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TWO-DIMENSIONAL SURFACES IN 3-DIMENSIONAL AND 4-DIMENSIONAL
EUCLIDEAN SPACES. RESULTS AND UNSOLVED PROBLEMS

Yu. A. Aminov UDC 514.772

We present a survey of the results obtained for 2-dimensional surfaces in E

3 and E

4 and connected
with the Gaussian curvature and Gaussian torsion. In this connection, we consider the Monge–Ampére
equations, obtain the generalizations of Bernstein’s integral formula, and establish lower estimates for the
outer diameter of the surfaces in E

3
.

1. Introduction

In the last century, much attention was given to the investigations of 2-dimensional surfaces in 3-dimen-
sional and 4-dimensional Euclidean spaces (see, e.g., the works by Efimov [1], Poznyak [4], and Rozendorn [3]).
To a certain extent, this was a peak of development of the Moscow school of geometry of 2-dimensional surfaces
“as a whole,” which still remains unbeatable in the world scientific literature.

The works by Burago [27], Rozendorn [28], and Sabitov [46] contain great amounts of data on the geometry
of surfaces.

In our survey, we present the results that were not included in the above-mentioned works. We also present
relatively new results obtained by Toponogov (Sec. 3), Aminov (Sec. 4), and Sabitov (Sec. 15). We analyze the
behavior of the surfaces “as a whole” depending on the restrictions imposed on the Gaussian curvature. We first
consider the surfaces specified in the explicit form in E

4 and establish simple formulas for the Gaussian curva-
ture K and Gaussian torsion Γ. Despite the fact that a 2-dimensional surface has more “freedom” in E

4 or,
in other words, the arbitrariness in its presentation is greater, it is unknown whether it is possible to construct a sur-
face in E

4 with regular one-to-one projection onto the entire plane (x, y) and Gaussian curvature K  −K

2
0 < 0,

where K0 is a constant.
We now recall that, in 1961, Rozendorn constructed a closed regular surface with Gaussian curvature K 

−K

2
0 < 0 in E

4 (for details, see [3]). In [5], Perel’man constructed a complete regular saddle surface with Gaus-
sian curvature separated from zero and a unique projection onto the plane (x, y) (except a countable unbounded
set of points in which the surface is not defined). It is also necessary to mention the Blanuša construction of
an isometric embedding of the entire Lobachevskii plane into E

6 [6]. This surface is bijectively projected onto
the plane (x, y). By using the functions introduced by Blanuša, Rozendorn constructed an isometric immersion
of the Lobachevskii plane into E

5 [7]. In this case, the surface has self-intersections and cannot be bijectively
projected onto the plane (x, y). In [8], Sabitov constructed a piecewise analytic immersion of the Lobachevskii
plane into E

4 with discretely many singular lines where the surface belongs to the Lipschitz class C0,1
.

Thus, the following problem remains open: Is it possible to isometrically embed or immerse a Lobachevskii
plane into E

4 in the form of a regular surface.
Note that the theorems on impossibility of some special isometric immersions of a Lobachevskii space into Eu-

clidean spaces were proved by Kadomtsev [29], Aminov [30, 31], Xavier [32], Masal’tsev [33], Nikolaevskii [34],
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and Bolotov [35]. Here, we do not analyze these works. An extensive survey of the problem of isometric im-
mersions of space forms into Riemannian and pseudo-Riemannian spaces was presented by Borisenko in [42].
The properties of 2-dimensional surfaces in Euclidean spaces were also discussed in the monographs [41, 43].

An important role in geometry is played by the Monge–Ampére equations. In the present survey, much
attention is given to the Monge–Ampére operator on a Riemannian manifold. We also present a very useful gen-
eralization of the integral Bernstein formula. In a special case where the Riemannian manifold is a plane, Heinz
used the Bernstein formula to get an analytic proof of the Efimov estimate for the sizes of a circle or a square over
which the surface z = z(x, y) with Gaussian curvature K  −K

2
0 < 0 is defined in the space E

3
.

Another important application of the generalized Bernstein formula is the author’s result on the estimation of
the outer diameter of a surface in E

3 depending on the Gaussian curvature. For the first time, estimates of this
kind were established by Burago who used more complicated methods based on the approximation of surfaces by
polyhedra. The generalized Bernstein formula and related formulas presented in our survey strongly simplify the
analysis of the mentioned problems.

Earlier, general theorems on the existence of solutions of the Dirichlet problem for the elliptic Monge–Ampére
equation were proved in numerous works. However, the corresponding solutions were not presented in the explicit
form. In our survey, we present recently established theorems on the construction of polynomial solutions of the
simplest Monge–Ampére equation

z

xx

z

yy

− z

2
xy

= f(x, y)

in the case where f(x, y) is a polynomial. The first investigation was performed for the case of a quadratic poly-
nomial f(x, y) by the author together with a group of Turkish geometricians and published in [20].

The Sabitov theorem [24] gives an unusual structure of the surfaces z(x, y) defined in the entire plane (x, y)

with singularities at certain points in the case where f(x, y) ⌘ 0. This theorem can be regarded, in a certain sense,
as a result of discussions carried out within the framework of the Ukrainian–Russian joint investigation “Isometric
Immersions of Metrics and External Geometric Properties of the Surfaces in the Spaces with Constant Curvature”
in 2012–2013. In the case where the singularities are vertices of a convex polygon, the theorem is proved by
the author.

In [17], with an aim to construct surfaces F 2 in E

4 given over closed surfaces M2 in E

3 of complex topolog-
ical form, the author and Gor’kavyi found simple algebraic surfaces in E

3 with symmetries called “symmetrons.”
A closed surface in E

4 with K < 0 constructed by Rozendorn is a surface of kind 7. Therefore, it is of interest to
construct a surface of smaller kind with K < 0 in E

4 by using “symmetrons.” Thus, we deduce the formulas ex-
pressing the Gaussian curvature of the surface F 2 in E

4 via the curvature M2 and the value of the Monge–Ampére
operator for a function on M

2 specifying the surface F

2
. We analyze the behavior of the Gaussian curvature for

specific “symmetrons” and determining functions by using computer methods.
The author expresses his deep gratitude to I. Sabitov for useful discussions of the paper and to V. Aleksandrov

for the information about V. Toponogov’s works.

2. Gaussian Curvature of a 2-Dimensional Surface in E4 Given in the Explicit Form

Consider two regular functions u(x1, x2) and v(x1, x2) given on a plane with coordinates x1 and x2 . Then
we can assume that a 2-dimensional surface with radius vector

r(x1, x2) =

0

BBBBB@

x1

x2

u(x1, x2)

v(x1, x2)

1

CCCCCA
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is given in E

4
. Since the space is Euclidean, the metric of this surface has the form

ds

2
= (dx1)

2
+ (dx2)

2
+ (du)

2
+ (dv)

2

= E(dx1)
2
+ 2Fdx1dx2 +G(dx2)

2
,

where

E = 1 + u

2
1 + v

2
1, F = u1u2 + v1v2, and G = 1 + u

2
2 + v

2
2.

Here and in what follows, the subscripts denote derivatives with respect to arguments.
By using the well-known formula for the Gaussian curvature K and the metric coefficients, one can repre-

sent K via the second derivatives of the functions u(x1, x2) and v(x1, x2). The famous Frobenius formula (for
the first time, the expression for the Gaussian curvature via the coefficients of the first quadratic form was obtained
by Gauss but in a more complicated form) has the form

K = − 1

4W

4

��������

E E

u

E

v

F F

u

F

v

G G

u

G

v

��������
− 1

2W

⇢
@

@v

E

v

− F

u

W

+

@

@u

G

u

− F

v

W

�
, (1)

where u and v are coordinates of the surfaces and W =

p
EG− F

2
. Since F is not equal to zero in the general

case, the calculations are fairly cumbersome but elementary. We use another approach and rewrite the formula for
the curvature via the second quadratic forms

K =

X2

↵=1

⇥
L

↵

11L
↵

22 − (L

↵

12)
2
⇤

EG− F

2
, (2)

where L

↵

ij

= (r

ij

n

↵

) are the coefficients of the second quadratic form with respect to the unit normal n
↵

.

Further, we recall the formula from the Riemannian geometry. The intrinsic curvature of a surface in the Rie-
mannian space M, i.e., the Gaussian curvature K

i

, is connected with the extrinsic curvature K

e

and the curvature
of the space K

M

over an area touching the surface by the formula K

i

= K

e

+ K

M

. In the analyzed case,
the space M is Euclidean and, hence, K

M

= 0 and K

i

= K

e

.

Assume that the normals have the following coordinates in E

4 :

n1 = (⇠1, ⇠2, ⇠3, ⇠4),

n2 = (⌘1, ⌘2, ⌘3, ⌘4).

The derivatives of the radius vector take the form

r1 =

0

BBBBBB@

1

0

u1

v1

1

CCCCCCA
, r2 =

0

BBBBBB@

0

1

u2

v2

1

CCCCCCA
, r

ij

=

0

BBBBBB@

0

0

u

ij

v

ij

1

CCCCCCA
.
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Thus, the conditions of orthogonality of the normals to r

i

give the following equations:

⇠1 + ⇠3u1 + ⇠4v1 = 0,

⇠2 + ⇠3u2 + ⇠4v2 = 0.

The equations for ⌘
i

are similar. On the other hand, we can write the condition of orthonormality of the basis n1,

n2 with the help of the expressions for ⇠1 and ⇠2 in terms of ⇠3 and ⇠4 and, similarly, the expressions for ⌘1

and ⌘2 in terms of ⌘3 and ⌘4. As a result, we arrive at the system

⇠

2
3A+ 2⇠3⇠4B + ⇠

2
4C = 1,

⇠3⌘3A+ (⇠3⌘4 + ⇠4⌘3)B + ⇠4⌘4C = 0,

⌘

2
3A+ 2⌘3⌘4B + ⌘

2
4C = 1,

where

A = 1 + u

2
1 + u

2
2, B = u1v1 + u2v2, and C = 1 + v

2
1 + v

2
2.

We also use the notation

D =

p
AC −B

2
=

p
1 + | gradu|2 + | grad v|2 + (u1v2 − u2v1)

2
.

In what follows, without loss of generality, we can take the vector n1 such that ⇠4 = 0. Thus, it follows from
the system that

⇠

2
3 =

1

A

, ⌘3A+ ⌘4B = 0, ⌘

2
4 =

A

D

2
.

Returning to formula (2), we get

L

1
ij

= (r

ij

n1) = u

ij

⇠3 + v

ij

⇠4,

L

2
ij

= (r

ij

n2) = u

ij

⌘3 + v

ij

⌘4.

Therefore,

2X

↵=1

�
L

↵

11L
↵

22 − (L

↵

12)
2
�
= (u11u22 − u

2
12)(⇠

2
3 + ⌘

2
3)

+ (u11v22 − 2u12v12 + u22v11)(⇠3⇠4 + ⌘3⌘4)

+

�
v11v22 − v

2
12

�
(⇠

2
4 + ⌘

2
4). (3)

By using the condition ⇠4 = 0, we obtain the coefficients of the second derivatives of the functions u and v :

⇠

2
3 + ⌘

2
3 =

C

D

2
, ⌘3⌘4 = − B

D

2
, ⌘

2
4 =

A

D

2
.



TWO-DIMENSIONAL SURFACES IN 3-DIMENSIONAL AND 4-DIMENSIONAL EUCLIDEAN SPACES 5

Substituting these coefficients in (3), we arrive at the final expression for the Gaussian curvature of the surface
in E

4 :

K =

�
u11u22 − u

2
12

��
1 + v

2
1 + v

2
2

�

D

4

−
�
u11v22 − 2u12v12 + u22v11

��
u1v1 + u2v2

�

D

4

+

�
v11v22 − v

2
12

��
1 + u

2
1 + u

2
2

�

D

4
, (4)

where

D

4
=

⇥
1 + u

2
1 + u

2
2 + v

2
1 + v

2
2 + (u1v2 − u2v1)

2
⇤2
.

This relation was presented in [16].
In a special case, the expression for the surface u = u(x1, x2) in E

3 has the form

K =

u11u22 − u

2
12�

1 + u

2
1 + u

2
2

�2 .

In what follows, we use relation (4) for some special functions u(x1, x2), and v(x1, x2).

3. History of the Problem of Surfaces with Negative Curvature in E3 Given in the Explicit Form

In 1953, Efimov proved the following theorem [9]:

Theorem A. If the surface z = f(x, y) is regular for all values of x and y, then its Gaussian curvature
cannot be smaller than a certain negative number.

In other words, a regular surface with strictly negative curvature K  −K0 < 0, where K0 is an arbitrary
positive constant, cannot exist over the entire plane (x, y).

Is it possible to generalize this theorem to the surfaces in E

4
? In particular, is it possible to construct a surface

of constant negative curvature K = −1 in E

4 projected onto the entire plane (x1, x2)?

Later, in [10], Efimov considerably generalized the result, namely, he proved that if a surface is defined over
a square with side a, then a is bounded above. The following theorem is true:

Theorem B. If a piece of a regular surface with Gaussian curvature K  −1 is uniquely projected onto
a square, then there exists a constant that cannot be exceeded by the side of this square.

As this constant, we can take 18.9.
Theorem B immediately attracted much attention of the geometricians. As early as in 1955, Heinz [11]

proposed another proof of this theorem based of the integral Bernstein formula for a surface given over a disk of
radius r. Moreover, by using his method, Heinz proved that the radius r is bounded above.

Bernstein’s formula is generalized by the author of the present paper for functions given on 2-dimensional and
multidimensional Riemannian spaces (see [12–14]).



6 YU. A. AMINOV

We now present the result obtained by the Heinz method in [13].
Consider a metric

ds

2
= dσ

2
+ (du)

2
,

where (dσ)

2 is a metric of constant negative curvature −a

2 given in a geodesic disk of radius R and u is a regular
function of a point of this disk from the class C2

. The following theorem is true:

Theorem C. Suppose that dσ2 is a metric with constant negative curvature −a

2
, the Gaussian curvature K

of the metric ds

2 satisfies the inequality K  −b

2
, and moreover, b > 2a. Then

R  e

p
3

b− 2a

.

In [13], we also considered a total metric dσ

2 with variable curvature and geodesic disks with radius r and
area S(r). It was proved that if

1Z

r1

drp
S(r)

= 1,

then the total metric ds

2
= dσ

2
+ (du)

2 with Gaussian curvature K  −K

2
0 cannot exist for any K0 > 0 .

This theorem can be used for metrics of the form

ds

2
= (dx1)

2
+ (dx2)

2
+ (du)

2
+ (dv)

2

in the case where v(x1, x2) is a polynomial of x1 and x2 of a certain degree.
Another approach is based on the use of the relation for K and Bernstein-type formulas.
At the end of this section, in order to complete our historical overview, we present the well-known Efimov’s

theorem proved in 1963.

Efimov Theorem. In E

3
, the upper bound of the Gaussian curvature is not smaller than zero on any complete

regular surface.

In other words, a complete regular surface with Gaussian curvature K  const < 0 is impossible in E

3
.

As a condition of regularity, it is sufficient to take C

2 at every point of the surface.
The complete proof of this theorem was given in [36].
In [37], Klotz-Milnor presented a new version of the proof of this theorem with a dedication to “many Soviet

geometricians who were very kind to me at the International Congress of Mathematicians in Moscow (1966).”
In the same paper, he advanced the following conjecture:

Conjecture (Milnor). Let S be a complete surface that does not contain umbilical points and is C2-immersed
in E

3 so that the sum of squares of the principal curvatures on S is strictly separated from zero. Then K either
changes sign or K ⌘ 0.

The proof of Efimov’s theorem is based on the analysis of the mappings of E2 onto E

2
. This aspect, which

is of interest in its own right, was considered in detail by Aleksandrov [38] who advanced some hypotheses con-
cerning multidimensional mappings. We also mention the paper by Rozendorn and Shikin [39], which contains
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a presentation of Efimov’s works on the surfaces of negative curvature in their historical relationship with the
previous development of geometry.

Milnor’s conjecture was analyzed by Toponogov. In [48], he proved the following assertion:

If, on any surface Φ of the class C3
, the principal curvatures k1 and k2 are connected by the formula

(1− k1d)(1− k2d) = −1,

then the surface Φ is a direct circular cylinder of radius
d

2

.

Here, d = const . It is clear that, on the surface satisfying the equation presented above, the umbilical points
are absent and

k

2
1 + k

2
2 ≥ 3

d

2
,

i.e., the Milnor condition is satisfied. Later, in [50], Toponogov proved a more general theorem for the case where
the principal curvatures are connected by the formula f(k1, k2) = 0 and the surface does not contain umbilical
points.

As far as we know, in the general statement, the Milnor conjecture is neither proved nor rejected.

4. Complex-Analytic Curve in E4 and Other Surfaces

Assume that two regular functions u(x1,x2) and v(x1,x2) are given in a certain domain D of the plane (x1,x2).
These functions specify a certain 2-dimensional surface F

2 in E

4
. We now present several examples of simple

surfaces in E

4
.

1. We introduce a complex variable z = x1 + ix2. Assume that the complex function f(z) = u + iv is
complex-analytic. In this case, the surface F

2 is called a complex-analytic curve.
The functions u and v are conjugate harmonic functions. The subscripts denote the derivatives of these

functions with respect to their arguments. We write the system of equations

u1 = v2, u2 = −v1,

u11 + u22 = 0, v11 + v22 = 0,

and deduce the expression for the Gaussian curvature of the surface F

2
. We find

u11 = v12, u12 = v22, u22 = −v12.

By using these relations, we get

u11u22 − u

2
12 = v11v22 − v

2
12 = −v

2
11 − v

2
12,

u11v22 − 2u12v12 + u22v11 = 0.
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Then the formula for the Gaussian curvature of the surface F

2 takes the form

K =

2

�
v11v22 − v

2
12

�
�
1 + v

2
1 + v

2
2

�3 =

−2

�
v

2
11 + v

2
12

�
�
1 + v

2
1 + v

2
2

�3 .

This implies that the Gaussian curvature of a complex-analytic curve is always nonpositive, i.e., K  0.

Assume that a complex-analytic curve is given in a disk D of radius R and that its Gaussian curvature satisfies
the inequality K  −K0 < 0. Note that the Gaussian curvature ¯

K of the auxiliary surface

�
x1, x2, v(x1, x2)

 

satisfies the inequalities

¯

K =

v11v22 − v

2
12�

1 + v

2
1 + v

2
2

�2  v11v22 − v

2
12�

1 + v

2
1 + v

2
2

�3  −K0

2

.

By using the Heinz estimate, we obtain

R 
p
3ep
2K0

.

Thus, in a complex-analytic curve given on the entire plane (x1, x2), the Gaussian curvature is not separated
from zero by a constant number.

2. Consider the expression for the curvature K in the case where both functions u and v are harmonic
and not necessarily conjugate. Note that the second derivatives in the numerator of K have the form u22 = −u11

and v22 = −v11. Then the numerator can be represented as follows:

−(u

2
11 + u

2
12)

�
1 + v

2
1 + v

2
2

�
+ 2(u11v11 + u12v12)(u1v1 + u2v2)

= −(v

2
11 + v

2
12)(1 + u

2
1 + u

2
2)− u

2
11 − u

2
12 − v

2
11 − v

2
12

− (u11v1 − v11u1)
2 − (u11v2 − v11u2)

2

− (u12v1 − v12u1)
2 − (u12v2 − v12u2)

2
.

Hence, if the components u and v of the surface F 2 ⇢ E4 are harmonic functions, then the Gaussian
curvature K  0. For the first time, this was indicated by Perel’man [5].

3. Let u and v be polynomials of x1 and x2 of a certain degree.

Thus, on surface (2a), we take

u =

1

2

(x

2
1 + x

2
2), v = 3(x

2
1 − x

2
2).
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It is easy to see that the Gaussian curvature of surface (2a) has the form

K =

−35

�
1 + 37(x

2
1 + x

2
2) + (12x1x2)

2
�2 .

Further, on surface (2b), we set

u = 3(x

2
1 + x

2
2), v =

1

2

(x

2
1 − x

2
2).

The Gaussian curvature of surface (2b) has the form

K =

35

�
1 + 37(x

2
2 + x

2
2) + (12x1x2)

2
�2 .

Thus, the Gaussian curvature of surface (2a) K < 0, whereas the Gaussian curvature of surface (2b) K > 0.

Both surfaces have projections onto three-dimensional spaces with both positive and negative curvatures.

4. Consider a surface

u = f(x1) cosx2, v = f(x1) sinx2.

This surface has the following remarkable property: Numerous geometric characteristics of this surface depend
only on x1. We denote derivatives of the function f with respect to x1 by primes. We have

u1 = f

0
cosx2, u2 = −f sinx2, v1 = f

0
sinx2, v2 = f cosx2,

u11 = f

00
cosx2, u12 = −f

0
sinx2, u22 = −f cosx2,

v11 = f

00
sinx2, v12 = f

0
cosx2, v22 = −f sinx2.

This surface has the following metric:

ds

2
= (1 + f

02
)(dx1)

2
+ (1 + f

2
)(dx2)

2
.

Since the coordinate lines x1 and x2 are orthogonal, by using this metric, we can easily determine the Gaussian
curvature of this surface:

K = −f

00
f(1 + f

2
) + f

02
(1 + f

02
)

(1 + f

2
)

2
(1 + f

02
)

2
.

5. Gaussian Torsion of a Surface in E4 Given in the Explicit Form

It is known that the Gaussian torsion Γ is defined as follows:

Γ =

1

p
g

⇥
L

1
1iL

2
2j − L

1
2iL

2
1j

⇤
g

ij

,

where g

ij are the coefficients of the inverse metric tensor and g is the determinant of the matrix of metric tensor.
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If a and b are the semiaxes of the ellipse of normal curvature, then Γ = ±2ab and the sign depends on the di-
rection of traversing the ellipse of normal curvature by the end of the vector of normal curvature. Thus, we take
the sign + in the case of positive direction relative to the positive orientation in the normal plane or the sign −
for the negative direction. This quantity is the sole invariant of normal connectedness of the surface analogous
to the curvature of tangential connectedness, i.e., to the Gaussian curvature. The integral of Γ over the closed
surface F

2 is equal to zero if the surface contains a regular normal unit vector field. In the general case, it is equal
to 2⇡⌫, where ⌫ is the Whitney invariant, i.e., the sum of indices of the singularities of a unit normal vector field.
This fact (and even a more general case) were established by Chern [40]. For details, see [41] (Chap. 6).

We have

g11 = 1 + u

2
1 + v

2
1, g12 = u1u2 + v1v2, g22 = 1 + u

2
2 + v

2
2,

g = 1 + u

2
1 + u

2
2 + v

2
1 + v

2
2 + (u1v2 − u2v1)

2
.

The expressions for the coefficients of the inverse metric tensor take the form

g

11
=

1 + u

2
2 + v

2
2

g

, g

12
= −u1u2 + v1v2

g

, g

22
=

1 + u

2
1 + v

2
1

g

.

We now recall the expressions for the coefficients of the second quadratic forms obtained earlier:

L

1
ij

= ⇠3uij + ⇠4vij ,

L

2
ij

= ⌘3uij + ⌘4vij .

In view of the fact that ⇠4 = 0 , we find

⇥
L

1
1iL

2
2j − L

1
2iL

2
1j

⇤
g

ij

= ⇠3⌘4(u1iv2j − u2iv1j)g
ij

= ⇠3⌘4

⇥
(u11v21 − u12v11)g

11
+ (u11v22 − u22v11)g

12
+ (u12v22 − u22v12)g

22
⇤
.

Earlier, we have obtained

⇠

2
3 =

1

A

, ⌘

2
4 =

A

D

2
.

In order to correctly choose the signs of the root, we consider a basis in E

4 formed by tangential and normal
vectors. Assume that the orientation of this basis is positive. Then the determinant ∆ formed by the components
of these vectors is also positive. Hence,

∆ =

������������

1 0 u1 v1

0 1 u2 v2

⇠1 ⇠2 ⇠3 0

⌘1 ⌘2 ⌘3 ⌘4

������������

= ⇠3⌘4 − ⇠2⌘4u2 + (⇠2⌘3 − ⌘2⇠3)v2 − u1⇠1⌘4

+ v1(⇠1⌘3 − ⇠3⌘1) + (u1v2 − u2v1)(⇠1⌘2 − ⇠2⌘1).
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We use the relations

⇠1 = −⇠3u1, ⌘1 = −⌘3u1 − ⌘4v1,

⇠2 = −⇠3u2, ⌘2 = −⌘3u2 − ⌘4v2.

Substituting these relations in the determinant, we obtain

∆ = ⇠3⌘4

�
1 + u

2
1 + u

2
2 + v

2
1 + v

2
2 + (u1v2 − u2v1)

2
�
.

Therefore, ⇠3⌘4 > 0. By using the above-mentioned relations, we get

⇠3⌘4 =
1

D

.

Note that D2
= g. Hence, we can write the following expression for the Gaussian torsion:

Γ =

1

g

2

⇥
(u11v12 − u12v11)(1 + u

2
2 + v

2
2)

− (u11v22 − u22v11)(u1u2 + v1v2) + (u12v22 − u22v12)(1 + u

2
1 + v

2
1)
⇤
.

As an example, we consider a complex-analytic curve. By using the deduced formula and the expressions for
the first and second derivatives of the functions u and v, we get

Γ = −2

v11v22 − v

2
12�

1 + v

2
1 + v

2
2

�3 .

This expression for the Gaussian torsion differs from the expression for the Gaussian curvature K obtained above
only by sign. Hence, for the complex-analytic curve, we can write

K + Γ = 0.

The other interesting class of surfaces is specified by the equations

u = Φ

x

, v = Φ

y

,

where Φ(x, y) is a regular function. For this surface, the Gaussian curvature is expressed in terms of the third
derivatives of the function Φ :

K =

1

g

2

⇥
(Φ

xxx

Φ

xyy

− Φ

2
xxy

)(1 + Φ

2
xy

+ Φ

2
yy

)

− (Φ

xxx

Φ

yyy

− Φ

xxy

Φ

xyy

)(Φ

xx

+ Φ

yy

)Φ

xy

+ (Φ

xxy

Φ

yyy

− Φ

2
xyy

)(1 + Φ

2
xx

+ Φ

2
xy

)

⇤
,

where

g = 1 + Φ

2
xx

+ 2Φ

2
xy

+ Φ

2
yy

+ (Φ

xx

Φ

yy

− Φ

2
xy

)

2
.
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For the Gaussian torsion Γ, we get the same expression, i.e., for this surface,

K = Γ.

More general relations in E

4 with K ± Γ = 0 were obtained in [15].
For the analyzed surface u = f(x) cos y, v = f(x) sin y, the following expression for the Gaussian torsion

was established in [16]:

Γ =

f

00
f

0
(1 + f

2
) + f

0
f(1 + f

02
)

(1 + f

2
)

2
(1 + f

02
)

2
.

By using this result, we found the surface with constant nonzero Gaussian torsion. It was proved that the width of
the strip t1  x  t2 in a regular part of the surface is bounded above.

6. Bernstein Formula and Its Application by Heinz

Assume that a regular function z = z(x, y) from the class C

2 is given in a disk D of radius R in the
plane (x, y). This function specifies a surface F

2 in E

3
. We assume that the center of the disk coincides with the

origin of coordinates and introduce polar coordinates r, φ in this disk. By D(r) we denote the disk of radius r

centered at the origin and by Γ(r) we denote its boundary circle.
To prove Efimov’s theorem, Heinz used the Bernstein formula

d

dr

Z

Γ(r)

z

2
φ

r

dφ = 2

Z

D(r)

(z

2
xy

− z

xx

z

yy

) dx dy +

Z

Γ(r)

z

2
r

dφ. (5)

This formula is proved in Sec. 7.
Assume that the Gaussian curvature K of the surface F

2 satisfies the inequality

K  −K0 < 0,

where K0 is a positive constant. Since

K =

z

xx

z

yy

− z

2
xy

(1 + z

2
x

+ z

2
y

)

2
,

the derivatives of the function z satisfy the inequality

z

2
xy

− z

xx

z

yy

≥ K0(1 + z

2
x

+ z

2
y

)

2
.

We introduce a function of single variable t as follows:

f(t) =

tZ

0

0

B@
Z

Γ(r)

z

2
φ

r

dφ

1

CAdr + S(t),

where S(t) is the area of the disk of radius t, i.e., ⇡t2.
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This function possesses the derivative

f

0
(t) =

Z

Γ(t)

z

2
φ

t

dφ+ 2⇡t.

Note that f(0) = 0 and f

0
(0) = 0. Indeed, the integral in the expression for f 0 can be rewritten in the form

Z

Γ(t)

z

2
s

ds,

where s is the length of arc of the circle Γ(t). Since the function z(x, y) is regular, the modulus of the derivative
z

s

is bounded above. Since the length of the circle Γ(t) approaches zero as t ! 0, this integral also tends to zero.
In addition, we note that f(t) ≥ ⇡t

2
.

It follows from the Bernstein formula (5) that

f

00
(t) = 2

Z

D(t)

(z

2
xy

− z

xx

z

yy

) dx dy +

Z

Γ(t)

z

2
t

dφ+ 2⇡

≥ 2K0

Z

D(t)

(1 + z

2
x

+ z

2
y

)

2
dx dy + 2⇡.

On the other hand, we can estimate the function f(t) from above as follows:

f(t) =

tZ

0

0

B@
Z

Γ(r)

z

2
s

ds

1

CAdr +

Z

D(t)

dx dy 
Z

D(t)

(1 + z

2
x

+ z

2
y

) dx dy.

By using the Cauchy–Bunyakovskii inequality

0

B@
Z

D(t)

(1 + z

2
x

+ z

2
y

) dx dy

1

CA

2



2

64
Z

D(t)

�
(1 + z

2
x

+ z

2
y

)

2
dx dy

3

75⇡t2,

we get

f

2
(t) 

2

64
Z

D(t)

(1 + z

2
x

+ z

2
y

) dx dy

3

75⇡t2.

Comparing this inequality with the inequality for the second derivative, we find

f

00
(t) ≥ 2K0f

2
(t)

⇡t

2
.
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Note that f 0
(t) > 0 for t > 0. We multiply both sides of the inequality by f

0
(t) and integrate it from 0 to t.

In view of f(0) = f

0
(0) = 0, this yields

f

0
(t)

f

3
2
(t)

≥ 2

p
K0p
3⇡t

.

Let 0 < t1 < t2. Integrating from t1 to t2, we get

1p
f(t1)

− 1p
f(t2)

≥ 2

p
K0p
3⇡

ln

t2

t1
.

Since f(t) ≥ ⇡t

2
, we find

1

t1
≥ 2

p
K0p
3

ln

t2

t1
.

The estimate for t2 is expressed via t1 as follows:

1

t1
+

2

p
K0p
3

ln t1 ≥
2

p
K0p
3

ln t2.

Consider the function on the left-hand side of this inequality

✓(t1) =
1

t1
+

2

p
K0p
3

ln t1.

We now find the point of minimum of this function. We get

✓

0
(t1) = − 1

t

2
+

2

p
K0p
3t1

= 0.

Therefore, the function ✓(t1) takes the minimum value for

1

t1
=

2

p
K0p
3

.

Further, we get the following estimate for t2 :

1 + ln

p
3

2

p
K0

≥ ln t2.

Setting t2 = R, we conclude that the radius R of the disk D over which a regular surface of the form
z = z(x, y) with Gaussian curvature K  −K0 may exist is bounded above, i.e.,

R 
p
3e

2

p
K0

.

The Heinz estimate somewhat improves the Efimov estimate.
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7. Proof of the Bernstein Formula (5)

We now write the transformation of coordinates

x = r cosφ, r =

p
x

2
+ y

2
,

y = r sinφ, φ = arctan

y

x

,

and determine the relations between the derivatives:

z

x

= z

r

r

x

+ z

φ

φ

x

= z

r

cosφ− z

φ

sinφ

r

,

z

y

= u

r

r

y

+ z

φ

φ

y

= z

r

sinφ+ z

φ

cosφ

r

.

We represent the Hessian of the function z in the form

z

xx

z

yy

− z

2
xy

=

1

2


@

@x

(z

x

z

yy

− z

y

z

xy

) +

@

@y

(z

y

z

xx

− z

x

z

xy

)

�
.

Differentiating the right-hand side, we conclude that the third derivatives are mutually cancelled. Integrating the
Hessian of the function z over the disk D and using the Green formula, we obtain

J =

Z

D

(z

xx

z

yy

− z

2
xy

) dx dy =

1

2

2

64
Z

Γ(r)

(z

x

z

xy

− z

y

z

xx

)dx+ (z

x

z

yy

− z

y

z

xy

)dy

3

75

=

Z

Γ(r)

z

x

(z

yx

dx+ z

yy

dy)− z

y

(z

xx

dx+ z

xy

dy) =

Z

Γ(r)

(z

x

dz

y

− z

y

dz

x

).

Substituting the expressions for the derivatives of the function z and taking into account the fact that the
differentials of these derivatives are taken along the boundary circle for fixed r, we get

J =

1

2

2

64
Z

Γ(r)

⇢✓
z

r

cosφ− z

φ

sinφ

r

◆✓
z

rφ

sinφ+ z

φφ

cosφ

r

+ z

r

cosφ− z

φ

sinφ

r

◆

−
✓
z

r

sinφ+ z

φ

cosφ

r

◆✓
z

rφ

cosφ− z

φφ

sinφ

r

− z

r

sinφ− z

φ

cosφ

r

◆�
dφ

3

75

=

1

2

2

64
Z

Γ(r)

 
−
z

φ

z

rφ

r

+

z

r

z

φφ

r

+ z

2
r

+

z

2
φ

r

2

!
dφ

3

75.
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Note that
Z

Γ(r)

z

r

z

φφ

r

dφ =

Z

Γ(r)

✓
@z

r

z

φ

r@φ

−
z

rφ

z

φ

r

◆
dφ = −

Z

Γ(r)

z

φ

z

rφ

r

dφ.

In addition, we can write

−2

z

φ

z

rφ

r

+

z

2
φ

r

2
= − @

@r

 
z

2
φ

r

!
.

Since the integral is taken over the circle r = const, we can factor out the derivative with respect to r from
the integrand. As a result, we get the Bernstein formula (5). For the first time, this formula was obtained in the
hard-to-reach work [45].

8. Generalization of the Bernstein Formula (5)

We generalize the Bernstein formula (5) by assuming that the function z is given in a certain domain with
general Riemannian metric ds

2
= g

ij

dx

i

dx

j

.

1. We first consider the integral of divergence of a certain vector over the surface. If the vector field a is given
by its contravariant components ai, then the quantity a

i

,i

is called the divergence of the field a, i.e.,

div a = a

i

,i

.

Here and in what follows, the comma in the subscript denotes the corresponding covariant derivative.
The divergence of the field a can be also represented in the form

div a =

1

p
g

@a

i

p
g

@x

i

,

where g = g11g22 − g

2
12. Indeed, the expression on the right-hand side admits a representation

@a

i

@x

i

+

a

i

2g

@g

@x

i

=

@a

i

@x

i

+ Γ

k

ki

a

i

= a

i

,i

because it is known that

Γ

k

ki

=

@g

2g@x

i

in the Riemannian geometry. Integrating div a over a domain D with boundary Γ and using the Stokes formula,
we obtain

Z

D

div a dS =

Z

D

1

p
g

@a

i

p
g

@x

i

p
g dx

1
dx

2

=

Z

Γ

p
g

�
−a

2
dx

1
+ a

1
dx

2
�
.
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The vector tangential to the curve Γ has the contravariant components dx

1 and dx

2
. We introduce the unit

normal vector ⌧ to the curve Γ with the help of its covariant components by setting

⌧1 = λ dx

2
, ⌧2 = −λ dx

1
.

Then the condition of orthogonality is satisfied: dxi⌫
i

= 0. We determine λ from the condition guaranteeing that
this is a unit vector, namely,

1 = ⌧

i

⌧

j

g

ij

= λ

2
⇥
(dx

2
)

2
g

11 − 2dx

1
dx

2
g

12
+ (dx

1
)

2
g

22
⇤
.

However,

g

11
= g22/g, g

12
= −g12/g, g

22
= g11/g.

Therefore,

λ =

p
g

ds

,

where ds is an element of arc length for the curve Γ. In view of the relations established above, we can write

Z

D

div a dS =

Z

Γ

(a⌧) ds, (6)

i.e., the integral of divergence of the field a over the surface is expressed via the integral of scalar product of this
field by the unit vector normal to the boundary over the arc length of the boundary.

2. In 1901, in their work “Méthodes de calcul différentiel absolu et leurs applications,” Ricci and Levi–
Civita defined differential invariants of a function φ(x

1
, . . . , x

n

) given on an n-dimensional Riemannian space as
coefficients of λn−1

,λ

n−2
, . . . ,λ of the equation

1

g

|φ
,ij

− λg

ij

| = 0.

We now write this equation for n = 2 :

1

g

������

φ

,11 − λg11 φ

,12 − λg12

φ

,21 − λg21 φ

,22 − λg22

������

=

1

g

⇥
φ

,11φ,22 − (φ

,12)
2 − λ(φ

,11g22 − 2φ

,12g12 + φ

,22g11) + λ

2
g

⇤
= 0.

Note that the second covariant derivatives of the function satisfy the equality φ

,ij

= φ

,ji

. The coefficient
of −λ is the Laplace–Beltrami operator

r2φ = φ

,ij

g

ij

.
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The following expression is a generalization of the Monge–Ampére operator (or the generalized Hessian):

r22φ =

φ

,11φ,22 − (φ

,12)
2

g11g22 − (g12)
2

.

We transform this operator by separating its divergence part

r22φ = ⌫

1
,1 + ⌫

2
,2 +

1

2g

⇥
−φ

,1(φ,221 − φ

,122) + φ

,2(φ,121 − φ

,112)
⇤
,

where

⌫

1
=

φ

,1φ,22 − φ

,2φ,12

2g

,

⌫

2
=

φ

,2φ,11 − φ1φ,12

2g

.

By ⌫ we denote the vector field with the components ⌫i. In what follows, we show that the quantities ⌫i form
a tensor. By using the formula from the Riemannian geometry, for the difference of the third covariant derivatives,
we find

φ

,221 − φ

,122 = R

i

.221φ,i

= R1221φ
,1
,

φ

,121 − φ

,112 = R

i

.121φ,i

= R2121φ
,2
.

Here, R
ijkl

is the Riemannian tensor of the metric ds

2
. However, the Gaussian curvature K of the metric ds

2 is
given by the formula

K =

R1212

g11g22 − (g12)
2
.

Thus, we can write

r22φ = div ⌫ +

1

2

Kr1φ, (7)

where r1φ = | gradφ|2 is the first differential Beltrami parameter.

Consider the integral of r22z over a certain domain D. By using relation (6), we get

Z

D

r22z dS =

Z

Γ

(⌫⌧) ds+

Z

D

1

2

Kr1z dS. (8)

3. We now prove that a collection of ⌫i forms a tensor. To do this, we introduce new coordinates

u

i

= u

i

(x

1
, x

2
), i = 1, 2.
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The overbars denote the quantities in new coordinates. If ⌫i form a tensor, then, in the new coordinates, we have

⌫̄

↵

= ⌫

i

@u

↵

@x

i

.

In particular, we check that

⌫̄

1
= ⌫

i

@u

1

@x

i

.

By definition, we find

⌫̄

1
=

¯

φ

,1
¯

φ

,22 − ¯

φ

,2
¯

φ

,12

ḡ

.

According to the definition of a tensor, we get

¯

φ

,↵

= φ

i

@x

i

@u

↵

,

¯

φ

,βγ

= φ

,ij

@x

i

@u

β

@x

j

@u

γ

, ḡ = gJ

2

✓
x

1
, x

2

u

1
, u

2

◆
,

where J

✓
x

1
, x

2

u

1
, u

2

◆
is the Jacobian of transformation from the old coordinates to the new coordinates. Substituting

these expressions, we get

⌫̄

1
=


⌫

1@x
2

@u

2
− ⌫

2@x
1

@u

2

�
1

J

✓
x

1
, x

2

u

1
, u

2

◆
.

However, the relations

@u

1

@x

1
=

@x

2

@u

2

J

✓
x

1
, x

2

u

1
, u

2

◆
,

@u

1

@x

2
= −

@x

1

@u

2

J

✓
x

1
, x

2

u

1
, u

2

◆

are true. Therefore,

⌫̄

1
= ⌫

i

@u

1

@x

i

,

Q.E.D.

4. We now prove the generalized Bernstein formula. In a neighborhood of the curve Γ, we introduce a semi-
geodesic coordinate system x

1
, x

2 (or, in a different notation, r, φ). In this system, the metric takes the form

ds

2
= (dr)

2
+G(dφ)

2
.

To do this, we draw geodesic lines orthogonal to the curve Γ (the lines φ = const) and take their orthogonal
trajectories, i.e., the lines r = const denoted by Γ(r). The unit tangential vector ⌧ orthogonal to Γ(r) has the
components ⌧

1
= 1 and ⌧

2
= 0. Hence, the scalar product (⌫⌧) = ⌫

1
. In this case, ⌫1 = ⌫1 because g11 = 1

and g12 = 0. We now return to relation (8) and consider the contour integral denoted by A :

A =

Z

Γ(r)

(⌫⌧) ds =

Z

Γ(r)

z1z,22 − z2z,12

2g

p
Gdu

2
.
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Further, we write the expressions for the covariant derivatives of the function z. The first derivatives coincide
with the ordinary derivatives. For the second derivatives, we obtain

z

,22 = z

u

2
u

2 − Γ

1
22zu1 − Γ

2
22zu2 ,

z

,12 = z

u

1
u

2 − Γ

1
12zu1 − Γ

2
12zu2 .

By using the expressions for the Christoffel symbols

Γ

1
22 = −1

2

G

u

1 , Γ

2
22 =

1

2G

G

u

2 , Γ

1
12 = 0, Γ

2
12 =

1

2G

G

u

1

and the formulas g = G and ds =

p
Gdu

2
, we obtain

A =

Z

Γ(r)


z

u

1z
u

2
u

2

2

p
G

− z

u

1z
u

2G
u

2

4G

3/2
− z

u

2z
u

1
u

2

2

p
G

+

G

u

1z
2
u

2

4G

3/2
+

G

u

1z
2
u

1

4

p
G

�
du

2
.

We now use the relations

z

u

1z
u

2
u

2

2

p
g

− G

u

2z
u

1z
u

2

4G

3/2
=

@

@u

2

✓
z

u

1z
u

2

2

p
G

◆
− z

u

2z
u

1
u

2

2

p
G

.

Integrating the first term on the right-hand side along the closed curve Γ(r), we obtain zero. Combining the second
term on the right-hand side with the third term in the expression for A, we can write

−z

u

2z
u

1
u

2p
G

+

G

u

1z
2
u

2

4G

3/2
= − @

@u

1

✓
z

2
u

2

2

p
G

◆
,

1

⇢

g

=

G

u

1

2G

,

z

u

2p
G

= z

s

,

where
1

⇢

g

is the geodesic curvature of the curve Γ(r). We substitute these expressions in the expression for A.

Applying relation (8), we obtain the generalization of the Bernstein formula (5) for arbitrary 2-dimensional
surfaces:

2

Z

D(r)

r22z dS = − d

dr

Z

Γ(r)

(z

s

)

2
ds+

Z

Γ(r)

(z

r

)

2

⇢

g

ds+

Z

D(r)

Kr1z dS. (9)

Here, K is the Gaussian curvature of the metric ds

2
,

1

⇢

g

is the geodesic curvature of the curve Γ(r),

r1z = | grad z|2

is the first differential Beltrami parameter of the function z or, in other words, the squared modulus of the gradient
of this function. The first two integrals on the right-hand side of this formula are taken over the length of the arc s.

This formula was obtained by the author in [12].
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9. Relationship Between the Curvatures of the Metrics dσ2 and ds2 = dσ2 + du2

Assume that a regular function u(x

1
, . . . , x

n

) is given on an n-dimensional Riemannian manifold with the
metric

dσ

2
= a

ij

dx

i

dx

j

.

We now find the relationship between the curvatures of the metrics dσ2 and ds

2
= dσ

2
+ du

2
. By g

ij

we denote
the coefficients of the metric ds

2
. Thus, we get

g

ij

= a

ij

+ u

i

u

j

,

where u
i

are the derivatives of the function u with respect to the coordinates xi. We can always choose coordinates
to guarantee that the Christoffel symbols of the metric dσ

2 are equal to zero at a fixed point P0. At this point, the
coordinates are orthogonal and a

ij

= δ

ij

. Let R
hijk

be the Riemannian tensor of the metric ds

2 and let ¯

R

hijk

be
the Riemannian tensor of the metric dσ

2
. We now apply the following formula for the Riemannian tensor from the

monograph “Riemannian Geometry” by Eisenhart:

R

hijk

=

1

2

✓
@

2
g

hk

@x

i

@x

j

+

@

2
g

ij

@x

h

@x

k

−
@

2
g

hj

@x

i

@x

k

− @

2
g

ik

@x

j

@x

h

◆
+ g

lm

(Γ

ij,m

Γ

hk,l

− Γ

ik,m

Γ

hj,l

).

Here, Γ
pl.m

are the Christoffel symbols of the metric ds

2
. However, at the point P0 , we have Γ

ij,k

= u

ij

u

k

. Thus,
setting h = j and i = k, we get

R

hihi

=

1

2

✓
2

@

2
a

hi

@x

h

@x

i

− @

2
a

hh

@x

i

@x

i

− @

2
a

ii

@x

h

@x

h

◆

+

1

2

✓
2

@

2
u

h

u

i

@x

h

@x

i

−
@

2
u

2
h

@x

i

@x

i

− @

2
u

2
i

@x

h

@x

h

◆
+ g

lm

(u

2
ih

− u

ii

u

hh

)u

l

u

m

.

The first term on the right-hand side that contains solely the derivatives a

ij

is the Riemannian tensor of the
metric dσ

2 at the point P0. The third mixed derivatives of the function u are mutually cancelled. As a result,
we obtain

R

hihi

=

¯

R

hihi

+ (u

,hh

u

,ii

− u

2
,ih

)(1− u

l

u

m

g

lm

).

We replace the ordinary derivatives of the function u with covariant derivatives because the Christoffel symbols of
the metric dσ

2 are equal to zero at the point P0 . The curvature of a surface element touching the coordinate lines
x

h

, x

i is given by the formula

K

hi

=

R

hihi

g

hh

g

ii

− g

2
hi

.

Since g

hh

g

ii

− g

2
hi

= 1 + u

2
h

+ u

2
i

, we can write the following relationship between the curvatures of the surface
elements for the metrics dσ2 and ds

2 :

K

hi

=

¯

K

hi

1 + u

2
h

+ u

2
i

+

(u

,hh

u

,ii

− u

2
,hi

)(1− u

l

u

m

g

lm

)

1 + u

2
h

+ u

2
i

. (10)
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Note that u
l

u

m

g

lm is the squared modulus of the gradient of the function u in the metric ds

2
. We now

determine the expression for this quantity via r1u. By the definition of the metric ds

2 at a chosen point,

g

ij

= δ

ij

+ u

i

u

j

, g = det |g
ij

| = 1 +

nX

j=1

u

2
j

= 1 +r1u.

At the same time, the coefficients of the inverse metric tensor gjk are given by the formula

g

jk

=

1

g

(δ

jk

g − u

j

u

k

).

Indeed, we now check the validity of relations for the inverse metric tensor:

g

ij

g

jk

=

1

g

(δ

ij

+ u

i

u

j

)(δ

jk

g − u

j

u

k

)

=

1

g

0

@
δ

ij

δ

jk

g + u

i

u

j

δ

jk

g − u

j

u

k

δ

ij

− u

i

u

k

nX

j=1

u

2
j

1

A
= δ

ik

.

By using the expressions for gij presented above, we obtain

u

j

u

k

g

jk

=

1

g

u

j

u

k

(δ

jk

g − u

j

u

k

)

=

1

g

0

@
g

X

j

u

2
j

−
X

j

u

2
j

X

k

u

2
k

1

A
=

X
j

u

2
j

g

=

r1u

g

.

Hence,

1− u

l

u

m

g

lm

=

1

1 +r1u
.

These relations enable us to rewrite relation (10) as follows:

K

hi

=

¯

K

hi

1 + u

2
h

+ u

2
i

+

u

,hh

u

,ii

− u

2
,hi

(1 + u

2
h

+ u

2
i

)(1 +r1u)
.

We now consider the case n = 2. In this case, u21 + u

2
2 = r1u is the first differential Beltrami parameter.

The relationship between the Gaussian curvatures of 2-dimensional metrics dσ2 and ds2 = dσ2 + du2

has the form

K(1 +r1u)
2
=

¯

K(1 +r1u) +r22u. (11)

Here, ¯

K is the curvature of the metric dσ

2 and K is the curvature of the metric ds

2
. We use this relation in the

next section.
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10. Estimation of the Sizes of a Domain with 2-Dimensional Metric dσ2 with Negative Curvature and Large
Modulus and a Given Metric ds2 = dσ2 + (du)2

Assume that there are two metrics given in a domain D, namely, dσ2 and ds

2
= dσ

2
+ (du)

2
, where u is

a regular function. Suppose that the Gaussian curvature K of the metric ds

2 is negative and its modulus is larger
than the modulus of curvature ¯

K of the metric dσ

2
. We now show that it is possible to get an upper bound for the

sizes of the domain D similar to Efimov’s estimate for the surfaces z = z(x, y).

By C(r) we denote a geodesic disk of radius r in the metric dσ

2
. Assume that, for any r 2 [0, R], the bound-

ary of the disk C(r) has a geodesic curvature
1

⇢

g

≥ 0. This condition is satisfied if the Gaussian curvature of the

metric dσ

2 is nonpositive or R is small. Let S(r) be the area of the disk C(r) and let L(r) be the length of
the circle Γ(r) in the metric dσ

2
. We define the quantity M(R) that depends on the metric dσ

2 :

M(R) = inf

0rR

S(r)

L(r)

2
.

The number M(R) is not equal to zero because the ratio of S(r) to L

2
(r) tends to

1

4⇡

as r ! 0.

Note that, for K =

¯

K, the estimate cannot be obtained. Indeed, in this case, we can set u = const in the
entire domain of definition of the metric dσ

2
. Hence, it is necessary to “separate” K from ¯

K. We do this with
the help of a constant coefficient λ of K.

Theorem 1. Suppose that there exists a constant K0 > 0 such that the inequality K  −K

2
0 holds for the

Gaussian curvatures K and ¯

K and there exists a number λ (0  λ < 1) such that λK  ¯

K.

Then

S(R)M(R)  3e

2

4(1− λ)K

2
0

.

To prove the theorem, we use the Heinz method somewhat modified as applied to the analyzed case. We in-
troduce a function

f(r) =

rZ

0

Z

Γ(r)

u

2
σ

dσ dr + S(r).

Here, σ is the arc length of Γ(r) in the metric dσ

2
, u

σ

is the derivative of u with respect to the arc length of this
curve, and r is the arc length along the geodesic radius. This function can be also rewritten in the form

f(r) =

Z

C(r)

(1 + u

2
σ

) dS.

We use the generalized Bernstein formula (9) with u instead of z and ¯

K instead of K. In view of relation (11)
connecting the curvatures K and ¯

K and the Monge–Ampére operator, we get

d

dr

Z

Γ(r)

u

2
σ

2

dσ =

Z

Γ(r)

u

2
r

2

1

⇢

g

dσ +

Z

C(r)


−K(1 +r1u)

2
+

¯

K

✓
1 +

3

2

r1u

◆�
dS. (12)
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By using the Cauchy–Bunyakovskii inequality, we find

f(r) 

0

B@
Z

C(r)

(1 +r1u)
2
dS

1

CA

1/2

(S(r))

1/2
. (13)

The primes denote the derivatives with respect to r. We get

f

0
(r) =

Z

Γ(r)

u

2
σ

dσ + L(r).

To find the second derivative f

00
(r), we use Eq. (12). We also note that the derivative of L(r) is equal to

the integral of the geodesic curvature of the curve Γ(r). Indeed, if we write the metric dσ

2 in the semigeodesic
coordinate system

dσ

2
= dr

2
+Gdφ

2
,

then we get

L(r) =

Z

Γ(r)

p
Gdφ, L

0
=

Z

Γ(r)

G

r

2G

p
Gdφ =

Z

Γ(r)

1

⇢

g

dσ.

By assumption, the geodesic curvature is positive. Hence, L0 ≥ 0. We estimate the integrand of the last integral
on the right-hand side of (12) and denote it by A :

A = −K(1 +r1u)
2
+

¯

K

✓
1 +

3

2

r1u

◆
.

If ¯

K ≥ 0 at the analyzed point, then, at this point,

A ≥ K

2
0 (1 +r1u)

2
.

Now let ¯

K < 0 at the same point. Then we get

A = −(1− λ)K(1 +r1u)
2 − λK +

¯

K

+ 2(−λK +

¯

K)r1u− λK(r1u)
2 − 1

2

¯

Kr1u

≥ (1− λ)K

2
0 (1 +r1u)

2
,

where we have used the condition of the theorem −λK +

¯

K ≥ 0 and ¯

K < 0.

Therefore,

f

00
=

d

dr

Z

Γ(r)

u

2
σ

dσ + L

0 ≥ 2(1− λ)K

2
0

Z

C(r)

(1 +r1u)
2
dS.
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By using (13), we obtain

f

00
(r) ≥ 2(1− λ)K

2
0f

2
(r)

S(r)

. (14)

It is clear that f 0
(r) > 0 for r > 0 and f(0) = f

0
(0) = 0. Multiplying the right-hand and left-hand sides of

inequality (14) by f

0
(r) and integrating from 0 to r, we find

f

02
(r) ≥ 4(1− λ)K

2
0f

3
(r)

3S(r)

.

We rewrite this inequality in the form

f

0
(r)

f

3/2
(r)

≥ 2

p
1− λK0p
3S(r)

.

Integrating it from r1 > 0 to r2, we get

1p
f(r1)

− 1p
f(r2)

≥
p
1− λK0

r2Z

r1

drp
3S(r)

.

By using the inequality f(r1) ≥ S(r1), we obtain

1p
S(r1)

≥
p
1− λK0

r2Z

r1

drp
3S(r)

. (15)

Note that

0 <

�p
S(r)

�0
=

L(r)

2

p
S(r)

 1

2

p
M(R)

.

By virtue of this inequality and estimate (15) with r2 = R, we find

1p
S(r1)

≥
p
1− λK0

RZ

r1

�p
S(r)

�0
dr

�p
S(r)

�0p
3S(r)

≥
p
1− λK0M

1/2
(R)p

3

ln

p
S(R)p
S(r1)

.

Hence,

1p
S(r1)

+

2

p
1− λK0M

1/2
(R)p

3

ln

p
S(r1) ≥

2

p
1− λK0M

1/2
(R)p

3

ln

p
S(R).

The left-hand side has a minimum for

p
S(r1) =

p
3

2

p
M(R)(1− λ)K0

.
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Substituting this value in the left-hand side, we arrive at the estimate for S(R), which yields the required inequality

S(R)M(R)  3e

2

4(1− λ)K

2
0

.

The validity of this estimate proves that, for a given metric dσ

2 and a given geodesic disk C(R), the quan-
tity K0 cannot be arbitrarily large in this metric. Indeed, the right-hand side of this inequality tends to zero
as K0 ! 1, whereas the left-hand side takes a fixed nonzero value. The estimate becomes worse as λ ap-
proaches 1, i.e., in the case where the curvature K is close to ¯

K.

11. Projection onto Complete Unbounded Manifolds

We now consider the problem of existence of the metric ds

2 on the complete manifold M

2 unbounded in the
metric dσ

2
. The following theorem is true:

Theorem 2. If, on the manifold M

2 with metric dσ

2 complete and bounded in this metric with Gaussian
curvature ¯

K ≥ 0, there exists a point P0 without conjugate points and K is the Gaussian curvature of the metric
ds

2
= dσ

2
+ (du)

2
, then

sup

M

2 K ≥ 0.

To prove the theorem, we construct a semigeodesic coordinate system centered at the point P0 for which

dσ

2
= dr

2
+Gdφ

2
.

The absence of conjugate points for the point P0 guarantees the convexity of geodesic circles. Since

¯

K = −(

p
G)

rrp
G

and ¯

K ≥ 0, the quantity
p
G increases not faster than a linear function:

p
G  cr for sufficiently large r. Here,

c = const. Hence, the length of the circle L(r) increases not faster than a linear function

L(r) =

Z p
Gdφ  2⇡cr.

For sufficiently large r, the area of the geodesic disks S(r) satisfies the inequality

S(r) =

Z p
Gdφ dr  ⇡cr

2
.

Let

sup

M2
K  −K

2
0 < 0.

We can use the arguments from the proof of Theorem 1 under the conditions of which we can set λ = 0. We use
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inequality (11) and let r2 tend to infinity. Thus, for large r, we get

r2Z

r1

1p
S(r)

dr ≥
r2Z

r1

1p
c⇡r

dr ! 1.

This contradicts inequality (15) for any K0 6= 0. Therefore, sup
M

2 K = 0.

Theorem 2 is proved.

12. Darboux Equation for the Squared Length of the Radius Vector of a Surface in E3

Let r = r(u

1
, u

2
) be the radius vector of a surface F

2 ⇢ E

3
. Denote ⇢ =

1

2

r

2
. The function ⇢ satisfies

the Darboux equation

r22⇢−r2⇢+ 1 = (2⇢−r1⇢)K. (16)

Here, r22 is the Monge–Ampére operator in the metric of the surface, r2 is the Laplace–Beltrami operator,
and r1⇢ is the first differential Beltrami parameter for the function ⇢ or | grad ⇢|2.

We now present a brief derivation of this equation. By using covariant derivatives, we represent the Gauss
decompositions in the following simple form:

r

,ij

= L

ij

n,

where L

ij

are the coefficients of the second quadratic form of the surface and n is the unit vector of normal.
We now compute the covariant derivatives of the function ⇢. Thus, we get

⇢

i

= (rr

i

), ⇢

,ij

= (r

i

r

j

) + (rr

,ij

) = g

ij

+ (rn)L

ij

.

Therefore, ⇢
,ij

− g

ij

= (rn)L

ij

. Hence,

(⇢

,11 − g11)(⇢,22 − g22)− (⇢

,12 − g12)
2
= (rn)

2
(L11L22 − L

2
12).

In the expanded form, we can write

⇢

,11⇢,22 − ⇢

2
,12 − ⇢

,11g22 + 2⇢

,12g12 − ⇢

,22g11 + g11g22 − g

2
12 = (rn)

2
(L11L22 − L

2
12).

We divide the right-hand and left-hand sides of the last equation by g11g22 − g

2
12 and use the relation

K = (L11L22 − L

2
12)/(g11g22 − g

2
12).

Note that
⇢

,11g22 − 2⇢

,12g12 + ⇢

,22g11

g11g22 − g

2
12

= ⇢

,ij

g

ij

= r2⇢.

We now show that the support function (rn) can be expressed via the function ⇢ and its derivatives. We write
the decomposition of r in the basis vectors r1, r2, and n as follows:

r = a

i

r

i

+ n(rn).
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Thus, we find

⇢

k

= (rr

k

) = a

i

(r

i

r

k

) = a

i

g

ik

, ⇢

k

g

kl

= a

l

.

We now return to the decomposition of r :

r = ⇢

k

g

kl

r

l

+ (rn)n.

Further, we scalarly multiply the right- and left-hand sides by r. This gives

2⇢ = ⇢

k

⇢

l

g

kl

+ (rn)

2
,

i.e.,

(rn)

2
= 2⇢−r1⇢,

which completes the derivation of the Darboux equation (16). The presented relation implies that r1⇢  2⇢.

13. Estimation of the Outer Diameter of a Surface in E3

In 1968, Burago established estimates for the outer diameter of a surface in E

3 according to which the surface
cannot be infinitely contractible in a class of regular surfaces. His method of proving presented in [18] was based
on laborious and complicated analyses of polyhedral metrics. We now present the estimates obtained by Burago.
Assume that a surface is located in a ball of radius R, S is its area, L is the length of the boundary, χ is the Euler
characteristic, and !

+ is the integral of the Gaussian curvature over the domain K ≥ 0 .

Burago Theorem. There exists an absolute constant C such that if χ = 1, then

S  C(R

2
!

+
+RL),

and if χ  0, then

S  C

�
R

2
[!

+ − 2⇡χ] +RL

�
.

The proof of these inequalities proposed by Gromov and based on the use of the Lobachevskii space was
presented in the monograph “Geometric Inequalities” by Burago and Zalgaller.

The class of regularity of the immersion C

2 is important in this theorem because, as shown by Kuiper [47],
any 2-dimensional metric can be isometrically immersed in the class C1 into the interior of a sphere of arbitrarily
small diameter in a 3-dimensional Euclidean space. Moreover, it is also important that the dimension of the
enveloping space is equal to 3. One can easily construct an isometric and regular immersion of the entire Euclidean
plane into a 3-sphere of an arbitrarily small radius from E

4
.

In 1973–1975, we applied the Darboux equation and the generalized Monge–Ampére operator to deduce
estimates for the outer diameter of a surface in E

3
.

We first consider a closed regular surface F

2 located in a ball of radius R. Denote

!

+
=

Z

K≥0

K dS, !

−
= −

Z

K0

K dS.
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Theorem 3. If a closed regular oriented surface F

2 lies in a ball of radius R, then the inequality

S  R

2

✓
!

+
+

!

−

2

◆
(17)

is true.

We use the Darboux equation, integrate the right- and left-hand sides of this equation over the surface, and take
into account relation (8). Since the surface is closed, this formula does not contain contour integrals. In addition,
the integral of r2⇢ over the closed surface is equal to zero. As a result, we get

S =

Z

F

2

K

✓
2⇢− 3

2

r1⇢

◆
dS.

In the domain where K ≥ 0, we find

K

✓
2⇢− 3

2

r1⇢

◆
 K2⇢  KR

2
.

At the same time, in the domain where K  0, we get

K

✓
2⇢− 3

2

r1⇢

◆
= K

✓
(rn)

2 − 1

2

r1⇢

◆
 |K|R2

/2.

This yields estimate (17).
We now consider a surface with edge. In this case, there are several possible boundary curves.

Theorem 4. Suppose that the oriented surface F

2 with boundary Γ lies in a ball of radius R and its bound-
ary lies in a ball of radius R1 with the same center. Then

S  R

2

✓
!

+
+

!

−

2

◆
+R

2
1

Z

Γ

|k| ds. (18)

Here, k = r

ss

is the vector of curvature of the curve Γ. The integral is taken over the arc length s of the
curve Γ. Since R1  R, we obviously get the lower bound for R.

To prove the theorem, we consider boundary integrals. We introduce a semigeodesic coordinate system r,

φ in a neighborhood of the boundary curve Γ such that the curve Γ is given by the equation r = 0. Assume
that the first quadratic form has the form ds

2
= dr

2
+ Gdφ

2
. The coordinates r and φ are called the first and

second coordinates, respectively. Then the unique vector ⌧ normal to Γ has the coordinates ⌧1 = 1 and ⌧2 = 0.

Integrating −r2⇢ over the surface, we obtain the following contour integral:

−
Z

Γ

(grad ⇢⌧) ds = −
Z

Γ

(rr1) ds. (19)

Moreover, integrating r22⇢ over the surface, we get the contour integral

Z

Γ

(⌫⌧) ds =

Z

Γ

⌫

1
⌧1 ds =

Z

Γ

⇢1⇢,22 − ⇢2⇢,12

2G

ds. (20)
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We write

−⇢2⇢,12

2G

= −
⇣
⇢2⇢1

2G

⌘

,2
+

⇢

,22⇢1

2G

.

Since the integral of the first term over the curve Γ is equal to zero, integral (20) takes the form

Z

Γ

⇢1⇢,22

G

ds =

Z

Γ

(rr1)(G+ (rr

,22))

G

ds

=

Z

Γ

(rr1)ds+

Z

Γ

(rr1)(rk) ds.

Here, we have used the equality

r

,22/G = r

ss

= k.

Note that, in the general sum, the first integral on the right-hand side and the integral on the right-hand side of (19)
cancel each other. Thus, only the second integral is preserved. It can be estimated from above by the expression

R

2
1

Z

Γ

|k| ds,

Q.E.D.

If the curve Γ lies on a sphere of radius R1 centered at the origin, then, in view of the fact that, in this case,
(rr

s

) ⌘ 0, at points of the curve Γ, we can write

(rr

ss

) = (rr

s

)

s

− r

2
s

= −1.

Therefore, the contour integral on the right-hand side of inequality (18) can be estimated as

������

Z

Γ

(rr1)(rrss) ds

������

Z

Γ

|(rr1)|ds  R1L,

where L is the length of the spherical curve Γ.

14. Functions on a Surface in E3 and the Monge–Ampére Operator

Assume that the surface F

2 ⇢ E

3 has the form x

↵

= x

↵

(u

1
, u

2
) in Cartesian coordinates. We define a

function Φ on the surface by specifying its dependence on the Cartesian coordinates x

↵ (which, in turn, depend
on the curvilinear coordinates u

1 and u

2
). Thus, it is supposed that the function Φ is first given in the space E

3

and then induced onto the surface F

2
. If the function Φ is a polynomial of x1, x2, and x

3
, then, on the surface,

it can be regarded as an analog of a polynomial function in the plane.
Each Cartesian coordinate x

↵ is also regarded as a function on F

2
. We now find the value of the Monge–

Ampére operator for this function.
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The derivatives of the function Φ with respect to x

↵ are denoted by Greek letter in the subscripts. At the
same time, the covariant derivative with respect to u

i is denoted by a Latin letter. Moreover, the second covariant
derivatives are, in addition, denoted by commas. Thus, we have

Φ

i

= Φ

↵

x

↵

i

, Φ

,ij

= Φ

↵β

x

↵

i

x

β

j

+ Φ

↵

x

↵

,ij

.

We determine the numerator of the expression for the Monge–Ampére operator as follows:

Φ

,11Φ,22 − Φ

2
,12 = (Φ

↵β

x

↵

1x
β

1 + Φ

↵

x

↵

,11)(Φγσ

x

γ

2x
σ

2 + Φ

γ

x

γ

,22)

− (Φ

↵β

x

↵

1x
β

2 + Φ

↵

x

↵

,12)(Φγσ

x

γ

1x
σ

2 + Φ

γ

x

γ

,12)

=

1

2

Φ

↵β

x

↵

1x
σ

2 (x
β

1x
γ

2 − x

β

2x
γ

1) + Φ

↵

Φ

γσ

x

↵

,11x
γ

2x
σ

2 + Φ

γ

Φ

↵β

x

↵

1x
β

1x
γ

,22

− Φ

↵

φ

γσ

x

↵

,12x
γ

1x
σ

2 − Φ

↵β

Φ

γ

x

↵

1x
β

2x
γ

,12 + Φ

↵

Φ

γ

(x

↵

,11x
γ

,22 − x

↵

,12x
γ

,12). (21)

Further, we apply the Gauss decompositions r
,ij

= L

ij

n and introduce the following notation:

p

↵σ

=

x

↵

1x
σ

2 − x

↵

2x
σ

1p
g

, b

ij

= Φ

↵β

x

↵

i

x

β

j

.

Here, g is the determinant of the metric tensor of the surface. The components p↵σ form a unique vector n normal
to the surface:

n =

�
p

23
, p

31
, p

12
�
= (n

1
, n

2
, n

3
).

We divide the right- and left-hand sides of Eq. (21) by g and use the Gauss equation. This yields

r22Φ = −

������������

Φ11 Φ12 Φ13 n

1

Φ21 Φ22 Φ23 n

2

Φ31 Φ32 Φ33 n

3

n

1
n

2
n

3
0

������������

+

(L11b22 − 2L12b12 + L22b11)(n, gradΦ)

g

+K(n, gradΦ)

2
. (22)

Here, gradΦ is the gradient of the function in E

3
.

Remark 1. In a special case where

Φ =

1

2

�
(x

1
)

2
+ (x

2
)

2
+ (x

3
)

2
�
,

we get the Darboux equation. In this case, gradΦ = r.
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Remark 2. If the surfaces F 2 and Φ(x

1
, x

2
, x

3
) = const are orthogonal, i.e., (gradΦ, n) = 0, then

r22Φ = −

������������

Φ11 Φ12 Φ13 n

1

Φ21 Φ22 Φ23 n

2

Φ31 Φ32 Φ33 n

3

n

1
n

2
n

3
0

������������

. (23)

Remark 3. For the simplest function on the surface (a component of the radius vector x↵ ), the expression for
the Monge–Ampére operator takes a very simple form

r22x
↵

= K(n

↵

)

2
, ↵ = 1, 2, 3. (24)

Since n is a unit vector, we get

3X

↵=1

r22x
↵

= K.

Indeed, in view of x↵
,ij

= L

ij

n

↵

, we conclude that

x

↵

,11x
↵

,22 − (x

↵

,12)
2
=

�
L11L22 − (L12)

2
�
(n

↵

)

2
.

Dividing both sides of the equation by g11g22 − g

2
12, we obtain Eq. (24).

As an example, we apply relation (23) to a function Φ defined on an ordinary torus. In the implicit form, it is
given by the equation

F (x, y, z) = z

2
+

�p
x

2
+ y

2 − a

��p
x

2
+ y

2 − b

�
= 0,

where a and b are positive numbers and, moreover, a 6= b. We find

F

x

=

xp
x

2
+ y

2

�
2

p
x

2
+ y

2 − a− b

�
, F

y

=

yp
x

2
+ y

2

�
2

p
x

2
+ y

2 − a− b

�
, F

z

= 2z.

This yields

| gradF |2 =
�
2

p
x

2
+ y

2 − a− b

�2
+ 4z

2
.

Denote
p
x

2
+ y

2
= λ. Then the equation of torus can be rewritten in the form

z

2
= −λ

2
+ λ(a+ b)− ab.

Hence, on the surface of the torus, we find

| gradF |2 = (2λ− a− b)

2
+ 4(−λ

2
+ λ(a+ b)− ab) = (a− b)

2
.
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We set

Φ = arctan

y

x

.

Thus, we get

Φ

x

= − y

x

2
+ y

2
, Φ

y

=

x

x

2
+ y

2
, Φ

z

= 0.

Hence,

(gradF, gradΦ) = 0

and we can use relation (23). We have

Φ

xx

=

2xy

(x

2
+ y

2
)

2
, Φ

xy

=

y

2 − x

2

(x

2
+ y

2
)

2
, Φ

yy

=

−2xy

(x

2
+ y

2
)

2
.

We substitute these expressions in relation (23) and note that the component of normal n3
= 2z/| gradF |. There-

fore,

r22Φ = − 4z

2

(a− b)

2
(x

2
+ y

2
)

2
.

Since, on the surface of the torus, z2 is expressed in terms of x and y, we get the expression for r22Φ in terms
of the parameters x and y.

15. Simplest Monge–Ampére Equation in the Plane

We now present some recent results obtained for the simplest Monge–Ampére equation

z

xx

z

yy

− z

2
xy

= f(x, y).

In the well-known Jörgens work [19], it was proved that a solution of this equation for f(x, y) = 1 defined on
the entire plane (x, y) can be nothing but a polynomial of x and y of the second degree. Calabi and Pogorelov
generalized this result to the many-dimensional case.

At the same time, there exist solutions of the equation z

xx

z

yy

− z

2
xy

= −1 defined on the entire plane that
are not polynomials. Thus, Goursat determined the general parametric solution of this equation, and a specific
example

z(x, y) = xy + x ln

⇣
x+

p
x

2
+ e

−2y
⌘
−
p

x

2
+ e

−2y

was presented by Kantor [44].
The Monge–Ampére equation with right-hand side in the form of a polynomial was considered in [20, 22, 23].

It is quite natural to seek its solution also in the form of a polynomial of certain degree. Recall that every con-
tinuous function f(x, y) on the right-hand side can be approximated in a bounded domain by a polynomial with
unboundedly high accuracy. The best possible result in this case is to determine the coefficients of the polynomial
z(x, y) via the coefficients of the approximating polynomial in the explicit form (if this is possible). However,
this is not always possible. Thus, we arrive at a general problem of construction of a polynomial solution to the
Monge–Ampére equation with polynomial right-hand side.
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We first consider the equation

z

xx

z

yy

− z

2
xy

= b20x
2
+ b11xy + b02y

2
+ b00, (25)

where the constants b
ij

satisfy the inequalities

b20 > 0, b02 > 0, 4b20b02 − b

2
11 > 0, b00 > 0. (26)

In [20], it was shown that the solution in the form of a polynomial of odd degree does not exist, while the
solution in the form of a polynomial of even degree exists provided that 4b20b02 − b

2
11 = 0.

Moreover, in [22], we have proved the following theorem:

Theorem 5. If the strict inequalities (26) are true, then Eq. (25) does not have solutions in the form of
polynomials of any degree.

At the same time, the analytic solution defined in the entire plane exists. If f(x, y) = x

2
+ y

2
+ 1, then the

analytic solution takes the form

z(x, y) =

1

3

p
2

(x

2
+ y

2
+ 2)

3/2
.

Another solution analytic in the entire plane except the origin has the form

z(x, y) =

1p
2

⇣
(x

2
+ y

2
)

3/2
+

p
x

2
+ y

2
⌘
.

At the origin of coordinates, this solution is continuous but not differentiable.
Note that there exist polynomial strictly positive functions f(x, y) for which the equation z

xx

z

yy

− z

2
xy

=

f(x, y) possesses a polynomial solution. Thus, setting

z(x, y) = ↵(x

4
+ y

4
) + a20x

2
+ a11xy + a02y

2
,

where ↵ is a positive constant, a20 > 0, a02 > 0, and 4a20a02 − a

2
11 > 0, we obtain

z

xx

z

yy

− z

2
xy

= (12↵xy)

2
+ 24↵(a02x

2
+ a20y

2
) + 4a20a02 − a

2
11 = f(x, y).

Here, the right-hand side f(x, y) is positive for all values of x and y.

At the same time, Eq. (25) can be approximated by a polynomial in any bounded domain (despite the fact that,
as already indicated, the polynomial solution does not exist). The following theorem is true:

Theorem 6. For any given ✏ > 0 and in any given bounded domain in the plane (x, y), under the strict
conditions (26), one can find a polynomial of the fourth degree Q

✏

such that

��r22Q✏

− (b20x
2
+ b11xy + b02y

2
+ b00)

��  ✏.

In what follows, we consider the Monge–Ampére equations with right-hand sides in the form of more general
polynomial of degrees 2–4. We indicated the cases of existence and absence of a solution z(x, y) in the form
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of a fourth-degree polynomial. The solutions are specified in the explicit form according to the coefficients b

ij

.

Thus, if

f(x, y) = 2x

4
+ x

2
y

2
+ 2y

4
+ x

2
+ xy + y

2
+ b00,

then the function

z(x, y) =

1

6

x

4
+

1

2

x

2
y

2
+

1

6

y

4
+

1

6

x

2 − 1

4

xy +

1

6

y

2

if and only if

b00 =
1

3

2
− 1

4

2
.

However, for f(x, y) in the form of a polynomial of fourth degree, the solution was not found. Moreover, the prob-
lem of finding solutions in this case proves to be quite complicated.

The Monge–Ampére operator maps the space of fourth-degree polynomials of x and y into itself.
We can now indicate fixed points of the Monge–Ampére operator. Indeed, if

U =

1

4

2 · 3(x
2
+ y

2
)

2
, W = − 1

4

2 · 3(x
2 − y

2
)

2
,

then the equalities

r22U = U, r22W = W

are true, i.e., these polynomials are fixed points of the Monge–Ampére operator.
In [24], Sabitov obtained an unexpected result for the simplest Monge–Ampére equation for f(x, y) = 0.

Note that any regular cylindrical surface with unique projection onto the plane is a regular solution on the complete
plane. Sabitov posed a problem: To describe the characteristics of a surface defined over the entire plane but with
possible singularities and zero Gaussian curvature at points where this surface is regular. The simplest example is
a cone z =

p
x

2
+ y

2 with singular point at the vertex. Are there any surfaces with larger numbers of isolated
singularities? The following theorem answers this question:

Sabitov Theorem. Suppose that an arbitrary finite set of points M is given in the plane (x, y). Then the
equation z

xx

z

yy

− z

2
xy

= 0 has infinitely many solutions z(x, y) defined in the entire plane and C

1-smooth at all
points except the points of a given set M at which these solutions are continuous but not differentiable. Moreover,
it is possible to state that there exist piecewise analytic solutions with violations of analyticity only at finitely many
points of rectilinear rays.

The first information about this theorem appeared in the abstract of Sabitov’s report delivered at the “Geometry
in Odessa-2015” conference [25]. The work by Gálvez and Nelli [26] was also devoted to the same problem and
published in 2016.

16. Symmetrons

It is useful to have closed surfaces of any topological type analytically defined in E

3
. In [17], these surfaces

were constructed and the behavior of their Gaussian curvature was analyzed. Since these algebraic surfaces have
certain symmetries, they are called symmetrons.
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In E

3
, we introduce the Cartesian coordinates x, y, z. In the plane z = 0, we take p mutually disjoint

closed regular curves γ

i

none of which lies inside the other. Assume that each curve γ

i

is given by the equation
f

i

(x, y) = 0 and, inside this curve, we have f

i

(x, y) < 0 . Suppose that a closed curve γ envelopes all curves γ

i

and is given by the equation f(x, y) = 0 and that, in addition, f(x, y) < 0 inside this curve. Then the surface M

2

is given in the implicit form by the equation

a(x, y, z) = z

2
+ f(x, y)

pY

i=1

f

i

(x, y) = 0.

Moreover, it is closed oriented, and homeomorphic to a sphere with p handles. We consider specific functions f

and f

i

. Thus, if we set

x

i

= cos

2⇡i

p

, y

i

= sin

2⇡i

p

,

then the surface

z

2
+ (x

2
+ y

2 −R

2
)

pY

i=1

⇥
(x− x

i

)

2
+ (y − y

i

)

2 − r

2
⇤
= 0

has symmetries for

r < sin

⇡

p

, r + 1 < R.

This surface is called a p-symmetron.
An ordinary circular torus of revolution in E

3 is specified by the equation

z

2
+

⇣p
x

2
+ y

2 −R

⌘⇣p
x

2
+ y

2 − r

⌘
= 0.

Therefore, it is also necessary to consider the surfaces specified by

p
(x− x

i

)

2
+ (y − y

i

)

2 − r.

With the help of computer methods, by using relation (22), we studied the behavior of the Gaussian curvature
of 2-symmetron and determined the domains on M

2 in which this curvature is positive or negative.
By adding the fourth coordinate as a function of Φ(x, y, z) bounded on M

2
, we construct a closed sur-

face F

2 ⇢ E

4
. With the help of computer simulations, we analyzed the behavior of the Gaussian curvature K

for the surface F

2
. Our aim was to construct a surface F

2 over M2 with Gaussian curvature K < 0. However,
the results of numerical analyses show that, in all studied examples, one can find domains in F

2 for which K ≥ 0.

Therefore, in conclusion, we pose the following question: Is it possible to find closed regular surfaces in E4

with negative Gaussian curvature of the metric given on an n-symmetron for n ≥ 2?
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