ﬁ—l-l,pk;r
XN ort Lo | 2 . (2.10)
(ij B )1 s ()‘ C) [5 (b]k’ B]'k)]aJrl,Uk;T

Finally, it is easy to see that the expression in (2.10) corresponds to the right-hand side of (2.7).

In what follows, five integral formulas are presented in Theorems 5-9 without proofs because each of these
proofs is similar to the proof of Theorem 4.

Theorem 5. Let z, 6, A € C with min {R(6), R(N\)} > 0 and |z| < 1. Also let
min {R(o), R(£),R(()} >0 and min {R(a’), R(V), R(), R(d)} > —1.

Further, let x,t € R with x > t, C € RT and R(\) > —C+y, where v € R is a chosen number from the
integration path Lio in (1.1). Then the following formula is true:
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T

/ (1 — )P — LG o — 1)

t

x L) (& o (u — £))R%P [2(u — t)_C] du

Pk sTkOk;T

m+n

=TDO) (@ — )" YT ARG "
h=0

A+ 0+ h,C),(aj, Aj)1,6, [65(ases Aj)l g1,

(bja Bj)l,aa (>\ + h, 0)7 [5J (bijjk)]aJrl,Uk;?"

a,B+1
X Npk+170k+1,5k§7’ z

provided that the other involved parameters satisfy the constraints such that each member may exist. Here,
A ff 2, is defined as in (2.8).

Theorem 6. Let z, y1, v € C with min {R(n), R(v)} > 0 and |z| < 1. Also let
min {R(o), R(E), R(()} >0 and min {R(d'), RDV), R(c), R(d)} > -1

Further;, let v € RY, C € R, and R(\) > —Cr, where v € R is a chosen number from the integration
path Liyeo in (1.1). Then the following formula is true:

T

/ Y — LD (o (e — 1)

0

x LT (& o(z — t))RP [2(x — )~ dt

PLsTk 05T

m—+n

—1 n,m,g, h h

= gtV E Aa,,b,7§,7§,a x
h=0

(n+v,0), (aj’ Aj)l,ﬁ? [51' (ajlw Ajk)]ﬁJrl,pk;r

(bj7 Bj)l,ou (Na C)a [5j(bjw Bjk)]oc-l—lﬂkﬂ’

a,B+1
X Npk+170k+1:6k§r z

provided that the other involved parameters satisfy the constraints such that each member may exist. Here,

AZ}?Z”E,’E, is given as in (2.8).

Theorem 7. Let z, §, A € C with min {R(5),R(\)} > 0 and |z| < 1. Also let
min {R(o), R(£),R()} >0 and min {R(a’), RV, R(), R(d)} > —1.

Further, let C € RT and R(\) > —C~, where v € R is a chosen number from the integration path Li~eo
in (1.1). Then the following formula is true:



SOME INTEGRALS INVOLVING N -FUNCTIONS AND LAGUERRE POLYNOMIALS 1329

1
/u)\ 11_u6 1Lab (<7 (1_u))
0

X Lgfl’d')(g; o(l— u))Na"B [zu_c] du

PksT k05T

m-+n

- Z Ve SSTO + k) o"

afrl ()‘+5+h70)’(aj’A )1/3 [5 (aJk’Ajk)]/B"FLPkZ"'
x N z (2.11)
pr+L,05+1,6k;m
(bj7Bj)1,Om ()‘7 0)7 [6 (b]k?B )]Oé+170k§T

provided that the other involved parameters satisfy the constraints such that each member may exist. Here,

VZ}TZ’ f/ 2, is given by the formula

grme e Dlan+ ¥+ DU (dm+d +1)
a'b',e,d F(Cm+1)r(£n+ 1)

(2.12)

h C(h—k)—
y Z [(h) (=)= C=R=ER (—Cm) gy (—En)en _

| \k) T@k+0+O)0(C(h—k)+d +1)

Theorem 8. Let z, 6, A € C with min {R(6), R(\)} > 0 and |z| < 1. Also let
min {R(o), R(£),R(()} >0 and min {R(a’), R(D), R(), R(d)} > —1.

Further; let x,t € R with x > t, C € RY, and R(\) > —C, where v € R is a chosen number from the
integration path L~ in (1.1). Then the following formula is true:

xT

/<x—u>5 Y — LD (Cou - 1)

t
D& o(u— )RS [a(u—1)" du

m-+n

=T(@0) (@ — 1N v s of

N (>\ +0+ h7 C)v (ajv Aj )1 B [5 (aJmAjk)],B-i-l,pk;r
XN ot Lawr | ? (2.13)
(ij Bj)l,cw ()‘ + hv C)v [6 (bjk7B )]CH-LUMT

provided that the other involved parameters satisfy the constraints such that each member may exist. Here,

A ﬁ; 2, is given as in (2.12).



1330 P. AGARWAL, M. CHAND, AND J. CHOI

Theorem 9. Let z, pu, v € C with min {R(p), R(v)} > 0 and |z| < 1. Also let
min {R(o), R(£),R(¢)} >0 and min {R(a’), R(D), R(), R(d)} > —1.
Further;, let v € RY, C € R, and R(\) > —Cr, where v € R is a chosen number from the integration

path Liye in (1.1). Then the following relation is true:

x

/ (1) — ) LG o — 1))

0

x LT (& o(x — t))RYP [2(z — #)7C] dt

Pk>TksOk;T

m+n

— phtv—l Z V",T, 5/2/0 P

afil (/L + v, 0)7 (aj> Aj)l,ﬁa [5] (ajka Ajk)]ﬁ-ﬂ,/%ﬂ"
pretLon+Lopr | # (2.14)
(ij B; )1 o (:U'v C), [6 (ka7 Bjk)}a‘i‘l,ffkﬁ'

x N

provided that the other involved parameters satisfy the constraints such that each member may exist. Here,

A ff 2, is given as in (2.12).

3. Special Cases

Note that the results obtained in Section 2 are sufficiently general and can be specialized to yield various
simpler integral formulas. We now present some of these formulas.

Corollary 1. Let z, 5, \, o € C with min {R(6), R(\), R(0)} > 0 and |z| < 1. Also let
min {R(a’), R('), R(), R(d)} > —1.

Further, let C € RT and R(\) > —C~, where v € R is a chosen number from the integration path Li~eo
in (1.1). Then the following formula is true:

1
/u)\ 1 5 1L(a b)( (1_u))
0

x L% (o(1 — ) )R™P

n PksOk0k;T

[zufc] du

T(@n+b +DI(dm+d +1) &
= e > "I+ h)
o h=0

S Yo -

k=0



SOME INTEGRALS INVOLVING N -FUNCTIONS AND LAGUERRE POLYNOMIALS 1331

i (A+0+n,0),(aj, Aj)1,8, [05(aj,, Aj)]g+1,005r
X N7 =z
pr+1,05+1,0k;r
(b]7 Bj)l,om ()‘7 C)v [6J(bjk7 Bjk)]a+170k§7“

provided that the other involved parameters satisfy the constraints such that each member may exist.

Proof. Setting ( =& =1 in (2.11), after minor simplifications, we arrive at the desired result.

Corollary 2. Let z, 6, A\ € C with min {R(5), R(\), R(0)} > 0 and |z| < 1. Also let z, t € R with x > t.
Further, let

min {R(a’), RY), R(), R(d)} > —1,

C € R", and R(\) > —C~, where v € R is a chosen number from the integration path Liy in (1.1). Then the
following relation is true:

T

/@—uﬁ*w—w*ﬁﬁﬁﬁdu—wﬂ)

x Z9) (o (u — t); 1)R>P [2(u— )77 du

PLsTk Ok ;T

sia1 Dm0 + D0(m +d + 1)

=TO)@—1) m!n!
. m+n Uh Zh: h (—m)(h,k)(—n)k
k) TG+ + OT(h—k) + & + 1)
h=0 k=0
A+ 38+ h,C), (a5, A1, [65(aj, Aj)l g1,
% ROAEL z

pr+1,06+1,0k;7
(bja Bj)l,av ()‘ +h, C)’ [63' (bjm Bjk)]aJrl,Uk;?”

provided that the other involved parameters satisfy the constraints such that each member may exist.

Proof. Setting o’ = ¢ = £ = ( = 1 in (2.13) and using (1.5) to consider L,ll’b(l;x) = Z,(LI’b) (x;1), after
minor simplifications, we get the desired result.

Corollary 3. Let z, p, v € C with min {R(p), R(v), R(0)} > 0 and |z| < 1. Also let z € RT and
min {R(V'), R(d)} > —1.

Further, let C € RT and R(\) > —C~, where v € R is a chosen number from the integration path Li~oo
in (1.1). Then the following relation is true:

[t @ e oo 01N, el - de
0
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_xu+1/1§: hUQ?

il (,u + v, p)? (ajv Aj )1 B [5 (ajka Ajk)]5+1,pk;r
X Npi;Jrl o +1,0k5m

(b_]aB )1 as (,U p) [5 (b]mB]'k)}aJrl,Uk;T

provided that the other involved parameters satisfy the constraints such that each member may exist.

Proof. Setting ' = ¢ = 0 and £ = ¢ = 1 in (2.14) and using some suitable identities from Section 1,
including (1.7)—(1.10), after minor simplifications, we arrive at the desired result.

For 61 = ... =4, =1 in (1.1), we get the definition of the [-function (see [7]):
2] = I g 2]

(aj> Aj)l,n7 [1(ajk ; Ajk)]n+1,pk;r

m,n

- NPkZQkJW z
(bj’ Bj)l,ma [1(bjk’ Bjk)]m+1,qk;r
o 1 Qm ,n —5
T omi Pl qk s 1; T ds, G.D
L
where z € C\ {0}, i = v/—1, Q" | (s) is defined in (1.2), and the integration path L can be used as in (1.1).
Otherwise, for this (3.1), we can choose a new integration path. The existence conditions for integral (3.1) can be

easily deduced from the conditions for the N-function (1.1) with §; = ... =4, = 1.
Then the integral relations in Corollaries 1-3 can be reduced to yield the following integral formulas involving
the I -function and presented in Corollaries 46, respectively:

Corollary 4. Let z, 5, \, o € C with min {R(6), R(\), R(0)} > 0 and |z| < 1. Also let
min {R(), RY), R(), R(d)} > 1.

Further, let C € Rt and R(\) > —C'~, where v € R is a chosen number from the integration path Liye
in (1.1). Then the following relation is true:

1
/u)\ 1 (5 lL(a b’)( (1_u))
0

x LD (g(1 —u)) 128 [2u=C] du

PksO k5T

T(a@n+V +DI(dm+d +1) &
= = PR NCERD)
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. Eh: ( )[ ’I<:+b’(_ ))h(clk(gl_f)/j)-i-d’-i-l)

()‘ +0+ h> C)a (aja Aj)l,ﬁ) (ajkv Ajk)ﬁ+1,pk;r

z

7/B+1
X kaJrl op+1;r

(bj’ Bj)Lav (A, 0), (b]k7 Bjk)aJrl OksT
provided that the other involved parameters satisfy the constraints such that each member may exist.

Corollary 5. Let z, 5, A € C with min {R(5), R(A), R(c)} > 0and |z| < 1. Alsolet z, t € R with x > t.
Further, let

min {R(a’), R(V'), R(), R(d)} > -1,

C € RY, and R(X\) > —C'v, where v € R is a chosen number from the integration path L;~. in (1.1). Then the
following formula is true:

T

/ (& — ) — 20 (o — 1); 1)

t

x Z3 (o (u — ), )18 [2(u— 1) du

PksO k5T

n+b+DI(m+d +1)
m!n!

_ F((S)(.CL‘ _ t)6+>\—1r<

WL (=) bty (=)
. i ah};g( > [ T+ + DI((h—k) +d +1)

()‘ +0+ hv 0)7 (aja Aj)l,ﬂv (ajka Ajk)ﬁ-i—l,pk;r

XIBH z

pr+1l0+1;r
(bja Bj)l,on ()‘ +h, C) (b]k’ B )aJrl»Uk;?"

provided that the other involved parameters satisfy the constraints such that each member may exist.

Corollary 6. Let z, p, v € C with min {R(p), R(v), R(0)} > 0 and |z| < 1. Also let z € RT and
min {R('), R(d)} > —1.

Further, let C € RT and R(\) > —C~, where v € R is a chosen number from the integration path Li~eo
in (1.1). Then the following relation is true:

T

/ P e - P L= o(e — O ISP, [o(e — £)C) dt
0
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= ghtv— 15 ha 2"

w1 (n+v,0), (aj7 Aj)l,ﬂv (ajk7Ajk)ﬁ+17Pk§T
x I

pk—‘rl G’k+1 I8 <

(bja Bj)l,aa (Na O)a (bjk’ Bjk)a+170'k§r

provided that the other involved parameters satisfy the constraints such that each member may exist.

Further, a special case » = 1 of the [-function (3.1) reduces to become the H-function (see [3, 4]). Then

the formulas in Corollaries 4-6 are reduced to yield the integral formulas involving the H-function presented
in Corollaries 7-9, respectively.

Corollary 7. Let z, 6, \, o € C with min {R(5), R(A), R(c)} > 0 and |z| < 1. Also let
min {R(a’), R('), R(), R(d)} > —1.

Further, let C € RT and R(\) > —C~, where v € R is a chosen number from the integration path Li~eo
in (1.1). Then the following relation is true:

1
/u)\ 1 6 lL(a b')( (1_u))
0

% LT(f/’d/) (O’( ))Ha’ﬁ [ —C:| du

P1,01

T@n+b +DI(Em+d +1) &2
B (a'n+b +1)I(d'm + +)Zahf

N m!n! (0+7)
h=0
h
(=m)p—r(—n)k
szo ( >[ (@k+ b +1)0 (c’(h—k)+d’+1)]
(/\+(5+h, C),(CLj,Aj)Lpl
Hozﬂ-i—l

p1+l,01+1 z (32)
(bj7 Bj)l,fflﬂ ()‘7 C)

provided that the other involved parameters satisfy the constraints such that each member may exist.

Corollary 8. Let z, 6, A € C with min {R(5), R(\), R(c)} > 0 and |z| < 1. Also let x, t € R with x > t.
Further, let

min {R(a’), RY), R(¢), R(d)} > —1,

C € R*, and R()\) > —C~, where v € R is a chosen number from the integration path Ly in (1.1). Then the
following relation is true:
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T

/ (& — ) (u — 128 (o (u — 1); 1)

t

x Z) (g (u — t); 1) HO? [2(u — t)_c] du

£1,01

s L(n+V +1)I(m+d +1)
m!n!

<h> [ (=) (h—t) (=7 ]

k) [T+ 0+ O0((h—k) +d + 1)

()\ + (5 + h, C), (aj, Aj)l,pl
(bj, Bij)1,01, (A + 1, C)

=T(6)(z —t)

+n h
DD

m
h k=0

o

x HOOHL

pit+1l,0141 | (3.3)

provided that the other involved parameters satisfy the constraints such that each member may exist.

Corollary 9. Let z, p, v € C with min {R(p), R(v), R(0)} > 0 and |z| < 1. Also let z € RT and
min {R(V'), R(d)} > —1.
Further, let C € RT and R(\) > —C~, where v € R is a chosen number from the integration path Li~eo
in (1.1). Then the following relation is true:
xX

/ e — 01— oo — O BB [2(z — )] dt

pP1,01
0

(:U’ + v, C)a (a’ja Aj)l,pl
(bj7 B]')LUN (H’ C)

n
_ B+
= ghtv-l g (—n), o :nhH;“ﬁJ{,UlH [z (3.4)
h=0

provided that the other involved parameters satisfy the constraints such that each member may exist.

Note that a special case of the H-function with A; =1, j=1,...,p,and B; =1, j=1,...,q, reduces to
the following Meijer’s G -function (see, e.g., [2], Section 8.2):
(am)]
(bs, )

Then the formulas in Corollaries 7-9 are reduced to the corresponding integral formulas involving Meijer’s
G -function (3.5)—(3.7).

(aj’ 1)1,91

(bj7 1)1,01

— QB

p1,01 | T

HEG, [w

Corollary 10. Let z, 6, A, o € C with min {R(8), R(\), R(0)} > 0 and || < 1. Also let

min {R(a’), RY), R(), R(d)} > —1.
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Then the following relation is true:

1
/ AU — ) LY (01— )
0

x L) (g(1 —u)G28, [zu] du

P1,01

/ / / / m+n
_ Fan+t +1D)I'(m+d +1) Z (6 + h)

m!n!
h=0

£ Ol b

(A+d+h), (am)]
(o), (V)

(T +h) api [ 55)

T\ p1+lo+1 [#

provided that the other involved parameters satisfy the constraints such that each member may exist.

Corollary 11. Let z, 6, A\, 0 € C with min {R(5), R(\), R(c)} > 0 and |z| < 1. Also let z,t € R
with x > t. Further, let

min {R(a’), RY), R(¢), R(d)} > —1.

Then the following relation is true:

x

/ (& — )L — 20 (o — 1); 1)

t

x Z3T) (o (u —1); 1)GYE [2(u— )" du

P1,01

n+b +1DI'(m+d +1)
m!n!

— F((S)(:E _ t)6+>\—1r(

D o Zh: <Z> [F(k n b/(;T))&(z)(—_’S)i d'+ 1)]

(A+0+h), (ap,)
(bo1); (A + 1)

TA+3+h) ap

F()\ + h) p1+1l,01+1 (3.6)

z

provided that the other involved parameters satisfy the constraints such that each member may exist.
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Corollary 12. Let z, yi, v, o € C with min {R(n), R(v), R(o)} > 0 and |z| < 1. Also let x € R* and

min {R(V'), R(d)} > —1.
Then the following relation is true:

T

/ P - L - o — O GO 2 — 1) dt
0

= ghtv—1 Z (—=n), o "EthﬁJ{}oﬁl [z 3.7)

(n+v), <ap1>]
(boy)s (1) ]

provided that the other involved parameters satisfy the constraints such that each member may exist.

In this case, if we replace o1, aj, b; by o1 + 1, 1 —a;, 1 —b; with by = 0, respectively, and set v = 1 in
the H-function, then we get Wright’s generalized hypergeometric function , ¥, (see, e.g., [14, p. 50]):

- (1—aj,4)1p (aj, Aj)1p;
HP1,01+1 - :Pl\IIUl z. (3.9)
(0,1), (1 = bj, Bj)1q (bjs Bj),q;

Further, by applying relation (3.8) to relations (3.2), (3.3), and (3.4), we arrive at the following respective integral
relations containing the Wright’s generalized hypergeometric function ,¥, (3.9)—(3.11).

Corollary 13. Let z, 5, \, o € C with min {R(6), R(\), R(c)} > 0 and |z| < 1. Also let
min {R(a’), R('), R(), R(d)} > —1.

Then the following relation is true:

1
/u)\ 1 (5 1L(a b’)( (1_u))
0

x LEN (0(1 = u)) py Vo, [2u7P] du

/ / / / m+n
_ Fan+t +1D)I'(m+d +1) Z TS+ h)

m!n!
h=0

D3 ( >[ T ))h(;’k((h_n)g)w’“)]

k=0

X p1+1¥0 41 (3.9

(A 46+ h,p), (aj, 45)1,, ]
R
(bj, Bj)l,o’17 ()\7p>

provided that the other involved parameters satisfy the constraints such that each member may exist.
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Corollary 14. Let z, 6, A, 0 € C with min {R(5), R(\), R(c)} > 0 and |z| < 1. Also let z,t € R
with x > t. Further, let

min {R(a’), R('), R(), R(d)} > 1.

Then the following relation is true:

x

/ (& — )L — 1209 (o (u — 1) 1)

t

x Z) (o (u — );1) py oy [2(u — 1) P) du

sir1L(n+b0 + DI (m +d" +1)

— O m!n!
m-+n h h (_m)(hfk)(_n)k
" h=0 ” kZ:O (k> [F(k‘ +0+1D((h—k)+d + 1):|

X p141¥Wo; 41 (3.10)

()‘ +0+ h,p), (aj’ Aj)l,m ]
A
(bj7 Bj)170'17 (>‘ + h,p)

provided that the other involved parameters satisfy the constraints such that each member may exist.

Corollary 15. Let z, p, v, o € C with min {R(n), R(v), R(0)} > 0 and |z| < 1. Also let x € RT and

min {R(V'), R(d)} > —1.

Then the following formula is true:

T

[ =t o= Oy et 1)
0
(:U’ + va)a (a’j’ AJ')17P1.

n
=2y (—n)p ol 3 1V, 1 iz (3.11)
h=0 (bj7Bj)17017 (N)p)

provided that the other involved parameters satisfy the constraints such that each member may exist.

Furthermore, if we choose p = 1; a =1, 8 =2, py = 01 = 2; A; = B;j = 1; by = 0 and replace a1,
ag, ba with 1 —ay, 1 —ag, 1 — ba, respectively, then we reduce the H-function to the Gaussian hypergeometric
function o F} as follows:

1,2
H272 [x

(1—-a1,1),(1 —ap1) _w b
(0,1), (1 —ba, 1) ]_ 2F1{ar, ag; by; —a]. (3.12)

Finally, applying relation (3.12) to relations (3.2), (3.3) and (3.4), we get relations (3.13)—(3.15) presented in what
follows whose integrands and the resulting formulas contain o /' and the generalized hypergeometric function 35,
respectively.
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Corollary 16. Let z, 6, A, o € C with min {R(6), R(\), R(0)} > 0 and |z| < 1. Also let
min {R(a’), R('), R(), R(d)} > 1.

Then the following relation is true:
1
[ - o - w)
0

x LX) ((1 — u)) o Fi[a1, ag; by; zu~ ] du

n

D(a'n+b + DI(m+d +1)
_ (@n+b + 1IN m+d +1) thr(5+h)

m!n!
h=0

h

h (=m)n—r(=n)
X (5+h))\kzo <k‘> [F(a’k—i—b’—i—I)Fh(cf(h—lf)—}—d/—l-l)

X 3F2[A + 0 + h, a1, a2; b2, A; 2] (3.13)

provided that the other involved parameters satisfy the constraints such that each member may exist.

Corollary 17. Let z, 6, A\, ¢ € C with min {R(0),R(\),R(c)} > 0 and |z| < 1. Also let z, t € R
with x > t. Further, let

min {R(a’), R('), R(), R(d)} > 1.
Then the following relation is true:

T

/ (& — )P (= 1200 (o (u — 1); 1)

t

x Z) (g (u — 1);1) o Fi[ay, ag; by; 2(u — t) ™ du

mln!

=T(5)(x —t)

mAn " rh (=m) (h—r) (=)
X Z ol ()\—I—h)éz <k> [F(k—i—b’ FDO0((h—k)+d +1)

h=0 k=0

><3F2[)\+5—|—h,al,az;bg,)\—i—h;z] (3.14)

provided that the other involved parameters satisfy the constraints such that each member may exist.
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Corollary 18. Let z, i, v, o € C with min {R(p),R(v),R(c)} > 0 and |z| < 1. Also let x € R and

min{R(), R(d')} > —1.

Then the following relation is true:

/ t”_l(m — t)“_l [1—o(x—1t)]"2F]a1,a2;be; z(x — t)_l] dt
0

= 2" (1), Y (—n)n o™ 23 Folu+ v, ax, as; ba, 15 2] (3.15)
h=0

provided that the other involved parameters satisfy the constraints such that each member may exist.

11.
12.

13.
14.
15.

16.
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