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GENERALIZED CHARACTERISTICS OF SMOOTHNESS AND
SOME EXTREME PROBLEMS OF THE APPROXIMATION
THEORY OF FUNCTIONS IN THE SPACE L2(R). I

S. B. Vakarchuk UDC 517.5

We consider the generalized characteristics of smoothness of the functions !w(f, t) and ⇤w(f, t),
t > 0, in the space L2(R) and on the classes L↵

2 (R) defined with the help of fractional-order deriva-
tives ↵ 2 (0,1) and obtain the exact Jackson-type inequalities for !w(f).

1. Introduction

In [1], Bernstein laid the foundations of the investigations in the field of approximation of functions given
on the entire real axis with the help of the space of entire functions of finite exponential type. Later, various
aspects of this field of investigations were studied by N. Akhiezer, A. Timan, M. Timan, Nikol’skii, Ibragimov,
Nasibov, Popov, Ponomarenko, Gaimnazarov, Stepanets, Ligun, Doronin, Arestov, Babenko, Vasil’ev, Vakarchuk,
Shabozov, Yanchenko, Artamonov, and other researchers (see, e.g., [2–32]).

In the present paper, we continue the investigations aimed at the solution of numerous extreme problems of
approximation theory of functions in the space L2(R) by using generalized characteristics of smoothness and the
generalization of the notion of derivative. In the case of 2⇡ -periodic functions, a similar, in a certain sense, class
of extreme problems in the space L2([0, 2⇡]) was considered in [33–35]. Note that, in [21], one can find an ex-
tension of a brief survey of final (in a certain sense) results on the best polynomial approximations of 2⇡ -periodic
functions in the space L2([0, 2⇡]) to the case of the best approximation by entire functions of exponential type in
the space L2(R).

We now present necessary notions and definitions. By L2(R) we denote the space of all measurable func-
tions f given on the entire real axis R. The squared modulus of these functions is Lebesgue integrable on any
finite interval and their norm is given by the formula

kfk :=

8
<

:

1Z

−1

��f(x)
��2 dx

9
=

;

1/2

< 1.

We also present characteristics of smoothness of functions for which it is possible to obtain final solutions of
a series of extreme problems of the approximation theory in the space L2(R).

1.1. For β 2 (0,1), we write the binomial coefficients

 
β

0

!
:= 1,

 
β

1

!
:= β,

 
β

j

!
:=

β(β − 1) . . . (β − j + 1)

j!
, (1.1)
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where j 2 N\{1}. In the case where β = m, m 2 N, for (1.1), we set

✓
m

j

◆
:=

⇢
m!

j!(m− j)!
for j = 0, . . . ,m; 0 for j = m+ 1,m+ 2, . . .

�
. (1.2)

Since
1X

j=0

����

✓
β

j

◆���� < 1,

the difference of fractional order β for a function f 2 L2(R) with step h 2 R, i.e.,

∆

β

h

(f, x) :=

1X

j=0

(−1)

j

 
β

j

!
f(x− jh), (1.3)

is defined almost everywhere on R and belongs to L2(R). Difference (1.3) is called left-hand sided for h > 0 and
right-hand sided for h < 0. The modulus of continuity of fractional order β 2 (0,1) for a function f 2 L2(R)
is defined as follows:

!
β

(f, t) := sup

���
∆

β

h

(f)
�� : |h|  t

 
, t ≥ 0. (1.4)

For β = m, m 2 N, we get the ordinary modulus of continuity of order m !
m

(f) from (1.1)–(1.4). In the case of
approximation by entire functions of exponential type in L2(R), the characteristic of smoothness !

m

(f),m 2 N,
was used in [6–8, 15, 16, 21, 26, 27]. In a more general case of the space L

p

(R), 1  p < 1, the characteristic
of smoothness (1.4) was considered in [32] and the modulus of continuity of the fractional order was studied
in [10, 11].

1.2. In [18, 19, 21–24], the following characteristic of smoothness was used for the solution of extremal
problems in L2(R) :

⌦

m

(f, t) :=

8
<

:
1

tm

tZ

0

. . .

tZ

0

��
∆

m

h

(f)
��2 dh1 . . . dhm

9
=

;

1/2

, t > 0, (1.5)

where

h := (h1, . . . , hm), ∆

m

h

:= ∆

1
h1

◦ . . . ◦∆1
hm

, ∆

1
hj
(f, x) := f(x+ h

j

)− f(x), j = 1,m.

1.3. For any function f 2 L2(R), we write the Steklov function

S
h

(f, x) := (1/(2h))

x+hZ

x−h

f(t) dt, h > 0,

and denote

S
h,j

(f) := S
h

(S
h,j−1(f)), j 2 N, and S

h,0(f) ⌘ f.
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Let I be the identity operator in the space L2(R). We define special finite differences of the first and higher orders
at the point x with steps h as follows:

e
∆

1
h

(f, x) := S
h

(f, x)− f(x) = (S
h

− I)(f, x),

e
∆

m

h

(f, x) := e
∆

1
h

�e
∆

m−1
h

(f), x
�
= (S

h

− I)m(f, x)

=

mX

j=0

(−1)

m−j

 
m

j

!
S
h,j

(f, x), m = 2, 3, . . . .

By using the introduced notation, we can write the special modulus of continuity of order m, m 2 N as follows:

e
⌦

m

(f, t) := sup

���e
∆

m

h

(f)
�� : 0 < h  t

 
, t > 0. (1.6)

The characteristic of smoothness (1.6) was used, e.g., in [25].

1.4. In [30], the following characteristic of smoothness was used for the solution of some extreme problems
in the space L2(R),

⇤

m

(f, t) :=

8
<

:
1

t

tZ

0

��
∆

m

h

(f)
��2 dh

9
=

;

1/2

, t > 0, (1.7)

where m 2 N. We consider this quantity in more detail by using the results obtained by Ditzian and Totik in [36,
p. 26].

We take the interval D = (a, b) whose endpoints may take not only finite but also infinite values, e.g.,
−1 and +1, respectively. For a function f 2 L

p

(D), 1  p < 1, the characteristic of smoothness

! ⇤m
'

(f, t)
p

:=

8
<

:
1

t

tZ

0

Z

D

��
∆

m

h'(x)f(x)
��p dx dh

9
=

;

1/p

, t > 0, (1.8)

was considered in [36]. The function ' defined on the interval D is positive and satisfies certain requirements
formulated in [36], Sec. 1.2. By ∆

m

h'(x)f(x) we denote the direct or inverse finite difference of order m of
a function f that exists almost everywhere on D. In this case,

∆

m

h'(x)f(x) :=
−!
∆

m

h'(x)f(x) =

mX

j=0

(−1)

j

✓
m

j

◆
f
�
x+ (m− j)h'(x)

�

or

∆

m

h'(x)f(x) :=
 −
∆

m

h'(x)f(x) =
mX

j=0

(−1)

j

✓
m

j

◆
f(x− jh'(x)).

We set
−!
∆

m

h'(x)f(x) = 0 or
 −
∆

m

h'(x)f(x) = 0

if either the segment
⇥
x, x+mh'(x)

⇤
or the segment

⇥
x−mh'(x), x

⇤
, respectively, does not belong to D.
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Thus, if, in relation (1.8), we have D = (−1,1) and ' = e', where e'(x) ⌘ 1, p = 2, and

∆

m

he'(x)f(x) :=
−!
∆

m

he'(x)f(x) = ∆

m

h

(f, x),

then, by using relations (1.7) and (1.8), we obtain

⇤

m

(f, t) = ! ⇤m
e' (f, t)2, t > 0, f 2 L2(R),

i.e., (1.7) is definitely a natural characteristic of smoothness in the space L2(R).

1.5. In [31], Artamonov proposed the modulus of continuity !h0i(f), where f 2 L
p

(R), 1  p  1.

In terms of the notation accepted in [31], we now formulate its definition in the space L2(R), namely, with the
help of the operators ∆

h

:= T
h

− I and

T
h

(f, x) :=
3

⇡2

X

j2Z
(j 6=0)

f(x+ jh)

j2
,

where h 2 R, we write the characteristic of smoothness

!h0i(f, t) := sup

�
k∆

h

(f)k : 0  h  t
 
, t ≥ 0. (1.9)

The modulus of continuity (1.9) is a modification of the modulus of continuity introduced by Runovski and
Schmeisser in the space L

p

�
[0, 2⇡]

�
, 1  p < 1, corresponding to the Riesz derivative [37]. In the space L2(R),

the generalization of the modulus of continuity from [37] takes the form

b!(f, t) := sup

�
kb∆

h

(f)k : 0  h  t
 
, t ≥ 0, (1.10)

where b∆
h

:=

bT
h

− I and

bT
h

(f, x) :=
4

⇡2

X

j2Z

f(x+ (2j + 1)h)

(2j + 1)

2
, h 2 R.

In this connection, in our opinion, it is reasonable to consider more general structures in the space L2(R)
playing the role of characteristics of smoothness and containing, as special cases, the moduli of continuity consid-
ered in Secs. 1.1–1.5. Moreover, these structures should preserve the possibility of accumulation of new types of
moduli of continuity that may appear in the future.

2. Fourier Transform and Generalized Characteristics of Smoothness of Functions in the Space L2(R)

2.1. For the first time, the Fourier transform in the space L2(R) was constructed and studied by Plancherel.
Therefore, this transformation is sometimes called the Fourier–Plancherel transform.

Plancherel Theorem ([3], Chap. III, Sec. 3.11.21). For any function f 2 L2(R), the integral

1p
2⇡

1Z

−1

f(t)
e−itx − 1

−it
dt
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possesses the derivative, which is almost everywhere finite

F(f, x) =
1p
2⇡

d

dx

1Z

−1

f(t)
e−itx − 1

−it
dt (2.1)

and such that
1Z

−1

��F(f, x)
��2dx =

1Z

−1

��f(x)
��2 dx (2.2)

and

f(x) =
1p
2⇡

d

dx

1Z

−1

F(f, t)
eitx − 1

it
dt (2.3)

almost everywhere. Moreover, as k ! 1,

1Z

−1

������
F(f, x)− 1p

2⇡

kZ

−k

f(t)e−itx dt

������

2

dx ! 0, (2.4)

1Z

−1

������
f(x)− 1p

2⇡

kZ

−k

F(f, t)eitx dt

������

2

dx ! 0. (2.5)

Function (2.1) is called the Fourier transform of f in the space L2(R). Sometimes, relations (2.1) and (2.3)
are called the inversion formulas.

Relations (2.1) and (2.4) show that the Fourier transform in L2(R) can be defined not only as a pointwise
(almost everywhere) limit but also as a limit in the mean, which is denoted by l.i.m. The same is also true for
relations (2.3) and (2.5). Hence, we get

F(f, x) := l.i.m

8
<

:
1p
2⇡

kZ

−k

f(t)e−itx dt : k!1

9
=

;,

f(x) := l.i.m

8
<

:
1p
2⇡

kZ

−k

F(f, t)eitx dt : k!1

9
=

;.

In the inversion formulas

F(f, x) =
1p
2⇡

1Z

−1

f(t)e−itx dt, f(x) =
1p
2⇡

1Z

−1

F(f, t)eitx dt

written for the function f 2 L2(R), the integrals are understood in a sense of mean square convergence, i.e.,
the respective relations (2.4) and (2.5) are true.
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2.2. By B
σ,2, σ 2 (0,1), we denote the collection of all entire functions g of exponential type not greater

than σ whose restrictions to the entire real axis R belong to the space L2(R).
Let L2(a, b), −1 < a < b < +1, be the space of functions measurable on (a, b) whose squared moduli

are Lebesgue integrable, i.e.,

bZ

a

��f(x)
��2dx < 1, σ 2 (0,1).

Thus, if the Fourier transform of the function g, i.e., F(g), belongs to L2(−σ,σ), then

g(x) =
1p
2⇡

σZ

−σ

F(g, t)eitx dt (2.6)

is an element of the space L2(R) and admits the analytic extension onto the entire complex plane to an entire
function of exponential type not greater than σ. In other words, any function g(z) admitting representation (2.6)
on the real axis belongs to B

σ,2. The converse statement is also true.

Wiener–Paley Theorem ([48], Chap. II, Sec. 2.5). In order that a function g 2 L2(R) be representable in
the form (2.6), where F(g) 2 L2(−σ,σ), i.e., in order that g(x) be a function with finite and square integrable
spectrum, it is necessary and sufficient that g(x) can be defined in the plane of complex variable z = x + iy as
an entire function of finite exponential type  σ.

2.3. As the subsequent development of the Shapiro–Boman ideas presented in [38, 39], the generalized mod-
uli of continuity of 2⇡ -periodic functions in the space L2([0, 2⇡]) were studied by Vasil’ev, Babenko, Kozko,
Rozhdestvenskii, and Vakarchuk (see, e.g., [40–42, 25–27]). The notion of generalized modulus of continuity was
extended to the space of functions of n variables L2(Rn

) by Vasil’ev [17] and then used by Gorbachev [43].

2.3.1. By using the notation introduced in [17, 43], we give the definition of generalized modulus of continuity
in the space L2(R). Let M := {µ

j

}
j2Z be a sequence of complex numbers satisfying the conditions

0 <
X

j2Z
|µ

j

| < 1 and
X

j2Z
µ
j

= 0.

Also let

µ(z) :=
X

j2Z
µ
j

zj

and let Hh be an operator of shift, i.e., Hhf(x) := f(x + h), h 2 R and, in addition, (Hh

)

j

:= Hhj . By ∆

M
h

we denote a generalized difference operator with constant coefficients acting from L2(R) into L2(R). Moreover,
almost everywhere on R, we have

∆

M
h

(f, x) :=
X

j2Z
µ
j

f(x+ jh) = µ(Hh

)f(x). (2.7)

Thus, in the case eµ1(z) := (z− 1)

m, m 2 N, for the number sequence corresponding to this function, we get

M1,m :=

⇢
µ
j

= (−1)

m−j

 
m

j

!
for j = 0, . . . ,m; µ

j

= 0 for j < 0 or j > m

�

j2Z
.
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Note that, by virtue of (2.7), ∆M1,m

h

is a finite-difference operator ∆m

h

. For the function f 2 L2(R), this operator
(almost everywhere) takes the form

∆

m

h

(f, x) :=
mX

j=0

(−1)

m−j

 
m

j

!
f(x+ jh).

For eµ2(z) := (1− z)β , |z|  1, β 2 (0,1)\N, we find

M2,β :=

⇢
µ
j

= (−1)

j

 
β

j

!
for j = 0, 1, . . . ; µ

j

= 0 for j = −1,−2, . . .

�

j2Z

and the corresponding operator ∆M2,β

h

is the difference ∆

β

−h

(f, x) of fractional order β. Here,

∆

β

−h

(f, x) :=
X

j2Z+

(−1)j
 
β

j

!
f(x−jh),

where h 2 R, Z+ := N[{0}. This difference is called left-hand-sided for h > 0 and right-hand-sided for h < 0.

Thus, by virtue of (2.7), we obtain

∆

M2,β

−h

(f, x) = ∆

β

−h

(f, x).

For

eµ3(z) := (−1)

m

m−1Y

j=0

(1− za
j
),

where m, a 2 N, we arrive at the Thue–Morse difference operator [42]:

e
∆

m

ah

(f, x) =
m−1Y

j=0

∆

1
a

j
h

(f, x) =
m−1Y

j=0

�
f(x+ ajh)− f(x)

�
.

In the case of a numerical sequence

M3 :=
�
µ
j

= 3/(⇡j)2 for j 2 Z\{0}; µ
j

= −1 for j = 0

 
j2Z,

the operator ∆M3
h

coincides with the operator ∆
h

in the definition of the modulus of continuity (1.9) and, for the
numerical sequence

M4 :=
�
µ
j

= 4/(⇡j)2 for j = 2⌫ + 1, ⌫ 2 Z; µ
j

= 0 for j = 2⌫, ⌫ 2 Z\{0}; µ
j

= −1 for j = 0

 
j2Z,

by virtue of (2.7), the corresponding operator ∆M4
h

turns into the difference operator b∆
h

from the definition of
the characteristic of smoothness (1.10).
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By using relations (2.5) and (2.7) and the conditions imposed on terms of the numerical sequence M =

{µ
j

}
j2Z, we obtain (almost everywhere on R)

∆

M
h

(f, x) =
1p
2⇡

d

dx

1Z

−1

F(f, t)

0

@
X

j2Z

ei(x+jh)t − 1

it
µ
j

1

A dt

=

1p
2⇡

d

dx

1Z

−1

F(f, t)

0

@
X

j2Z
µ
j

eijht

1

A eixt

it
dt

=

1p
2⇡

d

dx

1Z

−1

F(f, t)

0

@
X

j2Z
µ
j

eijht

1

A eixt − 1

it
dt. (2.8)

Since, for any function f belonging to L2(R), its generalized difference ∆

M
h

(f) is also an element of L2(R),
in view of (2.3), we can write

∆

M
h

(f, x) =
1p
2⇡

d

dx

1Z

−1

F
⇣
∆

M
h

(f), t
⌘eixt − 1

it
dt. (2.9)

Setting

wM(x) := µ(eix) =
X

j2Z
µ
j

eijx, (2.10)

we derive the following relation from (2.8) and (2.9) almost everywhere on R :

F
�
∆

M
h

(f), x
�
= wM(hx)F(f, x). (2.11)

By using relations (2.2) and (2.11), we get

��
∆

M
h

(f)
��2

=

1Z

−1

��F
�
∆

M
h

(f), x
���2dx =

1Z

−1

��F(f, x)
��2��wM(hx)

��2dx. (2.12)

It follows from relation (2.10) that the complex-valued function wM is continuous, 2⇡ -periodic, and such
that wM(0) = 0. All arguments presented above are also true for the real-valued function |wM|2, which, in addi-
tion, can be even if all elements of the numerical sequence M = {µ

j

}
j2Z are real numbers.

2.3.2. By virtue of (2.10), we get the following result for the numerical sequence M1,m :

wM1,m(x) =

mX

j=0

(−1)

m−j

 
m

j

!
eijx = (eix − 1)

m.

Therefore,
��wM1,m(x)

��2
= 2

m

(1− cosx)m. (2.13)
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Further, we consider a numerical sequence M2,β for which β 2 (0,1)\N. This yields

wM2,β
(x) =

X

j2Z+

(−1)

j

✓
β

j

◆
eijx = (1− eix)β

and
��wM2,β

(x)
��2

= 2

β

(1− cosx)β . (2.14)

By virtue of (2.11), in the analyzed case, almost everywhere on R, we find

F
�
∆

β

h

(f), x
�
= F

�
∆

M2,β

−h

(f), x
�
= wM2,β

(−hx)F(f, x) =
�
1− e−ixh

�
βF(f, x).

For the numerical sequence M3, by using the results obtained in [44, p. 776] (Sec. 5.4.2.7), for 0  x  ⇡,

we get

wM3(x) = −1 +

6

⇡2

X

j2N
cos

jx

j2
=

3x(x/(2⇡)− 1)

⇡
,

i.e.,

��wM3(x)
��2

=

9

⇡2
x2
⇣
1− x

2⇡

⌘2
. (2.15)

For the numerical sequence M4, by using the results obtained in [44, p. 771] (Sec. 5.4.6.5), for 0  x  ⇡,

we find

wM4(x) = −1 +

8

⇡2

X

⌫2Z+

cos((2⌫ + 1)x)/(2⌫ + 1)

2
= −2x

⇡
,

i.e.,

��wM4(x)
��2

=

4x2

⇡2
. (2.16)

Note that functions (2.13)–(2.16) are 2⇡ -periodic, continuous, and even
�
for this reason, they are considered

on the segment [0,⇡]
�
. Moreover, they are equal to 0 at the origin.

Following Vasil’ev [17], the generalized modulus of continuity of an arbitrary element f 2 L2(R) generated
by a numerical sequence M = {µ

j

}
j2Z is defined as a function

wM(f, t) := sup

�
k∆M

h

(f)k : |h|  t
 
, t ≥ 0. (2.17)

In the general case, including the numerical sequences M1,m, M2,β , M3, and M4 considered above, by us-
ing (2.12) and (2.17), we obtain

wM(f, t) = sup

8
><

>:

0

@
1Z

−1

��F(f, ⌧)
��2��wM(h⌧)

��2d⌧

1

A
1/2

: 0  h  t

9
>=

>;
, t ≥ 0. (2.18)
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2.3.3. The characteristics of smoothness (1.5)–(1.7) do not fit the general scheme of formation of the general-
ized modulus of continuity of the form (2.17) in the space L2(R). We consider relations (1.6) and (1.7). According
to [25, 30], for any function f 2 L2(R), we obtain

e
⌦

m

(f, t) = sup

8
><

>:

0

@
1Z

−1

��F(f, ⌧)
��2�

1− sinc (h⌧)
�2m

d⌧

1

A
1/2

: 0 < h  t

9
>=

>;
, t > 0, (2.19)

and

⇤

m

(f, t) =

8
<

:

1Z

−1

��F(f, ⌧)
��2⌘

m

(t⌧) d⌧

9
=

;

1/2

, t > 0, (2.20)

where m 2 N, sinc (x) :=
�
sin(x)/x forx 6= 0; 1 forx = 0

 
, and

⌘
m

(x) := (2

m/x)

xZ

0

(1− cos v)m dv, x 6= 0.

We set ⌘
m

(0) = 0. The functions
�
1− sinc (x)

�2m and ⌘
m

(x) in relations (2.19) and (2.20), respectively, are
continuous, even and bounded. Moreover, they are not equal to zero almost everywhere and equal to zero at x = 0

on the set R. However, none of these functions is 2⇡ -periodic.

2.3.4. We continue the generalization of the characteristics of smoothness in the space L2(R). By G we
denote the set of all continuous nonnegative even functions ' bounded on the entire real axis R that are not equal
to zero almost everywhere on R and are such that '(0) = 0. By M we denote the class of all complex-valued
functions w : R ! C for which |w|2 2 G.

Let f 2 L2(R) and let F(f) be the Fourier transform of the function f, w 2 M, h 2 R. Then
��F(f, ·)w(h·)

��  kwk
C(R)kfk < 1,

i.e., F(f, x)w(hx) 2 L2(R). By using the generalized difference operator ∆w

h

: L2(R) ! L2(R), where h 2 R
and w 2 M, we define a function

∆

w

h

(f, x) :=
1p
2⇡

d

dx

1Z

−1

F(f, ⌧)w(h⌧)
eix⌧ − 1

i⌧
d⌧ (2.21)

almost everywhere on R. Thus, for w := wM, where wM is given by relation (2.10), and f 2 L2(R), from (2.8)
and (2.21), we obtain

∆

wM
h

(f) = ∆

M
h

(f).

In this connection, relation (2.21) can be regarded as an extension of the generalized difference operator ∆

M
h

to a more general case ∆

w

h

. According to (2.3) and (2.21), the equality F(∆

w

h

(f), x) = F(f, x)w(hx), h 2 R,
is true almost everywhere on R. By using this equality and relation (2.2), we get

��
∆

w

h

(f)
��2

=

��F(∆

w

h

(f))
��2

=

1Z

−1

��F(f, ⌧)
��2��w(h⌧)

��2d⌧. (2.22)
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This yields the characteristic of smoothness of the functions f 2 L2(R)

!w

(f, t) := sup

�
k∆w

h

(f)k : |h|  t
 
, t ≥ 0, (2.23)

which, in a certain sense, is more general than (2.17). Moreover, in view of (2.22) and (2.23), we get

!w

(f, t) = sup

8
><

>:

0

@
1Z

−1

��F(f, ⌧)
��2��w(h⌧)

��2d⌧

1

A
1/2

: 0  h  t

9
>=

>;
, t ≥ 0. (2.24)

Furthermore, lim
�
!w

(f, t) : t ! 0 +

 
= 0 and !w

(f, t) is a continuous function nondecreasing on the set
0  t < 1 and such that

!w

(f1 + f2, t)  !w

(f1, t) + !w

(f2, t),

where f1, f2 2 L2(R).
Comparing (2.18) with (2.24), we get !wM

(f, t) = !M(f, t), t ≥ 0. Since the difference operator e∆m

h

(f),

m 2 N, h 2 (0,1), f 2 L2(R), considered in Sec. 1.3 can be represented in the form [25]

e
∆

m

h

(f, x) =
1p
2⇡

d

dx

1Z

−1

F(f, ⌧)(sinc (h⌧)− 1)

m

eix⌧ − 1

i⌧
d⌧,

almost everywhere on R, in view of (2.21), we conclude that the operator e∆m

h

(f) is a special case of the gener-
alized operator ∆w

h

(f) for w = ew
m

, where ew
m

(x) := (sinc (x) − 1)

m. By using (2.19) and (2.24), we obtain
!wm

(f, t) = e
⌦

m

(f, t), t > 0.

2.3.5. Consider the second group of functions that can be used as characteristics of smoothness in the
space L2(R). Let f 2 L2(R) and w 2 M. We set

⇤

w

(f, t) :=

8
<

:
1

t

tZ

0

��
∆

w

h

(f)
��2dh

9
=

;

1/2

, t > 0. (2.25)

Moreover, lim
�
⇤

w

(f, t) : t ! 0 +

 
= 0; ⇤

w

(f, t) is a continuous function on the set 0 < t < 1;

⇤

w

(f, t)  !w

(f, t), t > 0; ⇤

w

(f1 + f2, t) 
p
2(⇤

w

(f1, t) + ⇤

w

(f2, t)), t > 0,

where f1, f2 2 L2(R). Thus, in the case w = wM1,m , m 2 N, from (1.7) and (2.25), we obtain

⇤

wM1,m
(f, t) = ⇤

m

(f, t), t > 0.

By using (2.22) and (2.25), for any element f 2 L2(R), we can write

⇤

w

(f, t) =

8
<

:

1Z

−1

��F(f, ⌧)
��2
0

@1

t

tZ

0

��w(h⌧)
��2dh

1

A d⌧

9
=

;

1/2

, t > 0. (2.26)
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It is clear that

tZ

0

|w(h⌧)|2dh =

1

⌧

t⌧Z

0

��w(h)
��2dh, t > 0, ⌧ 6= 0. (2.27)

Let

W(x) :=

8
>>><

>>>:

0 for x = 0,

(1/x)

xZ

0

��w(h)
��2dh for x 2 R and x 6= 0,

(2.28)

where w 2 M. Since the function |w|2 is even, it follows from (2.28) that W(x) = W(−x), x 2 R . In view
of (2.27) and (2.28), relation (2.26) takes the form

⇤

w

(f, t) =

8
<

:

1Z

−1

|F(f, ⌧)|2W(t⌧) d⌧

9
=

;

1/2

, t > 0. (2.29)

It is worth noting that, for the functions w = wM2,β
, β 2 (0,1), w = wM3 , and w = wM4 as well

as for the functions w = ew
m

, m 2 N, the class of extreme problems of the approximation theory of functions
in the space L2(R) considered in what follows was not investigated earlier with the use of the characteristic of
smoothness ⇤w.

3. Fractional-Order Derivatives of Functions in the Space L2(R)

We now recall the definition of the derivative of fractional order ↵2(0,1) of an arbitrary function f 2L2(R)
(see, e.g., [10, 45–47, 32]). Assume that q is a function from L2(R) such that

lim

�
k∆↵

−h

(f)/h↵ − qk : h ! 0 +

 
= 0, (3.1)

where

∆

↵

−h

(f, x) =
X

j2Z+

(−1)

j

 
↵

j

!
f(x− jh)

almost everywhere on R. Then q is called the strong Liouville–Grünwald–Letnikov derivative of fractional order
↵ for a function f 2 L2(R) and denoted by D↵f, i.e., q = D↵f. In particular, it follows from equality (3.1) that

kD↵fk = lim

�
k∆↵

−h

(f)/h↵k : h ! 0 +

 
.

In [10], Gaimnazarov showed that the equality

F(D↵f, x) = (ix)↵F(f, x) (3.2)

is true for any function f 2 L2(R) and ↵ 2 (0,1) almost everywhere on R.
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In [32], it was indicated that if there exists a strong Liouville–Grünwald–Letnikov derivative D↵f in the sense
indicated above, then the equality

D↵f(x) = lim

�
∆

↵

−h

(f, x)/h↵ : h ! 0 +

 

holds almost everywhere on R, .
By L↵

2 (R), ↵ 2 (0,1), we denote a class of functions f 2 L2(R) with fractional-order derivatives D↵f that
belong to the space L2(R). Note that L↵

2 (R) is a Banach space with the norm kfk+ kD↵fk. For ↵ = r, r 2 N,
by Lr

2(R) we denote a class of functions f 2 L2(R) whose derivatives of order (r − 1) are locally absolutely
continuous and derivatives of order r belong to the space L2(R). In this case, it is clear that Drf = f (r) almost
everywhere on R.

4. Best Mean-Square Approximations by Entire Functions of Exponential Type σ 2 (0,1) on the Classes
L2(R) and L↵

2 (R), ↵ 2 (0,1), Expressed in Terms of the Characteristic of Smoothness !w

4.1. Prior to presentation of the main results of this section, we introduce some necessary notions and defini-
tions. Since the functions of the set G introduced in Sec. 2.3.4 are even, it suffices to consider them only on the
semiaxis R+. For any element ' 2 G, by t⇤ 2 (0,1) we denote the value of the argument x for which

'(t⇤) = sup

�
'(x) : 0 < x < 1

 
. (4.1)

It is clear that t⇤ depends on '. In the case where the upper bound in relation (4.1) is attained for several
values of the argument, as t⇤, we take the least of these values.

We say that a function ' 2 G possesses property A if it is monotonically increasing on the segment [0, t⇤].
For any element ' 2 G with this property, we set

'⇤(x) :=
�
'(x) for 0  x  t⇤; '(t⇤) for t⇤  x < 1

 
, (4.2)

'(et⇤) = inf

�
'(x) : t⇤ < x < 1

 
, (4.3)

where the value t⇤ is determined from relation (4.1) In the case where the lower bound in relation (4.3) is attained
for several values of the argument, as et⇤, we choose the least of these values.

We say that a function ' 2 G satisfies property B if '(et⇤) > 0.

Note that the functions

|wM1,m |2, m 2 N, |wM2,β
|2, β 2 (0,1), |wM3 |2, and |wM4 |2

belong to the space G, satisfy property A, and, for each of them, t⇤ = ⇡ . As for the functions | ew
m

|2, m 2 N,
they are also elements of the set G, satisfy properties A and B, and take the same value t⇤ 2 (4.49; 4.51), which
is the least positive root of the equation tan(x) = x (see, e.g., [21, 25]).

For any function f 2 L2(R), by A
σ

(f), σ 2 (0,1), we denote its best mean-square approximation by
elements of the subspace B

σ,2 formed by functions of exponential type  σ whose restrictions to R belong to the
space L2(R), i.e.,

A
σ

(f) := inf

�
kf − gk : g 2 B

σ,2

 
.
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In what follows, we need the following statement established by Ibragimov and Nasibov [6]:

Lemma 1. Assume that a function f belongs to the space L2(R) and that F(f) is its Fourier transform in
a sense of L2(R) , i.e.,

f(x) =
1p
2⇡

d

dx

1Z

−1

F(f, t)
eixt − 1

it
dt,

where F(f) 2 L2(R). Then

L
σ

(f, x) =
1p
2⇡

σZ

−σ

F(f, t)eixt dt (4.4)

is an entire function from the subspace B
σ,2 that has the least deviation from f in a sense of metric of the

space L2(R), i.e.,

A
σ

(f) =
��f − L

σ

(f)
��
=

8
><

>:

Z

|t|≥σ

|F(f, t)|2 dt

9
>=

>;

1/2

. (4.5)

4.2. Theorem 1. Suppose that ↵ and σ belong to (0,1), a complex-valued function w : R ! C is such
that |w|2 belongs to the set G and satisfies properties A and B, and a point t 2 (0, t⇤) is defined as follows:

��w(t)
��
=

��w(et⇤)
��, (4.6)

where the quantity et⇤ is determined from relation (4.3) for the function ' = |w|2. Then, for any ⌧ 2 (0, t],

the equality

sup

f2L↵
2 (R)

σ↵A
σ

(f)

!w

(D↵f, ⌧/σ)
=

1

|w(⌧)| (4.7)

is true.

Proof. By using relations (2.24), (3.2), and (4.5) and taking into account the fact that the function |w|2
satisfies property B, for 0 < t  t/σ, we conclude that

!w

(D↵f, t) ≥

8
><

>:

Z

|⌧ |≥σ

��F(D↵f, ⌧)
��2 ��w(t⌧)

��2 d⌧

9
>=

>;

1/2

=

8
><

>:

Z

|⌧ |≥σ

|⌧ |2↵
��F(f, ⌧)

��2 |w(t⌧)|2 d⌧

9
>=

>;

1/2

≥ σ↵

8
><

>:

Z

|⌧ |≥σ

��F(f, ⌧)
��2��w(t⌧)

��2 d⌧

9
>=

>;

1/2
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≥ σ↵|w(tσ)|

8
><

>:

Z

|⌧ |≥σ

��F(f, ⌧)
��2 d⌧

9
>=

>;

1/2

= σ↵

��w(tσ)
��A

σ

(f).

Thus, setting t = ⌧/σ, where 0 < ⌧  t, we get the following upper bound:

sup

f2L↵
2 (R)

σ↵A
σ

(f)

!w

(D↵f, ⌧/σ)
 1

|w(⌧)| . (4.8)

We now establish a lower bound for the extreme characteristic on the left-hand side of inequality (4.8). To this
end, we consider a function λ

a

(x) := asinc (ax), a 2 (0,1). Since

|λ
a

(z)|  k exp(a|z|),

where k = const(k > 0), z 2 C, the quantity λ
a

is an entire function of exponential type  a. The function
λ
a

is not an element of the space L1(R) [48] (Chap. II, Sec. 2.3). However, λ
a

2 L2(R) and, hence, it has the
Fourier transform (2.1) in a sense of the space L2(R) equal to F(λ

a

, x) =
p

⇡/2
�
1 for |x| < a; 1/2 for |x| = a;

and 0 for |x| > a
 
[49] (Chap. 5). By using this result, we consider a function

q
σ+"

(x) :=
p
2/⇡

�
λ
σ+"

(x)− λ
σ

(x)
�
, " > 0, (4.9)

which is an entire function of finite exponential type  σ + ", belongs to the space L2(R), and has the Fourier
transform

F(q
σ+"

, x) =
�
1 for σ < |x| < σ + ";

1/2 for |x| = σ or |x| = σ + "0 and 0 for |x| < σ or |x| > σ + "
 
. (4.10)

It follows from (2.2), (3.2), and (4.10) that q
σ+"

belongs to L↵

2 (R). In view of (4.5) and (4.10), for q
σ+"

, we obtain

A
σ

(q
σ+"

) =

p
2". (4.11)

According to (2.22) and (3.2),

��
∆

w

h

(D↵f)
��2

=

1Z

−1

��F(f, ⌧)
��2|⌧ |2↵

��w(h⌧)
��2d⌧. (4.12)

Thus, by using relation (4.2), where ' = |w|2, and relations (4.10)–(4.12) and taking into account the fact
that |w|2 2 G, for the function q

σ+"

, we find

��
∆

w

h

(D↵q
σ+"

)

��2
= 2

σ+"Z

σ

⌧2↵|w(h⌧)|2d⌧
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 2(σ + ")2↵
σ+"Z

σ

|w(h⌧)|2d⌧

 (σ + ")2↵A2
σ

(q
σ+"

)

��w(h(σ + "))
��2
⇤. (4.13)

By using definition (2.23) for the characteristic of smoothness !w and (4.13), for any t 2 (0, t/σ], we obtain

!w

(D↵q
σ+"

, t)  A
σ

(q
σ+"

)(σ + ")↵
��w(t(σ + "))

��
⇤. (4.14)

Setting t = ⌧/σ, where 0 < ⌧  t, and introducing the notation

✓
"

(σ, ⌧) := (1 + "/σ)↵
��w(⌧(1 + "/σ))

��
⇤, (4.15)

in view of (4.14), we get

σ↵A
σ

(q
σ+"

)

!w

(D↵q
σ+"

, ⌧/σ)
≥ 1

✓
"

(σ, ⌧)
.

Since q
σ+"

belongs to L↵

2 (R), this yields

sup

f2L↵
2 (R)

σ↵A
σ

(f)

!w

(D↵f, ⌧/σ)
≥ 1

✓
"

(σ, ⌧)
. (4.16)

It follows from (4.15) that the quantity ✓
"

(σ, ⌧) monotonically decreases as " ! 0+ for constant values
of σ and ⌧. Therefore, as " ! 0+, the quantity 1/✓

"

(σ, ⌧) monotonically increases and is bounded from above
by 1/|w(⌧)|. Thus, for an arbitrarily small number δ > 0, there exists a value e" = e"(δ) 2 (0,σ⇤), where
σ⇤ := min(σ, 1/σ), for which 1/✓e"(σ, ⌧) > 1/|w(⌧)| − δ. By using this result and the definition of the upper
bound for a number set, we get

sup

�
1/✓

"

(σ, ⌧) : 0 < " < σ⇤
 
= 1/|w(⌧)|. (4.17)

Finding the upper bound of the right-hand side of inequality (4.16) with respect to " 2 (0,σ⇤) and using (4.17),
we obtain the lower bound as follows:

sup

f2L↵
2 (R)

σ↵A
σ

(f)

!w

(D↵f, ⌧/σ)
≥ 1

|w(⌧)| . (4.18)

The required equality (4.7) follows from relations (4.8) and (4.18).
Theorem 1 is proved.

Remark 1. Reasoning as in the proof of Theorem 1, we get

sup

f2L2(R)

A
σ

(f)

!w

(f, ⌧/σ)
=

1

|w(⌧)| , (4.19)

where 0 < ⌧  t . In this case, the upper bound is taken over all functions f from L2(R) not equivalent to zero.
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Combining, e.g., (4.7) with ↵ = r 2 N and w = ew
m

, m 2 N, with relation (4.19) also with w = ew
m

,

m 2 N, we arrive at one of our results from [25]

sup

f2Lr
2(R)

σrA
σ

(f)

e
⌦

m

(f (r), ⌧/σ)
=

1

(1− sinc (⌧))m
,

where r 2 Z+, L
0
2(R) ⌘ L2(R), f (0) ⌘ f, and 0 < ⌧  t.

4.3. Further, we set

N(f ;u, ⌧) := |F(f, u)|p |u|↵p |w(⌧u)|p ⇠(⌧), (4.20)

⌅

u,p,↵,w

(⇠, t) := |u|↵
8
<

:

tZ

0

|w(⌧u)|p ⇠(⌧) d⌧

9
=

;

1/p

. (4.21)

Theorem 2. Suppose that ↵ and σ belong to (0,1), a complex-valued function w : R ! C is such that
|w|2 belongs to the set G and satisfies property A, 0 < p  2, t 2 (0, t⇤/σ], where t⇤ is given by (4.1)
for ' = |w|2, and ⇠ is a nonnegative function summable on the segment [0, t] and not equivalent to zero. Then
the two-sided inequality

1

⌅

σ,p,↵,w

(⇠, t)
 sup

f2L↵
2 (R)

A
σ

(f)
⇢Z

t

0
(!w

(D↵f, ⌧))p⇠(⌧) d⌧

�1/p
 1

inf

�
⌅

u,p,↵,w

(⇠, t) : σ  |u| < 1
 (4.22)

is true.

Proof. By using relations (2.23), (4.12), (4.20), (4.21), and (4.5) and the generalized Minkowski inequality
(see, e.g., [5], Chap. I, Sec. 1.3.2), for any t 2 (0, t⇤/σ], we can write

8
<

:

tZ

0

�
!w

(D↵f, ⌧)
�
p

⇠(⌧) d⌧

9
=

;

1/p

≥

8
<

:

tZ

0

��
∆

w

⌧

(D↵f)
��p⇠(⌧) d⌧

9
=

;

1/p

=

8
><

>:

tZ

0

2

4
1Z

−1

��F(f, u)
��2|u|2↵

��w(⌧u)
��2du

3

5
p/2

⇠(⌧) d⌧

9
>=

>;

1/p

≥

8
>><

>>:

tZ

0

2

64
Z

|u|≥σ

��F(f, u)
��2|u|2↵

��w(⌧u)
��2du

3

75

p/2

⇠(⌧) d⌧

9
>>=

>>;

1/p

=

8
>><

>>:

tZ

0

2

64
Z

|u|≥σ

N2/p
(f ;u, ⌧)du

3

75

p/2

d⌧

9
>>=

>>;

1/p
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≥

8
><

>:

Z

|u|≥σ

2

4
tZ

0

N(f ;u, ⌧) d⌧

3

5
2/p

du

9
>=

>;

1/2

=

8
><

>:

Z

|u|≥σ

|F(f, u)|2
2

4 |u|↵p
tZ

0

��w(⌧u)
��p⇠(⌧) d⌧

3

5
2/p

du

9
>=

>;

1/2

=

8
><

>:

Z

|u|≥σ

|F(f, u)|2 ⌅2
u,p,↵,w

(⇠, t)du

9
>=

>;

1/2

≥ A
σ

(f) inf
�
⌅

u,p,↵,w

: σ  |u| < 1
 
.

This yields the upper bound

sup

f2L↵
2 (R)

A
σ

(f)
⇢Z

t

0
(!w

(D↵f, ⌧))p⇠(⌧) d⌧

�1/p
 1

inf

�
⌅

u,p,↵,w

(⇠, t) : σ  |u| < 1
 . (4.23)

We now deduce the lower bound for the extreme characteristic on the left-hand side of inequality (4.23).
To this end, we use the entire function q

σ+"

2 L↵

2 (R) of exponential type  σ + " given by relation (4.9) and
introduced in the proof of Theorem 1. Further, we set

b
⌅

σ+",p,↵,w

(⇠, t) := (σ + ")↵

8
<

:

tZ

0

��w(⌧(σ + "))
��p
⇤ ⇠(⌧) d⌧

9
=

;

1/p

, " > 0. (4.24)

By using inequality (4.14) valid in a wider range 0 < t < 1, and relation (2.24), we obtain

tZ

0

(!w

(D↵q
σ+"

, ⌧))p⇠(⌧) d⌧  Ap

σ

(q
σ+"

)(σ + ")↵p
tZ

0

|w(⌧(σ + "))|p⇤⇠(⌧) d⌧

=

⇣
b
⌅

σ+",p,↵,w

(⇠, t)
⌘
p

Ap

σ

(q
σ+"

),

i.e.,
8
<

:

tZ

0

(!w

(D↵q
σ+"

, ⌧))p⇠(⌧) d⌧

9
=

;

1/p

 A
σ

(q
σ+"

)

b
⌅

σ+",p,↵,w

(⇠, t).

This yields

A
σ

(q
σ+"

)

⇢Z
t

0
(!w

(D↵q
σ+"

, ⌧))p⇠(⌧) d⌧

�1/p
≥ 1

b
⌅

σ+",p,↵,w

(⇠, t)
.
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In view of the fact that, as indicated above, q
σ+"

is an element of the class L↵

2 (R) and the last inequality,
for 0 < t  t⇤, we find

sup

f2L↵
2 (R)

A
σ

(f)
⇢Z

t

0

�
!w

(D↵f, ⌧)
�
p

⇠(⌧) d⌧

�1/p
≥ 1

b
⌅

σ+",p,↵,w

(⇠, t)
. (4.25)

It follows from relation (4.24) that, as " ! 0+, the quantity b⌅
σ+",p,↵,w

(⇠, t) monotonically decreases as a function
of " for fixed values of the other parameters. By using (4.21), we get

lim

�b
⌅

σ+",p,↵,w

(⇠, t) : " ! 0 +

 
= ⌅

σ,p,↵,w

(⇠, t).

Therefore, for an arbitrarily small δ > 0, there exists a number b" = b"(δ) 2 (0,σ⇤) such that the inequality

1

b
⌅

σ+b",p,↵,w(⇠, t)
>

1

⌅

σ,p,↵,w

(⇠, t)
− δ

holds. By using this relation and the definition of the upper bound for a number set, we get

sup

(
1

b
⌅

σ+",p,↵,w

(⇠, t)
: 0 < " < σ⇤

)
=

1

⌅

σ,p,↵,w

(⇠, t)
. (4.26)

Since the left-hand side of inequality (4.25) is independent of ", we can find the upper bound of its right-hand
side over " 2 (0,σ⇤) by using (4.26) and obtain

sup

f2L↵
2 (R)

A
σ

(f)
⇢Z

t

0

�
!w

(D↵f, ⌧)
�
p

⇠(⌧) d⌧

�1/p
≥ 1

⌅

σ,p,↵,w

(⇠, t)
. (4.27)

The required relation (4.22) follows from inequalities (4.23) and (4.27). This completes the proof of Theorem 2.

Remark 2. Repeating almost exactly the proof of Theorem 2, we get a two-sided inequality for elements of
the space L2(R) :

1

e
⌅

σ,p,w

(⇠, t)
 sup

f2L2(R)

A
σ

(f)
⇢Z

t

0
(!w

(f, ⌧))p⇠(⌧) d⌧

�1/p
 1

inf

�e
⌅

u,p,w

(⇠, t) : σ  |u| < 1
 , (4.28)

where e⌅
σ,p,w

(⇠, t) := ⌅

σ,p,0,w(⇠, t). The upper bound in relation (4.28) is taken over all functions f from L2(R)
not equivalent to zero.

If we now specify w in relation (4.22) by setting w = wM2,β
, β 2 (0,1), then we arrive at the main result

of Theorem 1 in [32]:

1

γ
σ,β,↵,p

(⇠, t)
 sup

f2L↵
2 (R)

A
σ

(f)
⇢Z

t

0
!p

β

(D↵f, ⌧)⇠(⌧) d⌧

�1/p
 1

inf

�
γ
u,β,↵,p

(⇠, t) : σ  |u| < 1
 , (4.29)
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where 0 < t  ⇡/σ; σ,↵ 2 (0,1); 0 < p  2;

γ
u,β,↵,p

(⇠, t) := 2

β/2|u|↵
8
<

:

tZ

0

(1− cos(u⌧))βp/2⇠(⌧) d⌧

9
=

;

1/p

, u 2 R.

Combining relations (4.29), where ↵ 2 N, β = m 2 N, and 0 < p  2, with (4.28), where w = wM1,m , m 2 N,
and 0 < p  2, we get the result of Theorem 1 in [26].

Now let w = ew
m

, m 2 N; 0 < p  2; σ 2 (0,1); 0 < t  t⇤/σ in relations (4.22) and (4.28) and let
↵ = r 2 N in relation (4.22). Thus, combining these two relations under the indicated conditions, we get one of
the main results of Theorem 2 in [25]:

1

bγ
σ,m,r,p

(⇠, t)
 sup

f2Lr
2(R)

A
σ

(f)
⇢Z

t

0

e
⌦

p

m

(f (r), ⌧)⇠(⌧) d⌧

�1/p
 1

inf

�
bγ
u,m,r,p

(⇠, t) : σ  |u| < 1
 ,

where r 2 Z+,

bγ
u,m,r,p

(⇠, t) := |u|r
8
<

:

tZ

0

(1− sinc (u⌧))mp⇠(⌧) d⌧

9
=

;

1/p

, u 2 R.

It is worth noting that a relation of the form (4.22) for the moduli of continuity !M given by relation (2.17)
was earlier unknown, with the exception of two above-mentioned special cases

M = M1,m, m 2 N, and M = M2,β , β 2 (0,1).

5. Some Corollaries of Theorem 2

In our opinion, the investigation of conditions under which it is possible to find the exact values of the extreme
characteristic in relation (4.22) is of especial interest.

5.1. Corollary 1. Suppose that ↵ and σ belong to (0,1), a complex-valued function w : R ! C is such
that |w|2 belongs to the set G and satisfies properties A and B, 0 < p  2, 0 < t  t/σ, where t 2 (0, t⇤) is the
value of the argument of the function |w|2 given by relation (4.6), and ⇠ is a nonnegative function summable on
the segment [0, t] and not equivalent to zero. Then the equality

sup

f2L↵
2 (R)

A
σ

(f)
⇢Z

t

0
(!w

(D↵f, ⌧))p⇠(⌧) d⌧

�1/p
=

1

⌅

σ,p,↵,w

(⇠, t)
(5.1)

is true.

Proof. To obtain relation (5.1), it is necessary to show that the equality

inf

�
⌅

u,p,↵,w

(⇠, t) : σ  |u| < 1
 
= ⌅

σ,p,↵,w

(⇠, t) (5.2)
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holds and then apply Theorem 2. Let 0 < y  t, x, z 2 [1,1), and let ⌫, µ 2 (0,1) be arbitrary numbers. Since
the function |w|2 2 G has properties A and B, the inequality

x⌫/µ|w(zy)|2 ≥ |w(y)|2

is true. Raising both sides of this inequality to the (µ/2) th power, we obtain

x⌫/2|w(zy)|µ ≥ |w(y)|µ. (5.3)

Since |w|2 is an even function, it is clear that

|w(x)| = |w(|x|)|, x 2 R.

Setting

z = x = |u|/σ, σ  |u| < 1, and y = σ⌧, 0 < ⌧  t/σ,

in (5.3), we get

|u|⌫/2|w(u⌧)|µ ≥ σ⌫/2|w(σ⌧)|µ.

For ⌫ = 2↵p and µ = p, we arrive at the inequality

|u|↵p|w(u⌧)|p ≥ σ↵p|w(σ⌧)|p. (5.4)

We multiply both sides of relation (5.4) by the function ⇠(⌧), integrate both sides of the obtained inequality
with respect to the variable ⌧ from 0 to t, 0 < t  t/σ, and raise to the (1/p) th power. This gives

|u|↵
8
<

:

tZ

0

|w(u⌧)|p⇠(⌧) d⌧

9
=

;

1/p

≥ σ↵

8
<

:

tZ

0

|w(σ⌧)|p⇠(⌧) d⌧

9
=

;

1/p

or, in view of (4.21),

⌅

u,p,↵,w

(⇠, t) ≥ ⌅

σ,p,↵,w

(⇠, t),

where σ  |u| < 1. Hence, equality (5.2) holds and Corollary 1 is proved.

Remark 3. Similarly, it is possible to show that the equality

sup

f2L2(R)

A
σ

(f)
⇢Z

t

0

�
!w

(f, ⌧)
�
p

⇠(⌧) d⌧

�1/p
=

1

e
⌅

σ,p,w

(⇠, t)
(5.5)

is true under the conditions of Corollary 1. In this case, e⌅
σ,p,w

(⇠, t) is given in Remark 2 and the upper bound is
taken over all functions f from L2(R) that are not equivalent to zero.
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5.1.1. Setting, e.g., w = ew
m

, m 2 N, and using (1.6), (2.19), and (4.21) for 0 < t  t/σ, σ 2 (0,1),

and p 2 (0, 2], we obtain the following relation for ↵ 2 (0,1) from (5.1) and (5.5):

sup

f2L↵
2 (R)

σ↵A
σ

(f)
⇢Z

t

0

e
⌦

p

m

(D↵f, ⌧)⇠(⌧) d⌧

�1/p
= sup

f2L2(R)

A
σ

(f)
⇢Z

t

0

e
⌦

p

m

(f, ⌧)⇠(⌧) d⌧

�1/p

=

1

⇢Z
t

0
(1− sinc (⌧σ))mp⇠(⌧) d⌧

�1/p
. (5.6)

For p = 1/m, m 2 N, and ⇠(⌧) ⌘ ⌧, we arrive at the following relation from (5.6) for ↵ 2 (0,1)

and 0 < t  t :

sup

f2L↵
2 (R)

σ↵−2mA
σ

(f)(Z
t/σ

0

e
⌦

1/m
m

(D↵f, ⌧)⌧d⌧

)
m

= sup

f2L2(R)

A
σ

(f)(
σ2

Z
t/σ

0

e
⌦

1/m
m

(f, ⌧)⌧d⌧

)
m

=

2

m

t2m(1− sinc

2
(t/2))m

.

For p = 1/m, m 2 N, and ⇠(⌧) ⌘ 1, we derive the following relation from (5.6):

sup

f2L↵
2 (R)

σ↵−mA
σ

(f)(Z
t/σ

0

e
⌦

1/m
m

(D↵f, ⌧) d⌧

)
m

= sup

f2L2(R)

A
σ

(f)(
σ

Z
t/σ

0

e
⌦

1/m
m

(f, ⌧) d⌧

)
m

=

1

(1− Si(t))m
,

where

Si(x) :=

xZ

0

sinc (t) dt

is the integral sine, ↵ 2 (0,1), and 0 < t  t.

5.2. Corollary 2. Assume that σ 2 (0,1), ↵ 2 [1/2,1), a complex-valued function w : R ! C is such that
the function |w|2 belongs to the set G, is differentiable almost everywhere on R, and has property A, t 2 (0, t⇤/σ],

and ⇠ is a nonnegative function measurable on the segment [0, t], not equivalent to zero, and differentiable almost
everywhere in the interval (0, t). If, for some p 2 [1/↵, 2], the inequality

(↵p− 1)⇠(⌧)− ⌧⇠0(⌧) ≥ 0 (5.7)

holds almost everywhere on [0, t], then relation (5.1) is true.

Proof. Suppose that, for some p 2 [1/↵, 2], inequality (5.7) is true for almost all ⌧ from the segment [0, t].
To deduce relation (5.1) under the indicated conditions, it is necessary to show that equality (5.2) is true and then
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apply relation (4.22). To this end, we consider an auxiliary function λ(u) :=
�
⌅

u,p,↵,w

(⇠, t)
�
p

, all parameters of
which except u (including the variable t) are arbitrary but fixed. In view of (4.21), the function λ is even and non-
negative on R. Hence, it suffices to consider its behavior on the semiaxis R+ and show that λ is a nondecreasing
function. Since

λ(u) = u↵p
tZ

0

��w(⌧u)
��p⇠(⌧) d⌧,

we conclude that

λ0
(u) = ↵pu↵p−1

tZ

0

��w(⌧u)
��p⇠(⌧) d⌧ + u↵p

tZ

0

⇠(⌧)
@

@u

��w(⌧u)
��pd⌧. (5.8)

Setting z = ⌧u, almost everywhere on R+\{0}, we obtain

@

@u
|w(z)|p = p|w(z)|p−1

�
|w(z)|

�0
z

⌧ and
@

@⌧
|w(z)|p = p|w(z)|p−1

�
|w(z)|

�0
z

u,

i.e.,

1

⌧

@

@u

��w(⌧u)
��p

=

1

u

@

@⌧

��w(⌧u)
��p. (5.9)

In view of (5.9), equality (5.8) takes the form

λ0
(u) = u↵p−1

8
<

:↵p

tZ

0

��w(⌧u)
��p⇠(⌧) d⌧ +

tZ

0

⌧⇠(⌧)
@

@⌧

��w(⌧u)
��pd⌧

9
=

;. (5.10)

Integrating the second integral in (5.10) by parts, we obtain

λ0
(u) = u↵p−1

8
<

:t⇠(t)
��w(tu)

��p
+

tZ

0

�
↵p⇠(⌧)− ⇠(⌧)− ⌧⇠0(⌧)

���w(⌧u)
��pd⌧

9
=

;. (5.11)

By using inequality (5.7), we find λ0
(u) ≥ 0, where 0 < u < 1, from (5.11), i.e., λ is a nondecreasing function

on the analyzed set.
Corollary 2 is proved.

5.2.1. Setting w = wM2,β
, β 2 (0,1), and using (2.23), (2.17), and (1.4), we get

!
wM2,β

(f, t) = !M2,β
(f, t) = !

β

(f, t),

where f 2 L2(R), t ≥ 0. Note that, in this case, t⇤ = ⇡. Thus, by virtue of Corollary 2 and relations (2.14),
(4.21), and (5.1), for 0 < t  ⇡/σ, we find

sup

f2L↵
2 (R)

σ↵A
σ

(f)
⇢Z

t

0
!p

β

(D↵f, ⌧)⇠(⌧) d⌧

�1/p
=

1

2

β/2

⇢Z
t

0
(1− cos(σ⌧))pβ/2⇠(⌧) d⌧

�1/p
. (5.12)
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If, e.g., β = 2/p, p 2 [1/↵, 2], ↵ 2 [1/2,1), and ⇠(⌧) ⌘ 1 in (5.12), then we get

sup

f2L↵
2 (R)

σ↵−1/pA
σ

(f)
(Z

t/σ

0
!p

2/p(D
↵f, ⌧) d⌧

)1/p
=

1

�
2t(1− sinc (t)

 1/p , (5.13)

where 0 < t  ⇡. For ↵ = r 2 N and p = 2/m, where m 2 N and 1  m  2r, relation (5.13) yields one of
the results of Corollary 2 in [26]:

sup

f2Lr
2(R)

σr−1/pA
σ

(f)
(Z

t/σ

0
!2/m
m

(f (r), ⌧) d⌧

)
m/2

=

1

�
2t(1− sinc (t)

 
m/2

.

Here, 0 < t  ⇡ and !
m

is the ordinary modulus of continuity of order m.

5.2.2. Let M = M4 and let w = wM4 . Thus, according to (2.7), (2.17), (2.23), and (1.10), for any element
f 2 L2(R), we obtain

!wM4
(f, t) = !M4(f, t) = b!(f, t),

where b! is the modulus of continuity introduced by Runovski and Schmeisser [37]. In this case, by using rela-
tions (2.16) and (4.21), we derive the following relation from Corollary 2:

sup

f2L↵
2 (R)

σ↵+1A
σ

(f)
⇢Z

t

0
b!p

(D↵f, ⌧)⇠(⌧) d⌧

�1/p
=

⇡

2

⇢Z
t

0
⌧p ⇠(⌧) d⌧

�1/p
, (5.14)

where 0 < t  ⇡/σ. We set ⇠(⌧) := ⌧m, m 2 [0,1). Then inequality (5.7) takes the form (m+ 1)/↵  p  2,

where (m+ 1)/2  ↵ < 1. Hence, in view of relation (5.14) with 0 < t  ⇡/σ , we get

sup

f2L↵
2 (R)

σ↵+1A
σ

(f)
⇢Z

t

0
b!p

(D↵f, ⌧)⌧m d⌧

�1/p
=

⇡(p+m+ 1)

1/p

2t1+(m+1)/p
.

Further, consider a function ⇠(⌧) := sin(⌧). Since the inequality sinc (⌧) > cos(⌧) is true for 0 < ⌧  ⇡,

we get

(↵p− 1) sin(⌧)− ⌧ cos(⌧) =
1

⌧

�
(↵p− 1) sinc (⌧)− cos(⌧)

 
≥ 1

⌧
(↵p− 2) sinc (⌧)

and the right-hand side of this relation is nonnegative for any ⌧ 2 (0,⇡] for p ≥ 2/↵. Hence, for Corollary 2,
condition (5.7) is satisfied in this specific case for 2/↵  p  2 and ↵ 2 [1,1). Thus, it follows from (5.14) with
0 < t  ⇡/σ that

sup

f2L↵
2 (R)

σ↵+1A
σ

(f)
⇢Z

t

0
b!p

(D↵f, ⌧) sin(⌧) d⌧

�1/p
=

⇡

2

⇢Z
t

0
⌧p sin(⌧) d⌧

�1/p
. (5.15)



GENERALIZED CHARACTERISTICS OF SMOOTHNESS AND SOME EXTREME PROBLEMS 1369

Setting, e.g., p = 1 in (5.15), for ↵ 2 [2,1) and 0 < t  ⇡/σ, we find

sup

f2L↵
2 (R)

σ↵+1A
σ

(f)
Z

t

0
b!(D↵f, ⌧) sin(⌧) d⌧

=

⇡

2t
�
sinc (t)− cos(t)

� .

5.2.3. Now let M = M3 and w = wM3 . In view of (2.7), (2.23), and (1.9), for any function f 2 L2(R),
we obtain

!wM3
(f, t) = !M3(f, t) = !h0i(f, t), t ≥ 0.

In this case, by using relations (4.21) and (2.15) and Corollary 2, we get the following relation for t 2 (0,⇡/σ] :

sup

f2L↵
2 (R)

σ↵+1A
σ

(f)
⇢Z

t

0
!p

h0i(D
↵f, ⌧) ⇠(⌧) d⌧

�1/p
=

⇡

3

⇢Z
t

0
⌧p(1− σ⌧/(2⇡))p ⇠(⌧) d⌧

�1/p
. (5.16)

As already mentioned, if ⇠(⌧) := ⌧m, m 2 [0,1), then condition (5.7) is satisfied for p 2 [(m + 1)/↵; 2]

and ↵ 2 [(m + 1)/2;1) and the indicated power function can be used in relation (5.16). For p = 1, by virtue
of (5.7) with ↵ 2 [m+ 1;1), equality (5.16) takes the following form for 0 < t  ⇡ :

sup

f2L↵
2 (R)

σ↵−m−1A
σ

(f)
Z

t/σ

0
!h0i(D↵f, ⌧)⌧md⌧

=

⇡

3tm+2

⇢
1

m+ 2

− t

2⇡(m+ 3)

�−1

.

5.2.4. We now consider one more case where w = ew
m

, m 2 N. For any function f 2 L2(R), we get
! ewm

(f, t) =

e
⌦

m

(f, t), t > 0. By using relation (4.21) and Corollary 2, for 0 < t  t⇤/σ, we arrive at equal-
ity (5.6), where σ 2 (0,1), ↵ 2 [1/2,1), and p 2 [1/↵, 2] is a number for which inequality (5.7) is true
for almost all ⌧ 2 [0, t]. Recall that, in this case, t⇤ is the least positive root of the equation tan(x) = x,

4.49 < t⇤ < 4.51 [25].

5.3. We set ⇠ :=

e⇠, where e⇠(⌧) = ⌘(σ⌧), σ 2 (0,1), ⌧ 2 (0, y/σ], and y 2 (0, t⇤]. Denoting t = y/σ,

we rewrite relation (4.21) in the form

⌅

u,p,↵,w

⇣
e⇠, y
σ

⌘
= |u|↵

8
><

>:

y/σZ

0

��w(⌧u)
��p⌘(σ⌧) d⌧

9
>=

>;

1/p

= σ↵−1/p

8
<

:
|u|↵p

σ

yZ

0

����w
✓
|u|
σ
⌧

◆����
p

⌘(⌧) d⌧

9
=

;

1/p

, σ  |u| < 1. (5.17)

Let z = |u|/σ, i.e., 1  z < 1. By using (5.17), we obtain

inf

σ|u|<1
⌅

u,p,↵,w

⇣
e⇠, y
σ

⌘
≥ σ↵−1/p

inf

1z<1

8
<

:z↵p
yZ

0

|w(z⌧)|p⌘(⌧) d⌧

9
=

;

1/p

. (5.18)
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Denote

⌅

p,↵,w

(⌘; y, z) := z↵p
yZ

0

��w(z⌧)
��p⌘(⌧) d⌧. (5.19)

By virtue of Theorem 2 and relations (5.17)–(5.19), we arrive at the following statement:

Corollary 3. Suppose that ↵,σ 2 (0,1), 0 < p  2, a complex-valued function w : R ! C is such
that |w|2 2 G and |w|2 has property A, y 2 [0, t⇤], where the number t⇤ is given by relation (4.1) for the
function ' := |w|2, and ⌘ is a measurable function summable on the segment [0, y], which is nonnegative and not
equivalent to zero. Then the two-sided inequality

1

�
⌅

p,↵,w

(⌘; y, 1)
 1/p  sup

f2L↵
2 (R)

σ↵A
σ

(f)
⇢Z

y

0
(!w

(D↵f, ⌧/σ))p⌘(⌧) d⌧

�1/p

 1

⇢
inf

1z<1
⌅

p,↵,w

(⌘; y, z)

�1/p
(5.20)

is true. If the function ⌘ is such that

inf

1z<1
⌅

p,↵,w

(⌘; y, z) = ⌅

p,↵,w

(⌘; y, 1), (5.21)

then the equality

sup

f2L↵
2 (R)

σ↵A
σ

(f)
⇢Z

y

0

�
!w

(D↵f, ⌧/σ)
�
p

⌘(⌧) d⌧

�1/p
=

1

�
⌅

p,↵,w

(⌘; y, 1)
 1/p (5.22)

is true.

Note that, in a special case where

M = M2,β , β 2 (0,1), and w = wM2,β
,

for the characteristic of smoothness of a function f 2 L2(R) of the form

!
wM2,β

(f, t) = !M2,β
(f, t) = !

β

(f, t), t ≥ 0,

this corollary was obtained in [32].

5.4. The next assertion establishes the conditions for the function ⌘ under which equality (5.21) is true:

Corollary 4. Suppose that ↵,σ 2 (0,1), 0 < p  2, y 2 [0, t⇤], a complex-valued function w : R ! C is
such that |w|2 2 G and |w|2 has property A, and

b⌘(⌧) := ⌧↵p−1e⌘(⌧),
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where e⌘ is a measurable nonincreasing function summable on the set (0, y], which is nonnegative and not equiv-
alent to zero. Then, for ⌘ = b⌘, equality (5.21) is true and the following relation holds:

sup

f2L↵
2 (R)

σ↵A
σ

(f)
⇢Z

y

0

�
!w

(D↵f, ⌧/σ)
�
p

⌧↵p−1e⌘(⌧) d⌧
�1/p

=

1

{⌅
p,↵,w

(b⌘; y, 1)}1/p
. (5.23)

.

Proof. Let y be an arbitrary fixed number from the set (0, t⇤]. We extend the definition of the function e⌘ as
follows: e⌘

y

(⌧) :=

�
e⌘(⌧) for 0 < ⌧  y; e⌘(y) for y  ⌧ < 1

 
. Since e⌘ is a nonincreasing and nonnegative

function on the set (0, y], for any value z 2 [1,1) and 0 < ⌧ < zy, we find e⌘(⌧/z) ≥ e⌘
y

(⌧). By using
relation (5.19) with ⌘ = b⌘, we get

⌅

p,↵,w

(b⌘; y, z) = z↵p
yZ

0

|w(z⌧)|p⌧↵p−1e⌘(⌧) d⌧ =

zyZ

0

|w(⌧)|p⌧↵p−1e⌘(⌧/z) d⌧

≥
zyZ

0

|w(⌧)|p⌧↵p−1e⌘
y

(⌧) d⌧ ≥
yZ

0

|w(⌧)|p⌧↵p−1e⌘(⌧) d⌧ = ⌅

p,↵,w

(b⌘; y, 1),

where 1  z < 1. Hence, equality (5.21) is true for ⌘ = b⌘, and, therefore, relation (5.22) is also true. In the
analyzed case, this relation takes the form (5.23).

Corollary 4 is proved.

In special cases of Corollary 4 with

M = M2,β , β 2 (0,1), w = wM2,β
, !

wM2,β
(f, t) = !M2,β

(f, t) = !
β

(f, t), t ≥ 0,

and

w = ew
m

, m 2 N, ! ewm
(f, t) = e

⌦

m

(f, t), t ≥ 0,

we obtain the results presented in [32] and [25], respectively.

5.4.1. Let M = M4 and let w = wM4 . Then, for any function f 2 L2(R), we get the characteristic of
smoothness

!wM4
(f, t) = !M4(f, t) = b!(f, t), t ≥ 0,

considered in [37]. We set e⌘(⌧) := ⌧−γ , 0< ⌧  y, and assume that γ 2 (0, 1), ↵2 (γ/2,1), and p2 (γ/↵, 2].

By using relations (2.16), (5.20), and (5.23), we conclude that

sup

f2L↵
2 (R)

σ↵A
σ

(f)
⇢Z

y

0
b!p

(D↵f, ⌧/σ)⌧↵p−1−γ d⌧

�1/p
=

⇡(p(1 + ↵)− γ)1/p

2y1+↵−γ/p

, 0 < y  ⇡.
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5.4.2. Now let M = M3 and w = wM3 . In this case, for f 2 L2(R), we get the characteristic of smoothness

!wM3
(f, t) = !M3(f, t) = !h0i(f, t), t ≥ 0,

studied in [31]. By using the function e⌘(⌧) , under the above-mentioned restrictions imposed on γ, ↵, and p,

for 0 < y  ⇡, by virtue of (2.15), (5.19), and (5.23), we obtain

sup

f2L↵
2 (R)

σ↵A
σ

(f)
⇢Z

y

0
!p

h0i(D
↵f, ⌧/σ)⌧↵p−1−γ d⌧

�1/p

=

⇡

3

8
<

:

yZ

0

⇣
1− ⌧

2⇡

⌘
p

⌧ (1+↵)p−1−γ d⌧

9
=

;

−1/p

. (5.24)

For p = 2 and 0 < y  ⇡, relation (5.24) implies that

sup

f2L↵
2 (R)

σ↵A
σ

(f)
⇢Z

y

0
!2
h0i(D

↵f, ⌧/σ)⌧2↵−1−γ d⌧

�1/2

=

⇡

3

yγ−2(↵+1)

⇢
1

2(↵+ 1)− γ
− y

⇡(2(↵+ 1)− γ + 1)

+

y2

4⇡2
(2(↵+ 1)− γ + 2)

�−1/2

.

Now let ↵ 2 (γ,1), where γ 2 (0, 1). If we set p = 1, then, it follows from (5.24) that

sup

f2L↵
2 (R)

σ↵A
σ

(f)Z
y

0
!h0i(D↵f, ⌧/σ)⌧↵−1−γ d⌧

=

⇡

3

yγ−↵−1

⇢
1

↵− γ + 1

− y

2⇡(↵− γ + 2)

�−1

for 0 < y  ⇡.

In the second part of the present paper, we plan to consider the extreme problems for the characteristic of
smoothness (2.25) and compute the exact values of mean ⌫ -widths for the classes of functions defined with the
help of !w and ⇤

w.
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