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UPPER AND LOWER LEBESGUE CLASSES OF MULTIVALUED 
FUNCTIONS OF TWO VARIABLES

O. Karlova1 and V. Mykhailyuk2 UDC 517.5

We introduce a functional Lebesgue classification of multivalued mappings and obtain results on the
upper and lower Lebesgue classifications of multivalued mappings F : X ⇥ Y ( Z for broad classes
of spaces X, Y and Z.

1. Introduction

The investigations of the Lebesgue classification of separately continuous single-valued functions (i.e., func-
tions of several variables continuous in each variable) and their analogs were started by Lebesgue [9] and Kura-
towski [6]. Later, these investigations were continued by numerous mathematicians (see, e.g., [1, 2, 4, 7, 10, 12]
and the references therein).

Some analogs of the Lebesgue classification are also known for multivalued mappings and connected with
their upper and lower semicontinuity. Namely, a multivalued mapping F : X ( [0, 1] defined on the topological
space X is called upper (lower) semicontinuous at a point x0 2 X if, for any open set U ✓ [0, 1] with the
property F (x0) ✓ U (F (x0) \ U 6= ?), the set

F+(U) = {x 2 X : F (x) ✓ U}

�
F−(U) = {x 2 X : F (x) \ U 6= ?}

�

is a neighborhood of the point x0 in X. A multivalued mapping F : X ( [0, 1] is continuous at a point x0 2 X

if it is simultaneously upper and lower semicontinuous at this point. It is known that the multivalued mapping
F : X ( [0, 1] is continuous at a point x0 2 X if and only if it is continuous at the point x0 as a single-valued
mapping with values in the space of all nonempty subsets of the segment [0, 1] with the Vietoris topology.

For topological spaces X and Y, by U(X,Y ) and (L(X,Y )) we denote the collections of all upper (lower)
semicontinuous multivalued mappings F : X ( Y.

Let X and Y be topological spaces and let ↵ < !1. A multivalued mapping F : X ( Y belongs to

the upper Lebesgue class ↵ if, for any open set A✓Y, the set F+(A) belongs to the additive class ↵ in X ;

the lower Lebesgue class ↵ if, for any open set A✓Y, the set F−(A) belongs to the additive class ↵ in X.

Note that the Lebesgue classes are also called Borel classes.
For the topological spaces X and Y, we denote the collection of all multivalued mappings F : X ( Y of

the upper (lower) Lebesgue class ↵ by U
↵

(X,Y )
�
L
↵

(X,Y )
�
.

1 Fed’kovych Chernivtsi National University, Chernivtsi, Ukraine.
2 Fed’kovych Chernivtsi National University, Chernivtsi, Ukraine; J. Kochanowski University in Kielce, Kielce, Poland.

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 70, No. 8, pp. 1097–1106, August, 2018. Original article submitted August 5,
2017.

1264 0041-5995/18/7008–1264 c� 2018 Springer Science+Business Media, LLC

DOI 10.1007/s11253-018-1567-z



UPPER AND LOWER LEBESGUE CLASSES OF MULTIVALUED FUNCTIONS OF TWO VARIABLES 1265

For the multivalued mapping F : X ⇥ Y ( Z of points x 2 X and y 2 Y, we denote

F x(y) = F
y

(x) = F (x, y).

Recall that a topological space is called perfect if every its closed set is a set of the type G
δ

.

In [8], Kwiecińska obtained the following result for the Lebesgue classification of multivalued mappings of
two variables:

Theorem 1.1 [8]. Suppose that (X, d) is a metric space, T is a topology in the space X, D ✓ X is an at
most countable set, (U(x) : x 2 X) is a family of T -open sets U(x) ✓ X, Y and Z are perfectly normal spaces,
↵ < !1, and F : X ⇥ Y ( Z is a compact-valued (multivalued) mapping with the following properties:

(a) the set D is dense in (X, T );

(b) for any x 2 D, the set A(x) = {u 2 X : x 2 U(u)} belongs to the additive class ↵ in (X, d);

(c) for any x 2 X, the sequence (B
n

(x))
n2! of the sets

B
n

(x) = U(x) \
⇢
u 2 X : d(x, u) <

1

n

�

forms a base of the space (X, T ) at the point x;

(d) for any y 2 Y, the multivalued mapping F
y

: (X, T ) ( Z is continuous;

(e) for any x 2 D, the multivalued mapping F x : Y ( Z belongs to the lower (upper) class ↵.

Then F is a mapping of the lower (upper) Lebesgue class ↵+ 1 on the product (X, d)⇥ Y.

The other versions of Lebesgue classification of multivalued mappings of two variables were obtained in [5].
Theorem 1.1 yields the following result for a perfectly normal space Y :

Theorem 1.2 [5]. Suppose that X is a metrizable space, D is a dense subset of the space X, Y is a perfect
space, Z is a perfectly normal space, ↵ < !1, and F : X ⇥ Y ( Z is a compact-valued (multivalued) mapping
with the following properties:

(a) for any y 2 Y, the multivalued mapping F
y

: X ( Z is continuous;

(b) for any x 2 D, the multivalued mapping F x : Y ( Z belongs to the lower (upper) Lebesgue class ↵.

Then F belongs to the upper (lower) Lebesgue class ↵+ 1 on the product X ⇥ Y.

In the present paper, we introduce functional Lebesgue classes for multivalued mappings and generalize The-
orems 1.1 and 1.2 to a broad class of topological spaces X.

2. Multivalued Mappings from the Upper and Lower Functional Lebesgue Classes ↵

Definition 2.1. Let X and Y be topological spaces. The multivalued mapping F : X ( Y is called

functionally upper (lower) semicontinuous if the set F+(A) (F−(A)) is functionally open in X for any
functionally open set A ✓ Y ;
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strongly functionally upper (lower) semicontinuous if the set F+(A) (F−(A)) is functionally open in X

for any functionally open set A ✓ Y ;

weakly functionally upper (lower) semicontinuous if the set F+(A) (F−(A)) is open in X for any
functionally open set A ✓ Y.

By Uf (X) (Lf (X), Uf

s

(X), Lf

s

(X), Uf

w

(X), and Lf

w

(X)
�
we denote the collection of all functionally

upper (lower, strongly upper, strongly lower, weakly upper, and weakly lower) semicontinuous multivalued map-
pings F : X ( Y.

Let X be a topological space and let A0(X) and M0(X) be the systems of all functionally open and func-
tionally closed sets in X, respectively. For any ordinal ↵ 2 [1,!1), by A

↵

(X) we denote the system of all unionsS
n2! A

n

of the sets A
n

from
S

⇠<↵

M
↵

(X) and by M
↵

(X) we denote the system of all intersections
T

n2! M
n

of the sets M
n

from
S

⇠<↵

A
↵

(X). It is clear that

A
↵

(X) =
�
X \M : M 2 M

↵

(X)
 
.

Definition 2.2. Let X and Y be topological spaces and let ↵ 2 [0,!1). The multivalued mapping
F : X ( Y belongs to

the upper functional Lebesgue class ↵ if F+(A) 2 A
↵

(X) for any functionally open set A ✓ Y ;

the lower functional Lebesgue class ↵ if F−(A) 2 A
↵

(X) for any functionally open set A ✓ Y.

It is easy to see that the multivalued mapping F belongs to the upper (lower) functional Lebesgue class ↵ if
and only if F−(B) 2 A

↵

(X)
�
F+(B) 2 A

↵

(X)
�
for any functionally closed set B ✓ Y.

For the topological spaces X and Y, by Uf

↵

(X)
�
Lf

↵

(X)
�
we denote the collection of all multivalued map-

pings F : X ( Y of the upper (lower) functional Lebesgue class ↵. Note that

Uf

0(X) = Uf (X) and Lf

0(X) = Lf (X).

The properties presented in what follows readily follow from the definitions. For this reason, we do not present
their proofs.

Proposition 2.1. Let X and Y be topological spaces, let F : X ( Y be a multivalued mapping, and
let ↵ 2 [0,!1). Then:

(1) U(X,Y ) [Uf (X,Y ) ✓ Uf

w

(X,Y ) and L(X,Y ) [ Lf (X,Y ) ✓ Lf

w

(X,Y );

(2) Uf

s

(X,Y ) ✓ U(X,Y ) \Uf (X,Y ) and Lf

s

(X,Y ) ✓ L(X,Y ) \ Lf (X,Y );

(3) if the space X is perfectly normal, then

Uf

s

(X,Y ) = U(X,Y ) ✓ Uf (X,Y ) = Uf

w

(X,Y )

and

Lf

s

(X,Y ) = L(X,Y ) ✓ Lf (X,Y ) = Lf

w

(X,Y );

(4) if the space Y is completely regular, then Uf (X,Y ) ✓ U(X,Y ) and Lf (X,Y ) ✓ L(X,Y );
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(5) if the space Y is perfectly normal, then

Uf

s

(X,Y ) = Uf (X,Y ) ✓ U(X,Y ) = Uf

w

(X,Y )

and

Lf

s

(X,Y ) = Lf (X,Y ) ✓ L(X,Y ) = Lf

w

(X,Y );

(6) Uf

↵

(X,Y ) ✓ Lf

↵+1(X,Y );

(7) if the mapping F is compact-valued, then Lf

↵

(X,Y ) ✓ Uf

↵+1(X,Y ).

Proposition 2.2. Let Y be a topological space such that {?, Y } is the collection of all functionally open
sets in Y {see, e.g., [3] (2.7.18)}. Then:

(1) for any topological space X, every multivalued mapping F : X ( Y is functionally upper and lower
semicontinuous;

(2) for any T1 -space Z, every strongly functionally upper semicontinuous mapping F : Y ( Z is constant;

(3) for any (completely) regular space Z, every strongly functionally upper (lower) closed-valued mapping
F : Y ( Z is constant.

Proof. 1. Since F+(?)=F−(?)=? and F+(Y )=F−(Y )=X, the mapping F : X ( Y is functionally
upper and lower semicontinuous.

2. Let Z be a T1 -space and let F : Y ( Z be a nonconstant mapping. We choose points y1, y2 2 Y such
that F (y1) 6✓ F (y2). Since Y is a T1 -space, there exists an open set G ✓ Z such that F (y1) 6✓ G ◆ F (y2).

Then y1 62 F+(G) 3 y2. Therefore,

F+(G) 62 {?, Y }

and F+(G) is not a functionally open set. Hence, themapping F is not strongly functionally upper semicontinuous.

3. Let Z be a regular space and let F : Y ( Z be a nonconstant mapping. We choose points y1, y2 2 Y

such that F (y1) 6✓ F (y2). Since the space Y is regular and the set F (y2) is closed, there exists an open set G ✓ Z

such that G \ F (y1) 6= ? and G \ F (y2) = ?. Then y1 2 F−(G) 63 y2. Hence,

F−(G) 62 {?, Y }

and the set F−(G) is not functionally open. Thus, F is not strongly functionally lower semicontinuous. If the
space Z is completely regular, then we can choose a functionally open set G and show that the mapping F is not
functionally lower semicontinuous.

Example 2.1. Let A✓ [0, 1] be a set, which is not Borel measurable. A multivalued mapping F : [0, 1]( [0, 1]

defined by the rule

F (x) =

8
<

:
[0, 1], x 2 A,

[0, 1), x 2 [0, 1] \A,

is (functionally) lower semicontinuous but not (functionally) measurable, i.e.,

F 62
[

↵<!1

Uf

↵

([0, 1], [0, 1]).
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3. Functional Lebesgue Classification of Multivalued Mappings of Two Variables

Lemma 3.1 ([4], Proposition 1.4). Suppose that X is a topological space, ↵ 2 [0,!1), (Ui

: i 2 I) is a lo-
cally finite family of functionally open sets in X, and (A

i

: i 2 I) is a family of sets A
i

2 A
↵

(X) (A
i

2 M
↵

(X))

such that A
i

✓ U
i

for each i 2 I. Then
S

i2IAi

2 A
↵

(X)
�S

i2I Ai

2 M
↵

(X)
�
.

It is worth noting that the union of a locally finite family of sets of a functionally multiplicative class ↵ is not
necessarily a set of the same class even for ↵ = 0.

Indeed, consider a Nemyts’kyi plane X = R ⇥ [0,+1) in which the base of neighborhoods of points
(x, y) 2 X for y > 0 is formed by open balls centered at the point (x, y) and the base of neighborhoods of
points of the form (x, 0) is formed by the sets U [ {(x, 0)}, where U is an open ball tangential to the straight
line R⇥ {0} at the point (x, 0).

Note that, for any p 2 X, the one-point set {p} is functionally closed in X because every continuous function
on R ⇥ [0,+1) is continuous on X. Then the family F = ({(x, 0)} : x 2 Q) consists of functionally closed
subsets of the space X. We assume that the union F =

S
F is functionally closed in X and choose a continuous

function f : X ! [0, 1] such that F = f−1(0). For all (x, y) 2 X and n 2 N, we set

f
n

(x, y) =

8
>><

>>:

f(x, y), y ≥ 1

n
,

f

✓
x,

1

n

◆
, 0  y <

1

n
.

Then the function f
n

: R⇥ [0,+1) ! [0, 1] is continuous and lim
n!1 f

n

(x, y) = f(x, y) for any (x, y) 2 X.

Since

F =

1\

k=1

1[

n=k

f−1
n

✓
0,

1

k

◆◆
,

we conclude that F is a set of the type G
δ

in R⇥ [0,+1). A contradiction.

Definition 3.1. A family (A
i

: i 2 I) of subsets A
i

of the topological space X is called functionally locally
finite in X if there exists a family (U

i

: i 2 I) locally finite in X of functionally open sets in X such that U
i

◆ A
i

for each i 2 I. A family (A
i

: i 2 I) of subsets A
i

of the topological space X is called σ -functionally locally
finite if there exists a partition

I =
G

n2!
I
n

such that each family (A
i

: i 2 I
n

) is functionally locally finite in X.

Theorem 3.1. Suppose that X,Y, and Z are topological spaces, ↵2 [0,!1), (An

)1
n=1 is a sequence of σ-func-

tionally locally finite coverings A
n

=(A
i,n

: i2I
n

) of the space X by the sets A
i,n

2A
↵

(X),
�
(x

i,n

: i2I
n

)
�1
n=1

is a sequence of families of points x
i,n

2 X, and F : X ⇥ Y ( Z is a compact-valued (multivalued) mapping
satisfying the following conditions:

(1) for all (x, y) 2 X ⇥ Y and an arbitrary sequence (i
n

)
n2! of indices i

n

2 I
n

such that x 2 A
in,n,

the sequence (F (x
in,n, y))n2! converges to F (x, y) in the Vietoris topology;

(2) F x 2 Lf

↵

(Y, Z)
�
F x 2 Uf

↵

(Y, Z)
�
for every x from the set D = {x

i,n

: n 2 N, i 2 I
n

}.

Then F 2 Uf

↵+1(X ⇥ Y, Z)
�
F 2 Lf

↵+1(X ⇥ Y, Z)
�
.
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Proof. Consider the case where F is a compact-valued mapping. For all n2! and i2I
n

, we set F
i,n

=F xi,n .

Let W ✓ Z be a functionally closed set and let ' : Z ! [0, 1] be a continuous function such that W = '−1(0).

For each n 2 !, we denote

W
n

= '−1

✓
0,

1

n

�◆
and G

n

= '−1

✓
0,

1

n

◆◆
.

For all m,n 2 !, we set

C
m,n

=
[

i2In

⇣
A

i,n

⇥ F−
i,n

(G
m

)
⌘

and C =
\

m2!

[

n≥m

C
n,m

.

Since A
i,n

2 A
↵

(X) and F−
i,n

(G
m

) 2 A
↵

(Y ) by condition (2), we find

A
i,n

⇥ F−
i,n

(G
m

) 2 A
↵

(X ⇥ Y )

for all m,n 2 ! and i 2 I
n

. Thus, by Lemma 3.1, C
m,n

2 A
↵

(X ⇥ Y ). Hence, C 2 M
↵+1(X ⇥ Y ).

It remains to show that C = F−(W ). Let (x0, y0) 2 F−(W ). We fix m 2 ! and note that (x0, y0) 2
F−(G

m

). Consider a neighborhood

O =
�
B ✓ Z : B \G

m

6= ?
 

of the set F (x0, y0) in the Vietoris topology. Under condition (1), there exists n0 ≥ m such that, for any n ≥ n0

for which i 2 I
n

, the inclusion x0 2 A
i,n

implies that F (x
i,n

, y0) 2 O, i.e., (x
i,n

, y0) 2 F−(G
m

). In par-
ticular, for some i 2 I

n0 , we conclude that x0 2 A
i,n0 and y0 2 F−

i,n0
(G

m

). Thus, (x0, y0) 2 C
m,n0 . There-

fore, (x0, y0) 2 C.

Now let (x0, y0) 62 F−(W ). Then

F (x0, y0) ✓ Z \W =
[

m2!
(Z \W

m

).

Since the set F (x0, y0) is compact, there exists m0 2 ! such that F (x0, y0) ✓ Z\W
m0 . Consider a neighborhood

O1 =
�
B ✓ Z : B \W

m0 = ?
 

of the set F (x0, y0) in the Vietoris topology. It follows from property (1) that there exists a number n0 2 ! such
that, for all n ≥ n0, the inclusion x0 2 A

i,n

yields the inclusion F (x
i,n

, y0) 2 O1. Hence,

F (x
i,n

, y0) ✓ Z \W
m0 ✓ Z \W

m

and y0 62 F−
i,n

(G
m

) for all m ≥ m0, n ≥ n0, and i 2 I
n

such that x0 2 A
i,n

. This implies that (x0, y0) 62 C
n,m

for all n ≥ n0 and m ≥ m0. Thus, (x0, y0) 62 C.

Now let the mapping F be multivalued and let F x 2 Uf

↵

(Y, Z) for all x 2 D. Reasoning as in the previous
case and using similar notation, for all m,n 2 !, we get

C
m,n

=
[

i2In

⇣
A

i,n

⇥ F+
i,n

(G
m

)
⌘
.
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According to Lemma 3.1, we have C
m,n

2 A
↵

(X ⇥ Y ) and

C =
\

m2!

[

n≥m

C
n,m

2 M
↵+1(X ⇥ Y ).

Further, we show that C = F+(W ). Let (x0, y0) 2 F+(W ) and m 2 !. Then (x0, y0) 2 F+(G
m

). In view
of property (1), there exist n ≥ m and i 2 I

n

such that x0 2 A
i,n

and F (x
i,n

, y0) ✓ G
m

. Hence, (x0, y0) 2 C
m,n

and, therefore, (x0, y0) 2 C.

Now let (x0, y0) 62 F+(W ). Then F (x0, y0) \ (Z \W ) 6= ? and there exist a number m0 2 ! such that

F (x0, y0) \ (Z \W
m0) 6= ?.

In view of property (1), there exists a number n0 2 ! such that, for all n ≥ n0, the inclusion x0 2 A
i,n

implies
that F (x

i,n

, y0) \ (Z \W
m0) 6= ?. Hence, (x0, y0) 62 C

n,m

for all n ≥ n0 and m ≥ m0. Thus, (x0, y0) 62 C.

Theorem 3.1 is proved.

Remark 3.1. The multivalued mapping F : (X, d)⇥ Y ( Z in Theorem 1.1 satisfies conditions (1) and (2)
in Theorem 3.1. For all u 2 D and n 2 !, we set

A
u,n

= A(u) \
⇢
v 2 X : d(u, v) <

1

n

�
and x

u,n

= u.

Then the sequences of families (A
u,n

: u 2 D) and (x
u,n

: u 2 D) satisfy condition (1). In addition, condition (2)
is equivalent to condition (e). Thus, Theorem 3.1 generalizes Theorem 1.1.

Definition 3.2. A topological space X is called a (strong) PP-space if, for any dense set D ✓ X, there
exist a sequence (U

n

)1
n=1 of locally finite coverings U

n

= (U
i,n

: i 2 I
n

) of the space X and a sequence�
(x

i,n

: i 2 I
n

)
�1
n=1

of families of points from the space X (from the set D ) such that, for any x 2 X and any
neighborhood U of the point x, there exists a number n0 2 ! such that, for all n ≥ n0 and i 2 I

n

, the inclusion
x
i,n

2 U follows from the inclusion x 2 U
i,n

.

The notion of PP-space was introduced in [14]. It is closely connected with the notion of metrically quarter-
stratifiable spaces (see [1]). In [13], it was shown that metrically quarter-stratifiable spaces coincide with the
Hausdorff PP-spaces. It is clear that every strong PP-space is a PP-space.

For topological spaces X, Y, and Z and ordinal ↵ 2 [0,!1), by CUf

↵

(X,Y, Z)
�
CLf

↵

(X,Y, Z)
�
we denote

a family of all multivalued mappings F : X ⇥ Y ( Z that are continuous in the first variable and belong to
the upper (lower) functional Lebesgue class ↵ with respect to the second variable. Similarly, by CU

f

↵

(X,Y, Z)�
CL

f

↵

(X,Y, Z)
�
we denote a family of all multivalued mappings F : X ⇥ Y ( Z that are continuous with

respect to the first variable and such that, for any dense set D ✓ X, every multivalued mapping F x belongs
to the upper (lower) functional Lebesgue class ↵. The families CU

↵

(X,Y, Z), CLf

↵

(X,Y, Z) CU
f

↵

(X,Y, Z),

and CL
f

↵

(X,Y, Z) are defined similarly.

Corollary 3.1. Let X be a PP -space, let Y and Z be topological spaces, and let ↵ 2 [0,!1). Then

CUf

↵

(X,Y, Z) ✓ Lf

↵+1(X ⇥ Y, Z) and CLf

↵

(X,Y, Z) ✓ Uf

↵+1(X ⇥ Y, Z).

Proof. Let (U
n

)1
n=1 and ((x

i,n

: i 2 I
n

))1
n=1 be sequences from Definition 3.2 and let A

i,n

= U
i,n

for all
n 2 ! and i 2 I

n

. It remains to use Theorem 3.1.
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Similarly, we can prove the following result for strong PP-spaces:

Corollary 3.2. Let X be a strong PP -space, let Y and Z be topological spaces, and let ↵ 2 [0,!1). Then

CU
f

↵

(X,Y, Z) ✓ Lf

↵+1(X ⇥ Y, Z) and CL
f

↵

(X,Y, Z) ✓ Uf

↵+1(X ⇥ Y, Z).

4. Lebesgue Classification of Multivalued Mappings of Two Variables

We first generalize Theorem 3.30 in [11].

Theorem 4.1. Suppose that X is a perfect space, ↵ 2 [0,!1), and (A
i

: i 2 I) is a locally finite family of
sets from the additive (multiplicative) class ↵ in X. Then the set

A =
[

i2I
A

i

belongs to the additive (multiplicative) class ↵ in X.

Proof. We proceed by induction on ↵. It is known that the assertion of the theorem is true for ↵ = 0.

Let (A
i

: i 2 I) be a locally finite family of F
σ

-sets A
i

✓ X and let
�
(B

i,n

)
n2! : i 2 I

�
be a sequence of

families of closed subsets of the space X such that

A
i

=
[

n2!
B

i,n

for each i 2 I.

Note that each family (B
i,n

: i 2 I) is locally finite. Thus, all sets B
n

=
S

i2I Bi,n

are closed and A =
S

n2! B
n

is an F
σ

-set.
Let (A

i

: i 2 I) be a locally finite family of G
δ

-sets A
i

✓ X and let
�
(B

i,n

)
n2! : i 2 I

�
be a sequence of

families of open sets B
i,n

such that

A
i

=
\

n2!
B

i,n

for each i 2 I.

For all i 2 I, we set F
i

= A
i

. It is clear that the family (F
i

: i 2 I) is locally finite and the set F =
S

i2I Fi

is
closed in X. For every x 2 F, we set

I(x) = {i 2 I : x 2 F
i

} and n(x) = |I(x)|.

In addition, let K
n

= {x 2 F
I(x) : n(x) > n} for each n 2 !. Since the family (F

i

: i 2 I) is locally finite,
every set K

n

is closed.
We now consider the set C = F \A and show that this is a set of the type F

σ

. For any n 2 !, we set

C
n

= {x 2 C : |n(x)| = n}, J
n

= {J ✓ I : |J | = n}

and

C
J,n

= {x 2 C
n

: I(x) = J}

for all J 2 J
n

. Let us show that each family C
n

= (C
J,n

: J 2 J
n

) is locally finite. We fix x 2 X and choose
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a neighborhood U of the point x in X such that the set I1 = {i2I : U \F
i

6= ?} is finite. As a result, we obtain

I1 = {J 2 J
n

: U \ C
J,n

6= ?} ✓ {J 2 J
n

: J ✓ I1}.

Thus, the set I1 is finite and the family C
n

is locally finite. We now show that

C
J,n

=

 
\

i2J
F
i

!
\
 
K

n

[
[

i2J
A

i

!

for all n 2 ! and J 2 J
n

. Since C
J,n

✓
T

i2J Fi

and C
J,n

\ (K
n

[
S

i2J Ai

) = ?, we get

C
J,n

✓
 
\

i2J
F
i

!
\
 
K

n

[
[

i2J
A

i

!
.

Conversely, let x 2
T

i2J Fi

, x 62 K
n

and x 62
S

i2J Ai

. Then n(x) ≥ |J | = n and n(x)  n. Therefore,

n(x) = n and I(x) = J.

Hence, x 62 F
i

for all i 2 I \ J. This yields

x 62
 
[

i2J
A

i

!
[

0

@
[

i2I\J

F
i

1

A ◆ A.

Since the sets
T

i2J Fi

and K
n

are closed and
S

i2J Ai

is a set of the type G
δ

, the set C
J,n

is an F
σ

-set. Hence,
each set C

n

is an F
σ

-type set as a locally finite union of F
σ

-sets. Thus, C is also a set of the type F
σ

.

Assume that the lemma is true for all ↵ < β, where β 2 [1,!1). Let (Ai

: i 2 I) be a locally finite family of
sets of the additive class β in X. Consider the case where β = ↵+1 for some ↵ < !1. Then, for each i 2 I, there
exists a sequence (B

i,n

)
n2! of sets of the multiplicative class ↵ in X such that A

i

=
S

n2! B
i,n

for all i 2 I.

By induction, each set B
n

=
S

i2I Bi,n

belongs to the multiplicative class ↵ in X. Hence, the set A =
S

n2! B
n

belongs to the additive class β in X.

We now consider the case of the limiting ordinal β. We choose an increasing sequence of ordinals ↵
n

< β

such that sup
n2! ↵

n

= β. For each i 2 I, there exists a sequence (B
i,n

)
n2! of sets of the multiplicative class ↵

n

in X such that A
i

=
S

n2! B
i,n

for all i 2 I. Then each set B
n

=
S

i2I Bi,n

belongs to the multiplicative class
↵ in X, which implies that A =

S
n2! B

n

is a set of the additive class β.
We now consider the case where a set belongs to the multiplicative class β ≥ 2. Let (A

i

: i 2 I) be a local
finite family of sets of the multiplicative class β in X and, moreover, β = ↵ + 1 for some ↵ < !1 and let�
(B

i,n

)
n2! : i 2 I

�
be a sequence of families of sets from the additive class ↵ such that A

i

=
T

n2! B
i,n

for
all i 2 I. For any i 2 I, we set F

i

= A
i

. The family (F
i

: i 2 I) is locally finite. Further, for any n 2 !

and i 2 I, we denote A
i,n

= B
i,n

\ F
i

. Since ↵ ≥ 1, each set A
i,n

belongs to the additive class ↵. Then
B

n

=
S

i2I Ai,n

is also a set from the additive class ↵ for each n. The same is true for the set A =
S

n2! B
n

.

For the limit β, the reasoning is similar.
Theorem 4.1 is proved.

Remark 4.1. For a perfect paracompact set X, Theorem 4.1 is known [see, e.g., [3] (4.5.8)]. On the other
hand, Theorem 4.1 cannot be generalized to arbitrary topological spaces. Thus, in particular, the question whether
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a locally finite union of G
δ

-sets is a G
δ

-set is discussed on the site http://mathoverflow.net. In this connection,
Banakh showed that there exists a functionally Hausdorff (irregular) space X with the second axiom of count-
ability that contains a closed discrete subset D which is not a subset of the type G

δ

in X. At the same time,
Baillif constructed an example of zero-dimensional Hausdorff space X with the first axiom of countability and
cardinality |X| = !1 that contains a closed discrete subspace D not of the type G

δ

inX. Then
�
{x} : x 2 D

�
is

a locally finite family of compact G
δ

-sets in X whose union F is not a set of the type G
δ

in X.

The next statement can be proved by analogy with the corresponding result in the previous section.

Theorem 4.2. Suppose that X is a topological space, Y is a perfect space, Z is a perfectly normal space,
↵ 2 [0,!1), (A

n

)1
n=1 is a sequence of σ -locally finite coverings A

n

= (A
i,n

: i 2 I
n

) of the space X by
sets A

i,n

from the additive class ↵ in X,
�
(x

i,n

: i 2 I
n

)
�1
n=1

is a sequence of the families of points x
i,n

2 X, and
F : X ⇥ Y ( Z is a compact-valued (multivalued) mapping with the following properties:

(1) for all (x, y) 2 X ⇥ Y and an arbitrary sequence (i
n

)
n2! of indices i

n

2 I
n

, it follows from the
condition x 2 A

in,n that the sequence
�
F (x

in,n, y)
�
n2! converges to F (x, y) in the Vietoris topology;

(2) F x 2 L
↵

(Y, Z)
�
F x 2 U

↵

(Y, Z)
�
for any x 2 D = {x

i,n

: n 2 N, i 2 I
n

}.

Then F 2 U
↵+1(X ⇥ Y, Z)

�
F 2 L

↵+1(X ⇥ Y, Z)
�
.

Corollary 4.1. Let X be a PP -space, let Y be a perfect space, let Z be a perfectly normal space, and
let ↵ 2 [0,!1). Then CU

↵

(X,Y, Z) ✓ L
↵+1(X ⇥ Y, Z) and CL

↵

(X,Y, Z) ✓ U
↵+1(X ⇥ Y, Z).

Corollary 4.2. Let X be a strong PP -space, let Y and Z be topological spaces, and let ↵ 2 [0,!1). Then
CU

↵

(X,Y, Z) ✓ L
↵+1(X ⇥ Y, Z) and CL

↵

(X,Y, Z) ✓ U
↵+1(X ⇥ Y, Z).

Remark 4.2. Since every metrizable space is a strong PP -space, Theorem 4.2 generalizes Theorem 1.2.
In addition, Theorem 4.2 is a generalization of Theorem 1.1 (it suffices to argue as in Remark 3.1).

The following example shows that the compact-valuedness of the mapping in Theorems 3.1 and 4.2 is essen-
tial:

Proposition 4.1. There exists a separately continuous lower semicontinuous mapping F : [0, 1]2 ! [0, 1]

which is not (functionally) upper measurable.

Proof. Let A ✓ [0, 1] be a set, which is not Borel measurable. Consider a continuous function

g : [0, 1]2 ! [0, 1], g(x, y) =
2(x+ 1)(y + 1)

(x+ 1)2 + (y + 1)2
,

and a multivalued mapping F : [0, 1]2 ( [0, 1],

F (x, y) =

8
<

:
[0, g(x, y)], (x, y) 2 [0, 1]2 \ {(z, z) : z 2 A},

[0, 1), (x, y) 2 {(z, z) : z 2 A}.

We set ∆ = {(x, x) : x 2 [0, 1]}. Since the function g is continuous, the mapping F is separately continuous
at every point of the set [0, 1]2 \ {(z, z) : z 2 A} and jointly continuous at every point of the set [0, 1]2 \ ∆.
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Since the mapping H(x, y) = [0, g(x, y)] is continuous and H−(G) = F−(G) for any open set G ✓ [0, 1],

the mapping F is lower semicontinuous. In addition,

F (x, y) ✓ [0, 1) ✓ F (z, z)

for all (x, y) 2 [0, 1]2 \∆ and z 2 [0, 1]. Thus, the mapping F is separately continuous at any point of the set ∆.

This implies that F is a separately continuous lower semicontinuous mapping. According to Example 2.1, the re-
striction F |∆ is not upper Lebesgue measurable. Hence, the mapping F is also not upper Lebesgue measurable.
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