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EXPONENTIAL TWICE CONTINUOUSLY DIFFERENTIABLE
B-SPLINE ALGORITHM FOR BURGERS’ EQUATION

O. Ersoy, I. Dag, and N. Adar UDC 517.5

Exponential twice continuously differentiable B-spline functions (known from the literature as exponen-
tial) are used to set up the collocation method for finding solutions of Burgers’ equation. The effect of
exponential cubic B-splines in the collocation method is analyzed by studying the test problems.

1. Introduction

In the present paper, we adapt exponential cubic B-spline functions to the collocation method with an aim to
develop a numerical method for finding numerical solutions of Burgers’ equation of the form

U

t

+ UU

x

− λU

xx

= 0, a  x  b, t ≥ 0, (1)

with the following initial condition and the boundary conditions:

U(x, 0) = f(x), a  x  b, (2)

U(a, t) = σ1, U(b, t) = σ2, (3)

where the subscripts x and t denote differentiation,

λ

.

=

1

Re

> 0,

Re is the Reynolds number characterizing the intensity of viscosity, σ1 and σ2 are constants, u = u(x, t) is
an unknown function differentiable sufficiently many tines, and f(x) is a bounded function. The initial and
boundary conditions are specified in what follows depending on the test problems.

Burgers’ equation was first introduced by [2]. The solutions of Burgers’ equation were presented by using
some numerical methods with splines. A cubic spline collocation procedure was developed for the numerical
solution of Burgers’ equation in [3, 4]. A B-spline Galerkin method was proposed to solve Burgers’ equation
for both fixed and variable distributions of knots used to define the B-splines in the studies by Davies [5, 6].
A numerical method was developed in [7–9] for the solution of Burgers’ equation by using the splitting method and
the cubic spline approximation method. In [14, 17, 18, 23], the numerical solutions of one-dimensional Burgers’
equation were obtained by the methods based on the collocation of quadratic, cubic, and quintic B-splines over
finite elements. In these methods, the approximate functions of the collocation method for Burgers’ equation were
constructed by using B-splines of various degrees. Galerkin’s methods based on B-splines of various degrees
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were used to find approximate solutions of the Burgers’ equation in [6, 11, 13]. The least-squares method was
combined with B-splines to get numerical methods for the solution of Burgers’ equation in [10, 22]. The numerical
solutions of Burgers’ equation were presented on the basis of cubic B-spline quasiinterpolation and a compact
finite difference method in [20]. The Taylor-collocation and Taylor–Galerkin methods for the numerical solutions
of Burgers’ equation were formed by using both cubic and quadratic B-splines in [19]. The differential quadrature
methods based on cubic and quartic B-splines were used to solve Burgers’ equation in [21, 25, 26]. A hybrid spline
difference method was developed to solve Burgers’ equation by Wang, et al. [24].

The exponential cubic B-spline function and some of its properties were described in detail [27]. Since all used
exponential bases are twice continuously differentiable, we can find twice continuously differentiable approximate
solutions of differential equations. There are few articles used to construct numerical methods for the solution
of differential equations. The exponential cubic B-splines are used with the collocation method in order to find
the numerical solution of the singular perturbation problem posed by M. Sakai, et al. [28]. Another application
of the collocation method based on the cardinal exponential cubic B-splines was proposed for finding numerical
solutions of a singularly perturbed boundary-value problem by Radunovic [29]. An exponential cubic B-spline
collocation method was designed to obtain numerical solutions of self-adjoint singularly perturbed boundary-value
problems in [30]. The only linear partial differential equation known as the convection-diffusion equation was
solved with the help of the exponential cubic B-spline collocation method in [31]. Moreover, the exponential cubic
B-spline collocation method has been recently applied to obtain numerical solutions of the equal-width equation,
Korteweg–de-Vries equation, Fisher equation, and Kuramoto–Sivashinsky equation [32–35].

In the present paper, we compare the results obtained for Burgers’ equation with the results obtained by
using both the cubic B-spline collocation method and the cubic B-spline Galerkin finite-element method [12, 13]
because the B-spline and exponential cubic B-spline functions have almost the same properties. In Section 2,
we describe the exponential cubic B-spline collocation method. In Section 3, three classical test examples are
analyzed to show the versatility of the proposed algorithm and, finally, the conclusions are made to discuss the
outcomes of the proposed algorithm.

2. Collocation Method via Exponential Cubic B-Spline

The analyzed domain [a, b] is equally partitioned at the nodes

⇡ : a = x0 < x1 < . . . < x

N

= b

with a distance h = (b − a)/N between the consecutive nodes. The exponential cubic B-splines B

i

(x) can be
defined at the points of ⇡ as follows:

B

i

(x) =

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

b2

✓
(x

i−2 − x)− 1

p

(sinh(p(x

i−2 − x)))

◆
, [x

i−2, xi−1],

a1 + b1(xi − x) + c1 exp
�
p(x

i

− x)

�
+ d1 exp

�
−p(x

i

− x)

�
, [x

i−1, xi],

a1 + b1(x− x

i

) + c1 exp
�
p(x− x

i

)

�
+ d1 exp (−p(x− x

i

)), [x

i

, x

i+1],

b2

✓
(x− x

i+2)−
1

p

(sinh (p (x− x

i+2)))

◆
, [x

i+1, xi+2],

0, otherwise,

(4)
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Fig. 1. Exponential cubic B-splines over the interval [0, 1] .

Table 1

Values of Bi(x) and Its Two Principal Derivatives at the Nodal Points

x x

i−2 x

i−1 x

i

x

i+1 x

i+2

B

i

0
s− ph

2(phc− s)

1

s− ph

2(phc− s)

0

B

0
i

0
p(1− c)

2(phc− s)

0
p(c− 1)

2(phc− s)

0

B

00
i

0
p

2
s

2(phc− s)

− p

2
s

phc− s

p

2
s

2(phc− s)

0

where

a1 =
phc

phc− s

, b1 =
p

2


c(c− 1) + s

2

(phc− s)(1− c)

�
, b2 =

p

2(phc− s)

,

c1 =
1

4


exp(−ph)(1− c) + s(exp(−ph)− 1)

(phc− s)(1− c)

�
,

d1 =
1

4


exp(ph)(c− 1) + s(exp(ph)− 1)

(phc− s)(1− c)

�
,

c = cosh(ph), s = sinh(ph), and p is a free parameter. For a specific interval [0, 1], the exponential cubic
B-spline function is depicted for p = 1 in Fig. 1.

The functions
�
B−1(x), B0(x), . . . , BN+1(x)

 
form a basis and, hence, any function defined on the inter-

val [a, b] can be expressed as a linear combination of elements of the basis. Every basis function B

i

(x) has the
second derivative. The values of B

i

(x), B

0
i

(x) and B

00
i

(x) at the nodes x

i

can be found from Eq. (4). They are
shown in Table 1.
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Let U
N

be an approximate solution for U :

U

N

(x, t) =

N+1X

i=−1

δ

i

B

i

(x), (5)

where δ

i

are time-dependent parameters. The nodal values of U(x, t) and the values of its first and second
derivatives at the nodes can be found from Eq. (5) depending on the following parameters:

U

i

= U(x

i

, t) =

s− ph

2(phc− s)

δ

i−1 + δ

i

+

s− ph

2(phc− s)

δ

i+1,

U

0
i

= U

0
(x

i

, t) =

p(1− c)

2(phc− s)

δ

i−1 +
p(c− 1)

2(phc− s)

δ

i+1, (6)

U

00
i

= U

00
(x

i

, t) =

p

2
s

2(phc− s)

δ

i−1 −
p

2
s

phc− s

δ

i

+

p

2
s

2(phc− s)

δ

i+1.

The time discretization of the unknown function U is realized by applying the Grank–Nicolson scheme to
Burgers’ equation. As a result, we obtain the following equation:

U

n+1 − U

n

∆t

+

(UU

x

)

n+1
+ (UU

x

)

n

2

− λ

U

n+1
xx

+ U

n

xx

2

= 0, (7)

where U

n+1
= U(x, t) is the solution of the equation on the (n+ 1) th time level. Here, tn+1

= t

n

+∆t , ∆t is
the time step, and the superscripts denote n th time level, tn = n∆t.

The nonlinear term (UU

x

)

n+1 in Eq. (7) is linearized by using the following form proposed by Rubin and
Graves [3]:

(UUx)

n+1
= U

n+1
U

n

x

+ U

n

U

n+1
x

− U

n

U

n

x

. (8)

It is applied to Eq. (7) to obtain time discretized Burgers’ equation:

U

n+1 − U

n

+

∆t

2

�
U

n+1
U

n

x

+ U

n

U

n+1
x

�
− λ

∆t

2

�
U

n+1
xx

− U

n

xx

�
= 0. (9)

Substituting Eq. (5) in (9), we arrive at a fully discretized system of equations

✓
↵1 +

∆t

2

(↵1L2 + β1L1 − λγ1)

◆
δ

n+1
m−1 +

✓
↵2 +

∆t

2

(↵2L2 − λγ2)

◆
δ

n+1
m

+

✓
↵3 +

∆t

2

(↵3L2 + β2L1 − λγ3)

◆
δ

n+1
m+1

=

✓
↵1 + λ

∆t

2

γ1

◆
δ

n

m−1

+

✓
↵2 + λ

∆t

2

γ2

◆
δ

n

m

+

✓
↵3 + λ

∆t

2

γ3

◆
δ

n

m+1, (10)
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where

L1 = ↵1δi−1 + ↵2δi + ↵3δi+1,

L2 = β1δi−1 + β2δi+1,

↵1 =
s− ph

2(phc− s)

, ↵2 = 1, ↵3 =
s− ph

2(phc− s)

,

β1 =
p(1− c)

2(phc− s)

, β2 =
p(c− 1)

2(phc− s)

,

γ1 =
p

2
s

2(phc− s)

, γ2 = − p

2
s

phc− s

, γ3 =
p

2
s

2(phc− s)

.

The system consists of N + 1 linear equations with N + 3 unknown parameters

dn+1
=

�
δ

n+1
−1 , δ

n+1
0 , . . . , δ

n+1
N+1

�
.

The boundary conditions

σ1 = U0, σ2 = U

N

give two additional linear equations

δ−1 =
1

↵1
(U0 − ↵2δ0 − ↵3δ1) ,

δ

N+1 =
1

↵3
(U

N

− ↵1δN−1 − ↵2δN ) .

(11)

Equations (11) can be used to eliminate δ−1 and δ

N+1 from system (10). As a result, it turns into a solvable
matrix equation for the unknown δ

n+1
0 , . . . , δ

n+1
N

. A version of the Thomas algorithm is used to solve the system.
By using the initial condition and the first space derivative of the initial conditions on the boundaries, we get

the following system:

U

N

(x

i

, 0) = U(x

i

, 0), i = 0, . . . , N,

(U

x

)

N

(x0, 0) = U

0
(x0),

(U

x

)

N

(x

N

, 0) = U

0
(x

N

).

3. Computational Examples

The solution of the system produces the initial parameters δ0−1, δ
0
0 , . . . , δ

0
N+1 and, hence, we can start solving

the recursive system at the requested times. The numerical method described in the previous section will be tested
for three test problems of finding the solutions of Burgers’ equation. Three kinds of examples are presented in order
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Fig. 2. Solutions for λ = 1, N = 40, and ∆t = 0.0001.

to demonstrate the versatility and accuracy of the proposed method. The discrete L2 and L1 error norms, namely,

L2 =

vuut
h

NX

j=0

���
U

n

j

− (U

N

)

n

j

�2��
,

L1 = max

j

��
U

n

j

− (U

N

)

n

j

��

are used to measure the errors between the analytic and numerical solutions.

(a) Burger’s equation with a sine-wave initial condition U(x, 0)=sin(⇡x) and boundary conditions U(0, t)=

U(1, t) = 0, possesses an analytic solution in the form of an infinite series defined by [15] as follows:

U(x, t) =

4⇡λ

X1

j=1
jI

j

✓
1

2⇡λ

◆
sin (j⇡x) exp (−j

2
⇡

2
λt)

I0

✓
1

2⇡λ

◆
+ 2

X1

j=1
I

j

✓
1

2⇡λ

◆
cos (j⇡x) exp (−j

2
⇡

2
λt)

, (12)

where I
j

are the modified Bessel functions. This problem describes the decay of a sinusoidal disturbance.
Its numerical solutions at different times are depicted in Figs. 2–5 for the parameters N = 40 and N = 80,

∆t = 0.0001, and λ = 1, 0.1, 0.01, 0.001. From these figures, we see that lower viscosities λ cause the de-
velopment of a sharp front through the right boundary. The amplitude of the sharp front starts to decay with time.
These properties of the solutions are in very good agreement with the results obtained by Saka and Dağ [16, 17].

The two-dimensional solutions are depicted in Figs. 6–9 from time t = 0 to t = 1 with time increments
∆t = 0.0001 and space increments h = 0.25 for various λ . If a smaller value of λ = 0.001 is taken, then the
solutions start to decay after about t = 0.6 for N = 40 . Hence, in order to get acceptable solution with λ = 0.001,

we decrease the space step down to h = 0.125. The plot of this solution is shown in Figs. 8, 9.
A comparison is made between the proposed collocation method and the alternative approaches, including the

cubic B-spline collocation method and cubic B-spline Galerkin method for the parameters ∆t = 0.0001, N = 80,

and λ = 0.01. The exact solutions for λ > 10

−2 are not practical due to the weak convergence of the infinite
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Fig. 3. Solutions for λ = 0.1, N = 40, and ∆t = 0.0001.

Fig. 4. Solutions for λ = 0.01, N = 80, and ∆t = 0.0001.

Fig. 5. Solutions for λ = 0.001, N = 80, and ∆t = 0.0001.
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Fig. 6. Solutions for λ = 1, N = 40, and ∆t = 0.01.

Fig. 7. Solutions for λ = 0.1, N = 40, and ∆t = 0.01.

Fig. 8. Solutions for λ = 0.01, N = 80, and ∆t = 0.01.
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Fig. 9. Solutions for λ = 0.001, N = 80, and ∆t = 0.001.

Table 2

Numerical Results for p = 1, λ = 0.01, N = 40, ∆t = 0.0001, and Different Times

x Time Present Ref. [12] Ref. [13] Exact

0.25 0.4 0.34192 0.34192 0.34192 0.34191

0.6 0.26897 0.26897 0.26897 0.22896

0.8 0.22148 0.22148 0.22148 0.22148

1.0 0.18819 0.18819 0.18819 0.18819

3.0 0.07511 0.07511 0.07511 0.07511

0.50 0.4 0.66071 0.66071 0.66071 0.66071

0.6 0.52942 0.52942 0.52942 0.52942

0.8 0.43914 0.43914 0.43914 0.43914

1.0 0.37442 0.37442 0.37442 0.37442

3.0 0.15018 0.15018 0.15018 0.15018

0.75 0.4 0.91027 0.91027 0.91027 0.91026

0.6 0.76725 0.76725 0.76724 0.76724

0.8 0.64740 0.64740 0.64740 0.64740

1.0 0.55605 0.55605 0.55605 0.55605

3.0 0.22483 0.22483 0.22481 0.22481

series as a result of which these results cannot be compared with the exact solutions. It follows from Tables 2 and 3
that the accuracy of the presented solutions is almost the same as the accuracy of both cubic B-spline collocation
method and cubic B-spline Galerkin method. As the value of the space variable decreases, the error becomes
lower than for the cubic B-spline collocation methods and is quite close to the error of the cubic B-spline Galerkin
method. The values of the solution are presented in Table 3 at time t = 0.1.
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Table 3

Numerical Results for p = 1, t = 0.1, λ = 1, ∆t = 0.0001, and Different Sizes

x h Present Ref. [12] Ref. [13] Exact

0.1 0.0125 0.10953 0.10952 0.10954 0.10954

0.2 0.20977 0.20975 0.20979 0.20979

0.3 0.29186 0.29184 0.29189 0.29190

0.4 0.34788 0.34788 0.34792 0.34792

0.5 0.37153 0.37153 0.37158 0.37158

0.6 0.35899 0.35896 0.35904 0.35905

0.7 0.30986 0.30983 0.30990 0.30991

0.8 0.22778 0.22776 0.22782 0.22782

0.9 0.12067 0.12065 0.12069 0.12069

0.1 h = 0.0625 0.10954 0.10953 0.10954 0.10954

0.2 0.20979 0.20977 0.20979 0.20979

0.3 0.29189 0.29186 0.29190 0.29190

0.4 0.34792 0.34788 0.34792 0.34792

0.5 0.37156 0.37153 0.37158 0.37158

0.6 0.35903 0.35900 0.35904 0.35905

0.7 0.30989 0.30986 0.30990 0.30991

0.8 0.22781 0.22778 0.22782 0.22782

0.9 0.12068 0.12067 0.12069 0.12069

(b) As the second example, we consider a particular solution of Burgers’ equation with the initial condition

U(x, 1) = exp

✓
1

8λ

◆
, 0  x  1,

and boundary conditions U(0, t) = 0 and U(1, t) = 0 .
This problem has the following analytic solution:

U(x, t) =

x

t

1 +

r
t

t0
exp

✓
x

2

4λt

◆ , t ≥ 1, 0  x  1. (13)

This solution reflects the propagation of a shock, and the choice of smaller λ gives a steep shock solution.
Hence, the success of the numerical method depends on the possibility of efficient analysis of steep shocks.
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Table 4

Numerical Results for p = 1,λ = 0.0005, h = 0.005, ∆t = 0.01, and Different Times

x Times Present Ref. [12] Exact

0.1 1.7 0.05882 0.05883 0.05882

0.2 0.11765 0.11765 0.11765

0.3 0.17647 0.17648 0.17647

0.4 0.23529 0.23531 0.23529

0.5 0.29412 0.29414 0.29412

0.6 0.35294 0.35296 0.35294

0.7 0.00000 0.00000 0.00000

0.8 0.00000 0.00000 0.00000

0.9 0.00000 0.00000 0.00000

0.1 2.5 0.04000 0.04000 0.04000

0.2 0.08000 0.08000 0.08000

0.3 0.12000 0.12001 0.12000

0.4 0.16000 0.16001 0.16000

0.5 0.20000 0.20001 0.20000

0.6 0.24000 0.24001 0.24000

0.7 0.28000 0.28001 0.28000

0.8 0.00828 0.00811 0.00977

0.9 0.00000 0.00000 0.00000

0.1 3.25 0.03077 0.03077 0.03077

0.2 0.06154 0.06154 0.06154

0.3 0.09231 0.09231 0.09231

0.4 0.12308 0.12308 0.12308

0.5 0.15385 0.15385 0.15385

0.6 0.18462 0.18462 0.18462

0.7 0.21538 0.21539 0.21538

0.8 0.24615 0.24616 0.24615

0.9 0.12394 0.12358 0.12435

The process of propagation of shocks is studied for λ = 0.005, 0.0005. The numerical solutions obtained
by the exponential collocation method can be favorably compared with the results reported in [12, 13] for certain
times, as indicated in Table 4. In Figs. 10 and 11, we show the process of shock propagation for λ = 0.005,

h = 0.02, ∆t = 0.1 and λ = 0.0005, h = 0.005, ∆t = 0.01 respectively. As time increases, the initial
steep shock becomes smoother if the higher viscosity is used. However, for the low viscosity, it is steeper. These
observations are in complete agreement with the results reported in [9].
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Fig. 10. Shock propagation; λ = 0.005.

Fig. 11. Shock propagation; λ = 0.0005.

(c) Traveling-wave solution of Burgers’ equation has the form:

U(x, t) =

↵+ µ+ (µ− ↵) exp ⌘

1 + exp ⌘

, 0  x  1, t ≥ 0, (14)

where

⌘ =

↵(x− µt− γ)

λ

,

and ↵, µ, and γ are arbitrary constants. The boundary conditions are

U(0, t) = 1, U(1, t) = 0.2

or

U

x

(0, t) = 0, U

x

(1, t) = 0 for t ≥ 0
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Fig. 12. Solutions for λ = 0.01.

Fig. 13. Solutions for λ = 0.005.

Fig. 14. L2 error norm for λ = 0.01 the t = 1.2.
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Fig. 15. L2 error norm for λ = 0.005 the t = 1.2.

Fig. 16. Shock propagation; λ = 0.01.

Fig. 17. Shock propagation; λ = 0.005.
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and the initial condition is obtained from the analytic solution (14) for t = 0 . The analytic solution takes values
between 1 and 0.2, and the process of propagation of the wave front through the right is observed for variable λ.

The lower the value of λ in Burgers’ equation, the steeper the propagating wave front. The robustness of the
algorithm can be shown by monitoring the motion of the wave front for lower λ . The algorithm was realized for
the values ↵ = 0.4, µ = 0.6, γ = 0.125 and λ = 0.01, h = 1/36, ∆t = 0.001, and p = 1. The visual
motion of the wave front is depicted in Figs. 12 and 13 for λ = 0.01, 0.05. The numerical results demonstrate
the formation of a steep front and a very steep front. The plots of errors of the numerical solutions are also shown
in Figs. 14 and 15. From the figures, it is clear that the maximum error is attained in the middle of the analyzed
domain. The solutions obtained from the time t = 0 to t = 1.2 with certain time intervals are visualized in 3D
plots to detect the propagation of sharp behaviors in Figs. 16 and 17 for h = 1/80 and ∆t = 0.0001.

4. Conclusions

The exponential cubic B-spline collocation method for the numerical solutions of Burgers’ equation is pre-
sented via the finite elements and, hence, the continuity of the dependent variable and its first two derivatives is
satisfied for the approximate solution throughout the analyzed range. The equation is integrated into a system of the
linearized iterative algebraic equations. The iterative system is solved by using the Thomas algorithm for each time
step in which a three-banded matrix of coefficients is constructed. In general, the comparative results demonstrate
that the data of our investigations are better than for the cubic B-spline collocation method and almost identical to
the results obtained by the cubic B-spline Galerkin method. Since the cost of the cubic B-spline Galerkin method
is higher than the cost of the suggested method, this is an advantage of the exponential cubic B-spline collocation
method over the cubic B-spline Galerkin method. In all runs of the algorithm, the best results were obtained for
the free parameter p = 1 and the exponential cubic B-spline functions.
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13. İ. Dağ, B. Saka, and A. Boz, “B-spline Galerkin methods for numerical solutions of the Burgers’ equation,” Appl. Math. Comput.,

166, 506–522 (2005).
14. E. N. Aksan, “Quadratic B-spline finite element method for numerical solution of the Burgers equation,” Appl. Math. Comput., 174,

884–896 (2006).
15. D. Cole, “On a quasilinear parabolic equation occurring in aerodynamics,” Quart. Appl. Math., 9, 225–236 (1951).



EXPONENTIAL TWICE CONTINUOUSLY DIFFERENTIABLE B-SPLINE ALGORITHM FOR BURGERS’ EQUATION 921
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