
Ukrainian Mathematical Journal, Vol. 71, No. 4, September, 2019 (Ukrainian Original Vol. 71, No. 4, April, 2019)

RESONANT EQUATIONS WITH CLASSICAL ORTHOGONAL POLYNOMIALS. II

I. Gavrilyuk1,2 and V. Makarov3 UDC 517.9

We study some resonant equations related to the classical orthogonal polynomials on infinite intervals,
i.e., the Hermite and the Laguerre orthogonal polynomials, and propose an algorithm for finding their
particular and general solutions in the closed form. This algorithm is especially suitable for the computer-
algebra tools, such as Maple. The resonant equations form an essential part of various applications, e.g.,
of the efficient functional-discrete method for the solution of operator equations and eigenvalue problems.
These equations also appear in the context of supersymmetric Casimir operators for the di-spin algebra
and in the solution of square operator equations, such as A2u = f (e.g., of the biharmonic equation).

1. Introduction

The present paper is the second part of our paper published in the previous issue of the journal. In this part,
we study the resonant equations with differential operators specifying classical orthogonal polynomials on infinite
intervals, namely, the Hermite and the Laguerre orthogonal polynomials. We use Algorithm 3.1 from Part I (see [4])
to obtain particular solutions of the corresponding resonant equations of the first and of the second kind and obtain
explicit formulas for the general solutions of the corresponding inhomogeneous resonant differential equations.

2. Resonant Equation of the Hermite Type

2.1. Hermite Resonant Equation of the First Kind. In this section, we consider the following Hermite-type
resonant gather:
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with ⌫ = n (see [6, p. 147]). The general solution of the homogeneous equation (2.1) is given by the formula

u(x) = c1Hn

(x) + c2hn(x),

where
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is an Hermite functions of the second kind satisfying the recurrence equation for Hermite polynomials. This
function can also be expressed via the confluent hypergeometric function in the following way [5]:
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These formulas were obtained by using Maple to solve the Hermite differential equation. They satisfy the
difference equation

p
n+1(x) = 2xp

n

(x)− 2np
n−1(x), n = 1, 2, . . . ,

p0(x) = 0, p1(x) = −2.

(2.3)

The formulas for the odd and the even indices can be combined into the following formula:
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where [x] and {x} denote the integral and fractional parts of a real number x.
The last expression can be transformed into

h
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(x) = H
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(x)
p
⇡ erfi(x) + p
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(x) exp(x2),

where the polynomials p
n

(x) satisfy the recurrence equation (2.3).
We use Theorem 3.1 of [4] to find a particular solution of the inhomogeneous equation. First, we consider the

case n = 0, i.e., differentiate representation (2.2) with respect to ⌫, i.e.,
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Then we set ⌫ = 0 and omit some terms satisfying the homogeneous equation
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Similarly, in order to get u1(x) we set n = 1 in (2.2), differentiate with respect to ⌫, substitute ⌫ = 1, and
omit some terms satisfying the homogeneous differential equation. Thus, by using Maple, we obtain
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where erfc(x) is the imaginary error function [2].
It is easy to see that this way of getting particular solutions is very cumbersome. In what follows, we show

that Algorithm 3.1 from Part I [4] provides a more comfortable way.
Actually, we differentiate the recurrence relation for the Hermite polynomials

H
n+1(x)− 2xH

n

(x) + 2nH
n−1(x) = 0

with respect to n and then apply Theorem 3.1 from [4]. As a result, we get the following recursion:

u
n+1(x) = 2xu

n

(x)− 2nu
n−1(x) +H

n−1(x), n = 1, 2, . . . . (2.7)

By using (2.5), (2.6), we obtain the following expressions as particular solutions:
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Further, we use the following ansatzes:

u0(x) = χ0(x) + c0,

u1(x) = χ1(x) + c1x

(2.8)

with undetermined coefficients c0 and c1 for the initial values of Algorithm 3.1 from Part I (see [4]). Substituting
these expressions in the recurrence equation (2.7) with n = 1 and choosing the coefficients guaranteeing that
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u2(x) satisfies the resonant equation, we conclude that c0 can be arbitrary, whereas c1 must satisfy the equation

4 + 4c1 = 0,

i.e., c1 = −1. Note that if we choose c0 = 0, then we arrive at a representation
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For n = 0, 1, 2 this representation was obtained in [2].
Thus, we have constructed u

k

(x), k = 0, 1, 2, which are particular solutions of the Hermite resonant equation
of the first kind. The next theorem shows that this is true for all n = 0, 1, 2, . . . .

Theorem 2.1. The functions u
k

(x), k = 3, 4, . . . , obtained by the recursion (2.7) with the initial condi-
tions u

k

(x), k = 0, 1, given by (2.8) with c0 = 0 and c1 = −1, satisfy the resonant Hermite differential equation
of the first kind.

Proof. We prove this assertion by induction.
Assume that all u

p

(x), p=0, 1, . . . , n, satisfy the resonant Hermite differential equation of the first kind (2.1).
Applying the Hermite differential operator

A
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+ 2(n+ 1),

to the recurrence equation (2.7), by the assumption of induction, we obtain
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Further, we use the classical relation (see, e.g., [3], Sec. 10.13)

dH
n

(x)

dx
= 2nH

n−1(x).

Differentiating this equality with respect to n and using Theorem 3.1 in [4], we get

−2

du
n

(x)

dx
= −4nu

n−1(x) + 2H
n−1(x),

which shows that the square bracket in (2.10) is equal to zero.
Theorem 2.1 is proved.

Remark 2.1. Despite their beauty, relations (2.9) are uncomfortable for practical calculations because these
calculations require differentiation. From this point of view, our recurrence algorithm is more comfortable and can
be easily realized by using a computer-algebra tool, such as Maple.
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Further, the general solution of the resonant equation (2.1) is given by the formula

u(x) = c1Hn

(x) + c2hn(x) + u
n

(x), (2.11)

where c1 and c2 are arbitrary constants.

2.2. The Hermite Resonant Equation of the Second Kind. Consider a resonant equation
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where (a)−1 = 0. The general solution of (2.12) has the form (2.11).
To obtain a recursive algorithm for particular solutions, we differentiate the recurrence equation for Hermite

functions of the second kind with respect to n and obtain

u
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These solutions are modified to the initial values of recursion (2.14) in order to guarantee that u2(x) satisfies the
differential equation. To this end, we use the ansatzes

u0(x) = χ0(x) + c0h0(x), u1(x) = χ1(x) + c1h1(x) (2.16)

with undetermined coefficients c1 and c2. Substituting these relations in (2.14) with n = 1 we demand that u2(x)
must satisfy the resonant differential equation and obtain the following formulas for arbitrary constants and the
particular solution u2(x) :
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The particular solutions u
n

(x) of the Hermite resonant equation of the second kind satisfy the resonant differ-
ential equation for n = 0, 1, 2 by construction. The next theorem shows that this is the case for all n = 0, 1, 2, . . . .

Theorem 2.2. The functions u
k

(x) obtained by using recursion (2.17) with the initial conditions u
k

(x),

k = 0, 1, given by (2.16) satisfy the resonant Hermite differential equation of the second kind for all k = 3, 4, . . . .

The proof is completely analogous to the proof of Theorem 2.1 if we take into account the fact that the Hermite
functions of the second kind (that are not polynomials!) satisfy the same recurrence equation as the Hermite
polynomials and the same differentiation formula.
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3. Resonant Equation of the Laguerre Type

3.1. The Laguerre Resonant Equation of the First Kind. In this section, we consider the following equation
of the Laguerre type:

x
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where
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In particular, for ↵ = 0, we find
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The general solution of the homogeneous Laguerre differential equation is given by the formula
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with arbitrary constants c1 and c2. By Theorem 3.1 in [4], a particular solution of the Laguerre resonant differential
equation of the first kind
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where Φ(a, c;x) is the confluent hypergeometric function [1] (Ch. 6). In this relation, we replace ⌫ 2 R with
n 2 N and obtain the resonant Laguerre equation and the corresponding particular solution:
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we transform the sums u
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where γ = 0.5772156649 . . . is Euler’s constant. With an aim to get the sum u
n,2(x) in the closed form, we

note that

v
(n)
i

(x) =
1X

p=n+1

xp

p!(p− i)
= −xi

i!
w(x)− exp(x)

i!

i−1X

p=0

p!xi−1−p

−
n−i−1X

p=0

xn−p

(n− p)!(n− p− i)
+

xi

i!

i−1X

p=0

1

p+ 1

+

i−1X

p=0

xp

p!(i− p)
,

(3.5)
w(x) = Ei1(−x) + ln(−x) + γ.

Then it follows from (3.3)–(3.5) that

u
n,2(x) = −(−1)

nn!

nX

i=0

a
(n)
i

v
(n)
n−i

(x) =

nX

i=0

(−1)

n+1−iCi

n

v
(n)
n−i

(x)



RESONANT EQUATIONS WITH CLASSICAL ORTHOGONAL POLYNOMIALS. II 529

= L
n

(x)w(x)− exp(x)

n−1X

p=0

xp
n−p−1X

i=0

(−1)

n+in!(n− i− 1− p)!

i![(n− i)!]2

+

nX

p=0

xp
nX

i=0

(−1)

n+1−in!

i!(n− i)!
b
p,i

,

where

b
p,i

=

8
>>>><

>>>>:

1

p!(i− p)
, p 6= i,

1

i!

X
i−1

t=0

1

t+ 1

, p = i.

The technique presented above for ↵ = 0 is even more cumbersome for ↵ 6= 0. This is why, in what follows,
we use our recursive algorithm for finding particular solutions in order to be able to get the general solution of the
Laguerre resonant equation (3.1) in the form

u(x) = c1L
↵

n

(x) + c2l
↵

n

(x) + u
n

(x),

with arbitrary constants c1 and c2.

Differentiating the recurrence equation for the Laguerre polynomials with respect to n and using Theorem 3.1
in [4], we get the following recurrence formula for the particular solutions:

u↵
n+1(x) =

2n+ ↵+ 1− x

n+ 1

u↵
n

(x)− n+ ↵

n+ 1

u↵
n−1(x)

+

↵− 1− x

(n+ 1)

2
L↵

n

(x)− ↵− 1

(n+ 1)

2
L↵

n−1(x), n = 1, 2, . . . , (3.6)

with the corresponding initial conditions. Thus, for ↵ = 1 we get

u10(x) =
1

x
− ln(x),

u11(x) = (2− x)u10(x)− x− 1

x
,

and the following representation for the particular solution of the resonant equation:

u
n

(x) = L1
n

(x)u0(x) + q
n

(x)

✓
x+

1

x

◆
+ v

n

(x).

Here, the polynomial q
n

(x) satisfies the recurrence equation for the Laguerre polynomials with the initial condi-
tions

v0(x) = 0, v1(x) = −1.
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The polynomial v
n

(x) solves the difference problem

v1
n+1(x) =

2n+ 2− x

n+ 1

v1
n

(x)− v1
n−1(x)−

x

(n+ 1)

2
L1
n

(x), n = 1, 2, . . . ,

v10(x) = 0, v11(x) = 0.

(3.7)

For any ↵, by Theorem 3.1 in [4], we obtain a particular solution

u↵
n

(x) = − d

d⌫
L↵

⌫

(x)

����
⌫=n

= −Φ(−n,↵+ 1;x)
d

d⌫

Γ(↵+ 1 + ⌫)

Γ(↵+ 1)Γ(⌫ + 1)

����
⌫=n

− Γ(↵+ 1 + n)

Γ(↵+ 1)Γ(n+ 1)

d

d⌫
Φ(−⌫,↵+ 1;x)

����
⌫=n

,

whence we get the following particular solutions for n = 0, 1 :

χ0(x) =
x

↵+ 1

2F2(1, 1; 2, 2 + ↵;x),

χ1(x) = x 2F2(1, 1; 2, 2 + ↵;x)− x2

↵+ 2

2F2(1, 1; 2, 3 + ↵;x).

With an aim to obtain the solutions of the resonant differential equation from the recurrence formula, we use the
following ansatzes:

u↵0 (x) = χ0(x) + c0,

u↵1 (x) = χ1(x) + c1L
↵

1 (x)

with undetermined coefficients c0 and c1. Substituting these expressions in (3.7) and demanding that the particular
solution u↵1 (x) must satisfy the resonant differential equation, we find

c0 = − ↵(3↵+ 5)

2(↵+ 1)(↵+ 2)

, c1 = − ↵

2(↵+ 2)

.

In this case, the initial values of the recursive algorithm for finding the particular solutions take the form

u↵0 (x) =
x

↵+ 1

2F2(1, 1; 2, 2 + ↵;x)− ↵(3↵+ 5)

2(↵+ 1)(↵+ 2)

,

u↵1 (x) = x 2F2(1, 1; 2, 2 + ↵;x)− x2

↵+ 2

2F2(1, 1; 2, 3 + ↵;x)− ↵

2(↵+ 2)

L↵

1 (x).

(3.8)

The next assertion shows that the functions u↵
n

(x) generated by recursion (3.6) with the initial values (3.8)
satisfy the Laguerre resonant differential equation of the first kind for all n = 0, 1, 2, . . . .
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Theorem 3.1. The functions u↵
n

(x) generated by the recursive algorithm (3.6) with the initial values (3.8)
are particular solutions of the Laguerre resonant differential equation of the first kind for all n = 0, 1, 2, . . . .

Proof. We prove this assertion by induction. First, we note that the functions u↵
n

(x) for n = 0, 1, 2 are
particular solution due to their construction. We assume that all functions u↵

p

(x), p = 0, 1, . . . , n, are particular
solutions and prove that, in this case, u↵

n+1(x) is also a particular solution.
Actually, by applying the Laguerre differential operator

A↵

n+1 = x
d2

dx2
+ (↵+ 1− x)

d

dx
+ n+ 1

to both sides of (3.6) and using the induction hypothesis, we can write

A↵

n+1u
↵

n+1(x) = L↵

n+1(x) +
2

n+ 1


nu↵

n

(x)− x
du↵

n

(x)

dx
− (n+ ↵)u↵

n−1(x)

�

− 2

n+ 1

⇥
L↵

n

(x)− L↵

n−1(x)
⇤
. (3.9)

Further, we use the relation (see, e.g., [8], Sec. 10.12)

x
dL↵

n

(x)

dx
= nL↵

n

(x)− (n+ ↵)L↵

n−1(x).

Differentiating this relation with respect to n and using Theorem 3.1 of [4], we conclude that both square brackets
in (3.9) are equal to zero and, hence, the assertion is proved.

The general representation of the particular solutions has the form

u↵
n

(x) = p↵
n

(x) 2F2(1, 1; 2, 2 + ↵;x)

+ q↵
n

(x) 2F2(1, 1; 2, 3 + ↵;x) + v↵
n

(x), n = 2, 3, . . . ,

where the polynomials p↵
n

(x), q↵
n

(x) satisfy the classical Laguerre recurrence equation with the initial conditions

p↵0 (x) =
x

↵+ 1

, p↵1 (x) = x,

q↵0 (x) = 0, q↵1 (x) = − x2

↵+ 2

,

respectively. The polynomials v↵
n

(x) satisfy the inhomogeneous recurrence equation

v↵
n+1(x) =

2n+ ↵+ 1− x

n+ 1

v↵
n

(x)− n+ ↵

n+ 1

v↵
n−1(x)

+

↵− 1− x

(n+ 1)

2
L↵

n

(x)− ↵− 1

(n+ 1)

2
L↵

n−1(x), n = 1, 2, . . . ,
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with the initial conditions

v↵0 (x) = − ↵(3↵+ 5)

2(↵+ 1)(↵+ 2)

,

v↵1 (x) = −↵(↵+ 1− x)

2(↵+ 2)

.

3.2. The Laguerre Resonant Equation of the First Kind (Revisited). In this section, we again consider
the resonant Laguerre differential equation of the first type (3.1) and show that its particular solutions can be
represented in terms only of elementary functions.

We know that one of linear independent solutions of the homogeneous differential equation is the Laguerre
function of the second kind [7, p. 16, 20]. Solving the corresponding differential equation by usingMaple, we arrive
at the following representation of the Laguerre function of the second kind for noninteger ↵ :

l↵
n

(x) = x−↵

1F1(−n− ↵,−↵+ 1;x)

= Γ(1− ↵,−x)L↵

n

(x)− (−x)−↵p↵
n

(x) exp(x),

p↵
n+1(x) =

1

n+ 1

⇥
(2n+ ↵+ 1− x)p↵

n

(x)− (n+ ↵)p↵
n−1(x)

⇤
, n = 1, 2, . . . ,

p↵0 (x) = 0, p↵1 (x) = 1− x.

For nonnegative natural ↵ 2 N we obtain

l↵
n

(x) = Ei1(−x)L↵

n

(x)− (−x)−↵p↵
n

(x) exp(x),

p↵−1(x) = (↵− 1)!, (3.10)

p↵0 (x) = x↵−1
+ x↵

⇥
U(2, 2,−x) + (−1)

↵↵!U(1 + ↵, 1 + ↵,−x)
⇤
.

Note that the function in the second initial condition in (3.10) solves the following difference initial-value
problem:

p↵0 (x) = xp↵−1
0 (x) + (↵− 1)!, ↵ = 1, 2, . . . , p00(x) = 0.

By Theorem 3.1 in [4], we can represent the particular solutions of the Laguerre resonant equation of the first
kind as follows:

u
n

(x) =
(−1)

n+1

n!

@

@⌫
U(−⌫, 1 + ↵,−x)|

n=⌫

, n = 0, 1 . . . .

This representation gives the particular solutions

χ↵

0 (x) = u0(x) = − ln(x) +

↵−1X

p=0

(↵− p)
p+1

(p+ 1)xp+1
,
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χ↵

1 (x) = u1(x) = −L↵

1 (x) ln(x) +

↵X

p=0

k
p

(↵)

xp
,

where

k
p+1(↵) = p

↵−1X

i=1

k
p

(i), p = 1, 2, . . . ,↵− 1,

k1(↵) =
↵(↵+ 1)

2

, k0(↵) = −↵− 2, ↵ = 2, 3, . . . .

In the first step of Algorithm 3.1 of [4] we use the following ansatzes:

u↵0 (x) = χ↵

0 (x) + c0L
↵

0 (x) + d0L
↵

1 (x),

u↵1 (x) = χ↵

1 (x) + c1L
↵

0 (x) + d1L
↵

1 (x)

with undetermined coefficients c0, d0, c1, and d1, substitute these expressions in (3.6) with n = 1, deter-
mine u↵2 (x), and choose c0, d0, c1, and d1 for which u↵2 (x) satisfies the resonant differential equation. As a re-
sult, we obtain d0 = 0, d1 = 0, and c1 = 1 + c0.

We can now prove that

u↵
n

(x) = −L↵

n

(x) ln(x) +
p↵
n

(x)

x↵
,

where the polynomials p↵
n

(x) satisfy the recurrence equation

p↵
n+1(x) =

2n+ ↵+ 1− x

n+ 1

p↵
n

(x)− n+ ↵

n+ 1

p↵
n−1(x)

+

↵− 1− x

(n+ 1)

2
L↵

n

(x)− ↵− 1

(n+ 1)

2
L↵

n−1(x), n = 1, 2, . . . ,

with the initial conditions

p↵0 (x) =
↵−1X

p=0

x↵−p−1
(↵− p)

p+1

p+ 1

+ c0x
↵,

p↵1 (x) =

↵X

p=0

x↵−pk
p

(↵) + (1 + c0)x
↵L↵

1 (x).

3.3. The Laguerre Resonant Equation of the Second Kind. In this section, we consider the resonant
equation

x
d2u(x)

dx2
+ (1 + ↵− x)

du(x)

dx
+ nu(x) = l↵

n

(x), (3.11)

where l↵
n

(x) is the Laguerre function of the second kind given by (3.2).
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By virtue of Theorem 3.1 in [4], the relation

u
n

(x) = − d

d⌫
l↵
⌫

(x)|
⌫=n

(3.12)

specifies a particular solution of (3.11). Hence, its general solution is given by the formula

u(x) = c1L
↵

n

(x) + c2l
↵

n

(x) + u
n

(x).

The application of relation (3.12) for arbitrary n is quite cumbersome. Therefore, we use Algorithm 3.1
from [4], where, for the sake of simplicity, we set ↵ = 0. Solving the differential equation (3.11) with the help of
Maple for n = 0 and n = 1, we find

χ0(x) = −
xZ

1

exp(t)

t

tZ

1

Ei1(−⇠) exp(−⇠)d⇠ dt,

(3.13)

χ1(x) =
⇥
(1− x)Ei1(−x)− exp(x)

⇤
xZ

1

⇥
1 + Ei1(−⇠)(−1 + ⇠) exp(−⇠)

⇤
(−1 + ⇠)d⇠

+

xZ

1

exp(−⇠)
⇥
Ei1(−⇠)(−1 + ⇠) + exp(−⇠)

⇤2
d⇠(−1 + x).

As the ansatzes for the initial values of our algorithm, we use

u00(x) = χ0(x) + c0Ei1(−x) + d0,

u01(x) = χ1(x) + c1l
0
1(x) + d1L

0
1(x)

(3.14)

with undetermined constants c0, d0, c1, and d1. Differentiating the recurrence equation for the Laguerre functions
of the second kind with respect to n with regard for (3.12), we obtain the following recurrence relation for the
particular solutions:

u0
n+1(x) =

2n+ 1− x

n+ 1

u0
n

(x)− n

n+ 1

u0
n−1(x)

− 1 + x

(n+ 1)

2
l0
n

(x) +
1

(n+ 1)

2
l0
n−1(x). (3.15)

We substitute (3.14) to this equation with n = 1 and demand that the obtained function u02(x) must satisfy
the resonant differential equation (3.11) with n = 2. As a result, we obtain

c0 = −Ei1(−1) exp(−1)− 1, d0 = −
⇥
Ei1(−1) exp(−1/2) + exp(1/2)

⇤2
,

c1 = 0, d1 = 0.

(3.16)
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By analogy with Theorem 3.1, we can prove the following assertion:

Theorem 3.2. The functions u0
n

(x) generated by the recursive algorithm (3.15) with the initial values (3.14)
and constants given by (3.16) are particular solutions of the Laguerre resonant differential equation of the second
kind for all n = 0, 1, 2, . . . .

As a result of substitution in (3.15), it can be proved that the following representation is true:

u0
n

(x) = p0
n

(x)χ1(x) + q0
n

(x)χ0(x) + v0
n

(x)Ei1(−x) + w0
n

(x) exp(x) + q0
n

(x)d0, (3.17)

where the polynomials p0
n

(x) and q0
n

(x) satisfy the recurrence relation for the Laguerre polynomials with the
initial conditions

p00(x) = 0, p01(x) = 1, q00(x) = 1, q01(x) = 0.

The polynomials w0
n

(x) satisfy the inhomogeneous recurrence relation for the Laguerre polynomials

w0
n+1(x) =

2n+ 1− x

n+ 1

w0
n

(x)− n

n+ 1

w0
n−1(x)

− 1 + x

(n+ 1)

2
p0
n

(x) +
1

(n+ 1)

2
p0
n−1(x), n = 1, 2, . . . ,

with the initial conditions

w0
1(x) = 0, w0

2(x) =
x+ 1

4

.

Here, p0
n

(x) are the same polynomials as in (3.17).
The polynomials v0

n

(x) solve the following discrete initial-value problem:

v0
n+1(x) =

2n+ 1− x

n+ 1

v0
n

(x)− n

n+ 1

v0
n−1(x)

− 1 + x

(n+ 1)

2
L0
n

(x) +
1

(n+ 1)

2
L0
n−1(x), n = 1, 2, . . . ,

v01(x) = 0, v02(x) =
x2 − 2c0

4

.

We now present some particular solutions of the Laguerre resonant equation of the second kind obtained by
using our algorithm:

u00(x) = χ0(x) + c0 Ei1(−x) + d0, u01(x) = χ1(x),

u02(x) = −x− 3

2

χ1(x)−
1

2

χ0(x)

+

x2 − 2c0
4

Ei1(−x)− x2 − 1

8

exp(x)− 1

2

d0,
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u03(x) =

✓
1

6

x2 − 4

3

x+

11

6

◆
χ1(x) +

✓
1

6

x− 5

6

◆
χ0(x)

+

✓
− 5

36

x3 +
7

12

x2 +
c0
6

x− 5c0
6

◆
Ei1(−x)

+

✓
1

24

x3 − 11

72

x2 − 23

72

x− 1

72

◆
exp(x) +

✓
1

6

x− 5

6

◆
d0,

where c0 and d0 are given by relation (3.16) and χ0 and χ1 are given by relation (3.13).
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