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RESONANT EQUATIONS WITH CLASSICAL ORTHOGONAL POLYNOMIALS. I

I. Gavrilyuk1,2 and V. Makarov3 UDC 517.9

We study some resonant equations related to the classical orthogonal polynomials and propose an algo-
rithm for finding their particular and general solutions in the explicit form. The algorithm is especially
suitable for the computer algebra tools, such as Maple. The resonant equations form an essential part
of various applications, e.g., of the efficient functional-discrete method aimed at the solution of opera-
tor equations and eigenvalue problems. These equations also appear in the context of supersymmetric
Casimir operators for the di-spin algebra, as well as for the square operator equations A2u = f ; e.g., for
the biharmonic equation.

1. Introduction

Polynomials (especially the orthogonal polynomials [8, 9, 25]) prove to be a very important and extensively
used mathematical tool. One of the application fields for polynomials are differential equations. Some of them pos-
sess polynomial solutions and the solution of other equations can be approximated by polynomials. In the present
paper, we study a special class of resonant differential equations with differential operators related to the classical
orthogonal polynomials.

There are various definitions of resonant equations (see, e.g., [1, 2]), where a boundary-value problem is
called resonant if the operator defined by the differential equation and the boundary conditions does not possess
the inverse. In the present paper, we follow the definition from [6, 16, 18] and call an equation of the form Lf = g

with Lg = 0 resonant. In other words, the right-hand side of the resonant equation belongs to the kernel K(L) of
the operator L. These equations are of interest both from the theoretical point of view and from the practical side in
various applications. Thus, in [17], the authors proposed the so-called functional-discrete method (FD-method) for
the solution of the operator equations and eigenvalue problems. The method is based on the ideas of perturbation of
the analyzed operator and on the homotopy idea. This approach was applied to various problems and, in particular,
to eigenvalue problems in [10–13]. It was proved that the method possesses a superexponential convergence rate.
An essential part of the algorithm are certain inhomogeneous equations with resonant component in a sense of the
definition presented above.

A simple but profound example showing principally different behaviors of the solutions in the resonant and
nonresonant cases gives the following simple differential equation (the so-called vibration equation):

d2y

dt2
+ µ2y = sin (⌫t). (1.1)
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There exists a particular solution of the form

y(t) =

8
>>><

>>>:

1

µ2
− ⌫2

sin (⌫t) for ⌫ 6= ±µ,

−

t

2µ
cos (µt) for ⌫ = ±µ,

(1.2)

which is resonant for ⌫ = ±µ

✓
in this case, the right-hand side sin (µt) solves the homogeneous equation

d2y

dt2
+

µ2y = 0

◆
and nonresonant, otherwise. The vibration amplitude in the resonant case tends to infinity if the stimu-

lating vibration frequency ⌫ on the right-hand side of the equation tends to the resonant eigenfrequency µ of the
system described by the differential operator on the left-hand side. The value of difference between the nonresonant
and resonant solutions is discussed in [7].

The example presented above can be embedded into the following abstract framework: Assume that a system
is described by an operator equation

Au− λu = f

in a Hilbert space H, where the operator A is completely defined by its spectrum, i.e., by the eigenvalues λj ,

j = 1, 2, . . . , and the corresponding eigenvectors uj , j = 1, 2, . . . . Here, λ is a parameter characterizing the
system. If the right-hand side has the form f = ↵uk for fixed ↵, k, i.e., f solves the equation (A − λk)f = 0,

then the solution of the corresponding operator equation is

u =

↵

λk − λ
uk.

We have kuk ! 1 (kuk can be interpreted as the amplitude in the example presented above) in the following
two cases:

(i) if ↵ ! 1 (the stimulating amplitude tends to infinity)

and

(ii) if the system parameter tends to an eigenvalue λk of the operator, i.e., λ ! λk.

The second case is called resonant and the value λk of the parameter λ is called the resonant value. In this
case, we deal with the resonant equation in a sense of definition presented above and of the example equation (1.1).
It is clear that a system may possess various resonant values of the parameter.

The resonant equations also appear when solving the quadratic operator equation

A2u = 0 (1.3)

with a given operator A. Denoting Au = v, we reduce equation (1.3) to a “simpler” pair of equations Av = 0,

Au = v, where the last equation is resonant.
The resonance phenomena play a very important role in the natural world and in various technical applications,

e.g., in the magnetic resonance imaging (nuclear spin tomography) [23], fluid dynamics [14, 15], etc. The resonant
equations also appear in the context of supersymmetric Casimir operators for the di-spin algebra (see, e.g., [6, 7]
and the literature cited therein). These equations often require specific techniques for their solution and investiga-
tion [1–3]. The condition of solvability of the resonant equation in a Hilbert space is the orthogonality of the right-
hand side to the kernel of the operator. The situation for other spaces is more complicated (see, e.g., [1–3]), where
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certain sufficient solvability conditions were proved. Thus, in [2], the following Liénard equation that describes
vibrations and various dynamical systems, was considered as an illustration of the presented solvability theory:

ẍ(t) + g(x)ẋ(t) + ax(t) = f(t), x(0) = x(1), ẋ(0) = ẋ(1), t 2 [0, 1]. (1.4)

Here a is a constant, the function g : R1
! R1 is supposed to be continuous, and the solution is sought in the

class of twice continuously differentiable on [0, 1] functions. It was shown that this problem possesses at least one
solution for any function

f(t) :

1Z

0

f(t) dt = 0

provided that

|g(x)|  b, a 2 R1, b+ 4|a|/3 < 1. (1.5)

A simple counterexample with

f(t) =
4

3⇡
cos(2⇡t) + sin(2⇡t), g(x) ⌘ 0, a = 4⇡2

(here, the first term is a resonant component) shows that the differential equation is resonant in the sense of our
definition, conditions (1.5), due to b = 0 and a = 4⇡2, as well as the condition

1Z

0

f(t) dt = 0,

are not satisfied but there exists a set of solutions given by

u(t) = C cos(2⇡t) +D sin(2⇡t) +
t

3⇡2
sin(2⇡t) +

1

3⇡2
sin(⇡t) 8C,D 2 R1,

i.e., conditions (1.5) are rather coarse.
In the present paper, we consider resonant equations with differential operators of the hypergeometric type,

which define classical orthogonal polynomials. The solutions of these homogeneous differential equation include
the corresponding orthogonal polynomial (or the solution of the first kind) and the second linear independent
solution, namely, the so-called function of the second kind. Thus, the general solution is a linear combination
of both these solutions. The inhomogeneous differential equations with the corresponding orthogonal polynomial
or the function of the second kind on the right-hand side are resonant equations of the first and second kinds,
respectively. We need their particular solutions to write down the general solution of the inhomogeneous resonant
equation.

We propose a general algorithm for finding these particular solutions in the explicit form. Thus, it becomes
possible to find the general solutions of the inhomogeneous resonant equations of the first and second kinds in the
explicit form. This algorithm is especially suitable for the computer-algebra tools, such as Maple, etc. In addition,
it also gives a constructive proof of the existence of solutions.

The paper consists of two parts and is organized as follows: In Section 2, we show that the resonant equations
are a natural part of the FD-method. The main result of Section 3 is Theorem 3.1, which gives a formula for
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the particular solutions of a resonant operator equation that depends on a parameter. This section also contains
the description of the general Algorithm 3.1 aimed at computing the particular solutions of the inhomogeneous
resonant equations with differential operators related to the classical orthogonal polynomials. Theorem 3.1 plays
the crucial role in the justification of our algorithm. Each of the next two sections consists of two subsections
devoted to the corresponding resonant equations of the first and second kinds with differential operators related
to the classical orthogonal polynomials of the Legendre and Jacobi types. The explicit formulas are given for the
general solutions of the corresponding inhomogeneous resonant differential equations. The classical orthogonal
polynomials defined on the infinite intervals, namely, the Hermite and the Laguerre polynomials are the topics
of Part II. With an aim to emphasize the advantages of our algorithm, we also represent particular solutions via the
hypergeometric or confluent hypergeometric functions.

2. The Homotopy Based Method for the Eigenvalue Problems

We now briefly explain the ideas of perturbation and homotopy for the eigenvalue problem

(A+B)un − λnun = ✓ (2.1)

in a Hilbert space X with a scalar product (·, ·) and the null element ✓ under the assumption that the spectrum of
the operator A+B is discrete and we seek an eigenpair with a given fixed index n.

Let B be an approximating operator for B in a sense that the eigenvalue problem

(A+B)u(0)n − λ(0)
n u(0)n = ✓ (2.2)

is “simpler” than problem (2.1).
Formally, a homotopy between two problems P1 and P2 with solutions u1 and u2 from some topological

space X is defined as a parametric problem PH(t) with a solution u(t) that continuously depends on the param-
eter t 2 [0, 1] and is such that u(0) = u1 and u(1) = u2 (cf. http://en.wikipedia.org/wiki/Homotopy).

Following the homotopy idea, for a given eigenpair number n, we imbed our problem into the parametric
family of problems

(A+W (t))un(t)− λn(t)un(t) = ✓, t 2 [0, 1], (2.3)

with

W (t) = B + t'(B), '(B) = B −B,

where B is an approximation of B. This family contains both the problems (2.1) and (2.2). Thus, we obviously
obtain

un(0) = u(0)n , λn(0) = λ(0)
n , un(1) = un, λn(1) = λn. (2.4)

This suggests the idea to seek the solution of (2.3) in the form of a Taylor series

λn(t) =
1X

j=0

λ(j)
n tj , un(t) =

1X

j=0

u(j)n tj , (2.5)
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where formally

λ(j)
n =

1

j!

djλn(t)

dtj

����
t=0

, u(j)n =

1

j!

djun(t)

dtj

����
t=0

. (2.6)

Setting t = 1 in (2.5), we obtain

λn =

1X

j=0

λ(j)
n , un =

1X

j=0

u(j)n (2.7)

provided that series (2.5) converge for all t 2 [0, 1]. The truncated series

m
λn =

1X

j=0

λ(j)
n ,

m
un =

1X

j=0

u(j)n (2.8)

represent a computational algorithm of rank m.

Relations (2.6) are not suitable for the numerical algorithm. Therefore, we need another way to compute the
corrections λ(j)

n and u
(j)
n . This method is described below.

Substituting (2.5) in (2.3) and equating the coefficients of the same powers of t, we arrive at the following
recurrence sequence of equations:

(A+B)u(j+1)
n − λ(0)

n u(j+1)
n = F (j+1)

n , j = −1, 0, 1, . . . , (2.9)

with F
(0)
n = 0 and

F (j+1)
n = F (j+1)

n

�
λ(0)
n , . . . ,λ(j+1)

n ;u(0)n , . . . , u(j)n

�

= −'(B)u(j)n +

jX

p=0

λ(j+1−p)
n u(p)n

= λ(j+1)
n u(0)n − '(B)u(j)n +

jX

p=1

λ(j+1−p)
n u(p)n , j = −1, 0, 1, . . . . (2.10)

For the pair λ(0)
n , u

(0)
n corresponding to the index j = −1 , we get the so-called base eigenvalue problem

(A+B)u(0)n − λ(0)
n u(0)n = ✓ (2.11)

in a Hilbert space. It is assumed that this problem does not have multiple eigenvalues, is “simpler” than the original
problem, and produces the initial data for problems (2.9), (2.10). We suppose that u(0)n , n = 1, 2, . . . , is a basis of
the corresponding Hilbert space. The case of base problems with multiple eigenvalues was studied in [10, 19, 20].

The right-hand side of each problem (2.10) contains the term λ
(j+1)
n u

(0)
n , which solves the homogeneous

equation with the same operator, i.e., the solution u
(j+1)
n of (2.10) contains a component, which is the solution of

the corresponding resonant equation.
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For higher indices j ≥ 0, problems (2.9) are solvable provided that

�
F (j+1)
n , u(0)n

�
= 0, j = 0, 1, . . . . (2.12)

If we additionally suppose that (for uniqueness)

�
u(j+1)
n , u(0)n

�
= 0, j = 0, 1, . . . , (2.13)

then we get

λ(j+1)
n =

�
'(B)u(j)n , u(0)n

�
, j = 0, 1, . . . . (2.14)

Under these conditions we obtain a particular solution

u(j+1)
n =

1X

p=1,p 6=n

�
(F

(j)
n , u

(0)
p )

�

λ
(0)
p − λ

(0)
n

u(0)p (2.15)

satisfying condition (2.13). The starting values λ
(0)
n , u

(0)
n for the recursion (2.9), (2.14) form the solution of the

base problem.
The following theorem [17] gives the error estimates for the method presented above and its convergence

as m ! 1 :

Theorem 2.1. Let A be a closed operator in a Hilbert space H. Assume that problem (2.11) possesses
a discrete spectrum of eigenvalues 0  λ

(0)
1 < λ

(0)
2 < . . . and that the corresponding eigenvectors u

(0)
n , n =

1, 2, . . . , form a basis of H. Suppose that the inequality

qn = 4Mnk'(B)k < 1 (2.16)

with

Mn = max

(
1

λ
(0)
n − λ

(0)
n−1

,
1

λ
(0)
n+1 − λ

(0)
n

)
(2.17)

is true. Then series (2.7) converge to the solution λn, un of problem (2.1) and the accuracy of algorithm (2.8) is
specified by the estimates

��un −

m
un

��
 ↵m+1

qm+1
n

1− qn
,

���λn −

m
λn

���  k'(B)k↵m
qmn

1− qn
,

(2.18)

where

↵m = 2

(2m− 1)!!

(2m+ 21)!!

. (2.19)
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3. Representation of Particular Solutions

This section deals with particular solutions of the resonant equations. We give a representation of particular so-
lutions to the resonant equation in a Banach space. In addition, we propose an algorithm used to compute particular
solutions of the resonant equations with differential operators related to the classical orthogonal polynomials.

The following result was proved in [18].

Theorem 3.1. Let A : X ! X be a linear operator acting in a Banach space X, let the set K(A) ⇢ X be
the kernel of A, and let a connected set ⌃(A) in the complex plane be the spectral set of A. If f(λ) 2 K(A−λE)

and λ 2 ⌃(A) is a differentiable function, then the solution of the resonant equation

(A− λE)u = f(λ) (3.1)

can be represented as

u(λ) =
df(λ)

dλ
. (3.2)

The proof of this theorem is based on the equivalent equation

(A− λ0E)

f(λ)− f(λ0)

λ− λ0
= f(λ)

with some fixed λ0 and on passing to the limit as λ ! λ0.

Now let

An = σ(x)
d 2

dx2
+ ⌧(x)

d

dx
+ λn (3.3)

be a differential operator of hypergeometric type with a polynomial σ(x) of degree not greater than two, a poly-
nomial ⌧(x) of degree not greater than 1 and a constant λn and let Pn(x) be a classical orthogonal polynomial
satisfying the homogeneous differential equation

AnPn(x) = 0 (3.4)

(see, e.g., [5, 22, 24]). The polynomial solution Pn(x) of this homogeneous differential equation is called a func-
tion of the first kind. Let Qn(x) be the second linear independent solution of the homogeneous differential equa-
tion, which is called a function of the second kind.

We now consider resonant equations of the form

Anun(x) = Rn(x). (3.5)

In the case where Rn(x) is the classical orthogonal polynomial Pn(x) (the function of the first kind), the inhomo-
geneous differential equation (3.5) is called the resonant equation of the first kind. The inhomogeneous differential
equation of the form (3.5) with the right-hand side Qn(x) instead of Rn(x) is called the resonant differential equa-
tion of the second kind. Both functions Pn(x) and Qn(x) satisfy the same homogeneous differential equation (3.4)
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and the same recurrence relations

Rn+1(x) = (↵nx+ βn)Rn(x)− γnRn−1(x), n = 1, 2, . . . , (3.6)

with some constants ↵n, βn, γn (see, e.g., [5, 21, 22, 24]).
Note that our algorithm presented below and aimed at finding particular solutions of the resonant differential

equations of the first and second kind (3.5) is based on the same recurrence relation (3.6). Thus, it is valid for the
resonant equations of both types and, in what follows, we use the notation Rn(x) both for Pn(x) and for Qn(x).

Algorithm 3.1.

1. Using Theorem 3.1, we find some particular solutions of (3.5) for n = 0, 1, i.e.,

χ0(x) = −

1

λ0
(⌫)

dR⌫(x)

d⌫

����
⌫=0

, χ1(x) = −

1

λ0
(⌫)

dR⌫(x)

d⌫

����
⌫=1

. (3.7)

Note that here and in what follows the procedure of differentiation with respect to a natural parameter
n 2 N has the following meaning:

(i) switching to a real parameter ⌫ 2 R, i.e., the use of hypergeometric or confluent hypergeometric
functions,

(ii) differentiation with respect to ⌫,

(iii) substitution of n instead of ⌫ in the derivative.

2. The set of functions

u0(x) = χ0(x) + c0P0(x) + d0Q0(x),

u1(x) = χ1(x) + c1P1(x) + d1Q1(x)

(3.8)

with arbitrary coefficients c0, c1, d0, and d1 represents particular solutions also of the inhomogeneous
resonant equation. These coefficients can be chosen in the next step of the algorithm so that the following
particular solutions uk(x), k = 2, 3, . . . , obtained by the recursion below satisfy the corresponding
resonant equation.

3. Differentiating the recurrence equation (3.6) for Rn with respect to n, we obtain

un+1(x) = −

1

λ0
(n+ 1)


−

dλ(n)

dn
(↵nx+ βn)un(x) +

dλ(n− 1)

dn
γnun−1(x)

+

✓
d↵n

dn
x+

dβn
dn

◆
Rn(x)−

dγn
dn

Rn−1(x)

�
, n = 1, 2, . . . . (3.9)

Here, we set n = 1 and demand that u2(x) obtained from (3.9) and (3.8) must satisfy the resonant
differential equation (3.5). From this condition, we determine the coefficients c0, c1, d0, and d1 and,
hence, the initial values (3.8) for the recursive algorithm (3.9). By using Theorem 3.1, in what follows,
we prove that, in this case, un(x) satisfy the resonant equation for all n = 0, 1, 2, . . . .
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4. Resonance Equation of the Legendre Type

4.1. Legendre Resonance Equation of the First Kind. We consider the following inhomogeneous equation
with a Legendre differential operator on the left-hand side and a Legendre polynomial on the right-hand side:

d

dx


(1− x2)

du(x)

dx

�
+ n(n+ 1)u(x) = Pn(x). (4.1)

This is a resonant equation of the first kind because the Legendre polynomial Pn(x) satisfies the corresponding
homogeneous differential equation. The second linear independent solution of the homogeneous differential equa-
tion Qn(x) is called a Legendre function of the second kind. The general solution of the homogeneous differential
equation (4.1) is given by the formula

u(x) = c1Pn(x) + c2Qn(x),

where c1 and c2 are arbitrary constants.
The explicit expression of the Legendre function of the second kind can be represented via the hypergeometric

function (see, e.g., [5], § 10.10) as follows:

Qn(x) = Q0(x)Pn(x)−

bn+1
2

cX

k=1

2n− 4k + 3

(2k − 1)(n− k + 1)

Pn−2k+1(x)

=

2

n
(n!)2

(2n+ 1)!(1 + x)n+1
F

✓
n+ 1, n+ 1; 2n+ 2;

2

1 + x

◆

= (−1)

n+1 2

n
(n!)2

(2n+ 1)!(1− x)n+1
F

✓
n+ 1, n+ 1; 2n+ 2;

2

1− x

◆

=

1

2


F

✓
n+ 1, n+ 1; 2n+ 2;

2

1 + x

◆

+(−1)

n+1 2

n
(n!)2

(2n+ 1)!(1− x)n+1
F

✓
n+ 1, n+ 1; 2n+ 2;

2

1− x

◆�
,

(4.2)

Q0(x) =
1

2

ln

x+ 1

x− 1

.

Here,

F (a, b; c; z) =
nX

p=0

(a)p(b)pz
n

(c)pp!

is the hypergeometric function of z, (a)0 = 1,

(a)p =
Γ(a+ p)

Γ(a)

is the Pochhammer symbol, and Γ(x) is the Gamma function.
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Recall that numerous well-known mathematical functions can be expressed either in terms of the hypergeo-
metric function or as limiting cases of this function. As two typical examples, we can mention

ln(1 + z) = z F (1, 1; 2;−z),

(1− z)−a
= F (a, 1; 1; z).

The Legendre functions, as well as several orthogonal polynomials, including the Jacobi polynomials P
(↵,β)
n

and their special cases, such as the Legendre polynomials (↵ = 0, β = 0), Chebyshev polynomials Tn(x)

(↵ = −1/2, β = −1/2), and Gegenbauer polynomials Cλ
n(x) (↵ = β = λ− 1/2), can be represented in terms

of hypergeometric functions in many ways, e.g., as follows (see, e.g., [7], § 10.8):

P (↵,β)
n (x) =

✓
n+ ↵

n

◆
Fn

✓
−n, n+ ↵+ β + 1;↵+ 1;

1− x

2

◆

= (−1)

n

✓
n+ β

n

◆
Fn

✓
−n, n+ ↵+ β + 1;β + 1;

1 + x

2

◆
,

(4.3)

Pn(x) = P (0,0)
n (x) =

1

2


Fn

✓
−n, n+ 1; 1;

1− x

2

◆

+ (−1)

n Fn

✓
−n, n+ 1; 1;

1 + x

2

◆�
.

The application of hypergeometric functions with an aim to obtain solutions of resonant equation represents
a direct way used to solve the resonant equations. This way appears due to the fact that the hypergeometric
differential equation

z(1− z)
d2u

dz2
+

⇥
c− (a+ b+ 1)z

⇤du
dz

− abu = 0 (4.4)

with properly chosen parameters can be transformed into the following Legendre equation [4] (§ 3.2):

(1− z2)
d2w

dz2
− 2z

dw

dz
+ ⌫(⌫ + 1)w = 0. (4.5)

In view of Theorem 3.1 and (4.3), we get a particular solution of (4.1) in the form

un(x) =
1

2

⇥
ũn(x) + (−1)

nũn(−x)
⇤
, (4.6)

where {see (4.3) and [5], § 10.8, relation (16) with ↵ = 0 and β = 0}

ũn(x) = kn
d

d⌫
P⌫(x)|⌫=n = kn

d

d⌫
F⌫

✓
1 + ⌫,−⌫; 1;

1− x

2

◆����
⌫=n
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= kn

2

4
nX

p=1

d

dn

(1 + n)p(−n)p
(p!)2

✓
1− x

2

◆p

+ (−1)

n+1n!
1X

p=n+1

(1 + n)p(p− n− 1)!

(p!)2

✓
1− x

2

◆p
3

5 (4.7)

with kn = −

1

2n+ 1

. This formula can be transformed in the following way:

ũn(x) = kn

2

4
nX

p=1

−1

(p!)2

"
2n+ p− 2n2

(n+ p)

p−1X

i=1

1

i2 − n2

#
p−1Y

i=1

(i2 − n2
)

✓
1− x

2

◆p

+ (−1)

n+1
1X

p=n+1

1

p

nY

i=1

p+ i

p− i

✓
1− x

2

◆p
3

5. (4.8)

By using the formulas

1

p

nY

i=1

p+ i

p− i
=

nX

i=0

an,i
p− i

, an,i = (−1)

n+i (n+ i)!

(n− i)!(i!)2
,

(−1)

n
nX

i=0

an,i

✓
1− x

2

◆i

⌘ Fn

✓
1 + n,−n; 1;

1− x

2

◆
= Pn(x), (4.9)

the sum of the last series can be transformed as follows:

1X

p=n+1

1

p

nY

i=1

p+ i

p− i

✓
1− x

2

◆p

= −

nX

i=0

an,i

✓
1− x

2

◆i

ln

✓
1 + x

2

◆
−

n−1X

p=0

an,p

✓
1− x

2

◆p n−pX

i=1

1

i

✓
1− x

2

◆i

= (−1)

n+1Pn(x) ln

✓
1 + x

2

◆
−

nX

i=1

✓
1− x

2

◆i i−1X

p=0

an,p
i− p

. (4.10)

Thus, for function (4.7), we obtain

ũn(x) = −

1

2n+ 1

Pn(x) ln

✓
1 + x

2

◆
+

nX

i=1

✓
1− x

2

◆i

bn,i,

bn,i = −

1

2n+ 1

2

4 1

i!

d

dn
(1 + n)i(−n)i + (−1)

n
i−1X

p=0

an,p
i− p

3

5.

(4.11)
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The direct way of getting particular solutions described above is quite cumbersome. In what follows, we pro-
pose an algorithmic procedure based on Theorem 3.1 and on the recursion relation for the corresponding orthogonal
polynomials. This algorithm can be easily implemented by using the computer-algebra tools, e.g., Maple.

Actually, for n = 0, 1, in view of Theorem 3.1 we get the following particular solutions from (4.6):

χ0(x) = −

1

2

ln(1− x2), χ1(x) = −

x

6

ln(1− x2) +
11

18

x. (4.12)

Differentiating the recurrence relation for Pn(x) with respect to n, we arrive at the following recurrence
equation for particular solutions:

un+1(x) = −

1

2n+ 3


−

(2n+ 1)

2x

n+ 1

un(x) +
n(2n− 1)

n+ 1

un−1(x)

+

x

(n+ 1)

2
Pn(x)−

1

(n+ 1)

2
Pn−1(x)

�
, n = 1, 2, . . . . (4.13)

The Legendre polynomials P0(x) = 1 and P1(x) = x, as well as the Legendre functions of the second kind
Q0(x) and Q1(x), satisfy the corresponding homogeneous Legendre differential equation. Hence, according to
our algorithm, in view of (4.12), we can use the following ansatzes for the initial values:

u0(x) = −

1

2

ln(1− x2) + c0P0(x) + d0Q0(x),

u1(x) = −

x

6

ln(1− x2) +
11

18

x+ c1P1(x) + d1Q1(x)

(4.14)

with undetermined coefficients c0, c1, d0, and d1. Substituting these relations in (4.13) with n = 1, we demand
that u2(x) must satisfy the resonant differential equation (4.1). This yields

d0 = 0, d1 = 0,

c0 =
17

6

+ 3c1.

(4.15)

Setting, e.g., c0 = 0 we conclude that

c1 = −

17

18

and arrive at the representations

u1(x) = −

1

6

P1(x) ln (1− x2)−
1

3

x,

u2(x) = −

1

10

P2(x) ln (1− x2)−
7

20

x2 +
1

20

.

(4.16)

In general, we have

un(x) = −

1

2(2n+ 1)

Pn(x) ln (1− x2) + vn(x), (4.17)
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where vn(x) satisfies the recurrence equation

vn+1(x) = −

1

2n+ 3


−

(2n+ 1)

2x

n+ 1

vn(x) +
n(2n− 1)

n+ 1

vn−1(x)

+

x

(n+ 1)

2
Pn(x)−

1

(n+ 1)

2
Pn−1(x)

�
, n = 1, 2, . . . ,

(4.18)

v0(x) = 0, v1(x) = −

x

3

.

This recurrence equation, together with (4.14) and (4.17) gives, e.g., the following particular solutions:

u3(x) = −

1

14

P3(x) ln (1− x2) +
5

28

x−

37

84

x3,

u4(x) = −

1

18

P4(x) ln (1− x2)−
7

288

+

59

144

x2 −
533

864

x4.

(4.19)

The next theorem shows that the functions un(x) obtained by using our recursive algorithm satisfy the reso-
nant Legendre differential equation of the first kind for all n = 0, 1, . . . .

Theorem 4.1. The functions un(x) obtained by the recursive algorithm (4.13) satisfy the resonant Legendre
differential equation of the first kind (4.1) for each n = 0, 1, 2, . . . .

Proof. For n = 0, 1, 2, these functions satisfy the resonant Legendre differential equation by construction.
Further, we assume that up(x), p = 0, 1, . . . , n, satisfy this differential equation and prove that this remains true
for p = n+ 1. Differentiating the classical relation [7] (§ 10.10)

(1− x2)
dPn(x)

dx
= n

⇥
Pn−1(x)− xPn(x)

⇤
(4.20)

with respect to n and using Theorem 3.1, we arrive at the equation

−(2n+ 1)(1− x2)
dun(x)

dx
= −n (2n− 1)un−1(x) + xn (2n+ 1)un(x) + Pn−1(x)− xPn(x). (4.21)

Applying the Legendre differential operator

An = (1− x2)
d2

dx2
− 2x

d

dx
+ n(n+ 1) (4.22)

to (4.13), we obtain

An+1un+1(x) = Pn+1(x) +
2(2n+ 1)

(2n+ 3)(n+ 1)


(2n+ 1)(1− x2)

dun(x)

dx

− n (2n− 1)un−1(x) + xn (2n+ 1)un(x) + Pn−1(x)− xPn(x)

�
. (4.23)

It follows from (4.21) that the expression in the square brackets is equal to zero, which proves the theorem.
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Thus, the general solution of the inhomogeneous equation (4.1) can be represented in the form

u(x) = uh + un(x) = c1Pn(x) + c2Qn(x) + un(x), (4.24)

where c1 and c2 are arbitrary constants.

Remark 4.1. The proof of Theorem 4.1 is based on a recurrence equation

xpn(x) = ↵npn−1(x) + βnpn(x) + γnpn−1(x)

for the corresponding polynomials pn(x) orthogonal with weight σ(x) and the differentiation formula

σ(x)p0n(x) = ↵(1)
n pn+1(x) +

�
β(1)
n + γ(1)n x

�
pn(x)

[see (4.20) for the Legendre polynomials], which represents the weighted derivative of the analyzed polynomial
via two neighboring polynomials (see, e.g., [21], § 9). However, the second linear independent solution of the
corresponding homogeneous equation, which is called the function of the second kind (in the case analyzed above,
this is the Legendre function of the second kind Qn(x), which is not polynomial!), satisfies the same recurrence
equation and the same differentiation formula (see [21, p. 67]). Thus, a similar theorem for the particular solutions
of the resonant equations of the second kind obtained by the corresponding recursive algorithm is also valid.

4.2. The Legendre Resonant Equation of the Second Kind. In this section, we consider equation (4.1) with
the Legendre function of the second kind

Qn(x) =
2

n
(1 + x)−n−1

(n!)2

(2n+ 1)!

F

✓
n+ 1, n+ 1; 2n+ 2;

2

1 + x

◆

as the right-hand side, i.e., we again have a resonant equation.
The general solution of this resonant equation is

u(x) = c1Pn(x) + c2Qn(x) + un(x), (4.25)

where the linearly independent Legendre polynomial Pn(x) and the Legendre function of the second kind Qn(x)

satisfy the homogeneous Legendre equation, c1 and c2 are arbitrary constants, and un(x) is a particular solution
of the inhomogeneous resonant equation.

Note that, in [7], a solution was obtained only for the case n = 0 and it was indicated that it is very difficult
to obtain solutions for the other n in the closed form. However, our Theorem 3.1 allows one to get particular
solutions for any n as follows:

un(x) = −

1

(2n+ 1)

⇥
2 (n+ 1)− 2 (2n+ 2) + ln(2)− ln(1 + x)

⇤
Qn(x)

−

2

n
(n!)2(1 + x)−n−1

(2n+ 1)(2n+ 1)!

d

d⌫


F

✓
⌫ + 1, ⌫ + 1; 2⌫ + 2;

2

1 + x

◆�

⌫=n

, (4.26)
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where

 (z) =
d

dz
lnΓ(z) =

Γ

0
(z)

Γ(z)

is the logarithmic derivative of the Gamma-function. Various representations of this function can be found in [5]
(§ 1.7). For n = 0, 1 we obtain the following particular solutions:

χ0(x) = −P0(x)w(x),

χ1(x) = −

1

3

P1(x)w(x) −

1

6

ln

�
x2 − 1

�
−

2

3

,

w(x) = −polylog

✓
2,

2

1 + x

◆
−

1

2

ln

2
(x+ 1) +

1

2

ln (x+ 1) ln (x− 1)

= −dilog

✓
2

1 + x

◆
−

1

2

ln

2
(x+ 1) +

1

2

ln (x+ 1) ln (x− 1) , x > 1, (4.27)

where polylog stands for the so-called polylogarithm function of order s and of the argument z (Jonquière’s
function):

polylog(s, z) = Lis(z) =
1X

k=1

zk

ks

(the dilog or Spence’s function also denoted by Li2(z) is a special case of the polylog for s = 2).
The other explicit representations of particular solutions can be obtained by using Algorithm 3.1. Differenti-

ating the recurrence relation for the Legendre function of the second kind

Q⌫+1(x) =
x(2⌫ + 1)

(⌫ + 1)

Q⌫(x)−
⌫

(⌫ + 1)

Q⌫−1(x) (4.28)

with respect to ⌫ and taking into account Theorem 3.1, we arrive at the recurrence relation

un+1(x) = −

1

2n+ 3


−

(2n+ 1)

2x

n+ 1

un(x) +
n(2n− 1)

n+ 1

un−1(x)

+

x

(n+ 1)

2
Qn(x)−

1

(n+ 1)

2
Qn−1(x)

�
, n = 1, 2, . . . . (4.29)

According to our algorithm and in view of (4.27), we use the following ansatzes for the initial values:

u0(x) = −P0(x)w(x) + c0P0(x) + d0Q0(x),

u1(x) = −

1

3

P1(x)w(x)−
1

6

ln

�
x2 − 1

�
−

2

3

+ c1P1(x) + d1Q1(x), x > 1,

(4.30)

with undetermined coefficients c0, c1, d0, and d1. After substitution in (4.29) with n = 1, we demand that u2(x)
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must satisfy the resonant differential equation of the second kind. Thus, we get

c0 = 0, c1 = 0,

−d0 + 3d1 + 1 = 0.

(4.31)

Setting, e.g., d0 = −

1

2

we get

d1 = −

1

2

and, hence, the particular solution

u2(x) = −

1

5

P2(x)w(x)−
3x

20

ln(x2 − 1)−

1

30

ln

✓
x+ 1

x− 1

◆
−

3x

5

−

1

3

Q2(x), x > 1. (4.32)

The particular solutions un(x), n = 3, 4, . . . , can be obtained using (4.29) and the initial conditions (4.30)
and (4.32).

The next theorem shows that the functions un(x) obtained according to our recursive algorithm satisfy the
resonant Legendre differential equation of the second kind for all n = 0, 1, . . . .

Theorem 4.2. The functions un(x) obtained by the recursive algorithm (4.29) satisfy the resonant Legendre
differential equation of the second kind (4.1) for each n = 0, 1, 2, . . . .

The proof is completely analogous to the proof of Theorem 4.1 in view of the fact that the Legendre func-
tions of the second kind (they are not polynomials!) satisfy the same recurrence equation and the differentiating
formula (4.20) as the Legendre polynomials (see [7], § 10.10).

5. Resonance Equation of the Jacobi Type

5.1. The Jacobi Resonance Equation of the First Kind. In this section, we consider the resonant equation
of the Jacobi type

(1− x2)
d2un(x)

dx2
+ [β − ↵− (↵+ β + 2)x]

dun(x)

dx
+ n(n+ β + 1)un(x) = P (↵,β)

n (x), (5.1)

where P
(↵,β)
n (x) is the Jacobi polynomial [5] (§ 10.8) satisfying the homogeneous differential equation. The gen-

eral solution of this equation is

u(x) = c1P
(↵,β)
n (x) + c2Q

(↵,β)
n (x) + un(x), (5.2)

where

Q(↵,β)
n (x) =

2

n+↵+β
Γ(n+ ↵+ 1)Γ(n+ β + 1)

(x− 1)

n+↵+1
(x+ 1)

β
Γ(2n+ ↵+ β + 2)

⇥ F

✓
n+ 1, n+ ↵+ 1; 2n+ ↵+ β + 2;

2

1− x

◆
(5.3)
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is the Jacobi function of the second kind [5] (§ 10.8), c1 and c2 are arbitrary constants, and un(x) is a particular
solution of the inhomogeneous equation.

By Theorem 3.1, for a particular solution, we get

un(x) = −

1

2n+ ↵+ β + 1


@

@⌫
P (↵,β)
⌫ (x)

�

⌫=n

= −

1

2n+ ↵+ β + 1


@

@⌫

Γ(⌫ + ↵)

Γ(↵)Γ(⌫ + 1)

F

✓
−⌫, ⌫ + ↵+ β + 1;↵+ 1;

1− x

2

◆�

⌫=n

= −

1

2n+ ↵+ β + 1

(
⇥
 (n+ ↵)− (n+ 1)

⇤
P (↵,β)
n (x)

+

Γ(n+ ↵)

Γ(↵)Γ(n+ 1)

@

@⌫
F

✓
−⌫, ⌫ + ↵+ β + 1;↵+ 1;

1− x

2

◆����
⌫=n

)

= −

1

2n+ ↵+ β + 1

8
<

:
⇥
 (n+ ↵)− (n+ 1)

⇤
P (↵,β)
n (x)

+

Γ(n+ ↵)

Γ(↵)Γ(n+ 1)

2

4
nX

p=1

d

dn

(↵+ β + 1 + n)p(−n)p
p!(↵+ 1)p

✓
1− x

2

◆p

+ (−1)

n+1n!
1X

p=n+1

(↵+ β + 1 + n)p(p− n− 1)!

p!(↵+ 1)p

✓
1− x

2

◆p
3

5

9
=

; . (5.4)

Thus, we have the following particular solutions:

χ0(x) = u0(x) =
1

↵+ β + 1

2

4
− (↵) +  (1) +

1X

p=1

(↵+ β + 1)p

p(↵+ 1)p

✓
1− x

2

◆p
3

5 ,

(5.5)

χ1(x) = u1(x) = −

1

↵+ β + 3

"
�
 (↵+ 1)−  (2)

�
P

(↵,β)
1 (x)

− ↵
(↵+ β + 3)

(↵+ 1)

✓
1− x

2

◆

+ ↵
1X

p=2

(↵+ β + 2)p

p(p− 1)(↵+ 1)p

✓
1− x

2

◆p
#
.
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Differentiating the recurrence formula for the Jacobi polynomials (with respect to n)

P
(↵,β)
n+1 (x) = (a(n)x+ b(n))P (↵,β)

n (x)− c(n)P
(↵,β)
n−1 (x),

a(n) =
(2n+ ↵+ β + 1)(2n+ ↵+ β + 2)

2(n+ 1)(n+ ↵+ β + 1)

,

(5.6)

b(n) =
↵2

− β2

2(n+ 1)(n+ ↵+ β + 1)(2n+ ↵+ β)
,

c(n) =
(n+ ↵)(n+ β)(2n+ ↵+ β + 2)

(n+ 1)(n+ ↵+ β + 1)(2n+ ↵+ β)

and taking into account (5.4), we arrive at the recursion relation

un+1(x) = −

1

2n+ ↵+ β + 3

h
−(2n+ ↵+ β + 1)

�
a(n)x+ b(n)

�
un(x)

+ (2n+ ↵+ β − 1)c(n)un−1(x)

+

�
a0(n)x+ b0(n)

�
P (↵,β)
n (x)

− c0(n)P
(↵,β)
n−1 (x)

i
, n = 1, 2, . . . . (5.7)

Thus, by using the initial conditions (5.5) we can find un(x) for any n.

It is quite difficult to get an explicit formula for the solution of the Jacobi resonant equation for any ↵ and β.

Therefore, we only consider an example.

Example 5.1. We consider the case of Jacobi resonant equation of the first kind with ↵ = 1 and β = 2.

From (5.4) with n = 0, 1, we get the following particular solutions;

χ0(x) = −

1

64

⇥
5 ln (x+ 1) + 11 ln (x− 1)

⇤

+

5(x− 1) + 10(x2 − 1)− 11 (x+ 1)

2

96 (x+ 1)

2
(x− 1)

,

χ1(x) = −

5x− 1

384

⇥
10 ln (x+ 1) + 17 ln (x− 1)

⇤

+

1075x4 + 1298x3 − 1842x2 − 1918x+ 487

96 (x+ 1)

2
(x− 1)

.

(5.8)

The initial values for the recursion relation (5.7) are chosen in the form

u0(x) = χ0(x) + d0Q
(1,2)
0 (x) + c0P

(1,2)
0 (x),

u1(x) = χ1(x) + d1Q
(1,2)
1 (x) + c1P

(1,2)
1 (x), x > 1,

(5.9)
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where the undetermined coefficients are found to guarantee that u2(x) satisfies the resonant differential equation.
We substitute (5.9) in (5.7) with n = 1 and then in the resonant differential equation. This yields

c0 = 0, d0 = −

7

24

,

c1 = −

47

2880

, d1 = 0.

(5.10)

Further, we proceed according to our Algorithm 3.1.

5.2. The Jacobi Resonance Equation of the Second Kind. In this section, we consider a resonant equation

(1− x2)
d2u(x)

dx2
+

⇥
β − ↵− (↵+ β + 2)x

⇤du(x)
dx

+ n(n+ ↵+ β + 1)u(x) = Q(↵,β)
n (x), (5.11)

where Q
(↵,β)
n (x) is the Jacobi function of the second kind [5] (§ 10.8) given by relation (5.3).

In view of Theorem 3.1, we get the following general formula for a particular solution:

un(x) = −

1

2n+ ↵+ β + 1


@

@⌫
Q(↵,β)

⌫ (x)

�

⌫=n

= −

1

2n+ ↵+ β + 1

⇢h
ln(2) + (n+ ↵+ 1) + (n+ β + 1)

− ln(x− 1)− 2 (2n+ ↵+ β + 1)

i
Q(↵,β)

n (x)

+

2

n+↵+β
Γ(n+ ↵+ 1)Γ(n+ β + 1)

(x− 1)

n+↵+1
(x+ 1)

β
Γ(2n+ ↵+ β + 2)

⇥

@

@⌫
F

✓
⌫ + 1, ⌫ + ↵+ 1; 2⌫ + ↵+ β + 1;

2

1− x

◆����
⌫=n

�
. (5.12)

This formula is quite complicated for practical applications. Therefore, we use our recursive algorithm. By dif-
ferentiation of the recurrence equation we obtain the following recurrence formula:

un+1(x) = −

1

2n+ ↵+ β + 3

h
−(2n+ ↵+ β + 1)

�
a(n)x+ b(n)

�
un(x)

+ (2n+ ↵+ β − 1)c(n)un−1(x)

+

�
a0(n)x+ b0(n)

�
Q(↵,β)

n (x)

− c0(n)Q
(↵,β)
n−1 (x)

i
, n = 1, 2, . . . . (5.13)

Together with χ0(x) = u0(x), χ1(x) = u1(x) from (5.12) and the corresponding ansatz for the initial values,
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this yields an algorithm for un(x) for any n = 2, 3, . . . . Since the formulas in the general case are quite cumber-
some, we restrict ourself to an example.

Example 5.2. Let ↵ = 1 and β = 2. Hence, for the Jacobi functions of the second kind, we find

Q
(1,2)
0 (x) = −

1

2

ln

✓
x+ 1

x− 1

◆
+

3x2 + 3x− 2

3(x+ 1)

2
(x− 1)

,

Q
(1,2)
1 (x) = −

5x− 1

4

ln

✓
x+ 1

x− 1

◆
+

15x3 + 12x2 − 13x− 8

6(x+ 1)

2
(x− 1)

,

Q
(1,2)
2 (x) = −

21x2 − 6x− 3

8

ln

✓
x+ 1

x− 1

◆
+

105x4 + 75x3 − 115x2 − 65x+ 16

20(x+ 1)

2
(x− 1)

, . . . .

(5.14)

The general formula is as follows:

Q(1,2)
n (x) = −P (1,2)

n (x)
1

2

ln

✓
x+ 1

x− 1

◆
+ q(1,2)n (x), (5.15)

where the functions q(1,2)n (x) satisfy the recurrence equation for the Jacobi polynomials but with the initial condi-
tions given by the second terms in Q

(1,2)
0 (x) and Q

(1,2)
1 (x). From (5.12), we get the following particular solutions

of the resonant equation of the second kind with n = 0, 1 :

χ0(x) = −

1

4

w(x) +
15x− 11

48(x− 1)

ln(x+ 1)−

15x2 + 22x+ 3

48(x+ 1)

2
ln(x− 1)−

9x2 + 3x− 4

72(x+ 1)

2
(x− 1)

,

χ1(x) = −

1

12

(5x− 1)w(x) +
−135x3−159x2+42x+56

360(x+ 1)

2
ln(x− 1)

+

45x2−32x−8

120(x− 1)

ln(x+ 1) +

22025x4+18340x3−25422x2−18452x+3413

8640 (x+ 1)

2
(x− 1)

, (5.16)

w(x) = dilog
✓
x+ 1

2

◆
+

1

2

ln (x+ 1) ln(x− 1)− ln(2) ln(x− 1).

For the initial values in our recursive algorithm, we use the ansatzes

u0(x) = χ0(x) + c0P
(1,2)
0 (x) + d0Q

(1,2)
0 (x),

u1(x) = χ1(x) + c1P
(1,2)
1 (x) + d1Q

(1,2)
1 (x), x > 1,

(5.17)

with undetermined coefficients c0, d0, c1, and d1. We now substitute these relations in (5.13) with n = 1 and
demand that the result must satisfy the resonant differential equation. As a result, we obtain

d0 =
3

2

c0 +
7

80

, d1 =
3

2

c1 +
881

516

(5.18)
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and, hence, the particular solution of the resonant equation

u(1,2)n (x) = −

1

2n+ 4

P (1,2)
n (x)w(x) + p(1,2)n (x) ln(x+ 1) + r(1,2)n (x) ln(x− 1) + v(1,2)n (x). (5.19)

Here, the functions p
(1,2)
n (x), r

(1,2)
n (x) satisfy the recurrence relation for the Jacobi polynomials with the initial

conditions

p
(1,2)
0 (x) =

15x− 11

48(x− 1)

, p
(1,2)
1 (x) =

45x2 − 32x− 8

120(x− 1)

,

r
(1,2)
0 (x) = −

15x2 + 22x+ 3

48(x+ 1)

2
, r

(1,2)
1 (x) =

−135x3 − 159x2 + 42x+ 56

360(x+ 1)

2
.

(5.20)

The function v
(1,2)
n (x) satisfies the recurrence relation

vn+1(x) = −

1

2n+ ↵+ β + 3

h
−(2n+ ↵+ β + 1)

�
a(n)x+ b(n)

�
vn(x)

+ (2n+ ↵+ β − 1)c(n)vn−1(x)

+

�
a0(n)x+ b0(n)

�
Q(↵,β)

n (x)

− c0(n)Q
(↵,β)
n−1 (x)

i
, n = 1, 2, . . . , (5.21)

with ↵ = 1, β = 2, and the initial conditions

v0(x) = −

9x2 + 3x− 4

72(x+ 1)

2
(x− 1)

+ d0Q
(1,2)
0 (x),

v1(x) =
22025x4 + 18340x3 − 25422x2 − 18452x+ 3413

8640 (x+ 1)

2
(x− 1)

+ d1Q
(1,2)
1 (x).

(5.22)
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