UPPER AND LOWER LEBESGUE CLASSES OF MULTIVALUED FUNCTIONS OF TWO VARIABLES

O. Karlova¹ and **V.** Mykhailyuk²

UDC 517.5

We introduce a functional Lebesgue classification of multivalued mappings and obtain results on the upper and lower Lebesgue classifications of multivalued mappings $F: X \times Y \multimap Z$ for broad classes of spaces X, Y and Z.

1. Introduction

The investigations of the Lebesgue classification of separately continuous single-valued functions (i.e., functions of several variables continuous in each variable) and their analogs were started by Lebesgue [9] and Kuratowski [6]. Later, these investigations were continued by numerous mathematicians (see, e.g., [1, 2, 4, 7, 10, 12] and the references therein).

Some analogs of the Lebesgue classification are also known for multivalued mappings and connected with their upper and lower semicontinuity. Namely, a multivalued mapping $F: X \multimap [0,1]$ defined on the topological space X is called *upper (lower) semicontinuous at a point* $x_0 \in X$ if, for any open set $U \subseteq [0,1]$ with the property $F(x_0) \subseteq U$ ($F(x_0) \cap U \neq \emptyset$), the set

$$F^+(U) = \{x \in X : F(x) \subseteq U\}$$
$$\left(F^-(U) = \{x \in X : F(x) \cap U \neq \emptyset\}\right)$$

is a neighborhood of the point x_0 in X. A multivalued mapping $F: X \multimap [0, 1]$ is *continuous at a point* $x_0 \in X$ if it is simultaneously upper and lower semicontinuous at this point. It is known that the multivalued mapping $F: X \multimap [0, 1]$ is continuous at a point $x_0 \in X$ if and only if it is continuous at the point x_0 as a single-valued mapping with values in the space of all nonempty subsets of the segment [0, 1] with the Vietoris topology.

For topological spaces X and Y, by U(X, Y) and (L(X, Y)) we denote the collections of all upper (lower) semicontinuous multivalued mappings $F: X \multimap Y$.

Let X and Y be topological spaces and let $\alpha < \omega_1$. A multivalued mapping $F: X \multimap Y$ belongs to

the upper Lebesgue class α if, for any open set $A \subseteq Y$, the set $F^+(A)$ belongs to the additive class α in X;

the *lower Lebesgue class* α if, for any open set $A \subseteq Y$, the set $F^{-}(A)$ belongs to the additive class α in X.

Note that the Lebesgue classes are also called Borel classes.

For the topological spaces X and Y, we denote the collection of all multivalued mappings $F: X \multimap Y$ of the upper (lower) Lebesgue class α by $U_{\alpha}(X,Y)$ ($L_{\alpha}(X,Y)$).

¹ Fed'kovych Chernivtsi National University, Chernivtsi, Ukraine.

² Fed'kovych Chernivtsi National University, Chernivtsi, Ukraine; J. Kochanowski University in Kielce, Kielce, Poland.

Translated from Ukrains'kyi Matematychnyi Zhurnal, Vol. 70, No. 8, pp. 1097–1106, August, 2018. Original article submitted August 5, 2017.

For the multivalued mapping $F: X \times Y \multimap Z$ of points $x \in X$ and $y \in Y$, we denote

$$F^x(y) = F_y(x) = F(x, y).$$

Recall that a topological space is called *perfect* if every its closed set is a set of the type G_{δ} .

In [8], Kwiecińska obtained the following result for the Lebesgue classification of multivalued mappings of two variables:

Theorem 1.1 [8]. Suppose that (X, d) is a metric space, \mathcal{T} is a topology in the space X, $D \subseteq X$ is an at most countable set, $(U(x) : x \in X)$ is a family of \mathcal{T} -open sets $U(x) \subseteq X$, Y and Z are perfectly normal spaces, $\alpha < \omega_1$, and $F : X \times Y \multimap Z$ is a compact-valued (multivalued) mapping with the following properties:

- (a) the set D is dense in (X, \mathcal{T}) ;
- (b) for any $x \in D$, the set $A(x) = \{u \in X : x \in U(u)\}$ belongs to the additive class α in (X, d);
- (c) for any $x \in X$, the sequence $(B_n(x))_{n \in \omega}$ of the sets

$$B_n(x) = U(x) \cap \left\{ u \in X : d(x, u) < \frac{1}{n} \right\}$$

forms a base of the space (X, \mathcal{T}) at the point x;

- (d) for any $y \in Y$, the multivalued mapping $F_y: (X, \mathcal{T}) \multimap Z$ is continuous;
- (e) for any $x \in D$, the multivalued mapping $F^x \colon Y \multimap Z$ belongs to the lower (upper) class α .

Then F is a mapping of the lower (upper) Lebesgue class $\alpha + 1$ on the product $(X, d) \times Y$.

The other versions of Lebesgue classification of multivalued mappings of two variables were obtained in [5]. Theorem 1.1 yields the following result for a perfectly normal space Y:

Theorem 1.2 [5]. Suppose that X is a metrizable space, D is a dense subset of the space X, Y is a perfect space, Z is a perfectly normal space, $\alpha < \omega_1$, and $F: X \times Y \multimap Z$ is a compact-valued (multivalued) mapping with the following properties:

- (a) for any $y \in Y$, the multivalued mapping $F_y: X \multimap Z$ is continuous;
- (b) for any $x \in D$, the multivalued mapping $F^x : Y \multimap Z$ belongs to the lower (upper) Lebesgue class α .

Then F belongs to the upper (lower) Lebesgue class $\alpha + 1$ on the product $X \times Y$.

In the present paper, we introduce functional Lebesgue classes for multivalued mappings and generalize Theorems 1.1 and 1.2 to a broad class of topological spaces X.

2. Multivalued Mappings from the Upper and Lower Functional Lebesgue Classes α

Definition 2.1. Let X and Y be topological spaces. The multivalued mapping $F: X \rightarrow Y$ is called

functionally upper (lower) semicontinuous if the set $F^+(A)$ $(F^-(A))$ is functionally open in X for any functionally open set $A \subseteq Y$;

strongly functionally upper (lower) semicontinuous if the set $F^+(A)$ $(F^-(A))$ is functionally open in X for any functionally open set $A \subseteq Y$;

weakly functionally upper (lower) semicontinuous if the set $F^+(A)$ $(F^-(A))$ is open in X for any functionally open set $A \subseteq Y$.

By $U^{f}(X)$ $(L^{f}(X), U^{f}_{s}(X), L^{f}_{s}(X), U^{f}_{w}(X)$, and $L^{f}_{w}(X)$) we denote the collection of all functionally upper (lower, strongly upper, strongly lower, weakly upper, and weakly lower) semicontinuous multivalued mappings $F : X \multimap Y$.

Let X be a topological space and let $\mathcal{A}_0(X)$ and $\mathcal{M}_0(X)$ be the systems of all functionally open and functionally closed sets in X, respectively. For any ordinal $\alpha \in [1, \omega_1)$, by $\mathcal{A}_\alpha(X)$ we denote the system of all unions $\bigcup_{n \in \omega} A_n$ of the sets A_n from $\bigcup_{\xi < \alpha} \mathcal{M}_\alpha(X)$ and by $\mathcal{M}_\alpha(X)$ we denote the system of all intersections $\bigcap_{n \in \omega} M_n$ of the sets M_n from $\bigcup_{\xi < \alpha} \mathcal{A}_\alpha(X)$. It is clear that

$$\mathcal{A}_{\alpha}(X) = \{X \setminus M \colon M \in \mathcal{M}_{\alpha}(X)\}.$$

Definition 2.2. Let X and Y be topological spaces and let $\alpha \in [0, \omega_1)$. The multivalued mapping $F: X \multimap Y$ belongs to

the upper functional Lebesgue class α if $F^+(A) \in \mathcal{A}_{\alpha}(X)$ for any functionally open set $A \subseteq Y$;

the lower functional Lebesgue class α if $F^{-}(A) \in \mathcal{A}_{\alpha}(X)$ for any functionally open set $A \subseteq Y$.

It is easy to see that the multivalued mapping F belongs to the upper (lower) functional Lebesgue class α if and only if $F^{-}(B) \in \mathcal{A}_{\alpha}(X)$ ($F^{+}(B) \in \mathcal{A}_{\alpha}(X)$) for any functionally closed set $B \subseteq Y$.

For the topological spaces X and Y, by $U^f_{\alpha}(X)$ $(L^f_{\alpha}(X))$ we denote the collection of all multivalued mappings $F: X \multimap Y$ of the upper (lower) functional Lebesgue class α . Note that

 $\mathrm{U}_0^f(X) = \mathrm{U}^f(X)$ and $\mathrm{L}_0^f(X) = \mathrm{L}^f(X).$

The properties presented in what follows readily follow from the definitions. For this reason, we do not present their proofs.

Proposition 2.1. Let X and Y be topological spaces, let $F: X \multimap Y$ be a multivalued mapping, and let $\alpha \in [0, \omega_1)$. Then:

(1) $U(X,Y) \cup U^{f}(X,Y) \subseteq U^{f}_{w}(X,Y)$ and $L(X,Y) \cup L^{f}(X,Y) \subseteq L^{f}_{w}(X,Y)$;

- (2) $\mathrm{U}^{f}_{s}(X,Y) \subseteq \mathrm{U}(X,Y) \cap \mathrm{U}^{f}(X,Y)$ and $\mathrm{L}^{f}_{s}(X,Y) \subseteq \mathrm{L}(X,Y) \cap \mathrm{L}^{f}(X,Y);$
- (3) if the space X is perfectly normal, then

$$U_s^f(X,Y) = U(X,Y) \subseteq U^f(X,Y) = U_w^f(X,Y)$$

and

$$\mathcal{L}_{s}^{f}(X,Y) = \mathcal{L}(X,Y) \subseteq \mathcal{L}^{f}(X,Y) = \mathcal{L}_{w}^{f}(X,Y);$$

(4) *if the space* Y *is completely regular, then* $U^{f}(X,Y) \subseteq U(X,Y)$ *and* $L^{f}(X,Y) \subseteq L(X,Y)$ *;*

(5) if the space Y is perfectly normal, then

$$U_s^f(X,Y) = U^f(X,Y) \subseteq U(X,Y) = U_w^f(X,Y)$$

and

$$\mathcal{L}_{s}^{f}(X,Y) = \mathcal{L}^{f}(X,Y) \subseteq \mathcal{L}(X,Y) = \mathcal{L}_{w}^{f}(X,Y);$$

- (6) $\mathrm{U}^{f}_{\alpha}(X,Y) \subseteq \mathrm{L}^{f}_{\alpha+1}(X,Y);$
- (7) if the mapping F is compact-valued, then $L^{f}_{\alpha}(X,Y) \subseteq U^{f}_{\alpha+1}(X,Y)$.

Proposition 2.2. Let Y be a topological space such that $\{\emptyset, Y\}$ is the collection of all functionally open sets in Y {see, e.g., [3] (2.7.18)}. Then:

- (1) for any topological space X, every multivalued mapping $F: X \multimap Y$ is functionally upper and lower semicontinuous;
- (2) for any T_1 -space Z, every strongly functionally upper semicontinuous mapping $F: Y \rightarrow Z$ is constant;
- (3) for any (completely) regular space Z, every strongly functionally upper (lower) closed-valued mapping $F: Y \rightarrow Z$ is constant.

Proof. 1. Since $F^+(\emptyset) = F^-(\emptyset) = \emptyset$ and $F^+(Y) = F^-(Y) = X$, the mapping $F: X \multimap Y$ is functionally upper and lower semicontinuous.

2. Let Z be a T_1 -space and let $F: Y \multimap Z$ be a nonconstant mapping. We choose points $y_1, y_2 \in Y$ such that $F(y_1) \not\subseteq F(y_2)$. Since Y is a T_1 -space, there exists an open set $G \subseteq Z$ such that $F(y_1) \not\subseteq G \supseteq F(y_2)$. Then $y_1 \notin F^+(G) \ni y_2$. Therefore,

$$F^+(G) \notin \{\varnothing, Y\}$$

and $F^+(G)$ is not a functionally open set. Hence, the mapping F is not strongly functionally upper semicontinuous.

3. Let Z be a regular space and let $F: Y \multimap Z$ be a nonconstant mapping. We choose points $y_1, y_2 \in Y$ such that $F(y_1) \not\subseteq F(y_2)$. Since the space Y is regular and the set $F(y_2)$ is closed, there exists an open set $G \subseteq Z$ such that $G \cap F(y_1) \neq \emptyset$ and $G \cap F(y_2) = \emptyset$. Then $y_1 \in F^-(G) \not\supseteq y_2$. Hence,

$$F^{-}(G) \notin \{\emptyset, Y\}$$

and the set $F^{-}(G)$ is not functionally open. Thus, F is not strongly functionally lower semicontinuous. If the space Z is completely regular, then we can choose a functionally open set G and show that the mapping F is not functionally lower semicontinuous.

Example 2.1. Let $A \subseteq [0, 1]$ be a set, which is not Borel measurable. A multivalued mapping $F : [0, 1] \multimap [0, 1]$ defined by the rule

$$F(x) = \begin{cases} [0,1], & x \in A, \\ \\ [0,1], & x \in [0,1] \setminus A, \end{cases}$$

is (functionally) lower semicontinuous but not (functionally) measurable, i.e.,

$$F \notin \bigcup_{\alpha < \omega_1} \mathbf{U}^f_{\alpha}([0,1],[0,1]).$$

3. Functional Lebesgue Classification of Multivalued Mappings of Two Variables

Lemma 3.1 ([4], Proposition 1.4). Suppose that X is a topological space, $\alpha \in [0, \omega_1)$, $(U_i : i \in I)$ is a locally finite family of functionally open sets in X, and $(A_i : i \in I)$ is a family of sets $A_i \in \mathcal{A}_{\alpha}(X)$ $(A_i \in \mathcal{M}_{\alpha}(X))$ such that $A_i \subseteq U_i$ for each $i \in I$. Then $\bigcup_{i \in I} A_i \in \mathcal{A}_{\alpha}(X)$ $(\bigcup_{i \in I} A_i \in \mathcal{M}_{\alpha}(X))$.

It is worth noting that the union of a locally finite family of sets of a functionally multiplicative class α is not necessarily a set of the same class even for $\alpha = 0$.

Indeed, consider a Nemyts'kyi plane $X = \mathbb{R} \times [0, +\infty)$ in which the base of neighborhoods of points $(x, y) \in X$ for y > 0 is formed by open balls centered at the point (x, y) and the base of neighborhoods of points of the form (x, 0) is formed by the sets $U \cup \{(x, 0)\}$, where U is an open ball tangential to the straight line $\mathbb{R} \times \{0\}$ at the point (x, 0).

Note that, for any $p \in X$, the one-point set $\{p\}$ is functionally closed in X because every continuous function on $\mathbb{R} \times [0, +\infty)$ is continuous on X. Then the family $\mathcal{F} = (\{(x, 0)\} : x \in \mathbb{Q})$ consists of functionally closed subsets of the space X. We assume that the union $F = \bigcup \mathcal{F}$ is functionally closed in X and choose a continuous function $f : X \to [0, 1]$ such that $F = f^{-1}(0)$. For all $(x, y) \in X$ and $n \in \mathbb{N}$, we set

$$f_n(x,y) = \begin{cases} f(x,y), & y \ge \frac{1}{n}, \\ f\left(x,\frac{1}{n}\right), & 0 \le y < \frac{1}{n}. \end{cases}$$

Then the function $f_n : \mathbb{R} \times [0, +\infty) \to [0, 1]$ is continuous and $\lim_{n\to\infty} f_n(x, y) = f(x, y)$ for any $(x, y) \in X$. Since

$$F = \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} f_n^{-1}\left(\left[0, \frac{1}{k}\right]\right),$$

we conclude that F is a set of the type G_{δ} in $\mathbb{R} \times [0, +\infty)$. A contradiction.

Definition 3.1. A family $(A_i : i \in I)$ of subsets A_i of the topological space X is called functionally locally finite in X if there exists a family $(U_i : i \in I)$ locally finite in X of functionally open sets in X such that $U_i \supseteq A_i$ for each $i \in I$. A family $(A_i : i \in I)$ of subsets A_i of the topological space X is called σ -functionally locally finite if there exists a partition

$$I = \bigsqcup_{n \in \omega} I_n$$

such that each family $(A_i : i \in I_n)$ is functionally locally finite in X.

Theorem 3.1. Suppose that X, Y, and Z are topological spaces, $\alpha \in [0, \omega_1), (\mathcal{A}_n)_{n=1}^{\infty}$ is a sequence of σ -functionally locally finite coverings $\mathcal{A}_n = (A_{i,n} : i \in I_n)$ of the space X by the sets $A_{i,n} \in \mathcal{A}_{\alpha}(X), ((x_{i,n} : i \in I_n))_{n=1}^{\infty}$ is a sequence of families of points $x_{i,n} \in X$, and $F : X \times Y \multimap Z$ is a compact-valued (multivalued) mapping satisfying the following conditions:

- (1) for all $(x, y) \in X \times Y$ and an arbitrary sequence $(i_n)_{n \in \omega}$ of indices $i_n \in I_n$ such that $x \in A_{i_n, n}$, the sequence $(F(x_{i_n, n}, y))_{n \in \omega}$ converges to F(x, y) in the Vietoris topology;
- (2) $F^x \in L^f_{\alpha}(Y,Z)$ $(F^x \in U^f_{\alpha}(Y,Z))$ for every x from the set $D = \{x_{i,n} : n \in \mathbb{N}, i \in I_n\}$.

 $\textit{Then } F \in \mathrm{U}_{\alpha+1}^f(X \times Y, Z) \ \left(F \in \mathrm{L}_{\alpha+1}^f(X \times Y, Z)\right).$

Proof. Consider the case where F is a compact-valued mapping. For all $n \in \omega$ and $i \in I_n$, we set $F_{i,n} = F^{x_{i,n}}$. Let $W \subseteq Z$ be a functionally closed set and let $\varphi \colon Z \to [0,1]$ be a continuous function such that $W = \varphi^{-1}(0)$. For each $n \in \omega$, we denote

$$W_n = \varphi^{-1}\left(\left[0, \frac{1}{n}\right]\right)$$
 and $G_n = \varphi^{-1}\left(\left[0, \frac{1}{n}\right]\right)$.

For all $m, n \in \omega$, we set

$$C_{m,n} = \bigcup_{i \in I_n} \left(A_{i,n} \times F_{i,n}^-(G_m) \right)$$
 and $C = \bigcap_{m \in \omega} \bigcup_{n \ge m} C_{n,m}.$

Since $A_{i,n} \in \mathcal{A}_{\alpha}(X)$ and $F_{i,n}^{-}(G_m) \in \mathcal{A}_{\alpha}(Y)$ by condition (2), we find

$$A_{i,n} \times F^-_{i,n}(G_m) \in \mathcal{A}_{\alpha}(X \times Y)$$

for all $m, n \in \omega$ and $i \in I_n$. Thus, by Lemma 3.1, $C_{m,n} \in \mathcal{A}_{\alpha}(X \times Y)$. Hence, $C \in \mathcal{M}_{\alpha+1}(X \times Y)$.

It remains to show that $C = F^{-}(W)$. Let $(x_0, y_0) \in F^{-}(W)$. We fix $m \in \omega$ and note that $(x_0, y_0) \in F^{-}(G_m)$. Consider a neighborhood

$$O = \{ B \subseteq Z \colon B \cap G_m \neq \emptyset \}$$

of the set $F(x_0, y_0)$ in the Vietoris topology. Under condition (1), there exists $n_0 \ge m$ such that, for any $n \ge n_0$ for which $i \in I_n$, the inclusion $x_0 \in A_{i,n}$ implies that $F(x_{i,n}, y_0) \in O$, i.e., $(x_{i,n}, y_0) \in F^-(G_m)$. In particular, for some $i \in I_{n_0}$, we conclude that $x_0 \in A_{i,n_0}$ and $y_0 \in F^-_{i,n_0}(G_m)$. Thus, $(x_0, y_0) \in C_{m,n_0}$. Therefore, $(x_0, y_0) \in C$.

Now let $(x_0, y_0) \notin F^-(W)$. Then

$$F(x_0, y_0) \subseteq Z \setminus W = \bigcup_{m \in \omega} (Z \setminus W_m)$$

Since the set $F(x_0, y_0)$ is compact, there exists $m_0 \in \omega$ such that $F(x_0, y_0) \subseteq Z \setminus W_{m_0}$. Consider a neighborhood

$$O_1 = \{ B \subseteq Z \colon B \cap W_{m_0} = \emptyset \}$$

of the set $F(x_0, y_0)$ in the Vietoris topology. It follows from property (1) that there exists a number $n_0 \in \omega$ such that, for all $n \ge n_0$, the inclusion $x_0 \in A_{i,n}$ yields the inclusion $F(x_{i,n}, y_0) \in O_1$. Hence,

$$F(x_{i,n}, y_0) \subseteq Z \setminus W_{m_0} \subseteq Z \setminus W_m$$

and $y_0 \notin F_{i,n}^-(G_m)$ for all $m \ge m_0$, $n \ge n_0$, and $i \in I_n$ such that $x_0 \in A_{i,n}$. This implies that $(x_0, y_0) \notin C_{n,m}$ for all $n \ge n_0$ and $m \ge m_0$. Thus, $(x_0, y_0) \notin C$.

Now let the mapping F be multivalued and let $F^x \in U^f_{\alpha}(Y,Z)$ for all $x \in D$. Reasoning as in the previous case and using similar notation, for all $m, n \in \omega$, we get

$$C_{m,n} = \bigcup_{i \in I_n} \left(A_{i,n} \times F_{i,n}^+(G_m) \right).$$

According to Lemma 3.1, we have $C_{m,n} \in \mathcal{A}_{\alpha}(X \times Y)$ and

$$C = \bigcap_{m \in \omega} \bigcup_{n \ge m} C_{n,m} \in \mathcal{M}_{\alpha+1}(X \times Y).$$

Further, we show that $C = F^+(W)$. Let $(x_0, y_0) \in F^+(W)$ and $m \in \omega$. Then $(x_0, y_0) \in F^+(G_m)$. In view of property (1), there exist $n \ge m$ and $i \in I_n$ such that $x_0 \in A_{i,n}$ and $F(x_{i,n}, y_0) \subseteq G_m$. Hence, $(x_0, y_0) \in C_{m,n}$ and, therefore, $(x_0, y_0) \in C$.

Now let $(x_0, y_0) \notin F^+(W)$. Then $F(x_0, y_0) \cap (Z \setminus W) \neq \emptyset$ and there exist a number $m_0 \in \omega$ such that

$$F(x_0, y_0) \cap (Z \setminus W_{m_0}) \neq \emptyset.$$

In view of property (1), there exists a number $n_0 \in \omega$ such that, for all $n \ge n_0$, the inclusion $x_0 \in A_{i,n}$ implies that $F(x_{i,n}, y_0) \cap (Z \setminus W_{m_0}) \neq \emptyset$. Hence, $(x_0, y_0) \notin C_{n,m}$ for all $n \ge n_0$ and $m \ge m_0$. Thus, $(x_0, y_0) \notin C$.

Theorem 3.1 is proved.

Remark 3.1. The multivalued mapping $F: (X, d) \times Y \multimap Z$ in Theorem 1.1 satisfies conditions (1) and (2) in Theorem 3.1. For all $u \in D$ and $n \in \omega$, we set

$$A_{u,n} = A(u) \cap \left\{ v \in X : d(u,v) < \frac{1}{n} \right\}$$
 and $x_{u,n} = u$.

Then the sequences of families $(A_{u,n} : u \in D)$ and $(x_{u,n} : u \in D)$ satisfy condition (1). In addition, condition (2) is equivalent to condition (e). Thus, Theorem 3.1 generalizes Theorem 1.1.

Definition 3.2. A topological space X is called a (strong) PP-space if, for any dense set $D \subseteq X$, there exist a sequence $(\mathcal{U}_n)_{n=1}^{\infty}$ of locally finite coverings $\mathcal{U}_n = (U_{i,n}: i \in I_n)$ of the space X and a sequence $((x_{i,n}: i \in I_n))_{n=1}^{\infty}$ of families of points from the space X (from the set D) such that, for any $x \in X$ and any neighborhood U of the point x, there exists a number $n_0 \in \omega$ such that, for all $n \ge n_0$ and $i \in I_n$, the inclusion $x_{i,n} \in U$ follows from the inclusion $x \in U_{i,n}$.

The notion of PP-space was introduced in [14]. It is closely connected with the notion of metrically quarterstratifiable spaces (see [1]). In [13], it was shown that metrically quarter-stratifiable spaces coincide with the Hausdorff PP-spaces. It is clear that every strong PP-space is a PP-space.

For topological spaces X, Y, and Z and ordinal $\alpha \in [0, \omega_1)$, by $\operatorname{CU}^f_{\alpha}(X, Y, Z)$ ($\operatorname{CL}^f_{\alpha}(X, Y, Z)$) we denote a family of all multivalued mappings $F: X \times Y \multimap Z$ that are continuous in the first variable and belong to the upper (lower) functional Lebesgue class α with respect to the second variable. Similarly, by $\overline{\operatorname{CU}}^f_{\alpha}(X, Y, Z)$ ($\overline{\operatorname{CL}}^f_{\alpha}(X, Y, Z)$) we denote a family of all multivalued mappings $F: X \times Y \multimap Z$ that are continuous with respect to the first variable and such that, for any dense set $D \subseteq X$, every multivalued mapping F^x belongs to the upper (lower) functional Lebesgue class α . The families $\operatorname{CU}_{\alpha}(X, Y, Z)$, $\operatorname{CL}^f_{\alpha}(X, Y, Z)$ $\overline{\operatorname{CU}}^f_{\alpha}(X, Y, Z)$, and $\overline{\operatorname{CL}}^f_{\alpha}(X, Y, Z)$ are defined similarly.

Corollary 3.1. Let X be a PP-space, let Y and Z be topological spaces, and let $\alpha \in [0, \omega_1)$. Then

$$\operatorname{CU}_{\alpha}^{f}(X,Y,Z) \subseteq \operatorname{L}_{\alpha+1}^{f}(X \times Y,Z) \quad and \quad \operatorname{CL}_{\alpha}^{f}(X,Y,Z) \subseteq \operatorname{U}_{\alpha+1}^{f}(X \times Y,Z).$$

Proof. Let $(\mathcal{U}_n)_{n=1}^{\infty}$ and $((x_{i,n}: i \in I_n))_{n=1}^{\infty}$ be sequences from Definition 3.2 and let $A_{i,n} = U_{i,n}$ for all $n \in \omega$ and $i \in I_n$. It remains to use Theorem 3.1.

Similarly, we can prove the following result for strong PP-spaces:

Corollary 3.2. Let X be a strong PP-space, let Y and Z be topological spaces, and let $\alpha \in [0, \omega_1)$. Then

$$C\overline{U}^{f}_{\alpha}(X,Y,Z) \subseteq L^{f}_{\alpha+1}(X \times Y,Z) \quad and \quad C\overline{L}^{f}_{\alpha}(X,Y,Z) \subseteq U^{f}_{\alpha+1}(X \times Y,Z).$$

4. Lebesgue Classification of Multivalued Mappings of Two Variables

We first generalize Theorem 3.30 in [11].

Theorem 4.1. Suppose that X is a perfect space, $\alpha \in [0, \omega_1)$, and $(A_i : i \in I)$ is a locally finite family of sets from the additive (multiplicative) class α in X. Then the set

$$A = \bigcup_{i \in I} A_i$$

belongs to the additive (multiplicative) class α in X.

Proof. We proceed by induction on α . It is known that the assertion of the theorem is true for $\alpha = 0$.

Let $(A_i : i \in I)$ be a locally finite family of F_{σ} -sets $A_i \subseteq X$ and let $((B_{i,n})_{n \in \omega} : i \in I)$ be a sequence of families of closed subsets of the space X such that

$$A_i = \bigcup_{n \in \omega} B_{i,n}$$
 for each $i \in I$.

Note that each family $(B_{i,n}: i \in I)$ is locally finite. Thus, all sets $B_n = \bigcup_{i \in I} B_{i,n}$ are closed and $A = \bigcup_{n \in \omega} B_n$ is an F_{σ} -set.

Let $(A_i : i \in I)$ be a locally finite family of G_{δ} -sets $A_i \subseteq X$ and let $((B_{i,n})_{n \in \omega} : i \in I)$ be a sequence of families of open sets $B_{i,n}$ such that

$$A_i = igcap_{n \in \omega} B_{i,n} \quad ext{for each} \quad i \in I.$$

For all $i \in I$, we set $F_i = \overline{A_i}$. It is clear that the family $(F_i : i \in I)$ is locally finite and the set $F = \bigcup_{i \in I} F_i$ is closed in X. For every $x \in F$, we set

$$I(x) = \{i \in I : x \in F_i\}$$
 and $n(x) = |I(x)|.$

In addition, let $K_n = \{x \in F_{I(x)} : n(x) > n\}$ for each $n \in \omega$. Since the family $(F_i : i \in I)$ is locally finite, every set K_n is closed.

We now consider the set $C = F \setminus A$ and show that this is a set of the type F_{σ} . For any $n \in \omega$, we set

$$C_n = \{x \in C : |n(x)| = n\}, \qquad \mathcal{J}_n = \{J \subseteq I : |J| = n\}$$

and

$$C_{J,n} = \{x \in C_n \colon I(x) = J\}$$

for all $J \in \mathcal{J}_n$. Let us show that each family $\mathcal{C}_n = (C_{J,n} : J \in \mathcal{J}_n)$ is locally finite. We fix $x \in X$ and choose

a neighborhood U of the point x in X such that the set $I_1 = \{i \in I : U \cap F_i \neq \emptyset\}$ is finite. As a result, we obtain

$$\mathcal{I}_1 = \{J \in \mathcal{J}_n \colon U \cap C_{J,n} \neq \emptyset\} \subseteq \{J \in \mathcal{J}_n \colon J \subseteq I_1\}.$$

Thus, the set \mathcal{I}_1 is finite and the family \mathcal{C}_n is locally finite. We now show that

$$C_{J,n} = \left(\bigcap_{i \in J} F_i\right) \setminus \left(K_n \cup \bigcup_{i \in J} A_i\right)$$

for all $n \in \omega$ and $J \in \mathcal{J}_n$. Since $C_{J,n} \subseteq \bigcap_{i \in J} F_i$ and $C_{J,n} \cap (K_n \cup \bigcup_{i \in J} A_i) = \emptyset$, we get

$$C_{J,n} \subseteq \left(\bigcap_{i \in J} F_i\right) \setminus \left(K_n \cup \bigcup_{i \in J} A_i\right).$$

Conversely, let $x \in \bigcap_{i \in J} F_i$, $x \notin K_n$ and $x \notin \bigcup_{i \in J} A_i$. Then $n(x) \ge |J| = n$ and $n(x) \le n$. Therefore,

$$n(x) = n$$
 and $I(x) = J$.

Hence, $x \notin F_i$ for all $i \in I \setminus J$. This yields

$$x \notin \left(\bigcup_{i \in J} A_i\right) \bigcup \left(\bigcup_{i \in I \setminus J} F_i\right) \supseteq A$$

Since the sets $\bigcap_{i \in J} F_i$ and K_n are closed and $\bigcup_{i \in J} A_i$ is a set of the type G_{δ} , the set $C_{J,n}$ is an F_{σ} -set. Hence, each set C_n is an F_{σ} -type set as a locally finite union of F_{σ} -sets. Thus, C is also a set of the type F_{σ} .

Assume that the lemma is true for all $\alpha < \beta$, where $\beta \in [1, \omega_1)$. Let $(A_i : i \in I)$ be a locally finite family of sets of the additive class β in X. Consider the case where $\beta = \alpha + 1$ for some $\alpha < \omega_1$. Then, for each $i \in I$, there exists a sequence $(B_{i,n})_{n \in \omega}$ of sets of the multiplicative class α in X such that $A_i = \bigcup_{n \in \omega} B_{i,n}$ for all $i \in I$. By induction, each set $B_n = \bigcup_{i \in I} B_{i,n}$ belongs to the multiplicative class α in X. Hence, the set $A = \bigcup_{n \in \omega} B_n$ belongs to the additive class β in X.

We now consider the case of the limiting ordinal β . We choose an increasing sequence of ordinals $\alpha_n < \beta$ such that $\sup_{n \in \omega} \alpha_n = \beta$. For each $i \in I$, there exists a sequence $(B_{i,n})_{n \in \omega}$ of sets of the multiplicative class α_n in X such that $A_i = \bigcup_{n \in \omega} B_{i,n}$ for all $i \in I$. Then each set $B_n = \bigcup_{i \in I} B_{i,n}$ belongs to the multiplicative class α in X, which implies that $A = \bigcup_{n \in \omega} B_n$ is a set of the additive class β .

We now consider the case where a set belongs to the multiplicative class $\beta \ge 2$. Let $(A_i : i \in I)$ be a local finite family of sets of the multiplicative class β in X and, moreover, $\beta = \alpha + 1$ for some $\alpha < \omega_1$ and let $((B_{i,n})_{n\in\omega}: i \in I)$ be a sequence of families of sets from the additive class α such that $A_i = \bigcap_{n\in\omega} B_{i,n}$ for all $i \in I$. For any $i \in I$, we set $F_i = \overline{A_i}$. The family $(F_i: i \in I)$ is locally finite. Further, for any $n \in \omega$ and $i \in I$, we denote $A_{i,n} = B_{i,n} \cap F_i$. Since $\alpha \ge 1$, each set $A_{i,n}$ belongs to the additive class α . Then $B_n = \bigcup_{i \in I} A_{i,n}$ is also a set from the additive class α for each n. The same is true for the set $A = \bigcup_{n \in \omega} B_n$. For the limit β , the reasoning is similar.

Theorem 4.1 is proved.

Remark 4.1. For a perfect paracompact set X, Theorem 4.1 is known [see, e.g., [3] (4.5.8)]. On the other hand, Theorem 4.1 cannot be generalized to arbitrary topological spaces. Thus, in particular, the question whether

a locally finite union of G_{δ} -sets is a G_{δ} -set is discussed on the site http://mathoverflow.net. In this connection, Banakh showed that there exists a functionally Hausdorff (irregular) space X with the second axiom of countability that contains a closed discrete subset D which is not a subset of the type G_{δ} in X. At the same time, Baillif constructed an example of zero-dimensional Hausdorff space X with the first axiom of countability and cardinality $|X| = \omega_1$ that contains a closed discrete subspace D not of the type G_{δ} in X. Then $(\{x\} : x \in D)$ is a locally finite family of compact G_{δ} -sets in X whose union F is not a set of the type G_{δ} in X.

The next statement can be proved by analogy with the corresponding result in the previous section.

Theorem 4.2. Suppose that X is a topological space, Y is a perfect space, Z is a perfectly normal space, $\alpha \in [0, \omega_1), \ (\mathcal{A}_n)_{n=1}^{\infty}$ is a sequence of σ -locally finite coverings $\mathcal{A}_n = (A_{i,n}: i \in I_n)$ of the space X by sets $A_{i,n}$ from the additive class α in X, $((x_{i,n}: i \in I_n))_{n=1}^{\infty}$ is a sequence of the families of points $x_{i,n} \in X$, and $F: X \times Y \multimap Z$ is a compact-valued (multivalued) mapping with the following properties:

- (1) for all $(x, y) \in X \times Y$ and an arbitrary sequence $(i_n)_{n \in \omega}$ of indices $i_n \in I_n$, it follows from the condition $x \in A_{i_n,n}$ that the sequence $(F(x_{i_n,n}, y))_{n \in \omega}$ converges to F(x, y) in the Vietoris topology;
- (2) $F^x \in L_{\alpha}(Y,Z)$ $(F^x \in U_{\alpha}(Y,Z))$ for any $x \in D = \{x_{i,n} : n \in \mathbb{N}, i \in I_n\}.$
- Then $F \in U_{\alpha+1}(X \times Y, Z)$ $(F \in L_{\alpha+1}(X \times Y, Z)).$

Corollary 4.1. Let X be a PP-space, let Y be a perfect space, let Z be a perfectly normal space, and let $\alpha \in [0, \omega_1)$. Then $CU_{\alpha}(X, Y, Z) \subseteq L_{\alpha+1}(X \times Y, Z)$ and $CL_{\alpha}(X, Y, Z) \subseteq U_{\alpha+1}(X \times Y, Z)$.

Corollary 4.2. Let X be a strong PP-space, let Y and Z be topological spaces, and let $\alpha \in [0, \omega_1)$. Then $C\overline{U}_{\alpha}(X, Y, Z) \subseteq L_{\alpha+1}(X \times Y, Z)$ and $C\overline{L}_{\alpha}(X, Y, Z) \subseteq U_{\alpha+1}(X \times Y, Z)$.

Remark 4.2. Since every metrizable space is a strong *PP*-space, Theorem 4.2 generalizes Theorem 1.2. In addition, Theorem 4.2 is a generalization of Theorem 1.1 (it suffices to argue as in Remark 3.1).

The following example shows that the compact-valuedness of the mapping in Theorems 3.1 and 4.2 is essential:

Proposition 4.1. There exists a separately continuous lower semicontinuous mapping $F: [0,1]^2 \rightarrow [0,1]$ which is not (functionally) upper measurable.

Proof. Let $A \subseteq [0,1]$ be a set, which is not Borel measurable. Consider a continuous function

$$g: [0,1]^2 \to [0,1], \qquad g(x,y) = \frac{2(x+1)(y+1)}{(x+1)^2 + (y+1)^2},$$

and a multivalued mapping $F: [0,1]^2 \multimap [0,1]$,

$$F(x,y) = \begin{cases} [0,g(x,y)], & (x,y) \in [0,1]^2 \setminus \{(z,z) \colon z \in A\}, \\ [0,1), & (x,y) \in \{(z,z) \colon z \in A\}. \end{cases}$$

We set $\Delta = \{(x, x) : x \in [0, 1]\}$. Since the function g is continuous, the mapping F is separately continuous at every point of the set $[0, 1]^2 \setminus \{(z, z) : z \in A\}$ and jointly continuous at every point of the set $[0, 1]^2 \setminus \Delta$.

Since the mapping H(x,y) = [0,g(x,y)] is continuous and $H^{-}(G) = F^{-}(G)$ for any open set $G \subseteq [0,1]$, the mapping F is lower semicontinuous. In addition,

$$F(x,y) \subseteq [0,1) \subseteq F(z,z)$$

for all $(x, y) \in [0, 1]^2 \setminus \Delta$ and $z \in [0, 1]$. Thus, the mapping F is separately continuous at any point of the set Δ . This implies that F is a separately continuous lower semicontinuous mapping. According to Example 2.1, the restriction $F|_{\Delta}$ is not upper Lebesgue measurable. Hence, the mapping F is also not upper Lebesgue measurable.

REFERENCES

- 1. T. Banakh, "(Metrically) quarter-stratifiable spaces and their applications," Mat. Stud., 18, No. 1, 10–28 (2002).
- 2. M. Burke, "Borel measurability of separately continuous functions," Topol. Appl., 129, No. 1, 29–65 (2003).
- 3. R. Engelking, General Topology, Heldermann, Berlin (1989).
- 4. O. Karlova, "Baire classification of maps which are continuous with respect to the first variable and of the functional Lebesgue class α with respect to the second one," *Math. Bull. Shevchenko Sci. Soc.*, **2**, 98–114 (2004).
- 5. O. Karlova and O. Sobchuk, "Lebesgue classification of multivalued maps of two variables," *Nauk. Visn. Cherniv. Univ. Mat.*, **160**, 76–79 (2003).
- 6. K. Kuratowski, "Sur la théorie des fonctions dans les espaces métriques," Fund. Mat., 17, 275–282 (1931).
- 7. K. Kuratowski, "Quelques problèmes concernant les espaces métriques non-séparables," Fund. Mat., 25, 533-545 (1935).
- 8. G. Kwiecińska, "On Lebesgue theorem for multivalued functions of two variables," in: *Proc. of the Ninth Prague Topological Symp.* (*Prague, August 19–25, 2001*), pp. 181–189.
- 9. H. Lebesgue, "Sur les fonctions représentables analytiquement," J. Math. Pures Appl., 1, No. 6, 139–216 (1905).
- 10. O. Maslyuchenko, V. Maslyuchenko, and V. Mykhaylyuk, "Paracompactness and Lebesgue's classifications," *Mat. Met. Fiz.-Mekh. Polya*, **47**, No. 2, 65–72 (2004).
- O. Maslyuchenko, V. Maslyuchenko, V. Mykhaylyuk, and O. Sobchuk, "Paracompactness and separately continuous mappings," in: *General Topology in Banach Spaces*, Nova Science, New York (2001), pp. 147–169.
- 12. D. Montgomery, "Non separable metric spaces," Fund. Mat., 25, 527–533 (1935).
- 13. V. V. Mykhaylyuk, "Baire classification of separately continuous functions and Namioka property," *Ukr. Mat. Bul.*, **5**, No. 2, 203–218 (2008).
- 14. O. V. Sobchuk, "PP-spaces and Baire classifications," in: Proc. of the Int. Conf. on Functional Analysis and Its Applications Dedicated to the 110th Birthday of Stefan Banach (Lviv, May 28–31, 2002), p. 189.